We present nonasymptotic achievability and converse bounds on the maximum coding rate (for a fixed average error probability and a fixed average blocklength) of variable-length full-feedback (VLF) and variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC). For the VLF setup, the achievability bound relies on a scheme that maps each message onto a variable-length Huffman codeword and then repeats each bit of the codeword until it is received correctly. The converse bound is inspired by the meta-converse framework by Polyanskiy, Poor, and Verdú (2010) and relies on binary sequential hypothesis testing. For the case of zero error probability, our achievability and converse bounds match. For the VLSF case, we provide achievability bounds that exploit the following feature of BEC: the decoder can assess the correctness of its estimate by verifying whether the chosen codeword is the only one that is compatible with the erasure pattern. One of these bounds is obtained by analyzing the performance of a variable-length extension of random linear fountain codes. The gap between the VLSF achievability and the VLF converse bound, when number of messages is small, is significant: 23% for 8 messages on a BEC with erasure probability 0.5. The absence of a tight VLSF converse bound does not allow us to assess whether this gap is fundamental.
Nonasymptotic coding-rate bounds for binary erasure channels with feedback
DALAI, Marco
2016-01-01
Abstract
We present nonasymptotic achievability and converse bounds on the maximum coding rate (for a fixed average error probability and a fixed average blocklength) of variable-length full-feedback (VLF) and variable-length stop-feedback (VLSF) codes operating over a binary erasure channel (BEC). For the VLF setup, the achievability bound relies on a scheme that maps each message onto a variable-length Huffman codeword and then repeats each bit of the codeword until it is received correctly. The converse bound is inspired by the meta-converse framework by Polyanskiy, Poor, and Verdú (2010) and relies on binary sequential hypothesis testing. For the case of zero error probability, our achievability and converse bounds match. For the VLSF case, we provide achievability bounds that exploit the following feature of BEC: the decoder can assess the correctness of its estimate by verifying whether the chosen codeword is the only one that is compatible with the erasure pattern. One of these bounds is obtained by analyzing the performance of a variable-length extension of random linear fountain codes. The gap between the VLSF achievability and the VLF converse bound, when number of messages is small, is significant: 23% for 8 messages on a BEC with erasure probability 0.5. The absence of a tight VLSF converse bound does not allow us to assess whether this gap is fundamental.File | Dimensione | Formato | |
---|---|---|---|
DDLYD_ITW_2016.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
339.3 kB
Formato
Adobe PDF
|
339.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.