In this paper a new fully scalable - wavelet based - video coding architecture is proposed, where motion compensated temporal filtered subbands of spatially scaled versions of a video sequence can be used as base layer for inter-scale predictions. These predictions take place between data at the same resolution level without the need of interpolation. The prediction residuals are further transformed by spatial wavelet decompositions. The resulting multi-scale spatiotemporal wavelet subbands are coded thanks to an embedded morphological dilation technique and context based arithmetic coding. Dyadic spatio-temporal scalability and progressive SNR scalability are achieved. Multiple adaptation decoding can be easily implemented without the need of knowing a predefined set of operating points. The proposed coding system allows to compensate some of the typical drawbacks of current wavelet based scalable video coding architectures and shows interesting visual results even when compared with the single operating point video coding standard AVC/H.264.

A Fully Scalable Video Coder with Inter-Scale Wavelet Prediction and Morphological Coding

ADAMI, Nicola
Methodology
;
BRESCIANINI, Michele
Membro del Collaboration Group
;
DALAI, Marco
Methodology
;
LEONARDI, Riccardo
Conceptualization
;
SIGNORONI, Alberto
Methodology
2005-01-01

Abstract

In this paper a new fully scalable - wavelet based - video coding architecture is proposed, where motion compensated temporal filtered subbands of spatially scaled versions of a video sequence can be used as base layer for inter-scale predictions. These predictions take place between data at the same resolution level without the need of interpolation. The prediction residuals are further transformed by spatial wavelet decompositions. The resulting multi-scale spatiotemporal wavelet subbands are coded thanks to an embedded morphological dilation technique and context based arithmetic coding. Dyadic spatio-temporal scalability and progressive SNR scalability are achieved. Multiple adaptation decoding can be easily implemented without the need of knowing a predefined set of operating points. The proposed coding system allows to compensate some of the typical drawbacks of current wavelet based scalable video coding architectures and shows interesting visual results even when compared with the single operating point video coding standard AVC/H.264.
2005
9780819459763
File in questo prodotto:
File Dimensione Formato  
ABDLS_VCIP-2005_post_print.pdf

solo utenti autorizzati

Descrizione: ABDLS_VCIP-2005_post_print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 312.73 kB
Formato Adobe PDF
312.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/28083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 2
social impact