In this paper, we give an overview of the four tasks submitted to TRECVID 2008 by COST292. The high-level feature extraction framework comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a multi-modal classifier based on SVMs and several descriptors. The third system uses three image classifiers based on ant colony optimisation, particle swarm optimisation and a multi-objective learning algorithm. The fourth system uses a Gaussian model for singing detection and a person detection algorithm. The search task is based on an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. The rushes task submission is based on a spectral clustering approach for removing similar scenes based on eigenvalues of frame similarity matrix and and a redundancy removal strategy which depends on semantic features extraction such as camera motion and faces. Finally, the submission to the copy detection task is conducted by two different systems. The first system consists of a video module and an audio module. The second system is based on mid-level features that are related to the temporal structure of videos.

COST292 experimental framework for TRECVID 2008

CORVAGLIA, Marzia;GUERRINI, Fabrizio;MIGLIORATI, Pierangelo;
2008-01-01

Abstract

In this paper, we give an overview of the four tasks submitted to TRECVID 2008 by COST292. The high-level feature extraction framework comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a multi-modal classifier based on SVMs and several descriptors. The third system uses three image classifiers based on ant colony optimisation, particle swarm optimisation and a multi-objective learning algorithm. The fourth system uses a Gaussian model for singing detection and a person detection algorithm. The search task is based on an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. The rushes task submission is based on a spectral clustering approach for removing similar scenes based on eigenvalues of frame similarity matrix and and a redundancy removal strategy which depends on semantic features extraction such as camera motion and faces. Finally, the submission to the copy detection task is conducted by two different systems. The first system consists of a video module and an audio module. The second system is based on mid-level features that are related to the temporal structure of videos.
File in questo prodotto:
File Dimensione Formato  
COST292_TRECVID-2008_full-text.pdf

accesso aperto

Descrizione: COST292_TRECVID-2008_full-text
Tipologia: Full Text
Licenza: Creative commons
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/34487
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact