The Seebeck effect of ZnO nanowires has been investigated with the future aim to build thermoelectric devices based on nanowire arrays for energy harvesting and potential use in low-power portable electronics and autonomous sensor systems. Bundles of ZnO nanowires have been deposited on alumina substrates by a thermal evaporation process. The ZnO nanowires have been characterized by means of a purposely-developed experimental set-up, showing a negative Seebeck coefficient as for n-type semiconductors. © 2014 Springer Science+Business Media.

Investigation of seebeck effect in ZnO nanowires for micropower generation in autonomous sensor systems

DALOLA, Simone;FAGLIA, Guido;COMINI, Elisabetta;FERRONI, Matteo;SOLDANO, Caterina;ZAPPA, Dario;FERRARI, Vittorio;SBERVEGLIERI, Giorgio
2014-01-01

Abstract

The Seebeck effect of ZnO nanowires has been investigated with the future aim to build thermoelectric devices based on nanowire arrays for energy harvesting and potential use in low-power portable electronics and autonomous sensor systems. Bundles of ZnO nanowires have been deposited on alumina substrates by a thermal evaporation process. The ZnO nanowires have been characterized by means of a purposely-developed experimental set-up, showing a negative Seebeck coefficient as for n-type semiconductors. © 2014 Springer Science+Business Media.
2014
9781461438595
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/285306
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact