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Riassunto 
 

Nella pratica clinica, la terapia con antidepressivi è un approccio per tentativi che richiede tempo per 

essere messo a punto ed in molti casi questo processo è sconfortante per i pazienti. Da qui nasce 

l’esigenza di sviluppare strumenti che permettano di indirizzare meglio il clinico nella scelta dei migliori 

farmaci da utilizzare. In questa tesi sono proposti degli approcci in silico per classificare gli 

antidepressivi in base alla loro ipotetica probabilità di efficacia e sono sviluppati modelli di machine 

learning per prevedere la risposta antidepressiva in individui affetti da disturbo depressivo maggiore. 

Partendo dai risultati di uno studio di associazione genome-wide nella coorte STAR*D (N=1163), 

abbiamo inizialmente imputato la “signature” del profilo trascrittomico dei pazienti che rispondevano 

alla terapia con citalopram. Successivamente, utilizzando le correlazioni di Spearman, Pearson e il test 

di Kolmogorov Smirnov, abbiamo correlato il profilo trascrizionale dei pazienti che rispondevano alla 

terapia con 21 profili di espressione genica indotti da antidepressivi in cinque linee cellulari umane 

disponibili nel database delle mappe di connettività (Cmap). Infine, abbiamo ordinato gli 

antidepressivi in modo decrescente in base alla media degli indici di correlazione ottenuti con i tre 

diversi metodi e abbiamo calcolato la probabilità di ottenere casualmente tale posizione in classifica 

mediante permutazione. I farmaci con un grado di correlazione positivo più elevato erano quelli con 

una probabilità di efficacia maggiore. 

In MCF7 (linea cellulare di cancro al seno), il farmaco con il rango medio più elevato è risultato essere  

l’escitalopram (p = 0,0014). Nelle linee cellulari A375 (melanoma umano) e PC3 (cancro alla prostata), 

escitalopram e citalopram sono risultati essere i più significativi (p = 0,0310 e 0,0276, rispettivamente). 

Nelle linee cellulari HA1E (rene) e HT29 (cancro del colon), invece, i profili trascrizionali del citalopram 

e dell'escitalopram non predicevano la risposta al citalopram. 

La correlazione significativa tra i profili di espressione dei pazienti che rispondono al citalopram e i 

profili d’espressione indotti da citalopram e (es)citalopram in tre linee cellulari suggerisce che il nostro 

approccio può essere utile e, con futuri miglioramenti, può essere applicabile a livello individuale per 

personalizzare la prescrizione del trattamento. 

Inoltre, abbiamo implementato modelli di regressione logistica e di regressione netta elastica per 

prevedere la risposta antidepressiva individuale in base alla correlazione tra i profili di espressione 

individuali imputati nei pazienti della coorte STAR*D e i profili d’espressione dei farmaci disponibili in 

Cmap. Il metodo di regressione logistica ha identificato negli antidepressivi triciclici i migliori predittori 

della risposta al citalopram. Il modello di regressione netta lineare invece è riuscito a identificare una 

correlazione significativa solo in una linea cellulare. 
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Abstract 
 

In clinical practice, antidepressant prescription is a trial-and-error approach, which is time-consuming 

and discomforting for patients. This study investigated an in-silico approach for ranking 

antidepressants based on their hypothetical likelihood of efficacy and machine learning models to 

predict antidepressant response in individuals suffering from major depressive disorder.  

We predicted the transcriptional profile of citalopram remitters by performing an in-silico 

transcriptome-wide association study on STAR*D genome-wide association study data (N=1163). The 

transcriptional profile of remitters was compared with 21 antidepressant-induced gene expression 

profiles in five human cell lines available in the connectivity map database.  Spearman correlation, 

Pearson correlation, and the Kolmogorov Smirnov test were used to determine the similarity between 

antidepressant-induced profiles and remitter profiles and, subsequently, the average rank of 

antidepressants across the three methods and a p-value for each rank were calculated using a 

permutation procedure. The drugs with the top ranks were those having a high positive correlation 

with the expression profiles of remitters and that may have higher chances of efficacy in the tested 

patients.   

In MCF7 (breast cancer cell line), escitalopram had the highest average rank, with an average rank 

higher than expected by chance (p=0.0014). In A375 (human melanoma) and PC3 (prostate cancer) 

cell lines, escitalopram and citalopram emerged as the highest ranked antidepressants, (p=0.0310 and 

0.0276, respectively). In HA1E (kidney) and HT29 (colon cancer) cell types, citalopram and 

escitalopram did not fall among the top antidepressants.     

The correlation between citalopram remitters’ and (es)citalopram-induced expression profiles in three 

cell lines suggests that our approach may be useful and with future improvements, it can be applicable 

at the individual level to tailor treatment prescription. 

Furthermore, we implemented logistic regression and elastic net regression models to predict 

antidepressant response based on the correlation between inferred expression profiles of individuals 

with major depressive disorder from STAR*D and in-vitro drug profiles from the connectivity map. The 

logistic regression method suggested tricyclic antidepressants as the most significant predictors 

associated with the response phenotype. Moreover, when we applied the elastic net regression model 

to five cell lines, the model performed well only in one cell line (HA1E) to predict drug response in 

STAR*D participants. 
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1. Introduction 
 

1.1 Major Depressive Disorder (MDD) 
 

Major Depressive Disorder (MDD), also widely known as depression is a primary health issue and the 

third leading cause of disability in adolescents and young adults, while being the second leading cause 

of disability in middle-aged adults on a global scale (James et al. 2018). According to the World Health 

Organization, more than 264 million people are living with depression worldwide. According to the 

diagnostic and statistical manual of mental disorder, 5th edition (DSM-5) criteria, the diagnosis of MDD 

requires observation of at least five or more symptoms in an individual for two weeks (American 

Psychiatric Associations 2013) (Table 1.1).  

Table 1.1. Nine core symptoms of MDD according to DSM-5 criteria 

1. Depressed Mood* 

2. Markedly diminished interest or pleasure in all or almost all activities* 

3. Significant weight loss or weight gain, increase or decrease in appetite 

4. Insomnia or hypersomnia 

5. Psychomotor agitation or retardation  

6. Fatigue  

7. Feeling of worthlessness or guilt 

8. Lack of concentration or indecisiveness 

9. Recurrent thoughts of death and suicide 

*One of these symptoms must be present for diagnosis.  

 

 

Based on family, twin, and adoption studies, it has been observed that genetic factors play an 

important role in MDD. Forty to fifty percent  heritability was reported by twin studies whereas family 

studies suggested a two to three-fold increment in lifetime risk of developing MDD among first-degree 

relatives (Lohoff 2010). In 2017, the Psychiatric Genomic Consortium (PGC) identified 44 loci 

associated with MDD after conducting a genome-wide association study (GWAS) of 130,664 MDD 

cases and 330,470 controls (Wray et al. 2018). In 2019, the meta-analysis of three large GWASs 

identified 102 independent variants (246,363 cases and 561,190 controls) associated with MDD. 

Briefly, from GWASs emerged that MDD is a multifactorial and polygenic disorder, where multiple sets 

of susceptible genes interact with each other and with the environment, predisposing individuals to 

the development of the illness. MDD is often comorbid with other health conditions such as cardiac 
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disease, diabetes, and obesity (Whooley and Wong 2003), suggesting that MDD could share genetic 

and environmental factors with other disorders. 

Several therapeutic options are available for treating MDD, including psychological treatments such 

as behavioural activation, cognitive behavioural therapy (CBT), interpersonal psychotherapy (IPT), and 

pharmacotherapy. Antidepressants (ADs) are usually prescribed for treating moderate and severe 

MDD cases. There are five major classes of antidepressants: 1) Selective Serotonin reuptake inhibitors 

(SSRIs), 2) Serotonin and norepinephrine reuptake inhibitors (SNRIs), 3) Noradrenergic and specific 

serotonergic antidepressants (NASSAs), 4) Tricyclic antidepressants (TCAs), (5) Monoamine oxidase 

inhibitors (MAOIs). These different classes of drugs work by preventing the reabsorption of 

neurotransmitters in the brain. SSRIs inhibit the reuptake of serotonin whereas SNRIs inhibit the 

reuptake of both serotonin and norepinephrine. Further, TCAs work by modulating three 

neurotransmitter molecules in nerve cells that are serotonin, norepinephrine, and acetylcholine. The 

MAOIs function by blocking the effect of monoamine oxidase enzyme, increasing the availability of 

neurotransmitters for mood regulation. Moreover, NASSAs act by antagonizing alpha-adrenergic 

receptors and certain serotonin receptors which results in the enhancement of adrenergic and 

serotonergic neurotransmission in the brain (Fasipe 2018).  Antidepressant choice in MDD is based on 

prescription guidelines and prior clinical experience, but the lack of reproducible predictors of AD 

response makes it a ‘trial and error’ approach which can take up to several weeks or months and a 

number of treatment changes before symptom remission is achieved. More than 60% of patients fail 

to achieve remission after being treated with the first AD. Several studies have demonstrated that AD 

response is a trait with a genetic component, indeed AD response frequently clusters in families 

(O’Reilly, Bogue, and Singh 1994) (Franchini et al. 1998) and common genetic variants were estimated 

to explain 42% of the variance in AD response (Tansey et al. 2013a). Due to the heterogeneous and 

polygenic attribute of AD response, researchers are employing Big Data, GWAS, and multi-markers 

approaches to study the AD response trait among MDD patients (Musker and Wong 2019). The lack 

of reproducible biomarkers predicting AD response and limited knowledge of clinical improvement 

are primary challenges of depression treatment (Labermaier, Masana, and Müller 2013). 

 

1.2 The Pharmacogenetics of Antidepressants 
 

Based on the above rationale, pharmacogenetics represents a key contributor to the implementation 

of precision medicine. 

The term pharmacogenetics has been in use since 1959.  Pharmacogenetics was first referred to as 

the relationship between phenotypic variation in metabolism and response to certain drugs. Then in 
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the 1980s, thanks to the scientific advances in human genetics, the genetic basis of this phenotypic 

variation become clearer and pharmacogenetics becomes the study of how genetic variants affect a 

person’s response to drugs. At the end of the 1990s, with the advent of the Human Genome Project, 

the term pharmacogenomics started to be used in addition to pharmacogenetics. Both terms are now 

used interchangeably in the literature (PharmGKB, 2017a). 

In pharmacogenetics (PGx), genomic information is used to study the drug response among individuals 

and to develop effective, safe medications and define doses that will be tailored to a person’s genetic 

makeup (Kisor, Hoefer, and Decker 2019). Single nucleotide polymorphisms (SNPs), deletions, 

insertions, and short tandem repeats are different types of genetic variations that might have a role 

in drug response and can be utilized as predictive markers to evaluate treatment response in a patient 

(Kisor, Hoefer, and Decker 2019). 

As far as pharmacogenomics of AD is concerned, many studies focalized on genes implicated in the 

pharmacokinetics or pharmacodynamics of AD, and more recent hypothesis-free approaches have 

identified novel candidates for AD response. However, results are not always concordant, and the 

modest effects observed have confirmed the polygenicity of the trait and the involvement of multiple 

genetic variants of small effect.  

In the following sections, an overview of the main pharmacogenomic studies of AD drug response will 

be provided. 

 

1.2.1 Candidate gene studies 

To understand the PGx of AD response, candidate gene studies pointed out several genes that may 

influence drug response. This approach has focused mainly on two classes of genes. The first class 

includes those genes that encode proteins involved in the Pharmacokinetics of drugs. The 

mechanisms, such as drug absorption, metabolism, distribution, and elimination which have an impact 

on the delivery of drug to the target site, are regulated by pharmacokinetic genes. The cytochrome 

P450 (CYP) gene family is a category of enzymes with a substantial role in the oxidation and reduction 

of endogenous and xenobiotic substances. This gene family includes CYP2D6, CYP2C19, CYP2C9, 

CYP3A4, and CYP1A2 genes and they are important in the metabolism of various ADs (Gaedigk et al. 

2018). The isoenzymes responsible for AD metabolism and considered determinant in AD clinical 

outcome are CYP2D6 and CYP2C19. The genes coding for these enzymes are highly polymorphic and 

the different alleles encode for an enzyme with normal, partially or totally defective activity or 

increased activity. Based on the allelic combinations of CYP2D6 and CYP2C19 genes and their effect 
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on enzymatic activity, individuals are categorized into poor metabolizers (PMs), intermediate 

metabolizers (IMs), extensive metabolizers (EMs), and ultra-rapid metabolizers (UMs) (Nassan et al. 

2016). Individuals carrying two defective alleles are PMs whereas UMs carry two alleles with an 

increased activity or gene duplications. EMs individuals instead have two functional alleles; therefore, 

they have normal enzymatic functions and drug metabolism. IMs have one defective allele, hence they 

may have slower drug metabolism (Corponi 2019). Prior studies suggested a relationship between 

CYP2D6 variants and the concentration of antidepressants in the blood plasma. According to the 

reported evidence, individuals carrying PMs variant are at higher risk of toxic reactions, while UMs 

require a higher drug dosage to achieve a therapeutic level of drug concentration in the blood plasma 

(Hicks et al. 2017). Despite various studies that have advanced our understanding of CYP genes and 

their role in ADs metabolism, we still do not have strong evidence linking these genes to the clinical 

outcome for commonly used ADs. For instance, for selective SSRIs, there was not a strong correlation 

between CYP genes and the clinical outcome, which suggests metabolizer status dependent therapies 

do not have a significant clinical impact (Fabbri et al. 2018). The second class of genes considered by 

candidate genes studies are pharmacodynamics target genes which are directly affected by the drugs. 

As we have a limited understanding of ADs pharmacodynamics, the receptor and target binding sites 

of ADs and their complete mechanism of actions are unknown. The selection of relevant 

pharmacodynamics genes thus poses a challenge. Since it has been hypothesized that the 

monoaminergic system is involved in the pathophysiology of MDD, genes encoding monoamine 

neurotransmitters have been investigated for the ADs response (Fabbri, Di Girolamo, and Serretti 

2013). One notable example in this context is the SLC6A4 gene which has extensively been studied 

(Licinio and Wong 2011). The allelic differences of SLC6A4 modulate the expression of serotonin 

transporter protein which results in varied serotonin uptake. Studies based on meta-analysis suggest 

that the long L allele of serotonin transporter-linked promoter region (5-HTTLPR) predicts better SSRI 

response in the Caucasian population while it was found to have an opposite effect in the Asian 

population (Fabbri, Di Girolamo, and Serretti 2013). Additionally, variants of other pharmacodynamic 

genes (HTR1A, HTR2A, COMT, GNB3, CNR1, NPY, MAOA, FKBP5, and BDNF) has also been previously 

investigated (A. Serretti and Artioli 2004). Because of the involvement of the hypothalamic-pituitary-

adrenal (HPA) axis in MDD pathophysiology, FKBP5 and NR3C1 are important candidates for the 

heterogeneous behaviour of AD response. Both genes play a significant role in glucocorticoid pathway, 

hence, they are promising pharmacodynamic candidate genes. Variants of the FKBP5 gene have been 

found to be associated with differential therapeutic response. MDD patients who were homozygous 

for the T allele of the rs1360780 SNP in the FKBP5 gene responded faster to SSRIs, TCAs, and 

mirtazapine compared with the carriers of C alleles. However, these results are still preliminary and 
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need to be replicated in other samples (A. Serretti, Drago, and Liebman 2009)(Chiara Fabbri et al, 

2014). Another interesting candidate is G (guanine nucleotide-binding) protein beta 3 subunit gene 

(GNB3). Variants of this gene were found to be related with better AD response in multiple 

investigations. (A. Serretti, Drago, and Liebman 2009). Another candidate gene is the corticotrophin 

releasing hormone (CRH) receptor 1 gene. Researchers detected fluoxetine therapeutic response 

associated with the variants of this gene. Also, neurotrophic factors are considered as the promising 

candidates for pharmacogenomic investigations (A. Serretti, Drago, and Liebman 2009).  

Despite valuable contributions made by candidate gene studies, the findings reported are still 

inconsistent and could not be further replicated. Since, the availability of high-throughput 

technologies has allowed researchers to conveniently perform a genome-wide analyses. Therefore, 

PGx studies of AD response have now shifted from the candidate gene to GWAS.  

 

1.2.2 Role of GWAS in elucidating the architecture of antidepressant treatment 

response. 

GWAS is a hypothesis-free technique to identify SNPs associated with the phenotypes/traits of interest 

without any prior knowledge of causal variants.  

GWAS have contributed significantly to elucidating the etiology of complex polygenic psychiatric 

diseases. After attaining sufficient sample size and power, GWAS can be used as a powerful tool in the 

identification of genetic variants associated with a particular trait or a disease. In contrast to candidate 

gene studies, GWAS is a more pertinent approach to disentangle the complexity of polygenic 

conditions, such as AD response, where the mechanisms of action are not fully elucidated (Breen et 

al. 2016). This technique is ideal for studying the genetic component of non-mendelian conditions that 

are likely determined by a mixture of environmental and genetic determinants, mostly common and 

with small effect sizes. 

