Reliability and Maintainability analyses are becoming an increasing competitive advantage in machine tool design. In particular, the goal of machine tools for Ultra High Precision Machining is to guarantee high specified performances and to maintain them over life cycle time. A structured reliability approach applied to such complex and innovative systems must be integrated in the early phase of the design. In this paper, the reliability characterization of an adjustable platform for micromilling operations is presented. The platform is intended to improve the surface finishing of the workpiece, through a broadband Active Vibration Control device based on high performance piezoelectric multilayer actuators. The study intends to assess the capability of the system to maintain along the life cycle the appropriate reduction of the chattering vibrations without any shape error. By dividing the system through a morphological-functional decomposition, the critical elements are detected and their reliability issues are extensively discussed. Their lifetimes are described through opportune distributions and models. The study is completed by the quantitative reliability prediction of the overall system. Finally, a sensitivity analysis is performed and reliability allocation implications are evaluated to determine the effect of every component on the system reliability characteristics and life cycle cost.

Reliability characterization of a piezoelectric actuator based AVC system

MAZZOLA, Marco;AGGOGERI, Francesco;
2010-01-01

Abstract

Reliability and Maintainability analyses are becoming an increasing competitive advantage in machine tool design. In particular, the goal of machine tools for Ultra High Precision Machining is to guarantee high specified performances and to maintain them over life cycle time. A structured reliability approach applied to such complex and innovative systems must be integrated in the early phase of the design. In this paper, the reliability characterization of an adjustable platform for micromilling operations is presented. The platform is intended to improve the surface finishing of the workpiece, through a broadband Active Vibration Control device based on high performance piezoelectric multilayer actuators. The study intends to assess the capability of the system to maintain along the life cycle the appropriate reduction of the chattering vibrations without any shape error. By dividing the system through a morphological-functional decomposition, the critical elements are detected and their reliability issues are extensively discussed. Their lifetimes are described through opportune distributions and models. The study is completed by the quantitative reliability prediction of the overall system. Finally, a sensitivity analysis is performed and reliability allocation implications are evaluated to determine the effect of every component on the system reliability characteristics and life cycle cost.
2010
9780791849187
File in questo prodotto:
File Dimensione Formato  
ESDA_2010.pdf

gestori archivio

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 338.25 kB
Formato Adobe PDF
338.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/268708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact