Hair is one of the elements that mostly characterize people appearance. Being able to detect hair in images can be useful in many applications, such as face recognition, gender classification, and video surveillance. To this purpose we propose a novel multi-class image database for hair detection in the wild, called Figaro. We tackle the problem of hair detection without relying on a-priori information related to head shape and location. Without using any human-body part classifier, we first classify image patches into hair vs. non-hair by relying on Histogram of Gradients (HOG) and Linear Ternary Pattern (LTP) texture features in a random forest scheme. Then we obtain results at pixel level by refining classified patches by a graph-based multiple segmentation method. Achieved segmentation accuracy (85%) is comparable to state-of-the-art on less challenging databases.
FIGARO, Hair Detection and Segmentation in the Wild
SVANERA, Michele;LEONARDI, Riccardo;BENINI, Sergio
2016-01-01
Abstract
Hair is one of the elements that mostly characterize people appearance. Being able to detect hair in images can be useful in many applications, such as face recognition, gender classification, and video surveillance. To this purpose we propose a novel multi-class image database for hair detection in the wild, called Figaro. We tackle the problem of hair detection without relying on a-priori information related to head shape and location. Without using any human-body part classifier, we first classify image patches into hair vs. non-hair by relying on Histogram of Gradients (HOG) and Linear Ternary Pattern (LTP) texture features in a random forest scheme. Then we obtain results at pixel level by refining classified patches by a graph-based multiple segmentation method. Achieved segmentation accuracy (85%) is comparable to state-of-the-art on less challenging databases.File | Dimensione | Formato | |
---|---|---|---|
SMLB_ICIP-2016-v1.pdf
accesso aperto
Descrizione: SMLB_ICIP-2016_pre-print
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.