Data from three large trials have been often used in GWASs to detect genomic regions associated with 

AD response: the Sequence treatment alternative to relieve depression (STAR*D) study (n = 1948) 

(Garriock et al. 2010), the Genome-based Therapeutic Drugs for Depression (GENDEP) project (n = 

706) (Uher et al. 2010), and the Munich Antidepressant Response Signature (MARS) project (n = 339) 

(Ising et al. 2009). When analyzed in isolation, none of these cohorts led to the identification of 

genome wide significance associations except for the GENDEP analysis of patient subset treated with 

Nortriptyline with a finding which achieved GWAS significance threshold as mentioned in the table 

1.1.  Even two large meta-GWASs of the above data were unable to identify genome-wide significant 

variants. In the first study, data from GENDEP, MARS, and the STAR*D were meta-analyzed for a total 
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of 2256 MDD cases (Uher et al. 2013). The second study was performed on 2897 MDD cases which 

included the data from NEWMEDS  (Novel Methods Leading to New Medications in Depression and 

Schizophrenia) and STAR*D (Tansey et al. 2012). When the additional analysis in the first meta-analysis 

was restrained to citalopram and escitalopram, an intergenic variant rs10783282 in the chromosome 

region (5q.15.1) was identified. The largest GWAS on AD to date was performed using the clinical and 

genomic information of the 23 and me cohort. In this GWAS, Li et al compared 1311 treatment-

resistant to 7795 responder patients and found no variants reaching the genome-wide significance 

threshold (P > 5 × 10−8). For another GWAS cohort of the same study of bupropion responders 

(n=2675) vs non-responders (n=1861), they found one variant rs1908557 in region (4q22.1) associated 

with bupropion response (Li et al. 2016) as mentioned in table 1.1. Recently, Wigmore and colleagues 

tested the association between genetic variants and AD resistance using prescription data in the 

population and family-based GENDEP cohort, and, however, failed to identify SNPs reaching genome-

wide significance. The most significant SNP identified was an intergenic variant located at 10p26.13 

(lead SNP rs188352979, P = 3.25 × 10−7, OR = 2.87, CI = 2.47–3.28) (Wigmore et al. 2020). The main 

GWAS on AD response are summarized in Table 1.1. 

Table 1.1 Summary of published GWAS of antidepressant response. 

Author/ date Study name Sample 
size 

AD Top SNP P-value 

Ising et al. (2009) MARS N=339  Various ADs 
 

rs6989467 7.6 x 10-7 

Uher et al. (2010) GENDEP N=706  Notriptyline 
 

rs2500535 3.6 x10-8 

Garriock et al. (2010) STAR*D N=1491 Citalopram 
 

rs6966038 1.6 x 10-7 

Tansey et al. (2012) NEWMEDS  N =1790 SRIs 
 

rs10783282 1.1 x 10-6 

 
includes GENDEP  

 
 

  

 
sample 

 
 

  

Li et al. (2016) 23 and me  N= 4536 Bupropion 
 

rs1908557 2.6 x 10-8 

Wigmore et al. 
(2020) 

GENDEP, GS:SFHS N=4213 Various ADs 
 

rs188352979 3.2×10-7 

 

While the candidate gene and GWAS approach have provided useful insights for studying various 

phenotypes, these techniques have not yet established replicated genetic variants relevant to the AD 

treatment response with clinical significance. Probably, one possible explanation is that these 

methods, focusing on single SNPs, and did not model the polygenic nature of AD response. For this 
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reason, scientists are exploring other analytical methods allowing the integration of multiple SNPs (Lin 

et al. 2018).  

 

1.2.3 The polygenicity of AD response: the multi-marker approaches  

In a polygenic disorder, a single variant is not informative for assessing the risk of disease. Hence 

individual’s genetic loading for a trait or a disease can be calculated using a statistical technique 

termed as ‘polygenic risk score’ (PRS). The PRS is a single value estimate of an individual’s genetic 

liability to a phenotype and this can be calculated as a sum of risk alleles carried by an individual, 

weighted by the corresponding allele effect sizes derived from GWAS summary statistics (Lewis and 

Vassos 2020).  

The PRS analysis was tested for AD treatment response trait in GENDEP (n=736) and STAR*D cohort 

(n=1409), but no significant associations were found (García-González et al. 2017). Similarly, another 

study used PRS for MDD and neuroticism as predictors of antidepressant response within 3 treatment 

sub-cohorts from GENDEP and 2 sub-cohorts from the Pharmacogenomics Research Network 

Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS). This study couldn’t significantly 

predict antidepressant response using PRS of MDD and neuroticism. However, the investigators 

reported that higher genetic loading for both phenotypes was associated with less favourable drug 

response (Ward et al. 2018). Moreover, previous studies have reported C-reactive protein (CRP) as a 

marker of inflammation and its association with antidepressant response. Zwicker et al analysed data 

from GENDEP studies and calculated PRS for CRP level-based genome-wide results from the Cohorts 

for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. The researchers 

reported that a higher PRS for CRP protein was associated with a better response to escitalopram and 

worse response to amitriptyline  (Zwicker et al. 2018) 

 

1.2.4 Translating GWAS findings into effective therapeutics: moving from SNPs to 

transcriptomic profiles 

Previous studies have investigated possible approaches of translating GWAS findings into effective 

therapeutic options. Researchers studied whether, for example, top GWAS variants can serve as drug 

targets (Sanseau et al, 2012). There are a number of limitations of considering top GWAS variants only, 

as most of the time they lie in the non-coding region of the genome and do not encode for drug-

targeted proteins. Moreover, there are chances of missing multitarget drugs. Based on PRS analysis, 

many complex traits are influenced by SNPs with small effect sizes, and prior studies have ignored 
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them and considered only the top significant genes for evaluating drug target proteins. Keeping in 

mind these limitations, imputing gene expression signatures from GWAS summary statistics may be a 

refined approach and can be used for comparing traits influenced by transcriptomic changes with 

drug-induced gene expression patterns.  Analysis of in-vitro transcriptional profiles of drugs (from 

reference databases) and disease signatures (from GWAS studies) is already an established approach 

in the domain of drug repositioning. For instance, Sirota and colleagues found that cimetidine showed 

an opposite expression pattern to that associated with lung adenocarcinoma. Cimetidine causes genes 

that were highly expressed in lung adenocarcinoma to be lowly expressed and vice versa. Researchers 

experimentally validated this drug as a potential treatment (Sirota et al. 2011). Similarly, topiramate 

was found as a possible treatment for inflammatory bowel disease and this hypothesis was validated 

in an animal model (Dudley et al. 2011). So and his colleagues have proposed a drug repurposing 

strategy for various psychiatric disorders based on the GWAS summary statistics and imputed gene 

expression profiles corresponding to psychiatric traits. They found a number of repositioning 

candidates for psychiatric conditions while many of them were also supported by clinical and pre-

clinical evidences (So et al. 2017).  
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2. Statistical methods behind pharmacogenomics studies: GWAS, 

PRS, and TWAS 
 

2.1 Genome-Wide Association Studies (GWAS) 

 

One of the major focus of human genetics is to identify genetic factors responsible for common and 

rare Mendelian diseases. Besides elucidating the complexity of common and rare diseases, GWAS has 

successful applications in the domain of pharmacogenetics and personalized medicine (Cooper et al. 

2008).  The purpose of GWAS is to scan genetic variants across genomes of many people to find those 

allelic variants or genotypes, which are associated with a disease or phenotype, that is those variants 

that are observed more frequently than expected by chance in subjects with the phenotype under 

study. After identifying causal variants, researchers can use this information to develop better 

methodologies to detect, treat, and prevent the disease. With the completion of the Human genome 

and International Hapmap projects, these sources of information can be used as important research 

tools for finding the genetic causes of diseases (Bush and Moore 2012). One of the first major 

successes of GWAS was the identification of the Complement factor H gene as a risk factor towards 

the onset of age-related macular generation (Haines and Hauser MA 2005).  

In this section, the key steps for conducting GWAS, and the statistical tools for data analysis will be 

presented. As mentioned earlier, the primary goal of GWAS is to identify SNPs that are responsible for 

phenotypic variations of complex human traits. Using chip array technology, hundreds of thousands 

of SNPs are typed and tested across a large number of individuals to find their correlation with the 

phenotype of interest (O’dushlaine et al. 2015). Broadly, GWAS are developed following four main 

sequential steps: quality control (QC) of genotyped data, imputation, association testing and 

interpretation of results. 

2.1.1 QC of genotyped and sample data 

One of the first QC steps is generally represented by the removal of those variant sites with low calling 

rate in the analysed dataset. Broadly speaking, some of the mostly used indicators that are 

representative of data quality are  missing call rate (MCR), minor allele frequency (MAF), and Hardy 

Weinberg equilibrium (HWE) (Pongpanich et al. 2010). Large deviations from HWE could indicate 

genotyping errors and SNPs with greater missingness rates reflects bad genotype probe performance. 

Since many calling algorithms perform poorly with minor alleles, therefore, SNPs with lower MAF are 

more prone to genotyping errors. To map those SNPs which are missed by the sequencing method 

can be imputed by considering external sources such as HapMap and 1000 genome projects (1000 
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Genome project consortium 2015) (1000 Genome project consortium 2005). The imputations of 

unmeasured SNPs are carried out by considering LD structure and haplotype frequencies. Association 

testing for both genotyped and imputed SNPs are performed separately because of the uncertainty 

involved in the imputation process. However, they can also be performed together possibly by taking 

into account uncertainties (e.g., dosages).  Other indicators include sex discrepancy, heterozygosity, 

and relatedness among samples. Sex discrepancy indicates sample mix-ups and needs to be addressed 

during the QC step. X chromosome homozygosity estimate should be greater than 0.8 in males, 

whereas, in females, it should be less than 0.2. Further, it is important to remove individuals with high 

or low heterozygosity rates as it indicates sample contamination and inbreeding. Another important 

QC step is to check relatedness among individuals and to calculate identity by descent (IBD) of all 

sample pairs in the analysis. Individuals with relatedness above a certain threshold need to be 

removed as it will affect the results of the association analysis (Marees et al. 2018). However, there 

are also statistical association test which are robust in terms of relatedness across individuals used in 

GWAS such as SAIGE (Scalable and Accurate Implementation of Generalized mixed model) (Zhou et al. 

2018)  

2.1.2  Imputation of the data 

Imputation in genetics refers to the statistical inference of unobserved genotypes (Figure 2.1).  

Figure 2.1 Imputation scheme. Imputation is achieved by using known haplotypes in a 

population, for instance from the HapMap or the 1000 Genomes Project in humans, thereby 

allowing to test initially-untyped genetic variants for association with a trait of interest. 

Genotype imputation hence helps tremendously in narrowing-down the location of probably 

causal variants in genome-wide association studies. 
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The number of markers in the association studies can be increased by performing the imputation 

process that infers the missing genotypes and harmonize the datasets for metanalysis used in 

association testing. The untyped markers in the sample of interest are imputed using the LD structure 

among the markers which are evaluated in an external reference panel with a dense genetic map 

(Porcu et al. 2013). For most of the GWASs, the HapMap reference panel has previously been used 

but now it has been replaced by a 1000 genome reference set with almost 39.7M biallelic variants 

(1000 Genome project consortium 2015). There are different software available for the genotype 

imputation such as Plink, Beagle, MaCH/minimac, fastPHASE and IMPUTE/IMPUTE2 (Browning and 

Browning 2008) (B. Howie et al. 2012) (Howie, Donnelly, and Marchini 2009) (Yun et al. 2009) (Purcell 

et al. 2007). All of them are based on various algorithms and offers different limitations and accuracy. 

For balancing the computational cost of large reference panels, the developers of IMPUTE2 and MaCH 

software introduced 2 steps procedure for carrying out imputation. In the first step, the genotypes of 

GWAS individuals are phased and their most likely haplotypes are estimated. Subsequently, in the 

next step, the genotypes of the reference panel are imputed into the phased genotypes of the GWAS 

sample (Fuchsberger, Abecasis, and Hinds 2015).    

 

2.1.3  Association testing  

After the QC and the imputation steps, the statistical analysis of genetic data is performed by testing 

each SNP for its independent association with the trait of interest. The single-locus statistical tests 

used are different depending on the quantitative or binary nature of the analysed traits.  

The most common tests used to analyse binary traits are the chi-squared test and Fisher exact test, 

whereas ANOVA and t-test are applied to test the association of single SNP to quantitative variables. 

When potential confounding variables need to be controlled for, such as age, gender, medication, or 

population stratification, the generalized linear model (GLM) can be applied. 

GLM is a commonly used family of statistical methods to relate several continuous and/or categorical 

predictors to a single outcome variable. Analysis of variance (ANOVA), which is similar to the linear 

regression method, is implemented for the analysis of continuous variables (Wang et al. 2019).  

a) Linear Regression (GLM) 

The assumptions made by GLM are, the residuals are normally distributed, each group has the same 

trait variance, and the groups are independent.  
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Given an input vector XT = (X1, X2, …………….... XP), a linear regression model can be expressed as:  

 

𝒇(𝒙) = 𝜷𝒐 + ∑ 𝑿𝒋𝜷𝒋 + 𝜺𝒊
𝒑
𝒋=𝟏                (1)         

       

with the error terms 𝜀𝑖~𝑁(0, 𝜎2). 

The regression coefficients (βj) are estimated by minimizing the residual sum of squares (RSS) which 

is the sum of the squared difference between actual yi and predicted output variable f(x): 

 

𝑹𝑺𝑺(𝜷) = ∑ (𝒚𝒊 − 𝒇(𝒙𝒊))𝟐𝒏
𝒊=𝟏             (2) 

 

=  ∑ (𝒚𝒊 − 𝜷𝒐 − ∑ 𝑿𝒊𝒋𝜷𝒋
𝒑
𝒋=𝟏 )

𝟐
𝒏
𝒊=𝟏            (3) 

 

In a linear regression model, the β values are acquired using maximum likelihood estimation which 

gives the parameter values that maximize the likelihood of observing the outcome variable y. In 

practice, t statistics and type III f-tests are used to check the significance of parameter estimates.  

  

When potential confounding variables such as age, sex, and medication need to be controlled for, the 

extended form of GLM can be written as: 

 

𝒈(µ) = ∑ 𝜷𝒋𝑿𝒋 + 𝒖𝑮 +𝒋 ∑ 𝒀𝒌𝑷𝑪𝒌𝒌           (4) 

 

where μ= E(Y); the g() is the link function that performs a monotone transformation on the mean of 

the response variable, Xj is the jth covariate representing a clinical or environmental risk factor,  βj is 

the regression coefficient of Xj, G is the genotype of the test SNP with coefficient u, PCk is the kth top 

principal component calculated from the genotype matrix, and Yk is the effect of PCk. If phenotype Y 

is a binary variable, then a logit link function can be applied and the GLM reduces to logistic regression 

(Wang, Cordell, and Van Steen 2019).  

 

b. Logistic Regression  

Binary or dichotomous trait data are analysed using contingency tables or logistic regression methods.  

Logistic regression is an extension of linear regression in which the linear model is transformed using 

a logistic function. This prediction method is suitable for categorical output variables and calculates 

the probability of binomial traits, hence performs classification (Peng, Lee, and Ingersoll 2002).  
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For a binary outcome with two output possibilities A and B, the log odds of class A, as opposed to class 

B, can be modelled by the following expression: 

 

𝐥𝐨𝐠 (
𝑷 (𝒚𝒊 = 𝑨|𝒙𝒊𝟏, 𝒙𝒊𝟐, … , 𝒙𝒊𝒑)

𝑷 (𝒚𝒊 = 𝑩|𝒙𝒊𝟏, 𝒙𝒊𝟐, … , 𝒙𝒊𝒑)
) =  𝜷𝑶 + 𝜷𝟏𝒙𝒊𝟏 + ⋯ + 𝜷𝒑𝒙𝒊𝒑       (5) 

 

As 𝑃 (𝑦𝑖 = 𝐵|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) is 1 − 𝑃 (𝑦𝑖 = 𝐴|𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝), the probability of outcome 

categorized into class A is given by: 

 

𝑷 (𝒚𝒊 = 𝑨|𝒙𝒊𝟏, 𝒙𝒊𝟐, … , 𝒙𝒊𝒑) =
𝒆

𝜷𝒐+𝜷𝟏𝒙𝒊𝟏+⋯+𝜷𝒑 𝒙𝒊𝒑

𝟏+𝒆
𝜷𝒐+𝜷𝟏𝒙𝒊𝟏+⋯+𝜷𝒑 𝒙𝒊𝒑

                                                                            (6) 

 

The above equation shows that the model outputs probabilities in the range between 0 and 1. Due to 

the linear effects of predictor variables on the outcome function, logistic regression models can be 

categorized into the class of GLMs.  

 

Results obtained after conducting GWAS are represented in a tabular format known as summary 

statistics. Summary statistics include for each analysed SNPs:  information on chromosome position, 

SNP identifier, MAF, effect size (odds ratio/beta), standard error, and p-value. Summary statistics files 

are available for different phenotypes and are made public and stored in dedicated databases. The 

most famous repository of GWAS summary statistics is the GWAS catalogue maintained by the 

European Bioinformatics Institute (https://www.ebi.ac.uk/gwas/) 

 

2.1.4 Interpretation of GWAS results 

Association testing will generate a test statistic for each SNP, measuring its association with the trait 

being studied and a p-value reflective of statistical significance. Manhattan and quantile-quantile (QQ) 

plots (Fig. 2.2) are standard graphical tools for visualizing GWAS results (Jiang and Wang 2018). A 

Manhattan plot is a scatter plot that displays the level of significance of each SNP based on its 

chromosomal location, displayed on the x-axis. On the y axis, the negative log-base-10 of the p-value 

for each of the SNP being tested is presented. This way, stronger association signals are characterized 

by higher values on the graph and are visible at the top. Another widely used plot for the graphical 

representation of GWAS results is a QQ plot, in which the x-axis displays the expected distribution of 

association test statistics under the null hypothesis of no association across millions of SNPs. The 

expected p-values are compared with the observed p-values which are along the y-axis of the plot. 
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Practically, the majority of SNPs won’t be associated with the trait analysed and, therefore, a large 

number of p-values will lie on the diagonal. A small deflection of observed p-values from the null 

hypothesis line at the end represents the true associations among thousands of SNPs not associated 

with the trait (Fig. 2.2 b) (Jiang and Wang 2018). Genomic inflation factor λ is used to quantify if the 

genetic signal is inflated or not. λ is defined as the median of the resulting chi-squared test statistics 

divided by the expected median of the chi-squared distribution. It can be calculated from z-scores, chi 

square statistics or p-values.           

                                                                                  

   (a)                   (b)   

   

Fig 2.2. (a) Manhattan plot from the meta-analysis of 135,458 MDD cases and 399,401 controls (Wray 

et al. 2018). (b) QQ-plot from GWAS comparing STAR*D first stage participants (citalopram remitters 

and non-remitters).                                                                             

 

a. The problem of multiple test corrections 

The null hypothesis is rejected, and a statistical test is considered significant if the p-value is lower 

than the predefined threshold α = 0.05. This implies that 5% of the time, the null hypothesis is rejected 

even if is true. This probability test is applicable to the single statistical test. As we usually consider 

millions of SNPs in GWAS that is why the aggregated likelihood of getting false positives is much higher 

(Jiang and Wang 2018).  

One of the simplest methods to overcome the issue of multiple testing is the ‘Bonferroni correction’ 

method which adjusts the value of α from 0.05 to α/k where k is the number of statistical tests 

conducted (Hochberg 1988). The Bonferroni correction at level 0.05 yields the significance threshold 

5 × 10−8, known as the ‘genome-wide significance level’. This test is conservative as it assumes all SNPs 

are independent of each other and does not consider linkage disequilibrium among GWAS markers. 
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Alternative methods to solve the issue of multiple testing are ‘False discovery rate (FDR)’ and 

‘Permutation procedure’.  

The FDR test developed by Benjamini and Hochberg determines the false positives among the tests 

declared as significant, hence, produces fewer false positives (Benjamani and Hochberg 2016). The 

permutation procedure is another approach for controlling false positives. This method is 

computationally intensive but straightforward. It generates an empirical null distribution of test 

statistics by shuffling the genotype-phenotype relationship of each individual in a dataset and this 

process is repeated for a predefined number of times to approximate false discovery rate (Martin, 

Westfall, and Young 1994).  

 

2.2 Polygenic Risk Score Analysis 
 

GWAS of a disease tests one SNP at a time, thus, explains a small fraction of disease heritability (Wray 

et al. 2014). In Common diseases with a polygenic architecture, many genetic variants with small effect 

sizes act together to increase the risk of a disorder. For this reason, statistical methods (such as 

polygenic score risk analysis) that analyse the joint effect of many SNPs have been developed. The 

goal of PRS is to consider thousands of SNPs that could not achieve the GWAS significance threshold 

but may have a possible role in the disease etiology and may account for the greater amount of 

heritability. The PRS method utilizes association statistics from discovery GWAS and, after SNPs 

pruning based on the LD structure and weighing them according to their effect sizes, PRS tests the 

combined predictive ability in an independent sample (Figure 2.3). P-value informed clumping method 

is used in LD pruning in which SNPs with the strongest evidence of association within the LD window 

are retained while the rest of them are discarded.  
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Figure 2.3. To calculate the PRS we need two cohorts: a discovery cohort where we identify the risk 

alleles and their effect size and a target cohort where the PRS is effectively calculated. In the discovery 

cohort after performing GWAS, we obtain a list of SNPs with a p-value. The SNPs are ranked according 

to their p-value in ascending order, and only risk alleles with a p-value higher than a pre-selected 

threshold will be selected. We obtain in this way a list of risk SNPs with the risk allele and its effect size. 

This information will be used to calculate the PRS in the target cohort. For each individual, the PRS is 

calculated as the mean number of risk alleles weighted for the risk of each allele. 

For conducting PRS analysis, trait-specific weights (log of the odds ratios for binary traits and beta 

values for continuous traits) are acquired from a discovery GWAS (Marees et al. 2018). The genotype 

of individuals in an independent validation sample is weighted based on allele effect sizes from the 

discovery GWAS. Further, these effects are summed across multiple SNPs and represent a PRS value.  

PRS in the form of the equation can be given as: 

𝑃𝑅𝑆𝑗 = ∑ 𝑋𝑗𝛽𝑗  
𝑚
𝑗=1                           (7) 

Where each individual’s score, 𝑃𝑅𝑆𝑗, is calculated by the sum of an individual’s risk alleles 𝑋𝑗 weighted 

by risk alleles effect sizes, 𝛽𝑗, derived from GWAS summary statistics across 𝑚 SNPs. 
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All common SNPs can be used in PRS analysis, but it is important to first clump the SNPs from GWAS 

results before calculating the risk scores. Theoretically, for a polygenic trait all SNPs are informative. 

P-value thresholding is done because the best fitting model can be more oligogenic or more polygenic 

and this is not known in advance. Basically, a model optimization is performed. It is a common practice 

among researchers to perform multiple PRS analyses each accounting for varying p-value thresholds. 

The PRS is tested for association with a disease or control status using the logistic regression method 

by considering principal components as covariates. The prediction accuracy of PRS in the target sample 

is given in terms of pseudo R2 for logistic regression (Marees et al. 2018).  

The widely used software package for performing PRS analysis is PRS-ice (Euesden, Lewis, and O’Reilly 

2015) as it has built-in options for clumping, p-value thresholds, principal components consideration, 

and plotting of attractive graphs. There are also other methods and tools available for computing PRS. 

For example lasso regression (LASSOSUM) and Bayesian approaches (LDPred) (Kulm, Mezey, and 

Elemento 2020) 

 

2.3 Transcriptome-wide association study (TWAS) 
 

One possible mechanism that a genetic variant may influence the associated trait is through regulating 

the gene expression of its neighbour genes. A method developed to investigate such a potential 

mechanism is the transcriptome-wide association study (TWAS). In these studies, rather than directly 

testing SNPs for association with phenotype, the SNPs are used to predict gene expression levels, and 

the predicted gene expression measures are then tested for association with the phenotype. 

TWAS utilizes reference panels, such as the Genotype tissue expression portal (GTEx) datasets (GTEx 

Consortium 2013), where both SNP genotypes and gene expression profiles have been measured in a 

variety of relevant tissues to develop prediction models for gene expression. These matrices are then 

used to impute the expression profile of a target dataset based only on genotype information. In the 

final step, statistical associations between genetic variants and the trait under investigation are 

estimated. The three main steps of TWAS are depicted in Figure 2.4 and described below. 
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Figure 2.4. Three major steps of TWAS. (1)  Training of predictive models using GTEx data. (2) 

Implementation of models to the GWAS cohort (3) Establishing the association between predicted 

expression and trait using statistical methods (Wainberg et al. 2019).  

 

(1) Training of predictive models using GTEx data 

In the first step, predictive models are trained in reference panels (e.g. GTEx data) using SNP and gene 

expression information. The learning of models is based on the expression variation for each gene 

using allele counts of genetic variants in the vicinity of the gene (typically 500 kb or 1 MB around the 

gene). Subsequently, these models estimate weights based on the correlation between SNPs and gene 

expression values in the training data while accounting for linkage disequilibrium (LD) among SNPs. In 

S-PrediXcan (Barbeira et al. 2018) the models were trained using the elastic net approach and the 

authors of this software have deposited the weights and SNP covariances in a publicly available 

resource (http://predictdb.org/) 
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(2) Application of TWAS models to the GWAS cohort and association testing 

After estimating the effect sizes of genetic variants relative to their impact on gene expression levels 

in the reference panel, there can be two different ways in which a TWAS is performed to predict gene 

expression in target samples. One possible route is to predict gene expression at the individual level 

using effect sizes of cis-SNPs in the reference panel and measuring the association between the 

predicted gene expression and a trait. Individual-level prediction can be performed using the 

PrediXcan software (Barbeira et al. 2018). The gene expression value can be predicted using equation 

7, where Tg is the gene expression level,  wlg is the weight of  SNP l responsible for the expression of  

gene g, calculated by a trained model and Xl is the individual SNP dosage.  The regression coefficients 

of phenotype Y on each gene’s predicted expression can be calculated using equation 8: 

𝑻𝒈 = ∑ 𝑾𝒍𝒈𝑿𝒍   𝒍 𝜺 𝒎𝒐𝒅𝒆𝒍 𝒈 
           (7) 

𝒀 =  𝑻𝒈𝜸 +  𝜺              (8) 

Another route involves the estimation of the association between the predicted gene expression levels 

and a trait, by employing a weighted linear combination of SNP-trait standardized effect sizes (z-

scores) and LD between SNPs (Figure 2.5). Fusion and S-PrediXcan software predict gene expression 

profiles for a group of individuals using GWAS summary statistics as an input file (Gusev et al. 

2016)(Barbeira et al. 2018). The expression z-score Zg of a gene can be calculated using equation 9, 

𝒁𝒈 = ∑ 𝒘𝒍𝒈𝒍 Ɛ 𝒎𝒐𝒅𝒆𝒍 𝒈  
𝝈𝒍

𝝈𝒈
 

𝜷𝒍

𝑺𝑬(𝜷𝒍)
                        (9) 

The βl term represents the regression coefficients of the SNPs in the regression model built on the 

GWAS data, with the phenotype/trait as dependent variable. The weights of SNPs Wlg and variance 

ratio σl/σg can be estimated from the training data sets by the software. As mentioned previously, the 

training set can be any reference transcriptomic dataset (1000 Genomes or GTEx data) where the 

prediction models are trained using the elastic-net method (Barbeira et al. 2018).  
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Fig 2.5. Two possible approaches for carrying out TWAS for imputing gene expression in target 

individuals (Gusev et al. 2016). 

 

There are several advantages of the individual TWAS technique compared to traditional GWAS and 

expression studies (So et al. 2017). 

(a) An advantage of transcriptomic-wide association studies is that the number of genes to test is 

generally much lower than the number of SNPs measured in a GWAS, making multiple testing 

correction less impactful on the raw results. 

(b) TWAS sample sizes are usually significantly larger than those used in conventional expression 

studies and summary statistics are easily accessible for a number of traits. 

(c) The expression profiles can be imputed for different tissues which can help to comprehend 

biological mechanisms at the tissue level. 

There are also some disadvantages related to the TWAS method (Wainberg et al. 2019) 

a) Only a small proportion of the heritability explained by SNPs can be attributed to gene 

expression regulation. Thus, with TWAS a significant part of the genetic signal available 
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with GWAS is removed. 

(https://opain.github.io/GenoPred/Functionally_informed_prediction.html) 

b) Genes whose expression is mainly driven by environmental factor are not considered in 

TWAS. 

c) The model prediction accuracy might be affected by the sample size used for training the 

models in the tissue/cell. 

d) eQTL could be also context-specific, that is their effect over gene expression might be due 

to gene-environment interactions and using TWAS model trained on reference tissue 

cannot detect these effects. This could be an advantage as pointed out (e.g., no 

confounding effect of treatment) but also a limitation (a disease could also lead to 

biological changes with specific eQTL regulation, e.g., inflammation related effects). 
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3. The Connectivity Map and its applications in pharmacogenomics.  
 

The Connectivity Map (CMap) (Lamb et al. 2006) is a publicly available comprehensive library of 

transcriptional expression data that can be used to analyze relationships between drugs, cellular 

physiology, and disease states. For developing CMap database, researchers used the gene expression 

profiling method which is low cost and highly reproducible as compared to gene expression 

microarrays and RNA sequencing techniques. The most recent version of CMap has entered into the 

second phase of implementation as part of NIH’s Library of Integrated Network-Based Cellular 

Signatures (LINCS) program (Subramanian et al. 2017). The current version of LINCS (also known as 

LINCS-L1000) contains 591,697 expression profiles generated from 29,668 compounds and genetic 

modifications (collectively known as ‘perturbagens’) across 98 different cell lines (N. Lim and Pavlidis 

2019). Cell lines with the highest number of profiles are listed in Table 3.1. The CMap dataset consists 

of comparative data from human cells that treated with perturbagens and untreated cells 

(corresponding vehicle controls) representing a useful resource to identify differentially expressed 

genes (DEGs) in terms of z-scores. The CMap data can be downloaded from the CLUE Data Library 

(https://clue.io/data) or from the Gene Expression Omnibus repository (accession number GSE92742).  

 

Table 3.1. Cell lines with the highest number of profiles in the LINCS CMap database. 

Cell line Tissue type Profile count 

A375 Skin 33,656 

A549 Lung 37,577 

HCC515 Lung 23,714 

HA1E Kidney 26,164 

HEPG2 Liver 21,032 

HT29 Colon 30,449 

MCF7 Breast 52,373 

PC3 Prostate 21,032 

VCAP Prostate 21,032 

Note. Table adapted from (Musa, Tripathi, et al. 2018) 
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3.1 Major components of the CMap analysis pipeline 
 

In brief, the analysis pipeline of CMap is comprised of three steps, described in following paragraphs. 

(1) Gene expression signature of the biological state of interest  

In the first step, a list of differentially expressed genes ranked on the basis of their z-score is obtained 

by comparing gene expression profiles of cases and controls (Fig 3.1A). This list will define the gene 

expression signature of the trait and will be used as an input query to the reference database. 

Depending on the nature of the study, the gene expression profile can be derived from human subjects 

or animal models of diseases. Alternatively, the expression profile can be suggested by disease experts 

who are able to identify the directionality of expression of specific genes corresponding to disease (Fig 

3.1A). Defining a query signature is an essential requirement for CMap analysis. There is no ‘gold 

standard’ for generating expression profiles of the phenotype of interest and they can be obtained 

through traditional RNA sequencing methods or bioinformatics approaches based on genome-wide 

association data (Musa, Ghoraie, et al. 2018).  

(2) Reference database 

The gene expression signature representing a biological state is given as a query to CMap, which 

comprises gene expression profiles obtained from the treatment of cultured human cell lines with a 

large number of perturbagens (see above) (Lamb et al. 2006) (Fig 3.1B). Briefly, by comparing the 

expression profiles of each cell line before and after the treatment with the perturbagens is possible 

to know how these perturbagens modulate gene expression and to obtain the expression signature 

(reference profiles) of each perturbagen in each cell line.  

(3) Pattern matching algorithm (gene set enrichment analysis) 

Finally, a pattern-matching algorithm is used to compare the gene expression profile of the trait of 

interest to gene expression profiles included in the reference database and to obtain for each 

comparison a connectivity score. Connectivity scores are a measure of the similarity between the 

expression profile of the trait under analysis and the expression profiles included in the CMap 

database. 

The connectivity scores are calculated by means of a gene set enrichment analysis (GSEA, described 

in the following paragraph), based on Kolmogorov-Smirnov statistics (Lamb et al. 2006) (Fig 3.1C).  
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3.2 Gene Set Enrichment Analysis (GSEA) to estimate connectivity scores. 
 

In the CMap pipeline, the goal of GSEA is to determine whether the genes of a given query signature 

are randomly distributed in the reference signature gene list or primarily located at the extremes (top 

or bottom). The resulting connectivity score is calculated by walking down the reference signature 

gene list increasing a running sum statistics when a gene available in query is encountered in the 

reference list and decreasing it when the gene of query signature is not present in the reference gene 

list. The connectivity score corresponds to the weighted Kolmogorov-Smirnov statistics. The 

magnitude of increment depends on the correlation of profile with the phenotype of interest (z-

scores) (Subramanian et al. 2005).  The significance value of the calculated score is obtained through 

the permutation procedure. The values of connectivity scores range between +1 and -1. A positive 

connectivity score represents a positive correlation, and a negative connectivity score represents a 

negative correlation between the query signature and drug profiles in the reference database. A null 

connectivity score occurs when there is no correlation between the query profile and the profiles in 

the reference catalog (Lamb et al. 2006). 
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Fig 3.1. Overview of CMap concept. (A) Generating the expression signature of the biological state of 
interest. (B) Mechanism of drug profiles obtained by treating various cell types with perturbagens for 
CMap database. (C) Major steps of CMap analysis.  
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3.3  Application of CMap in pharmacogenomics 
 

The CMap database has been used in Pharmacogenomics since its introduction in 2006. The concept 

of CMap has been used in the identification of new therapeutic options for the treatment of several 

diseases. Moreover, multiple studies adopted this approach to evaluate the drugs’ mechanisms of 

action (MoA) and to find new implications of already existing, approved drugs (drug repurposing).  

 

3.3.1 Finding novel therapeutic options 

The most important application of the CMap database is the discovery of novel treatment options for 

diseases. In a recent study by Lim et al, a gastric cancer gene signature was used to query CMap (S. M. 

Lim, Lim, and Cho 2014). The authors of the study found vorinostat and trichostatin A as potential 

candidates for treating gastric cancer. These findings were validated in experimental settings where 

vorinostat significantly inhibited cell viability in gastric cancer cell lines. Another study conducted by 

Siu et al mentioned polyphyllin D as a therapeutic option for non-small cell lung cancer (Siu et al. 

2008). This study demonstrated that polyphyllin D can activate the pathways involved in the apoptosis 

mediated by the estrogen receptor and mitochondria.  

 

3.3.2  Evaluating a drug’s mechanism of action 

In pharmacology, studying the exact impact of a drug on the biological systems is important to 

understand its mechanism of action and it is also crucial to identify new compounds that are active 

towards specific targets. With the help of CMap, it is possible to identify signalling pathways affected 

by a drug, which can further help us to comprehend the biology of drug-disease relations. CMap was 

used to construct a drug network (DN) based on a distance metric with the ability to score the 

similarity between gene expression profiles and drug treatment (Iorio et al. 2010). The investigators 

used the graph theory to partition the DN to identify the drugs that were highly interconnected, hence, 

they have similar MoA and therapeutic purposes. Notably, the study by Iorio et al also found that the 

MoA of fasudil, a Rho-kinase inhibitor, was highly interconnected with autophagy. The drug, 

previously used in the treatment of cerebral vasospasm, was experimentally validated and its usage 

as a repurposed drug was confirmed for other disease.  
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3.3.3  Drug repurposing 

Conventional drug development is a time-consuming process and involves high costs. CMap has been 

used extensively in the domain of drug repurposing. For instance, Johnstone and his colleagues 

suggested a possible mechansim of calmodulin signaling using piperazine  as promoters of central 

nervous system (CNS) neurite growth (Johnstone et al. 2012). Moreover, using a CMap-based 

approach, they found that piperazine and phenothiazine, two antipsychotics, have the potential to be 

repurposed for neuron regeneration. Similarly, using CMap, Jin and colleagues presented a novel drug 

repurposing strategy for treating type II diabetes (Jin et al. 2014). They reported that the combination 

of Trolox C and Cytisine is effective for the treatment of type 2 diabetes, but if these drugs are used 

separately, neither of them helps in achieving the desired outcome. 
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4. Project aims and outline of the thesis  
 

The main purpose of this thesis work was to investigate computational methods contributing to 

precision psychiatry. Previous studies have focused on the identification of genetic variants associated 

with AD efficacy (Uher et al. 2013) (Wigmore et al. 2020), and here we expand the focus to 

transcriptomic profiles derived from TWAS using data from eQTL studies. The Ph.D. project described 

here can be divided into two major studies. In the first study, we developed and tested an in-silico 

approach aiming at the identification of the gene expression profile associated with remission in MDD 

following citalopram treatment in the STAR*D study, and comparing this profile with various AD-

induced (including citalopram-induced) transcriptional profiles available in the CMap database. In the 

second study, we developed polygenic models using supervised learning algorithms based on the 

genetic associations of the individual profile of STAR*D subjects and in-vitro antidepressant profiles 

from CMap for the prediction of AD response. 

The two aforementioned studies described in this thesis were developed along the following steps: 

First study  

1. After classifying STAR*D participants as remitters or non-remitters to citalopram, a GWAS was 

conducted to test the association of SNPs with remission from MDD  

2. From the GWAS summary statistics data, a TWAS was performed (using the FUSION software) 

to identify the gene expression profile corresponding to remission in MDD in STAR*D 

individuals 

3. We extrapolated and processed various AD-induced expression profiles across several human 

cell lines from the CMap database  

4. Finally, we ranked ADs based on the likelihood of efficacy by comparing their associated 

expression profiles to the one induced by the treatment with citalopram and associated with 

remission in MDD. 

Second study 

1. Individual expression profiles were imputed in STAR*D first stage individuals (citalopram 

remitter and non-remitters) using the Predixcan tool. 

2. Development of polygenic models using supervised learning approach to predict citalopram 

remission based on the genetic associations of individual genetic profiles and in-vitro drug 

expression profiles. 
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5. Investigating an in-silico approach for prioritizing antidepressant 

drug prescription based on drug-induced expression profiles and 

predicted gene expression 
 

 

5.1  Introduction 
 

Antidepressant (AD) prescription is currently based on international guidelines, previous clinical 

experience,  and the presence of co-morbidities, but is largely a ‘trial and error’ practice (Leuchter et 

al. 2010). SSRIs  represent the most common AD class currently used for treating MDD with, however, 

a highly variable response to SSRI treatment between patients (Biernacka et al. 2015). Any attempt to 

achieve symptom remission by switching between treatment or combining multiple 

pharmacotherapies can take weeks to be fully evaluated in terms of clinical effectiveness. 

The availability of objective and reproducible predictors of AD response could reduce the time needed 

to perform such evaluation, and, in turn, to achieve remission and relieve patients’ suffering (Leuchter 

et al. 2010). Prior studies suggest that AD response and remission are heritable traits (Tansey et al. 

2013b), offering the opportunity to use genetic markers in the attempt to predict optimal drug 

prescription. In light of these observations, the development of strategies taking into account various 

factors related to the clinical presentation, the patient’s genotype and their metabolism at baseline 

has been warranted (Gandal et al. 2016).  

In this rapidly evolving context, the purpose of the work presented here was to develop a new 

approach aiming to contribute to precision psychiatry precisely by providing effective ways to predict 

patients’ response to therapeutic agents. As previously mentioned, several studies published in the 

last decade have focused on the identification of genetic variants predictive of AD efficacy (Uher et al. 

2013)(Wigmore et al. 2020), and here we applied TWAS concept to obtain gene expression profiles 

using GWAS summary statistics. Transcriptomic profiles associated with the efficacy of specific ADs in 

clinical trials can be compared with the in vitro AD-induced gene expression changes, in order to test 

if drug-induced gene expression signatures could be used as markers of clinical efficacy of specific ADs. 

The main aim of this study was to develop and test this approach by computing gene expression profile 

associated with remission to citalopram in the STAR*D study and comparing this profile with 

citalopram and other ADs induced transcriptional responses available from the Connectivity Map 

(CMap) database. CMap is a genome-scale library of cellular signatures and a catalogue of 

transcriptional responses to chemical and genetic perturbations (Lamb et al. 2006). A positive 

correlation between expression profiles of citalopram remission and in vitro citalopram induced gene 
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changes was hypothesized to be indicative of the potential utility of our approach. Within this analysis, 

we have hypothesized that results specific to escitalopram would replicate those of citalopram, being 

the former the therapeutically active enantiomer of the latter (Tsuchimine et al. 2018). In a second 

step, we have applied the same approach on control drugs (no known AD effect) to provide a proof of 

principle of the usefulness of the method, since control drugs were expected to have less similarity to 

citalopram remission gene expression profiles than (es)citalopram and other ADs. 

 

5.2 Methods 
 

5.2.1 Study Population 

This study is based on the STAR*D data (Fava et al. 2003). The STAR*D is a clinical trial of protocol-

guided antidepressant treatment for outpatients with MDD. The study included 4,041 treatment-

seeking adult outpatients, recruited in 18 primary care and 23 psychiatric clinical sites across the 

United States, comprised in the STAR*D cohort. Genotyping was performed in 1,948 participants 

(Garriock et al. 2010). Our analysis used data from the first treatment step (level 1), which consisted 

of protocol-guided citalopram (20–60 mg/day). Remission was defined as a score < 6 on the Quick 

Inventory of Depressive Symptomatology clinician-rated (QIDS-C) scale at level 1 exit (after 12 weeks 

of citalopram treatment), in line with the previous literature (Novick et al. 2015)(Rush et al. 2003). The 

choice of remission over symptom improvement as main endpoint of the study as the former was 

associated with better disease prognosis and lower risk of relapse in STAR*D participants(Bradley N. 

Gaynes, M.D. et al. 2009).  STAR*D genotype and phenotype data are available through the National 

Institute of Mental Health Human Genetics Initiative (https://www.nimhgenetics.org/). The STAR*D 

study recruited non-psychotic MDD patients aged 18-75 years from psychiatric and primary health 

care clinics, followed up between 2000 and 2004 (Gaynes et al. 2008). The study design of STAR*D 

comprised of four treatment levels to assess treatment response, with each level consisting in 14 

weeks of treatment. All STAR*D patients were initially treated with the level 1 treatment, and all 

patients not achieving significant remission by the end of each treatment level were entered the 

higher-tier level (Fava et al. 2003) (Trivedi et al. 2006). Alternatively, treatment was suspended on 

patients of each level with significant symptomatic improvement or remission and then they were 

followed up for one year. Genetic material was collected from 1,948 (48%) participants; of whom 

1,491 (37% of the original STAR*D sample, including 980 of white/European ancestry) passed quality 

control and were included in previously reported genome-wide analyses (Garriock et al. 2010). The 
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study was approved by institutional ethics review boards at all centres. Written consent was obtained 

from all participants after the procedures and any associated risks were explained. 

5.2.2 Genotyping, quality control, and imputation 

Details on the genotyping procedure can be found elsewhere (Garriock et al. 2010). Individual 

genotype data for the STAR*D cohort was processed using the PGC “RICOPILI” pipeline for 

standardized quality control, imputation, and association analysis (Lam et al. 2019). Quality control 

and imputation were performed according to the standards from the PGC. The default parameters for 

retaining SNPs and subjects were: SNP missingness < 0.05 and 0.02 for samples, before and after 

sample removal; subject missingness < 0.02 for SNPs; autosomal heterozygosity deviation (|Fhet|<0.2); 

difference in SNP missingness between cases and controls < 0.02; and SNP Hardy-Weinberg 

equilibrium (P>10−6 in controls or P>10−10 in cases).  

Genotype imputation was performed using the pre-phasing/imputation stepwise approach 

implemented in IMPUTE2 / SHAPEIT (chunk size of 3 Mb and default parameters). The imputation 

reference set consisted of 2,186 phased haplotypes from the 1000 Genomes Project dataset (August 

2012, 30,069,288 variants, release “v3.macGT1”). After imputation, we identified SNPs with optimal 

imputation quality (INFO >0.8) and missingness (<1%) values included in the PCA from which the 

resulting principal components were subsequently used as covariates in the final association analysis. 

SNPs underwent linkage disequilibrium-based pruning (r2 > 0.02) and frequency filtering (MAF > 0.05). 

This SNP set was used for robust relatedness testing and population structure analysis. Relatedness 

testing aided identification of duplicated samples and pairs of subjects with �̂� > 0.2, where one 

randomly selected member of each pair was removed, with the only preference being the retention 

of cases over controls.  

5.2.3 Statistical analysis  

(i)  Genome-wide Association Study  

As previously mentioned, a GWAS was conducted using the RICOPILI pipeline to test the association 

of each SNP with remission to citalopram, classifying STAR*D participants (N=1163) as remitters or 

non-remitters. The logistic regression analysis included the covariates of sex, age, baseline QIDS-C 

score, and the first 20 population principal components from the PCA performed on the genotypes. 

The GWAS summary statistics were then converted to LD-score regression format using the 

munge_sumstats.sh script, removing SNPs with an INFO < 0.3 (https://github.com/bulik/ldsc/wiki). 
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(ii)  Transcriptome-wide Association Study  

We used STAR*D GWAS summary statistics to perform a TWAS using the FUSION software (Gusev et 

al. 2016). Briefly, FUSION requires pre-computed gene expression SNP-weights and GWAS summary 

statistics to predict the association between the expression of each gene and the phenotype of 

interest. SNP-weights from the dorsolateral prefrontal cortex data of the CommonMind Consortium 

(DLPFC), 48 tissues including 13 brain regions within GTEx, the Young Finn study, the Netherlands Twin 

Registry, and the Metabolic Syndrome in Men study datasets were considered (Table 5.1). The SNP 

weights were previously derived by FUSION authors (Gusev et al. 2016)(Gusev et al. 2018)(Mancuso 

et al. 2018). Since possible confounding factors were considered when estimating the SNP weights by 

including known and hidden covariates (Stegle et al. 2010), we assumed medication usage in donors 

of the above-mentioned data sources was unlikely to have had an impact on the SNP weights. From 

the GTEx database, we considered a wide range of tissues in addition to brain regions because of their 

larger sample sizes and the presence of a moderate correlation of cis-expression quantitative trait loci 

(eQTL) effects among different tissues (Consortium 2017). All gene expression SNP-weights were 

downloaded from the FUSION website (http://gusevlab.org/projects/fusion/). This study uses the 

term SNP-weight sets to define SNP-weights from a given sample and tissue (e.g. GTEx hippocampus, 

CMC DLPFC). Furthermore, each gene within a given SNP-weight set constitutes a feature or gene-

tissue pair. We combined the FUSION output for all SNP-weight sets, using the TWAS associations (z-

scores) to represent the gene expression signature of citalopram remitters. The 52 SNP-weight sets in 

this study contained 252,878 features, representing 26,363 unique genes. Where multiple features 

for a single gene were available, only the feature providing the highest cross-validation coefficient of 

determination (CV-R2) was retained. We did not define any CV-R2 threshold for feature selection. 

Similar criteria have been implemented elsewhere (Pain et al. 2019). 

 Table 5.1. Tissues considered for TWAS  

GTEx v7 multi-tissue (RNA-seq)  

Tissue No 

 Adipose - Subcutaneous 385 

 Adipose - Visceral (Omentum) 313 

 Adrenal Gland 175 

 Artery - Aorta 267 

 Artery - Coronary 152 

 Artery - Tibial 388 

 Brain - Amygdala 88 

 Brain - Anterior cingulate cortex 
(BA24) 

109 

 Brain - Caudate (basal ganglia) 144 

 Brain - Cerebellar Hemisphere 125 

 Brain - Cerebellum 154 

 Brain - Cortex 136 

 Brain - Frontal Cortex (BA9) 118 

 Brain - Hippocampus 111 

 Brain - Hypothalamus 108 
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 Brain - Nucleus accumbens (basal 
ganglia) 

130 

 Brain - Putamen (basal ganglia) 111 

 Brain - Spinal cord (cervical c-1) 83 

 Brain - Substantia nigra 80 

 Breast - Mammary Tissue 251 

 Blood - EBV-transformed 
lymphocytes 

117 

 Skin - Transformed fibroblasts 300 

 Colon - Sigmoid 203 

 Colon - Transverse 246 

 Esophagus - Gastroesophageal 
Junction 

213 

 Esophagus - Mucosa 358 

 Esophagus - Muscularis 335 

 Heart - Atrial Appendage 264 

 Heart - Left Ventricle 272 

 Liver 153 

 Lung 383 

 Minor Salivary Gland 85 

 Muscle - Skeletal 491 

 Nerve - Tibial 361 

 Ovary 122 

 Pancreas 220 

 Pituitary 157 

 Prostate 132 

 Skin - Not Sun Exposed (Suprapubic) 335 

 Skin - Sun Exposed (Lower leg) 414 

 Small Intestine - Terminal Ileum 122 

 Spleen 146 

 Stomach 237 

 Testis 225 

 Thyroid 399 

 Uterus 101 

 Vagina 106 

 Whole Blood 369 

 
Common mind consortium (RNA 
seq) 

 

 Brain prefrontal cortex  452 

Metabolic Syndrome in men (RNA 
seq) 

 

Adipose  563 

Young Finns Study (Expression 
microarray) 

 

Blood  126
4 

Netherland twin registry (Expression 
microarray) 

 

Blood 124
7 

 

(iii) Comparison of TWAS results with in vitro AD-induced gene expression 

We evaluated the correlation between the TWAS expression profile of citalopram remitters 

extrapolated from the STAR*D cohort data with the in vitro gene expression profiles associated with 

various antidepressants available in CMap (Phase II data) (Figure 5.1).  

We considered the expression profiles of 21 ADs (Table 5.2) in 5 human cell lines available in Phase II 

of CMap ((a) A375, Human malignant melanoma (b) MCF7, Breast cancer (c) PC3, prostate cancer (d) 

HA1E, kidney (e) HT29, colon cancer).  
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Table 5.2. List of Antidepressants and drug class 

Antidepressants Drug Class 

 
Citalopram 

Selective serotonin reuptake inhibitor 

Escitalopram 
Fluoxetine 
Fluvoxamine 
Paroxetine 
Sertraline 
 
 

Trazodone 

Serotonin-norepinephrine reuptake Inhibitor Duloxetine 

Venlafaxine 

Amitriptyline 

Tricyclic antidepressant 

Imipramine 

Nortriptyline 

Trimipramine 

Clomipramine 

Dosulepin 

Maprotiline 

Tetracyclic antidepressant Mianserin 

Mirtazapine 

Tranylcypromine 
Monoamine oxidase inhibitor 

Selegiline 

Reboxetine Noradrenaline reuptake inhibitor 

 

Drug-induced expression profiles were evaluated in cells treated for 24 hours with 10µm drug 

concentration. We used CMap’s GEO series (GSE70138) data and extracted relevant expression 

profiles using cmapR package (https://github.com/cmap/cmapR). Of the 12,328 genes within the 

CMap profiles, 10,027 were captured by the SNP-weight included in the citalopram remitter TWAS. 

We compared the expression profiles of the 21 ADs with the profile of citalopram remitters obtained 

from the TWAS using an approach described in a previous study (So et al. 2017). As an example, some 

differentially expressed genes represented in terms of z-scores of citalopram remitters and drug-

induced profiles are reported in Table 5.3  

 

Table 5.3 Gene expression value in terms of z-scores in the TWAS and drug-induced profile 

Gene Citalopram-remitters 

expression Z-score 

(TWAS) 

Citalopram-induced 

expression Z-score 

(TWAS) 

Venlafaxine-induced 

expression Z-score 

(CMap) 

SLC31A2 -1.24 -0.58 -1.8 
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EPCAM 3.57 0.33 2.37 

RBM6 -2.16 -0.49 0.25 

CBR3 -0.41 2.38 -0.75 

HMGCS1 0.64 3.04 3.46 

⋮ ⋮ ⋮ ⋮ 

 

The differential expression profiles of remission from STAR*D and drugs from CMap were analysed 

using R code (https://sites.google.com/site/honcheongso/software/gwascmap) (So et al. 2017), 

according to the following procedure: 

 

a. Evaluating the relationship between AD-induced gene expression and expression profiles of 

citalopram remitters. Patterns of expressions were tested by analysing all and the most up-

regulated and down-regulated genes in the TWAS (k = 50, 100, 250, 500).  The correlation 

between CMap antidepressant profiles and the STAR*D remitter profile was assessed for each 

drug using both the Spearman’s and the Pearson’s correlation coefficients using all the 

aforementioned k genes. Furthermore, we adopted also the KS test – as reported by the 

original CMap study (Subramanian et al. 2005) – to compare the expression patterns of AD 

and citalopram remitters and calculated connectivity scores (Lamb et al. 2006). The 21 tested 

ADs were ranked based on the results of each test (Pearson, Spearman, and KS), and then the 

average rank across the tests for each drug were computed. Drugs were ranked in ascending 

order of correlation coefficients. As an example, Table 5.4 and 5.5 report the rank of 

citalopram and venlafaxine estimated with the three different methods and the average rank 

calculation.  

 

Table 5.4 Average rank correlation results for Citalopram using Pearson, Spearman, and KS test. 

 
Gene Subset 

Pearson Spearman KS-test 

Coefficient Rank Coefficient Rank Connectivity 
score 

Rank 

All 0.5 1 0.4 1 - - 
50 0.3 1 0.4 1 0.2 2 
100 0.4 1 0.3 1 0.2 1.5 
250 0.1 1 0.2 2 0.1 2 

500 0.2 1.5 0.1 1.5 0.1 1 

Mean rank  - 1.1 - 1.3 - 1.62 

Average rank of Citalopram = 1.34 
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Table 5.5 Average rank correlation results for Venlafaxine using Pearson, Spearman, and KS test. 

 
Gene Subset 

Pearson Spearman KS-test 

Coefficient Rank Coefficient Rank Connectivity 
score 

Rank 

All 0.2 3 0.3 3.2 - - 
50 0.1 3 0.1 2 0.2 3.7 
100 0.3 2 0.4 3 0.3 2.6 
250 0.1 3 0.3 3 0.1 2.6 

500 0.4 2.5 0.1 2.8 0.1 3.2 

Mean rank  - 2.7 - 2.8 - 3.02 

Average rank of Venlafaxine = 2.84 

 

b. Significance of ranks using permutation. To estimate the significance of the ranks, a one-sided 

permutation procedure was performed by shuffling the z-scores obtained in the TWAS and 

calculating the corresponding rank of each drug by repeating the procedure in step a. One 

hundred permutations were performed to calculate the distribution of ranks under the null 

hypothesis and estimated the p-value of the observed ranks. 

 

c. Calculation of ranks probability for each AD across cell lines using the Genome Scan Meta-

Analysis (GSMA) method. We combined ranks of each AD in five cell lines by adding them and 

calculated the sum of ranks probability using GSMA, a non-parametric method for meta-

analysing ranks (Wise, Lanchbury, and Lewis 1999) 

Finally, we repeated the process described above in (a), (b), and (c) for five control drugs (Table. 5.6) 

having hypothetically no antidepressant effect to validate the proposed method.  

Table 5.6. List of control agents and drug class 

Control Drugs Drug Class 

Pantoprazole Proton pump inhibitors  
Clofibrate  Fibrates 
Rifaximin Antibiotic 
Acarbose  Alpha-glucosidase inhibitors 
Ipriflavone Isoflavone 

 

The major steps of the applied in-silico method are shown in Figure 5.1
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Figure 5.1. Illustration of the major steps of the proposed in-silico method
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5.3 Results 
 

STAR*D data included 506 citalopram remitters and 657 non-remitters. The main clinical-demographic 

characteristics of the samples are shown in Table 5.7. 

Table 5.7 Main clinical demographic characteristics of STAR*D 

Number of individuals N 1163 

Level 1 citalopram remitters 506 

Level 1 citalopram non-remitters 657 

Female proportion 0.58 

Mean age (SD) 43.33 (13.49) 

Mean baseline QIDS-C score (SD) 16.14 (3.16) 
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As reported in Figures 5.2, the GWAS and TWAS Q-Q plots showed no evidence of confounding, 

therefore data were used for the comparison with the AD induced expression profile available in the 

CMap database. 

   (a)        (b) 

   ( l) 

                                   

 

 

 

 

Figure 5.2. (a) QQ plot of GWAS p-values for citalopram remission N (p-values) = 1158655. (b) TWAS 

p-values for citalopram remission N (p-values) = 26363. 

The full results obtained on the 5 different cell lines for all the 21 tested ADs are displayed in Table 

5.8. The average rank across tests for ADs showed that escitalopram (S-enantiomer of citalopram) was 

the AD with the highest average rank, followed by amitriptyline in MCF7 (breast cancer cell line). In 

A375 (human malignant melanoma) escitalopram ranked second after trimipramine, whereas in PC3 

cells (prostate cancer), citalopram was the second-highest ranked AD after mirtazapine. In HT29 cells 

(colon cancer), citalopram ranked third after trimipramine and dosulepin, while inHA1E cells (kidney) 

escitalopram and citalopram did not rank in top positions, and the two highest-ranked ADs were 

imipramine and fluvoxamine. In the analysis of combined ranks across cell lines, we found sertraline, 

trimipramine, and venlafaxine as drugs with the best sum of ranks and a nominally significant 

combined p-value across the five cell lines. Citalopram globally ranked 4th, with a near-significant p-

value (0.057) (Table 5.8). In summary, despite the marked variability in terms of  same-AD ranking 

among the different cell lines, (es)citalopram-induced expression signatures were found to be 

significantly correlated with the citalopram remission profile in three cell lines (A375, MCF7, and PC3). 

We attempted to validate our approach by also analysing the expression profiles of five control drugs, 

without any known AD effect. In A375 all control drugs ranked after (es)citalopram. In PC3, three 

control drugs ranked after (es)citalopram. In MCF7, four control drugs were ranked after escitalopram 

and one control drug was ranked after citalopram. In HT29 and HA1E, four control compounds ranked 
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before the (es)citalopram. In the combined rank analysis, rifaximin, trimipramine, and clofibrate had 

the top sum ranks across cell lines, though the only rifaximin was nominally significant (p<0.05) (Table 

5.9). Our hypothesis of higher correlation of (es)citalopram-induced gene expression with citalopram 

remission TWAS results compared to control drugs was partially confirmed only in two cell lines (A375 

and in MCF7). 
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Table 5.8. Ranking of ADs in five human cell lines. 

Cell lines A375 MCF7 PC3 HA1E HT29 Combined cell lines 

Drug Rank Perm.p.value Rank Perm.p.value Rank Perm.p.value Rank Perm.p.value Rank Perm.p.value Rank 

Sum 

p.value 

Amitriptyline 16.9 0.8610 2.4* 0.0290 12.6 0.6138 17.6 0.8948 12.9 0.6224 62.4 0.7049 

Citalopram 7.6 0.2862 7.7 0.2890 2.3* 0.0276 10.6 0.4776 4.4 0.1114 32.6 0.0571 

Clomipramine 11.1 0.5229 4.1 0.0890 9.1 0.3714 18.6 0.9371 16.8 0.8590 59.7 0.6533 

Dosulepin 17.3 0.8824 18.1 0.9257 15 0.7605 8.8 0.3571 2.6* 0.0405 61.8 0.7049 

Duloxetine 11 0.5181 20.9 0.9971 17.2 0.8776 11.3 0.5305 4.8 0.1300 65.2 0.7753 

Escitalopram 2.6* 0.0310 1.2* 0.0014 6.9 0.2395 14.5 0.7324 17.6 0.8976 42.8 0.2034 

Fluoxetine 13.8 0.6843 10.8 0.4890 17.8 0.9033 6.2 0.1976 16.7 0.8562 65.3 0.7752 

Fluvoxamine 19.6 0.9729 6.2 0.2010 2.9 0.0443 3.2 0.0529 9.6 0.4005 41.5 0.1833 

Imipramine 6.2 0.2014 12.6 0.6052 14.6 0.7395 1.2* 0.0062 5.2 0.1490 39.8 0.1468 

Maprotiline 3.7 0.0667 6.8 0.2362 9.8 0.4200 11.2 0.5229 10.5 0.4590 42 0.1833 

Mianserin 19.6 0.9729 15.6 0.8029 17.8 0.9033 17.9 0.9062 19.9 0.9795 90.8 0.9979 

Mirtazapine 9.8 0.4362 18.8 0.9529 2* 0.0181 7.7 0.2871 5.2 0.1490 43.5 0.2247 

Nortriptyline 11.6 0.5576 15.2 0.7833 12 0.5748 18.1 0.9167 7.9 0.2990 64.8 0.7752 

Paroxetine 18.3 0.9248 14.4 0.7390 6.4 0.2129 14.7 0.7448 16.7 0.8562 70.5 0.8695 

Reboxetine 11.8 0.5681 10.2 0.4476 10.7 0.4895 19.8 0.9800 13.3 0.6552 65.8 0.7965 

Selegiline 10.6 0.4890 17 0.8667 19.2 0.9581 15 0.7671 15.6 0.8005 77.4 0.9512 

Sertraline 4.4 0.1033 6.3 0.2052 9.1 0.3714 3.6 0.0662 7.4 0.2743 30.8* 0.0412 

Tranylcypromine 16.9 0.8610 14.8 0.7619 18 0.9119 9.5 0.3929 16.9 0.8614 76.1 0.9428 

Trazodone 10.3 0.4657 10.9 0.4943 13 0.6424 8 0.3043 16.6 0.8529 58.8 0.6264 

Trimipramine 2.4* 0.0267 13.4 0.6614 4 0.0919 9.7 0.4086 1.4* 0.0105 30.9* 0.0412 

Venlafaxine 5.5 0.1567 3.6 0.0676 10.6 0.4819 3.8 0.0810 9 0.3657 32.5* 0.0487 

Note.  P-values were obtained through the permutation procedure described in section 5.2.3. Top ranks are marked with an asterisk and p-values < 0.05 are highlighted in 
gray in each cell line and the combined cell line results. The ADs (es)citalopram are mentioned in bold.
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Table 5.9. Ranking of ADs and control drugs in five human cell lines.  

Cell lines A375 MCF7 PC3 HA1E HT29 Combined cell lines 

Drug Rank Perm.p.value Rank Perm.p.value Rank Perm.p.value Rank Perm.p.value Rank Perm.p.value Rank 

Sum 

p.value 

Acarbose 15.9 0.6392 10.2 0.3238 17.7 0.7196 11.7 0.4108 1.4* 0.0062 56.9 0.2809 

Amitriptyline 19.4 0.8054 3.6* 0.0477 16.4 0.6554 22.1 0.9088 16.9 0.6892 78.4 0.7385 

Citalopram 6.6 0.1581 11.1 0.3723 4.1 0.0596 13.8 0.5146 7.9 0.2227 43.5 0.0878 

Clofibrate 10.8 0.3504 7.2 0.1885 17.2 0.6954 3.6* 0.0442 3.1* 0.0377 41.9 0.0698 

Clomipramine 14.7 0.5777 6.7 0.1596 11.7 0.4069 23.4 0.9523 21 0.8662 77.5 0.7385 

Dosulepin 21.9 0.9000 23.1 0.9442 19.2 0.7954 12 0.4219 5.3 0.1108 81.5 0.8089 

Duloxetine 15.4 0.6135 25.9 0.9988 22.2 0.9123 14.9 0.5738 7.7 0.2154 86.1 0.8670 

Escitalopram 2.8* 0.0296 2* 0.0085 9.2 0.2812 18.5 0.7662 21.9 0.8935 54.4 0.2248 

Fluoxetine 16 0.6488 14.4 0.5527 22.5 0.9238 8.8 0.2569 20.7 0.8523 82.4 0.8089 

Fluvoxamine 24.2 0.9715 8.6 0.2492 4.2 0.0638 4.9 0.0915 13.6 0.5035 55.5 0.2615 

Imipramine 5.5 0.1127 17.2 0.6931 18.8 0.7723 1.8* 0.0092 9 0.2758 52.3 0.1911 

Ipriflavone 17.6 0.7162 19.1 0.7908 3.2* 0.0362 21.2 0.8742 5.2 0.1069 66.3 0.4770 

Maprotiline 4 0.0642 10.1 0.3192 12.6 0.4581 14.6 0.5592 14.4 0.5462 55.7 0.2615 

Mianserin 23.5 0.9527 20.2 0.8427 22.2 0.9123 22.7 0.9323 24.1 0.9631 112.7 0.9983 

Mirtazapine 13.5 0.5123 23.8 0.9662 3.5* 0.0431 11 0.3677 8.5 0.2508 60.3 0.3426 

Nortriptyline 15.3 0.6073 19.2 0.7965 16 0.6331 22.9 0.9377 11.7 0.4058 85.1 0.8537 

Pantoprazole 10.5 0.3373 6.4 0.1473 10.6 0.3492 1.8* 0.0092 25.2 0.9908 54.5 0.2248 

Paroxetine 22.7 0.9285 18.8 0.7742 8.3 0.2381 18.7 0.7769 20.6 0.8500 89.1 0.9021 

Reboxetine 15.4 0.6135 13.8 0.5212 13.6 0.5146 24.6 0.9812 17.3 0.7054 84.7 0.8537 

Rifaximin 13.2 0.4977 1.6* 0.0050 1.7* 0.0062 10.5 0.3404 7.1 0.1862 34.1* 0.0234 

Selegiline 14 0.5381 21.6 0.9004 24.2 0.9723 19.3 0.8023 19.7 0.8165 98.8 0.9727 

Sertraline 5.3 0.1085 9.2 0.2804 12.1 0.4285 5.6 0.1204 11.4 0.3938 43.6 0.0878 

Tranylcypromine 21.3 0.8815 19.2 0.7965 22.8 0.9354 12.7 0.4623 20.9 0.8619 96.9 0.9635 

Trazodone 13.5 0.5123 15.2 0.6027 17.2 0.6954 11.2 0.3792 20.6 0.8500 77.7 0.7385 

Trimipramine 2.6* 0.0250 17.6 0.7146 6 0.1327 13.1 0.4815 2.7* 0.0285 42 0.0698 

Venlafaxine 5.4 0.1115 5.2 0.1004 13.8 0.5288 5.6 0.1204 13.1 0.4738 43.1 0.0784 

Note.  P-values were obtained through the permutation procedure described in section 5.2.3. Top ranks are marked with an asterisk and p-values < 0.05 are highlighted in 
gray in each cell line and the combined cell line results. The ADs (es)citalopram are mentioned in bold and control drugs are in italic and underlined.
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We observed that AD-induced expression profiles vary across the five analysed cell lines. Interestingly, 

citalopram and escitalopram have distinctive signatures, with a weak correlation between them in 

four cell lines (A375, MCF7, PC3, and HT29), and moderate correlation in one cell line (r=0.200 for 

HA1E) (Table. 5.10). The observed variability in drug-induced gene expression among cell lines likely 

contributes to the differences in ADs ranking across cell lines.  

Table 5.10. Spearman correlation between the drug-induced expression profiles of citalopram and 

escitalopram in each cell line. 

Cell lines Correlation coefficient P-value 

A375 -0.008 0.405 

MCF7 0.038 9.74E-05 

PC3 -0.03 0.002 

HT29 -0.01 0.298 

HA1E 0.2 1.34E-91 

Note. P-values suggesting the correlation coefficient being different from zero 

 

For the illustration purpose, the variability of all AD-induced profiles between A375 and MCF7 cell 

lines are reported as a correlation matrix in Figure 5.3. Similarly, we observed small correlations 

between AD profiles among other cell lines. 
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                             Figure 5.3. Correlation Matrix plot between AD signatures of A375 and MCF7 
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5.4 Discussion 
 

 

AD response is heterogeneous among MDD patients and more than 60% of patients fail to achieve 

remission after treatment with the first antidepressant (James et al. 2018b). Although numerous 

studies have advanced our understanding of the role of cytochrome P450  genes in ADs metabolism 

and the modulation of AD treatment outcomes (Hicks et al. 2017) (Chiara Fabbri et al. 2018), 

biomarkers considering sources of variability other than AD pharmacokinetics are still lacking. In this 

study, we evaluated an in-silico approach that can be used to prioritize ADs to treat a specific 

condition, utilizing gene expression profiles imputed from GWAS data and AD-induced transcriptional 

profiles available in CMap. In our case, the positive correlation between gene expression profiles of 

citalopram remitters and (es)citalopram induced expression profiles in three cell lines (A375, MCF7, 

and PC3) suggests that the predicted gene expression profile of a remitter is correlated with in vitro 

expression profiles induced by the same ADs. No previous study has tested this hypothesis and our 

results show that this approach might be used to rank ADs based on their likelihood of efficacy for an 

individual. 

Generally speaking, the analysis of transcriptional profiles of drugs and disease signatures is already 

an established approach in the domain of drug repositioning. The studies which were based on the 

disease and drug profile comparison are mentioned in the section 1.2.4 of the thesis. In our study, we 

applied a similar strategy, but instead of disease-associated gene expression signatures we used TWAS 

predicted expression profiles associated with remission to a known AD drug. This way, ADs that are 

already available on the market and that are effective in treating the condition subject of the analysis 

may be identified, providing a time- and cost-effective alternative to the identification of new ADs. 

We indeed hypothesized that AD-induced expression profiles in vitro may correlate with gene 

expression profiles (predicted using GWAS data, in this case) in remitters following treatment with the 

same drug and/or similar drugs.  

One of the most relevant observations emerging from our results is the pronounced difference in the 

ranking of ADs across different cell lines, suggesting the critical importance of carefully selecting the 

most appropriate cell line(s) when adopting this approach. The notable differences detected between 

cell lines can be likely explained by the inter-cellular drug-induced expression signature variability, as 

reported by Subramanian and colleagues. According to this study, only 15% of all the drug compounds 

produced highly similar signatures across multiple cell lines, whereas the vast majority (85%) produced 

cell line-specific signatures (Subramanian et al. 2017). The heterogeneity of drug signatures depends 

greatly on the cellular pathways that are particularly important in the physiological functions relevant 
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to the cell type in question. In this study, we observed that A375 and MCF7 provided results that were 

more consistent with our hypothesis compared with other cell lines, for both ADs and control drugs. 

This may be explained by the similar embryological origin of cell lines A375 and MCF7 (skin and breast 

cancer cell lines, respectively), as both skin and breast cells originate from the ectoderm (outermost 

layer of the embryo), the same layer from which nervous tissues originate (Jiménez-Rojo et al. 2012). 

This hypothesis suggests that the use of brain cell lines would have been ideal in our study.  

Despite the low reproducibility of gene expression profiles across cell lines, we calculated the 

significance of cumulative ranks across cell lines. By combining ranks of drugs in the evaluated cell 

lines, we aimed at the identification of ADs other than (es)citalopram – but associated with a similar 

treatment-induced expression profile – from which patients may benefit.  

Citalopram is a racemic mixture comprised of two enantiomers, R and S-citalopram (escitalopram) in 

equal proportions. However, the signatures of citalopram and escitalopram are only weakly correlated 

in the five analysed cell lines. This can be due to the differences in modulated genes and pathways by 

these drugs in vitro, as reported by Sakka et al. Their study suggests that citalopram and escitalopram 

modulated 69 and 42 pathways, respectively, and 10 pathways were differentially modulated by the 

two ADs in a neuroblastoma cell line (Sakka et al. 2017). In other words, the in vitro gene expression 

profile of citalopram is influenced by both escitalopram and R-citalopram to a similar extent, making 

it different compared to the profile of escitalopram alone. On the other hand, the in vivo gene 

expression signature of citalopram remitters is hypothetically highly dependent on genes regulated 

by escitalopram rather than R-citalopram, since escitalopram has a 50-fold higher affinity for the 

serotonin transporter compared to R-citalopram and it is considered the main driver of the 

therapeutic effects of citalopram (Jacobsen et al. 2014). 

It is to be noted, however, that none of the p-values relative to the correlation of rank-sum statistics 

across all tested cell lines would survive multiple testing correction, included that of escitalopram. As 

discussed above, we hypothesize the main reasons for this to lie especially in the choice of the cell 

line(s).  

As a result, this is to be intended as an explorative analysis serving as proof-of-principle with regards 

to the validity of this approach, while larger studies, ideally based on brain-related cell lines, are 

warranted. 

 

Irrespective of this, the presented approach is characterized by important strengths and can 

contribute to a deeper understanding of the genetic architecture of disease. As an example, in this 
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case it reflected well the polygenic architecture of AD response, characterized by multiple effects of 

small size (Wigmore et al. 2020). Second, while RNA sequencing remains the gold standard for 

measuring gene expression in vivo, this approach may represent an advantageous proxy. Patients 

affected with psychiatric conditions and included in expression studies are for the vast majority 

receiving treatment, which itself is a modifier of gene expression, therefore representing a 

confounder.  Furthermore, brain tissues can only be acquired from post-mortem samples, 

representing a major obstacle in performing large-scale expression studies on such patients. On the 

contrary, genotype-predicted gene expression profiles are not susceptible to alteration due to 

medications because this approach only captures the heritable component of gene expression. 

Furthermore, this approach is time- and cost-effective compared with any approach based on RNA 

sequencing and relying on tissue collection from post-mortem samples. Last, our method is 

computationally simple, and it can be applied to virtually any trait or condition.  

There are also some limitations to the proposed methodology. First, this method can be applied only 

at a population level (on data from an aggregated sample of individuals), and application at the 

individual level would require specific adaptations (see next chapter). Second, we could not test our 

method in neuronal progenitor cells or differentiated neurons from the CMap transcriptional 

catalogue since, unfortunately, AD-induced gene expression for these cell lines was not available. A 

prior CMap-based study suggested that neuronal cell lines are different compared to cancer cell lines 

in terms of the drug expression profiles, but also showed how neuropsychiatric diseases could be 

reasonably modelled using cancer cell lines (Subramanian et al. 2017)(Lamb et al. 2006). However, the 

relevant differences between expression profiles of different cell lines found by our study and previous 

studies suggest that the selection of the cell line(s) most directly involved in the trait/disease of 

interest is of critical importance. Neural cell lines may indeed be characterized by significant 

expression patterns of genes taking part in those pathways that are most relevant to AD action. 

Additionally, gene expression signatures available in the L1000 CMap database show various 

challenges in terms of their analysis and usage as discussed in previous work (Musa, Tripathi, et al. 

2018). Furthermore, due to the limited availability of transcriptional information for the drugs of 

interest across multiple cell lines, time points, and dosages, our analysis was restricted to expression 

profiles of 21 ADs in five cell lines treated with 10 micromolar drug concentration for 24 hours’ time 

length. 

This study indicates that there is the correlation between (es)citalopram-induced expression profiles 

and predicted expression associated with remission to citalopram seems to be specific to some cell 

lines. These limitations may, at least in part, be overcome by enhancing this approach for application 

at the individual level by investigating the correlation between a drug-induced expression profile and 
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an individual’s predicted gene expression profile, which can be used to rank drugs by their predicted 

efficacy. Hence, the given method can be improved by considering genotype data at the individual 

level and using expression signatures of brain cell lines. 
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6. Prediction of antidepressant response using a supervised learning 

approach leveraging predicted gene expression and in-vitro drug-

related expression profiles 
 

6.1 Introduction 
 

The lack of reproducible biomarkers predicting AD response is a primary challenge in depression 

treatment (Labermaier, Masana, and Müller 2013). Due to the heterogeneous and polygenic nature 

of AD response in MDD, possible research strategies to disentangle the factors modulating this 

phenotype are GWAS and computational models (Musker and Wong 2019) (Adam et al. 2020). 

Identifying optimal treatments using computational models to personalize drug response prediction 

may substantially improve treatment success. However, the computational task of predicting drug 

response holds multiple challenges due, for example, to limited data availability and implicit 

weaknesses of the various approaches (Adam et al. 2020).  

Conventional statistical methods and machine learning tools have been used to establish drug 

response prediction models in both clinical and preclinical settings (Perez-Gracia et al. 

2017)(Dhandapani and Goldman 2017). As described in the previous chapter of this thesis and in a 

recently published paper (Shoaib et al, 2020), we found a positive correlation between the predicted 

gene expression profiles of citalopram remission with the in-vitro (es)citalopram-induced expression 

profiles in various human cell types.  

As a continuation of the work mentioned above, we aimed to test if our findings could be extended to 

develop prediction models of drug response at the individual level.  

In this study, we predicted gene expression values in each STAR*D first stage participant included in 

GWAS of citalopram/escitalopram remission using their genotypic data and relying on results of 

various eQTL studies. Furthermore, we integrated these values with citalopram and other ADs-

induced transcriptional responses in human cancer cell types obtained from CMap.  

This project aims to develop supervised learning algorithms for predicting remission based on the 

combination of individual genetic profiles with the in-vitro drug expression profiles, in the hypothesis 

that these models could be valuable in the prediction of AD clinical efficacy. 

 

6.2 Methods 
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6.2.1 Datasets 

a) STAR*D cohort 

For predicting drug response at the individual level, we used the genotyping data of STAR*D first stage 

participants treated with citalopram. The genotyping data was comprised of 503 citalopram remitters 

and 657 non-remitters. Details of STAR*D data acquisition, and its pre-processing are mentioned in 

Chapter 5 of this thesis (sections 5.2.1 and 5.2.2). 

b) CMap drug profiles 

As previously described (Chapter 5, section 5.2.3) Cmap phase II data were downloaded and 21 

antidepressant profiles of 5 human cell lines were extracted. A detailed description of the CMap data 

we used can be found in section 5.2.3. 

6.2.2 Individual-level gene expression prediction 

Gene expression profiles corresponding to the remission status in all individuals of STAR*D were 

predicted using pre-computed gene expression and SNP weights from GTEx and other consortia 

derived by FUSION’s authors (Gusev et al. 2016) (Figure 6.1).  In each individual, imputed gene 

expression was calculated as the sum of SNPs alleles weighted by their known effect on gene 

expression (eQTL information) adjusted for linkage disequilibrium among SNPs: 

𝐺𝑒𝑛𝑒 𝑒𝑥𝑝 (𝑔) = ∑ 𝑾𝒍𝒈𝑿𝒍   

𝑚

𝑙=1

 

where Wlg is the expression weight for SNP l on gene g and Xl is the number of reference alleles for 

SNP l.  

Individual gene expression profiles were estimated using 52 reference panels from GTEx, Common 

mind consortium (CMC), Netherland twin registry (NTR), and Young finns study (YFS) (Table 5.1). For 

individual-level prediction, gene expression values (z-scores) across all panels were selected using the 

criteria based on the coefficient of determination (CV-R2) as implemented elsewhere (Pain et al. 2019). 

The 52 SNP-weight sets in this study contained 252,878 features, representing 26,363 unique genes. 

Where multiple features for a single gene were available, only the feature providing the highest cross-

validation CV-R2 was retained. We did not define any CV-R2 threshold for feature selection also 

mentioned in section 5.2.3. 
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Fig 6.1. Individual-level gene expression prediction using pre-computed weights from eQTL data. 

 

6.2.3 Combination of individual gene expression and in vitro AD-induced gene 

expression using gene expression risk scores 

We evaluated the association between the individual predicted expression profiles corresponding to 

citalopram remission status and in vitro gene expression profiles of 21 antidepressants, selected based 

on their availability in CMap. We considered the expression profiles of 21 ADs in 5 human cell lines 

available in Phase II of CMap as we did in the previous work (Chapter 5). In our previous study, we 

used nonparametric methods (e.g. Spearman’s correlation) to test the association between remission 

gene expression profiles and CMap drug profiles (Chapter 5) (Shoaib et al. 2020). Here, we propose 

another method: we calculated gene expression risk scores (GeRS) to combine the strength and 

directionality of individuals’ gene expression profiles with ADs-induced expression profiles. GeRS can 

be considered as an equivalent of polygenic risk scores, where instead of a weighted sum of SNPs, 

GeRS calculate a sum of gene expression values associated with a trait (citalopram remission status in 

this case) weighted by CMap z-scores representing drug-induced changes (Table 6.1) 

 

The GeRS in each individual can be calculated by summing weighted gene expression values, as 

follows: 

𝑮𝒆𝑹𝑺 = ∑  𝑮𝒆𝒏𝒆 𝑬𝒙𝒑𝒋 𝑿 𝒘𝒆𝒊𝒈𝒉𝒕𝒋

𝒈

𝒋=𝟏
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where 𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑗 is the predicted gene expression value in an individual and 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 is the z-score 

(absolute value) corresponding to the AD-induced expression changes of the same gene in CMap. We 

considered for each AD available in CMap data the top k modulated genes (k=50, 100, 250, 500). 

Therefore, the GeRS can be used to combine the information provided by individual expression 

profiles of patients and ADs-induced expression profiles from CMap. The proposed gene-expression 

regulation based polygenic models have the ability to capture the polygenic nature of AD remission.  

Table 6.1. Example of GeRS calculation. The higher the GeRS value for a remitter, the more similar their 

profile is to the imipramine-induced profile, whereas the opposite is true in the case of a non-remitter. 

Genes Expression z-scores of 

genes in a remitter 

profile 

Expression z-scores of 

genes in a non-

remitter profile 

Expression z-scores 

of imipramine 

induced expression 

profile from CMap 

SLC31A2 1.2 1.83 0.76 

EBCAM -0.85 1.7 1.85 

CBR3 2.1 -1.9 1.7 

GeRS of a remitter for AD imipramine = (1.2 x 0.76) + (-0.85 x 1.85) + (2.1 x -1.7) = 2.90 

GeRS of a non-remitter for AD imipramine = (1.83 x 0.76) + (1.7 x 1.85) + (-1.9 x 1.7) = 1.30 

 

6.2.4 Prediction of remission status using supervised learning algorithms 

a) Logistic regression 

Firstly, we fitted a logistic regression model using the remission status in STAR*D as the dependent 

variable and each of the 525 GeRS as predictors (21 ADs with 5 gene subsets [k values] across 5 cell 

lines available in CMap), using the R package glmnet (https://cran.r 

project.org/web/packages/glmnet/index.html). We considered the top 20 population principal 

components as covariates to account for population structure. Nagelkerke R2 values of the model 

were computed with and without the population principal components in the STAR*D dataset. 

b) Elastic net regression 

We developed a model for the prediction of remission using a combination of all the available GeRS, 

firstly in each cell line and then combining all the cell lines. We used regularization with logistic 

regression to fit the model, to balance the risks of overfitting and excessive noise, as this approach 

decreases the total number of predictors and selects the most discriminative ones, other than applying 
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a certain degree of shrinkage to the coefficients of the predictors left in the model. We trained a lasso-

ridge logistic regression (elastic-net) model in STAR*D, using a 10 fold cross-validation (cv.glmnet 

function of the R glmnet package), using training sets for both groups of citalopram remitters and non-

remitters. Negelkerke R2 values of the model were computed with and without the population 

principal components, as we performed for logistic regression.  

 

6.3 Results 
 

a) Logistic regression 

For STAR*D subjects (n =1163), we found that GeRS corresponding to 30 CMap AD expression profiles 

were associated (p-value < 0.05) with either citalopram remission or non-remission status (Table 6.2) 

in different cell lines (HA1E, PC3, A375), with several of the ADs being TCAs.  Notably, in HA1E and 

A375 cell lines GeRS corresponding to CMap amitriptyline-, clomipramine-, and nortriptyline-induced 

expression profiles were associated with citalopram non-remission. In A375 and PC3 cell lines, other 

TCA GeRS including dosulepin, imipramine and trimipramine showed an association with citalopram 

remission. After TCAs, most of the GeRS associated with citalopram remission were computed from 

SSRIs and tetracyclic antidepressants (TeCA) expression profiles, and they mostly showed an 

association with non-remission. GeRS computed using (es)citalopram expression profile were not 

found to be associated with remission.  

b) Elastic net regression 

When considering each of the tested cell lines separately, GeRS predicted citalopram remission only 

in the HA1E cell line (p-value = 0.002). When all the cell lines were considered together, the 

corresponding model showed a similar effect (p-value = 0.003) (Table. 6.3)



62 
 

Table 6.2. Significant predictors (p-value < 0.05) obtained using logistic regression model. The coefficient estimates, standard error and p-values are 
calculated for the full model including all the covariates. 

Cell AD Class Subset Full_R2  Estimates SE P GeRS_R2       
 (with covariates) 

   
(without 

covariates) 

HA1E Amitriptyline TCA 100 0.0448 -0.2226 0.0612 0.0003 0.0149 

HA1E Amitriptyline TCA 250 0.0389 -0.1721 0.0606 0.0045 0.0090 

HA1E Amitriptyline TCA 10503 0.0378 -0.1595 0.0599 0.0078 0.0079 

HA1E Amitriptyline TCA 50 0.0363 -0.1444 0.0604 0.0168 0.0064 

HA1E Amitriptyline TCA 500 0.0354 -0.1337 0.0601 0.0260 0.0055 

A375 Amitriptyline TCA 250 0.0343 -0.1209 0.0609 0.0471 0.0044 

HA1E Clomipramine TCA 10503 0.0351 -0.1297 0.0600 0.0307 0.0052 

PC3 Dosulepin TCA 500 0.0363 0.1460 0.0612 0.0170 0.0064 

MCF7 Duloxetine SNRIS 10503 0.0455 -0.2270 0.0609 0.0002 0.0156 

MCF7 Duloxetine SNRIS 500 0.0382 -0.1645 0.0604 0.0065 0.0083 

MCF7 Duloxetine SNRIS 250 0.0348 -0.1262 0.0601 0.0358 0.0049 

HA1E Fluoxetine SSRI 500 0.0352 -0.1302 0.0600 0.0300 0.0053 

HT29 Fluoxetine SSRI 50 0.0350 -0.1288 0.0605 0.0333 0.0051 

PC3 Fluvoxamine SSRI 10503 0.0375 0.1577 0.0605 0.0091 0.0076 

A375 Imipramine TCA 50 0.0356 0.1366 0.0605 0.0240 0.0057 

HA1E Maprotiline TeCA 500 0.0346 -0.1247 0.0607 0.0400 0.0047 

HT29 Maprotiline TeCA 500 0.0344 0.1205 0.0603 0.0459 0.0044 

HT29 Mianserin TeCA 500 0.0352 -0.1302 0.0599 0.0298 0.0053 

HA1E Mianserin TeCA 250 0.0349 0.1264 0.0597 0.0344 0.0050 

A375 Nortriptyline TCA 500 0.0354 -0.1342 0.0606 0.0268 0.0055 

HA1E Nortriptyline TCA 10503 0.0348 -0.1273 0.0605 0.0354 0.0049 

HA1E Reboxetine NARI 10503 0.0389 -0.1706 0.0602 0.0046 0.0090 

HA1E Reboxetine NARI 500 0.0353 -0.1323 0.0601 0.0278 0.0054 

HT29 Reboxetine NARI 250 0.0350 -0.1292 0.0606 0.0330 0.0051 

HT29 Reboxetine NARI 500 0.0343 -0.1215 0.0609 0.0460 0.0044 

MCF7 Sertraline SSRI 50 0.0354 -0.1331 0.0602 0.0271 0.0054 

HA1E Sertraline SSRI 500 0.0351 -0.1305 0.0603 0.0305 0.0052 

HA1E Sertraline SSRI 100 0.0348 -0.1269 0.0606 0.0363 0.0049 

PC3 Tranylcypromine MAOIs 500 0.0344 0.1208 0.0602 0.0448 0.0045 

A375 Trimipramine TCA 50 0.0356 0.1366 0.0605 0.0240 0.0057 
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Table 6.3. Elastic net results for individual and combined cell lines. The coefficient estimates, 
standard error and p-values are calculated for the full model including all the covariates. 

Cell Estimate SE P Full_R2 GeRS_R2 
    

(with covariates) (without 

covariates) 

A375 0.0326 0.0599 0.5863 0.0302 0.0003 

HA1E 0.1864 0.0605 0.0021 0.0405 0.0106 

HT29 0.0958 0.0601 0.1112 0.0327 0.0028 

MCF7 0.0808 0.0605 0.1818 0.0319 0.0020 

PC3 -0.0395 0.0603 0.5119 0.0304 0.0005 

All 0.1749 0.0601 0.0036 0.0393 0.0094 

 

 

6.4 Discussion 
 

Predicting the clinical response to AD is a major obstacle for MDD treatment.  In precision medicine, 

it is essential to identify biomarkers of disease signatures and match them with therapeutic 

interventions that are the most likely to be effective. Over the past few decades, the success of 

precision medicine has been witnessed for the treatment of certain somatic diseases. For instance, 

five-year survival in children and adolescents suffering from acute lymphatic leukaemia raised from 

10% in 1990 to 90% in 2005 (Hunger et al. 2012). Despite such impact in specific diseases, we still need 

to explore the implications of precision medicine in neuropsychiatric diseases, as it has the potential 

to characterize underlying disease pathways and identify compounds that can restore the 

corresponding molecular targets. Hence, the focus of our second study was to predict AD remission 

using data from clinical trial and a supervised learning approach that is based on the genetic 

determinants of AD-induced expression levels and imputed individual expression profiles from 

STAR*D. In previous studies, MDD and drug-related gene expression profiles were compared using 

methods such as Pearson’s correlation and Kolmogorov Smirnov statistics (Shoaib et al. 2020)(So et 

al. 2017), while in the present work we proposed GeRS as an alternative approach, which combines in 

a single metric the gene expression values in individuals treated with ADs and AD-induced gene 

expression in vitro. The approach we used for the implementation of polygenic models using penalized 

regression methods shows important strengths. The calculation of GeRS is computationally simple and 

easy to implement, as compared to previously reported methods, and it is widely applicable, virtually 

enabling analysis of any trait or disease with a genetic component. Another advantage of using GeRS 

in our study is that it also accounts for the polygenicity of remission trait as it incorporates the effect 

sizes of all expressed genes. 
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There are also downsides to the proposed methodology. Like our previous study, we could not test 

the models in neuronal progenitor cells or differentiated neurons from the CMap transcriptional 

catalog because of AD-induced gene expression profiles unavailability in the CMap database. In the 

present study, we considered individual level estimated profiles and we found TCAs to be associated 

with the non-remission citalopram profiles of STAR*D individuals. We couldn’t find (es)citalopram 

among the significant predictors by means of logistic regression analysis, and in this respect these 

findings are not in line with our previous study (Chapter 5) in which we imputed a citalopram remission 

profile from GWAS summary statistics.  

In our prior work, we compared the single citalopram remission profile with the in-vitro 

antidepressant profiles and found evidence of correlation of citalopram remission and in-vitro 

(es)citalopram transcriptional changes in various cell lines, whereas, in the present study we couldn’t 

find any association between STAR*D citalopram remitters and citalopram induced expression 

profiles. Hence, individual-level expression profile estimation may need further evaluation for 

developing drug efficacy prediction models and other methods also need to be tested for the 

prediction of ADs at the individual level. Moreover, our findings from logistic regression analysis also 

suggest AD-induced expression is more similar to the genetically regulated expression in non-remitters 

than remitters. 

Based on the results of logistic regression, TCAs emerged as the significant predictors and they seem 

to induce an expression profile in the single individuals (i.e. distribution of GeRS values) that is 

significantly correlated with that observed in citalopram non-remitters from STAR*D. This also 

represent the higher efficacy of TCAs in citalopram non-remitters of STAR*D studies. 

Moreover, the elastic net model suggests HA1E may be the best cell line to predict AD response in 

MDD patients among the 5 cell lines tested in this work. 

The developed framework might also be extended to the applications of machine or deep learning 

approaches. Support Vector machines have been also proved to provide the same results of elastic 

net regularization in different instances and it can be expected also to work in the present scenario. 
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7. Conclusion 
 

 

In our first study, we tested an in-silico approach in five human cell lines by using GWAS results and 

drug-induced profiles to rank ADs based on their predicted efficacy. We first predicted the gene 

expression profile of citalopram remitters and non-remitters from the STAR*D GWAS cohort and 

calculated the correlation between such profiles and those induced by 21 different ADs, measured in 

vitro and available in CMap. This study indicates that there is a correlation between (es)citalopram-

induced expression profiles and predicted expression associated with remission to citalopram in three 

cell lines.  

In the second study, we further extended our approach and investigated the association between a 

drug-induced expression profile and an individual’s predicted gene expression levels using supervised 

learning and GeRS methods. Based on the findings of our previous study we were expecting, at the 

individual level, the predicted expression of (es)citalopram remitters to be generally more associated 

with (es)citalopram-induced expression than that of non-remitters. However, we couldn’t find 

associations between (es)citalopram and STAR*D citalopram remitters from logistic regression 

analysis when individual-level expression profiles were considered. 

In summary, we suggested a framework that can be utilized in the development of clinical prediction 

models with the aim to contribute to the field of precision psychiatry. These prediction models can be 

improved by considering drug-induced expression profiles measured in brain cell types because of 

their direct role in antidepressant mechanism, and by replicating the proposed approach in an 

independent MDD patient cohort.  
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Abstract
In clinical practice, an antidepressant prescription is a trial and error approach, which is time consuming and discomforting
for patients. This study investigated an in silico approach for ranking antidepressants based on their hypothetical likelihood
of efficacy. We predicted the transcriptomic profile of citalopram remitters by performing an in silico transcriptomic-wide
association study on STAR*D GWAS data (N= 1163). The transcriptional profile of remitters was compared with 21
antidepressant-induced gene expression profiles in five human cell lines available in the connectivity-map database.
Spearman correlation, Pearson correlation, and the Kolmogorov–Smirnov test were used to determine the similarity between
antidepressant-induced profiles and remitter profiles, subsequently calculating the average rank of antidepressants across the
three methods and a p value for each rank by using a permutation procedure. The drugs with the top ranks were those having
a high positive correlation with the expression profiles of remitters and that may have higher chances of efficacy in the tested
patients. In MCF7 (breast cancer cell line), escitalopram had the highest average rank, with an average rank higher than
expected by chance (p= 0.0014). In A375 (human melanoma) and PC3 (prostate cancer) cell lines, escitalopram and
citalopram emerged as the second-highest ranked antidepressants, respectively (p= 0.0310 and 0.0276, respectively). In
HA1E (kidney) and HT29 (colon cancer) cell types, citalopram and escitalopram did not fall among top antidepressants. The
correlation between citalopram remitters’ and (es)citalopram-induced expression profiles in three cell lines suggests that our
approach may be useful and with future improvements, it can be applicable at the individual level to tailor treatment
prescription.

Introduction

Major depressive disorder (MDD) is a primary health
issue and the third leading cause of disability in adoles-
cents and young adults, while the second leading cause of
disability in middle-aged adults worldwide. Globally,
more than 264 million people of different age groups are
living with depression [1]. This heavy disease burden is
partly due to the complex pathogenic mechanisms of
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MDD, the interindividual heterogeneity of antidepressant
response, and the lack of reliable response predictors [2].

Antidepressant (AD) choice in MDD is based on pre-
scription guidelines and prior clinical experience, but the
lack of reproducible predictors of AD response makes it a
“trial and error” approach which can take up to several
weeks or months and a number of treatment changes
before symptom remission is achieved. The availability of
objective and reproducible predictors of AD response
could reduce the time needed to achieve remission and
relieve patients’ suffering [3]. Prior studies suggest that
AD response and remission are heritable traits [4], offer-
ing the opportunity to use genetic markers to develop
predictors applicable in clinical practice to guide drug
prescription. The combination of clinical presentation,
genomic information, and metabolic characteristics was
indeed suggested as a possible strategy for the develop-
ment of precision psychiatry [5].

The purpose of this study was to develop a new
approach aiming to contribute to precision psychiatry.
Previous studies have focused on the identification of
genetic variants associated with AD efficacy [6, 7], and
here we expand the focus to transcriptomic profiles
derived from transcriptomic-wide association studies
(TWAS) based on GWAS summary statistics. Tran-
scriptomic profiles associated with the efficacy of specific
ADs in clinical trials can be compared with the in vitro
AD-induced gene expression changes, in order to test if
drug-induced gene expression signatures could be used as
markers of clinical efficacy of specific ADs. The main aim
of this study was to develop and test this approach by
computing gene expression profile associated with
remission to citalopram in the sequence treatment alter-
native to relieve depression (STAR*D) study and com-
paring this profile with citalopram and other ADs induced
transcriptional responses available from the connectivity-
map (CMap) database. CMap is a genome-scale library of
cellular signatures and catalog of transcriptional responses
to chemical and genetic perturbations [8]. A positive
correlation between expression profiles of citalopram
remission and in vitro citalopram-induced gene changes
was hypothesized to be indicative of the potential utility
of our approach. We also hypothesized that the same
would be true for escitalopram since it is the ther-
apeutically active enantiomer of citalopram [9]. Secondly,
we applied the same approach adding control drugs (no
known AD effect) to ADs to provide a proof of principle
of the usefulness of the method, since control drugs were
expected to have less similarity to citalopram remission
gene expression profile than (es)citalopram and
other ADs.

Methods

Study population

This study is based on a STAR*D data [10]. The STAR*D
study is a trial of protocol-guided AD treatment for out-
patients with MDD. The study included 4041 treatment-
seeking adult outpatients, recruited in 18 primary care and
23 psychiatric clinical sites across the United States. Gen-
otyping was performed in 1948 participants [11]. Our
analysis used data from the first treatment step (level 1),
which consisted of protocol-guided citalopram (20–60 mg/
day). Remission was defined as a score < 6 on the quick
inventory of depressive symptomatology clinician-rated
(QIDS-C) scale at level 1 exit (after 12 weeks of citalo-
pram treatment), in line with the previous literature [12, 13].
We chose remission rather than symptom improvement as it
was associated with disease prognosis and lower risk of
relapse in STAR*D participants, therefore it is considered
the main goal of AD treatment [14]. STAR*D genotype and
phenotype data are available through the National Institute
of Mental Health Human Genetics Initiative (https://www.
nimhgenetics.org/). Further details about the STAR*D
study are available in the Supplementary Material
(Section 1).

Genotyping, quality control, and imputation

Details on the genotyping procedure can be found else-
where [11]. Individual genotype data was processed using
the Psychiatric Genomics Consortium “RICOPILI” pipeline
for standardized quality control and imputation [15].
Imputation of SNPs and insertion–deletion polymorphisms
was performed using the 1000 Genomes Project multi-
ancestry reference panel (see Supplementary Material,
Section 2).

Statistical analysis

Genome-wide association study (GWAS)

A GWAS was conducted using the RICOPLI pipeline to
test the association of each SNP with remission to citalo-
pram, classifying STAR*D participants (N= 1163) as
remitters or non remitters. The logistic regression analysis
included the covariates of sex, age, baseline QIDS-C score,
and the first 20 population principal components. The
GWAS summary statistics were then converted to LD-score
regression format using the munge_sumstats.sh script,
removing SNPs with an INFO < 0.3 (https://github.com/
bulik/ldsc/wiki).
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Transcriptome-wide association study (TWAS)

We used STAR*D GWAS summary statistics to perform a
TWAS using FUSION software [16]. Briefly, FUSION
requires precomputed gene expression SNP weights and
GWAS summary statistics to predict the association
between the expression of each gene and the phenotype of
interest. SNP weights from CommonMind Consortium
dorsolateral prefrontal cortex (DLPFC), 48 tissues including
13 brain regions within the Genotype-Tissue Expression
(GTEx) consortia, Young Finn study, Netherland twin
registry, and Metabolic syndrome in men study datasets
were considered (Supplementary Table S1). The SNP
weights were previously derived by fusion authors [16–18].
As possible confounding factors were considered when
estimating the SNP weights by including known and hidden
covariates [19]. Therefore, we assumed medication usage in
donors of the above-mentioned data sources is unlikely to
have had an impact on the SNP weights. From the GTEx
database, we considered a wide range of tissues in addition
to brain regions because of their larger sample sizes and the
presence of moderate correlation of cis-eQTL effects among
different tissues [20]. All gene expression SNP-weights
were downloaded from the FUSION website (http://gusevla
b.org/projects/fusion/). This study uses the term SNP-weight
sets to define SNP weights from a given sample and tissue
(e.g., GTEx hippocampus, CMC DLPFC). Furthermore,
each gene within a given SNP-weight set constitutes a
feature or gene–tissue pair. We combined the FUSION
output for all SNP-weight sets, using the TWAS

associations (z-scores) to represent the gene expression
signature of citalopram remitters. The 52 SNP-weight sets
in this study contained 252,878 features, representing
26,363 unique genes. Where multiple features for a single
gene were available, only the feature providing the highest
cross-validation coefficient of determination (CV-R2) was
retained. We did not define any CV-R2 threshold for feature
selection. Similar criteria have been implemented elsewhere
[21].

Comparison of TWAS results with in vitro AD-induced gene
expression

We evaluated the correlation between the TWAS expression
profile of citalopram remission and in vitro gene expression
profiles of 21 ADs, selected based on their availability in
CMap (Phase II data) (Fig. 1a). CMap is a publicly avail-
able comprehensive library of transcriptional expression
data obtained using L1000 assay, which directly measures
or infers the expression levels of 12,328 genes
(https://www.broadinstitute.org/connectivity-map-cmap).
The database contains L1000 profiles from various pertur-
bating agents (small molecule compounds, shRNAs,
cDNAs, and biologics). More specifically, the CMap plat-
form provides the transcriptomic information of human
cultured cell lines exposed to compounds obtained from
various screening libraries including drugs approved by the
FDA [22].

We considered the expression profiles of 21 ADs (Sup-
plementary Table S2) in five human cell lines available in

Fig. 1 Illustration of
antidepressants ranking
method using data from
STAR*D and Connectivity-
Map (CMap). a Major steps of
the proposed in silico method. b
Z-scores of differentially
expressed genes of citalopram
remitters, venlafaxine, and
citalopram-induced expression
profiles from CMap. c
Description of average rank
calculation method using
Pearson, Spearman correlation,
and KS method.
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Phase II of CMap ((a) A375, human malignant melanoma
(b) MCF7, breast cancer (c) PC3, prostate cancer (d)
HA1E, kidney (e) HT29, colon cancer). Drug-induced
expression profiles were evaluated in cells treated for 24 h
with 10 µm drug concentration. We used CMap’s GEO
series (GSE70138) data and extracted relevant expression
profiles using cmapR package. Of the 12,328 genes within
the CMap profiles, 10,027 were captured by the SNP-
weight included in the citalopram remitter TWAS. We
compared the expression profiles of the 21 ADs with the
profile of citalopram remitters obtained from the TWAS
using an approach described in a previous study [23]. The
differentially expressed genes represented in terms of z-
scores of citalopram remitters and drug-induced profiles
(Fig. 1b) were analyzed using R code (https://sites.google.
com/site/honcheongso/software/gwascmap), according to
the following procedure:

a. Evaluating the relationship between AD-induced gene
expression and expression profiles of citalopram
remitters. Patterns of expressions were tested by
analyzing all and the strongest upregulated and
downregulated genes in the TWAS (k= 50, 100,
250, 500). The correlation between CMap AD profiles
and the STAR*D remitter profile was assessed for
each drug using Spearman’s correlation and Pearson’s
correlation using all and highly modulated remitter’s k
genes. We adopted the KS test as reported by the
original CMap study [24] to compare the expression
patterns of AD and citalopram remitters by consider-
ing strongly up and downregulated k genes and
calculated connectivity scores [8]. The 21 tested ADs
were ranked based on the results of each test (Pearson,
Spearman, and KS), and then the average rank across
tests for each drug were computed. Drugs were ranked
in ascending order of their correlation results (the drug
with the most positive correlation was ranked first)
(Fig. 1c).

b. Significance of ranks using permutation. To estimate
the significance of the ranks, a one-sided permutation
procedure was performed by shuffling the z-scores
obtained in the TWAS and calculating the correspond-
ing rank of each drug by repeating the procedure in
step a. One hundred permutations were performed to
calculate the distribution of ranks under the null
hypothesis and estimated the p value of the
observed ranks.

c. Calculation of ranks probability for each AD across
cell lines using Genome Scan Meta-Analysis (GSMA)
method. We combined ranks of each AD in five cell
lines by adding them and calculated the sum of ranks
probability using GSMA, a nonparametric method for
meta-analyzing ranks [25].

Finally, we repeated the process described above in (a),
(b), and (c) for five control drugs (Supplementary Table S3)
having hypothetically no AD effect to validate the proposed
method. The major steps of the applied in silico method are
shown in Fig. 1a.

Results

STAR*D data included 506 citalopram remitters and 657
non remitters with genotypic data after quality control, and
the main clinical–demographic characteristics are shown in
(Supplementary Table S4). The GWAS and TWAS Q-Q
plots showed no evidence of confounding (Supplementary
Figs. S1, S2).

