This paper is concerned with the experimental mechanical analysis of a new design of a joint for a main components of a upper deck of a road bridge. These components are subject to the compression state stress induced by the weight and the load acting on the road. Each upper deck of a bridge (positioned on each side of the bridge) is composed by four tubular structures that must be joint each together. The joint must to take in to account many aspects, for example that the length of each component is not the same (because, obviously, there is a mechanical tolerance). This phenomena induce different compression stress on each component and so is very important non only the critical buckling load but also the post buckling behaviour of the structure. It is very important that if a single tubular structure reaches the critical load of instability, it still has load capacity . This is to avoid that, in the case where a column reaches the instability, the entire load acting on a column increase the load on the remaining three. For this purpose many different geometrical solutions have been designed (elaborated by fem analyses and successively tested experimentally). This work reports the main experimental results on the best joint solution and how this increase the load capacity and the displacement respect to the solution without this flange.

Experimental evaluation of the buckling phenomena in the new joint design for upper deck structure of a bridge

SOLAZZI, Luigi
2010-01-01

Abstract

This paper is concerned with the experimental mechanical analysis of a new design of a joint for a main components of a upper deck of a road bridge. These components are subject to the compression state stress induced by the weight and the load acting on the road. Each upper deck of a bridge (positioned on each side of the bridge) is composed by four tubular structures that must be joint each together. The joint must to take in to account many aspects, for example that the length of each component is not the same (because, obviously, there is a mechanical tolerance). This phenomena induce different compression stress on each component and so is very important non only the critical buckling load but also the post buckling behaviour of the structure. It is very important that if a single tubular structure reaches the critical load of instability, it still has load capacity . This is to avoid that, in the case where a column reaches the instability, the entire load acting on a column increase the load on the remaining three. For this purpose many different geometrical solutions have been designed (elaborated by fem analyses and successively tested experimentally). This work reports the main experimental results on the best joint solution and how this increase the load capacity and the displacement respect to the solution without this flange.
2010
9782759805655
File in questo prodotto:
File Dimensione Formato  
Paper_ICEM_14_571_T8.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/133323
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact