Indexing and retrieval of image sequences are fundamental steps in video editing and film analysis. Correlation-based matching methods are known to be very expensive when used with large amounts of data. As the size of sequence database grows, traditional retrieval methods fail. Exhaustive search quickly breaks down as an efficient strategy for sequence databases. Moreover, traditional indexing with labels has a lot of drawbacks since it requires a human intervention. New advanced correlation filters are being proposed so as to decrease the computational load of the task. A new method for retrieval of images sequences in large database based on a spatio-temporal wavelet decomposition is proposed here. It will be shown how the use of the multiresolution approach can lead to good results in terms of computationally efficiency and robustness to noise. We will assume that the query sequence may not be contained in the database for different reasons: the presence of a noise signal on the query, or different digitation process, or the query is only similar to sequences in the database. As a consequence we are providing have developed a new efficient retrieval strategy that analyses the database in order to extract the most similar sequences to a given query. The wavelet transform has been chose as the framework to implement the multiresolution formalism, because of its good compression capabilities, especially for embedded schemes. And the good features it provides for signal analysis. This paper describes the principles of a multiresolution sequence matching strategy and outlines its performance through a series of experimental simulations.

Sequence matching Using a Spatio-Temporal Wavelet Decomposition

LEONARDI, Riccardo
1997-01-01

Abstract

Indexing and retrieval of image sequences are fundamental steps in video editing and film analysis. Correlation-based matching methods are known to be very expensive when used with large amounts of data. As the size of sequence database grows, traditional retrieval methods fail. Exhaustive search quickly breaks down as an efficient strategy for sequence databases. Moreover, traditional indexing with labels has a lot of drawbacks since it requires a human intervention. New advanced correlation filters are being proposed so as to decrease the computational load of the task. A new method for retrieval of images sequences in large database based on a spatio-temporal wavelet decomposition is proposed here. It will be shown how the use of the multiresolution approach can lead to good results in terms of computationally efficiency and robustness to noise. We will assume that the query sequence may not be contained in the database for different reasons: the presence of a noise signal on the query, or different digitation process, or the query is only similar to sequences in the database. As a consequence we are providing have developed a new efficient retrieval strategy that analyses the database in order to extract the most similar sequences to a given query. The wavelet transform has been chose as the framework to implement the multiresolution formalism, because of its good compression capabilities, especially for embedded schemes. And the good features it provides for signal analysis. This paper describes the principles of a multiresolution sequence matching strategy and outlines its performance through a series of experimental simulations.
1997
9780819424358
File in questo prodotto:
File Dimensione Formato  
CL_VCIP-1997_full-text SMALL.pdf

accesso aperto

Descrizione: CL_VCIP-1997_full-text
Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 3.6
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/3895
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact