We consider the Georgiou-Lindquist problem of approximating a spectral density function with spectra that are consistent with given state-covariance. Rather than the Kullback-Leibler pseudo-distance, however, we employ the Hellinger distance. We characterize the optimal solution and provide an iterative scheme for the Lagrange multiplier matrix that allows to solve numerically the dual problem.

Constrained approximation in the Hellinger distance

RAMPONI, Federico Alessandro
2007-01-01

Abstract

We consider the Georgiou-Lindquist problem of approximating a spectral density function with spectra that are consistent with given state-covariance. Rather than the Kullback-Leibler pseudo-distance, however, we employ the Hellinger distance. We characterize the optimal solution and provide an iterative scheme for the Lagrange multiplier matrix that allows to solve numerically the dual problem.
2007
978-3-9524173-8-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/484477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact