In this paper, we propose a method to integrate the results of different cover song identification algorithms into one single measure which, on the average, gives better results than initial algorithms. The fusion of the different distance measures is made by projecting all the measures in a multi-dimensional space, where the dimensionality of this space is the number of the considered distances. In our experiments, we test two distance measures, namely the Dynamic Time Warping and the Qmax measure when applied in different combinations to two features, namely a Salience feature and a Harmonic Pitch Class Profile (HPCP). While the HPCP is meant to extract purely harmonic descriptions, in fact, the Salience allows to better discern melodic differences. It is shown that the combination of two or more distance measure improves the overall performance.

A Heuristic for Distance Fusion in Cover Song Identification

DEGANI, Alessio;DALAI, Marco;LEONARDI, Riccardo;MIGLIORATI, Pierangelo
2013-01-01

Abstract

In this paper, we propose a method to integrate the results of different cover song identification algorithms into one single measure which, on the average, gives better results than initial algorithms. The fusion of the different distance measures is made by projecting all the measures in a multi-dimensional space, where the dimensionality of this space is the number of the considered distances. In our experiments, we test two distance measures, namely the Dynamic Time Warping and the Qmax measure when applied in different combinations to two features, namely a Salience feature and a Harmonic Pitch Class Profile (HPCP). While the HPCP is meant to extract purely harmonic descriptions, in fact, the Salience allows to better discern melodic differences. It is shown that the combination of two or more distance measure improves the overall performance.
File in questo prodotto:
File Dimensione Formato  
DDLM_WIAMIS-2013_camera_ready.pdf

accesso aperto

Descrizione: DDLM_WIAMIS-2013_post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 166.29 kB
Formato Adobe PDF
166.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/346107
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 1
social impact