Measuring strain is a task frequently required in many applications and, often, measurement devices have to adopt technologies that respect specific requirements, especially concerning power supply and transmission of information. In particular, the exploitation of wired solutions or batteries has several problems or it should be avoided in harsh environments. A valid answer to these issues is provided by telemetric systems, which consist of a reading unit that communicates with a passive sensor through the magnetic field established between two inductors connected to these components. The present work describes a study carried out on a telemetric system that has some elements of novelty with respect to the major part of those found in the literature. In fact, it operates with a resistive strain gauge realized through the innovative technology of inkjet printing on a flexible substrate. This permits to introduce advantages relating to design variability and low production cost of the components. Experimental tests were conducted in order to characterize the strain gauge and analyze overall system frequency behavior. Preliminary achieved results are satisfying, highlighting the possibility to measure telemetrically the strain from an inkjet-printed resistive sensor.
Study on a telemetrie system that works with an inkjet-printed resistive strain gauge
BONA, Michele;SARDINI, Emilio;SERPELLONI, MAURO;ANDO', Bruno;
2016-01-01
Abstract
Measuring strain is a task frequently required in many applications and, often, measurement devices have to adopt technologies that respect specific requirements, especially concerning power supply and transmission of information. In particular, the exploitation of wired solutions or batteries has several problems or it should be avoided in harsh environments. A valid answer to these issues is provided by telemetric systems, which consist of a reading unit that communicates with a passive sensor through the magnetic field established between two inductors connected to these components. The present work describes a study carried out on a telemetric system that has some elements of novelty with respect to the major part of those found in the literature. In fact, it operates with a resistive strain gauge realized through the innovative technology of inkjet printing on a flexible substrate. This permits to introduce advantages relating to design variability and low production cost of the components. Experimental tests were conducted in order to characterize the strain gauge and analyze overall system frequency behavior. Preliminary achieved results are satisfying, highlighting the possibility to measure telemetrically the strain from an inkjet-printed resistive sensor.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.