In the current video analysis scenario, effective clustering of shots facilitates the access to the content and helps in understanding the associated semantics. This paper introduces a cluster analysis on shots which employs dendrogram representation to produce hierarchical summaries of the video document. Vector quantization codebooks are used to represent the visual content and to group the shots with similar chromatic consistency. The evaluation of the cluster codebook distortions, and the exploitation of the dependency relationships on the dendrograms, allow to obtain only a few significant summaries of the whole video. Finally the user can navigate through summaries and decide which one best suites his/her needs for eventual post-processing. The effectiveness of the proposed method is demonstrated by testing it on a collection of video-data from different kinds of programmes. Results are evaluated in terms of metrics that measure the content representational value of the summarization technique.

Extraction of Significant Video Summaries by Dendrogram Analysis

BENINI, Sergio;LEONARDI, Riccardo;MIGLIORATI, Pierangelo
2006-01-01

Abstract

In the current video analysis scenario, effective clustering of shots facilitates the access to the content and helps in understanding the associated semantics. This paper introduces a cluster analysis on shots which employs dendrogram representation to produce hierarchical summaries of the video document. Vector quantization codebooks are used to represent the visual content and to group the shots with similar chromatic consistency. The evaluation of the cluster codebook distortions, and the exploitation of the dependency relationships on the dendrograms, allow to obtain only a few significant summaries of the whole video. Finally the user can navigate through summaries and decide which one best suites his/her needs for eventual post-processing. The effectiveness of the proposed method is demonstrated by testing it on a collection of video-data from different kinds of programmes. Results are evaluated in terms of metrics that measure the content representational value of the summarization technique.
2006
1424404800
File in questo prodotto:
File Dimensione Formato  
BBLM06-icip-EXTRACTION OF SIGNIFICANT VIDEO SUMMARIES BY DENDROGRAM ANALYSIS.pdf

solo utenti autorizzati

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.6 MB
Formato Adobe PDF
4.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
BBLM_ICIP-2006_post-print.pdf

accesso aperto

Descrizione: BBLM_ICIP-2006_post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF Visualizza/Apri
BBL-06-published.pdf

solo utenti autorizzati

Descrizione: icip-2006-full-text-ieee-explore
Tipologia: Full Text
Licenza: DRM non definito
Dimensione 4.61 MB
Formato Adobe PDF
4.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/14937
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 7
social impact