In this paper we propose a technique based on the phase evolution of the Short Time Fourier Transform (STFT) for increasing the spectral resolution in the time-frequency analysis of a musical signal. It is well known that the phase evolution of the STFT coefficients brings important information on the spectral components of the analysed signal. This property has already been exploited in different ways to improve the accuracy in the estimation of the frequency of a single component. In this paper we propose a different approach, where all the coefficients of the STFT are used jointly to build a measure of how likely all the frequency components are, in terms of their phase coherence evaluated in consecutive analysis window. In more detail, we construct a phase coherence function which is then integrated with the usual amplitude spectrum to obtain a refined description of the spectral components of an audio signal.
Time-Frequency Analysis of Musical Signals Using the Phase Coherence
DEGANI, Alessio;DALAI, Marco;LEONARDI, Riccardo;MIGLIORATI, Pierangelo
2013-01-01
Abstract
In this paper we propose a technique based on the phase evolution of the Short Time Fourier Transform (STFT) for increasing the spectral resolution in the time-frequency analysis of a musical signal. It is well known that the phase evolution of the STFT coefficients brings important information on the spectral components of the analysed signal. This property has already been exploited in different ways to improve the accuracy in the estimation of the frequency of a single component. In this paper we propose a different approach, where all the coefficients of the STFT are used jointly to build a measure of how likely all the frequency components are, in terms of their phase coherence evaluated in consecutive analysis window. In more detail, we construct a phase coherence function which is then integrated with the usual amplitude spectrum to obtain a refined description of the spectral components of an audio signal.File | Dimensione | Formato | |
---|---|---|---|
DDLM_DAFx-2013_published_paper.pdf
solo utenti autorizzati
Descrizione: DDLM_DAFx-2013_full-text
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
335.05 kB
Formato
Adobe PDF
|
335.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.