The average rank across tests for ADs showed that
escitalopram (S-enantiomer of citalopram) was the AD with
the highest average rank followed by amitriptyline in MCF7
(breast cancer cell line). In A375 (human malignant mela-
noma) and PC3 (prostate cancer) cell lines, escitalopram
and citalopram emerged as the second-highest ranked ADs,
respectively, after trimipramine and mirtazapine, respec-
tively. In HT29 (colon cancer) cell line, citalopram ranked
third after trimipramine and dosulepin. Imipramine and
fluvoxamine were the top-ranked ADs in HA1E (kidney)
cell line, whereas escitalopram and citalopram did not fall in
the top ranks in this cell type. In the analysis of combined
ranks across cell lines, we found sertraline, trimipramine,
and venlafaxine as drugs with the best sum of ranks and p
values < 0.05, while citalopram was right after them and
close to the significance threshold (p= 0.057) (Table 1). In
summary, despite relevant differences of ADs ranking
among cell lines, (es)citalopram-induced expression sig-
natures were found to have a significant correlation with a
citalopram remission profile in three cell lines (A375,
MCF7, and PC3).

We also attempted to validate our approach using the
expression profiles of five control drugs. In A375 all control
drugs ranked after (es)citalopram. In PC3, three control
drugs ranked after (es)citalopram. In MCF7, four control
drugs were ranked after escitalopram and one control drug
was ranked after citalopram. In HT29 and HA1E, four
control compounds ranked before the (es)citalopram. In the
combined rank analysis, rifaximin, trimipramine and clofi-
brate had the top sum ranks across cell lines, though only
rifaximin was nominally significant (p < 0.05) (Table 2).
Our hypothesis of higher correlation of (es)citalopram-
induced gene expression with citalopram remission TWAS
results compared to control drugs was partially confirmed
only in two cell lines (A375 and in MCF7).

We observed that AD-induced expression profiles vary
across the five analyzed cell lines. Interestingly, citalopram
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and escitalopram have distinctive signatures, with a weak
correlation between them in four cell lines (A375, MCF7,
PC3, and HT29), and moderate correlation in one cell line
(r= 0.200 for HA1E) (Table 3). The observed variability in
drug-induced gene expression among cell lines likely con-
tributes to the differences in ADs ranking across cell lines.
The variability of all AD-induced profiles across cell lines
are reported as correlation matrices in the Supplementary
File (Supplementary Figs. S3–12).

Discussion

AD response is heterogeneous among MDD patients and
more than 60% of patients fail to achieve remission after
treatment with the first AD [1]. Although numerous studies
have advanced our understanding of the role of cytochrome
P450 (CYP450) genes in ADs metabolism and the mod-
ulation of AD treatment outcomes [26, 27], biomarkers
considering sources of variability other than AD pharma-
cokinetics are still lacking. In this study, we evaluated an in
silico approach to prioritize ADs utilizing imputed gene

expression profiles of citalopram remitters and AD-induced
transcriptional profiles available in CMap. The positive
correlation between gene expression of citalopram remitters
and (es)citalopram-induced expression profiles in three cell
lines (A375, MCF7, and PC3) suggests that the predicted
gene expression profile of a remitter is correlated with
in vitro expression profiles induced by the same ADs. No
previous study has tested this hypothesis and our results
show that approach might be used to rank ADs based on
their likelihood of efficacy for an individual.

Analysis of transcriptional profiles of drugs and disease
signatures is already an established approach in the domain
of drug repositioning. For instance, Sirota et al. found that
cimetidine showed an opposite expression pattern to that
associated with lung adenocarcinoma, and experimentally
validated this drug as a potential treatment [28]. Similarly,
topiramate was found as a possible treatment for inflam-
matory bowel disease and this hypothesis was validated in
an animal model [29]. In our study, we applied a similar
strategy, but instead of disease-associated gene expression
signatures we used TWAS predicted expression profiles
associated with remission to a known AD drug to test if they

Table 1 Ranking of ADs in five human cell lines.

Cell lines A375 MCF7 PC3 HA1E HT29 Combined
cell lines

Drug Rank Perm.
p value

Rank Perm.
p value

Rank Perm.
p value

Rank Perm.
p value

Rank Perm.
p value

Rank
sum

p value

Amitriptyline 16.9 0.8610 2.4* 0.0290 12.6 0.6138 17.6 0.8948 12.9 0.6224 62.4 0.7049

Citalopram 7.6 0.2862 7.7 0.2890 2.3* 0.0276 10.6 0.4776 4.4 0.1114 32.6 0.0571

Clomipramine 11.1 0.5229 4.1 0.0890 9.1 0.3714 18.6 0.9371 16.8 0.8590 59.7 0.6533

Dosulepin 17.3 0.8824 18.1 0.9257 15 0.7605 8.8 0.3571 2.6* 0.0405 61.8 0.7049

Duloxetine 11 0.5181 20.9 0.9971 17.2 0.8776 11.3 0.5305 4.8 0.1300 65.2 0.7753

Escitalopram 2.6* 0.0310 1.2* 0.0014 6.9 0.2395 14.5 0.7324 17.6 0.8976 42.8 0.2034

Fluoxetine 13.8 0.6843 10.8 0.4890 17.8 0.9033 6.2 0.1976 16.7 0.8562 65.3 0.7752

Fluvoxamine 19.6 0.9729 6.2 0.2010 2.9 0.0443 3.2 0.0529 9.6 0.4005 41.5 0.1833

Imipramine 6.2 0.2014 12.6 0.6052 14.6 0.7395 1.2* 0.0062 5.2 0.1490 39.8 0.1468

Maprotiline 3.7 0.0667 6.8 0.2362 9.8 0.4200 11.2 0.5229 10.5 0.4590 42 0.1833

Mianserin 19.6 0.9729 15.6 0.8029 17.8 0.9033 17.9 0.9062 19.9 0.9795 90.8 0.9979

Mirtazapine 9.8 0.4362 18.8 0.9529 2* 0.0181 7.7 0.2871 5.2 0.1490 43.5 0.2247

Nortriptyline 11.6 0.5576 15.2 0.7833 12 0.5748 18.1 0.9167 7.9 0.2990 64.8 0.7752

Paroxetine 18.3 0.9248 14.4 0.7390 6.4 0.2129 14.7 0.7448 16.7 0.8562 70.5 0.8695

Reboxetine 11.8 0.5681 10.2 0.4476 10.7 0.4895 19.8 0.9800 13.3 0.6552 65.8 0.7965

Selegiline 10.6 0.4890 17 0.8667 19.2 0.9581 15 0.7671 15.6 0.8005 77.4 0.9512

Sertraline 4.4 0.1033 6.3 0.2052 9.1 0.3714 3.6 0.0662 7.4 0.2743 30.8* 0.0412

Tranylcypromine 16.9 0.8610 14.8 0.7619 18 0.9119 9.5 0.3929 16.9 0.8614 76.1 0.9428

Trazodone 10.3 0.4657 10.9 0.4943 13 0.6424 8 0.3043 16.6 0.8529 58.8 0.6264

Trimipramine 2.4* 0.0267 13.4 0.6614 4 0.0919 9.7 0.4086 1.4* 0.0105 30.9* 0.0412

Venlafaxine 5.5 0.1567 3.6 0.0676 10.6 0.4819 3.8 0.0810 9 0.3657 32.5* 0.0487

P values were obtained through the permutation procedure described in Statistical analysis paragraph. Top ranks are marked with an asterisk and p
values < 0.05 are highlighted in italic in each cell line and the combined cell line results. The ADs (es)citalopram are mentioned in bold.
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could be useful to prioritize the prescription of available
ADs, rather than for identifying new potential ADs. We
indeed hypothesized that AD-induced expression profiles
in vitro may be correlated with gene expression profiles

predicted using GWAS data in remitters to the same drug
and similar drugs. A major observation that emerged from
our results was the difference in the ranking of ADs drugs
across cell lines which suggested that the selection of the
most appropriate cell line(s) is a relevant step for applying
our approach. The differences in results among cell lines
can be explained by the intercellular drug-induced expres-
sion signature variability, as reported by Subramanian et al.
According to this study, 15% of all the drug compounds
produced highly similar signatures across nine cell lines,
whereas the remaining drugs produced diverse signatures
[22]. The heterogeneity of drug signatures depends on the
cellular pathways associated with a cell type. In this study,
we observed that A375 and MCF7 provided results that
were more consistent with our hypothesis compared with
other cell lines for both ADs and control drugs. This may be

Table 2 Ranking of ADs and control drugs in five human cell lines.

Cell lines A375 MCF7 PC3 HA1E HT29 Combined
cell lines

Drug Rank Perm.
p value

Rank Perm.
p value

Rank Perm.
p value

Rank Perm.
p value

Rank Perm.
p value

Rank
sum

p value

Acarbose 15.9 0.6392 10.2 0.3238 17.7 0.7196 11.7 0.4108 1.4* 0.0062 56.9 0.2809

Amitriptyline 19.4 0.8054 3.6* 0.0477 16.4 0.6554 22.1 0.9088 16.9 0.6892 78.4 0.7385

Citalopram 6.6 0.1581 11.1 0.3723 4.1 0.0596 13.8 0.5146 7.9 0.2227 43.5 0.0878

Clofibrate 10.8 0.3504 7.2 0.1885 17.2 0.6954 3.6* 0.0442 3.1* 0.0377 41.9 0.0698

Clomipramine 14.7 0.5777 6.7 0.1596 11.7 0.4069 23.4 0.9523 21 0.8662 77.5 0.7385

Dosulepin 21.9 0.9000 23.1 0.9442 19.2 0.7954 12 0.4219 5.3 0.1108 81.5 0.8089

Duloxetine 15.4 0.6135 25.9 0.9988 22.2 0.9123 14.9 0.5738 7.7 0.2154 86.1 0.8670

Escitalopram 2.8* 0.0296 2* 0.0085 9.2 0.2812 18.5 0.7662 21.9 0.8935 54.4 0.2248

Fluoxetine 16 0.6488 14.4 0.5527 22.5 0.9238 8.8 0.2569 20.7 0.8523 82.4 0.8089

Fluvoxamine 24.2 0.9715 8.6 0.2492 4.2 0.0638 4.9 0.0915 13.6 0.5035 55.5 0.2615

Imipramine 5.5 0.1127 17.2 0.6931 18.8 0.7723 1.8* 0.0092 9 0.2758 52.3 0.1911

Ipriflavone 17.6 0.7162 19.1 0.7908 3.2* 0.0362 21.2 0.8742 5.2 0.1069 66.3 0.4770

Maprotiline 4 0.0642 10.1 0.3192 12.6 0.4581 14.6 0.5592 14.4 0.5462 55.7 0.2615

Mianserin 23.5 0.9527 20.2 0.8427 22.2 0.9123 22.7 0.9323 24.1 0.9631 112.7 0.9983

Mirtazapine 13.5 0.5123 23.8 0.9662 3.5* 0.0431 11 0.3677 8.5 0.2508 60.3 0.3426

Nortriptyline 15.3 0.6073 19.2 0.7965 16 0.6331 22.9 0.9377 11.7 0.4058 85.1 0.8537

Pantoprazole 10.5 0.3373 6.4 0.1473 10.6 0.3492 1.8* 0.0092 25.2 0.9908 54.5 0.2248

Paroxetine 22.7 0.9285 18.8 0.7742 8.3 0.2381 18.7 0.7769 20.6 0.8500 89.1 0.9021

Reboxetine 15.4 0.6135 13.8 0.5212 13.6 0.5146 24.6 0.9812 17.3 0.7054 84.7 0.8537

Rifaximin 13.2 0.4977 1.6* 0.0050 1.7* 0.0062 10.5 0.3404 7.1 0.1862 34.1* 0.0234

Selegiline 14 0.5381 21.6 0.9004 24.2 0.9723 19.3 0.8023 19.7 0.8165 98.8 0.9727

Sertraline 5.3 0.1085 9.2 0.2804 12.1 0.4285 5.6 0.1204 11.4 0.3938 43.6 0.0878

Tranylcypromine 21.3 0.8815 19.2 0.7965 22.8 0.9354 12.7 0.4623 20.9 0.8619 96.9 0.9635

Trazodone 13.5 0.5123 15.2 0.6027 17.2 0.6954 11.2 0.3792 20.6 0.8500 77.7 0.7385

Trimipramine 2.6* 0.0250 17.6 0.7146 6 0.1327 13.1 0.4815 2.7* 0.0285 42 0.0698

Venlafaxine 5.4 0.1115 5.2 0.1004 13.8 0.5288 5.6 0.1204 13.1 0.4738 43.1 0.0784

P values were obtained through the permutation procedure described in Statistical analysis paragraph. Top ranks are marked with an asterisk and p
values < 0.05 are highlighted in italic in each cell line and the combined cell line results. The ADs (es)citalopram are mentioned in bold and control
drugs are in italic.

Table 3 Spearman correlation between the drug-induced expression
profiles of citalopram and escitalopram in each cell line.

Cell lines Correlation coefficient p value

A375 −0.008 0.405

MCF7 0.038 9.74E−05

PC3 −0.03 0.002

HT29 −0.01 0.298

HA1E 0.2 1.34E−91

P values suggesting the correlation coefficient being different
from zero.
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explained by the similar embryological origin of these cell
lines. A375 and MCF7 are skin and breast cancer cell lines
respectively, and both skin and breast cells originate from
the ectoderm (outermost layer of the embryo), the same
layer from which nervous tissues originate [30]. This
hypothesis suggests that the use of brain cell lines may be
more suitable for our study, but this was not possible as
discussed among the limitations.

Despite the low comparability of gene expression pro-
files across cell lines, we decided to calculate the sig-
nificance of cumulative ranks across cell lines. By
combining ranks of drugs in the evaluated cell lines, the
evidence of association of remitters’ signature to ADs other
than (es)citalopram might indicate that they may induce a
similar gene expression profile to that observed in remitters
to citalopram, thus hypothetically patients who benefit from
citalopram may benefit also from these ADs. Alternatively,
top drugs in the combined cells results may also represent
false positive as none of the rank-sum statistics would
survive after multiple testing correction.

Citalopram is a racemic mixture comprised of two
enantiomers, R and S-citalopram (escitalopram) in equal
proportions. However, the signatures of citalopram and
escitalopram are only weakly correlated in the five analyzed
cell lines. This can be due to the differences in modulated
genes and pathways by these drugs in vitro, as reported by
Sakka et al. Their study suggests that citalopram and esci-
talopram modulated 69 and 42 pathways, respectively, and
ten pathways were differentially modulated in a neuro-
blastoma cell line [31]. In other words, the in vitro gene
expression profile of citalopram is influenced by both
escitalopram and R-citalopram to a similar extent, making it
different compared to the profile of escitalopram alone. On
the other hand, the in vivo gene expression signature of
citalopram remitters is hypothetically highly dependent on
genes regulated by escitalopram rather than R-citalopram,
since escitalopram has a 50-fold higher affinity for the
serotonin transporter compared to R-citalopram and it is
considered responsible for the therapeutic effects of citalo-
pram [32]. However, escitalopram was not close to sig-
nificance in the analyses of ADs combined ranks across
cell lines.

Our approach is innovative and shows important
strengths. First, it reflects the polygenic architecture of AD
response, characterized by multiple effects of small size [7].
Second, it is based on genotype-predicted gene expression
profiles providing an advantage over traditional expression
data from microarray and RNA sequencing methods.
Patients from expression studies are indeed mostly medi-
cated and brain tissues can only be acquired from post-
mortem samples, hence, psychiatric medications might
confound the expression results. On the contrary, genotype-
predicted gene expression profiles are not susceptible to

alteration due to medications because this approach only
captures the heritable component of gene expression.
However, ideally, RNA sequencing for measuring the
transcriptome in biological specimens derived from drug-
naive patients before and during treatment, after response
evaluation, would represent the gold standard. Considering
that this study design is expensive and time consuming,
GWAS samples provide a more powerful and cheaper
alternative, which is easily accessible, and there is the
availability of GWAS summary statistics for a number of
traits. Further, the expression profiles can be imputed for
different tissues which can help to comprehend biological
mechanisms at the tissue level. Last, our method is com-
putationally simple, and it can be applied to other traits.

There are also some limitations to the proposed metho-
dology. First, this method can be implemented only at a
population level (on data from an aggregated sample of
individuals), while it needs to be adapted for application at
the individual level. Second, we could not test our method
in neuronal progenitor cells or differentiated neurons from
the CMap transcriptional catalog since AD-induced gene
expression for these cell lines was not available. A prior
CMap study suggested that neuronal cell lines are different
compared to cancer cell lines in terms of the drug expres-
sion profiles but neuropsychiatric diseases can be reason-
ably modeled using cancer cell lines [22, 8]. However, the
relevant differences between expression profiles of different
cell lines found by our study and previous studies suggest
that the identification of the most suitable cell line for the
trait of interest is an important step. Neural cell lines may
indeed show distinctive pathways that are relevant to AD
action. Additionally, gene expression signatures available in
the L1000 CMap database show various challenges in terms
of their analysis and usage as discussed in previous work
[33]. Due to the limited availability of transcriptional
information for the drugs of interest across multiple cell
lines, time points, and dosages, our analysis was restricted
to expression profiles of 21 ADs in five cell lines treated
with 10 micromolar drug concentration for 24 h time length.

In conclusion, we tested an in silico approach in five
human cell lines by using GWAS results and drug-induced
profiles to rank ADs based on their correlation, which
hypothetically may reflect the chances of the efficacy of
specific ADs. This study indicates that there is a correlation
between (es)citalopram-induced expression profiles and
predicted expression associated with remission to citalo-
pram only in some cell lines. Therefore, at the individual
level, on average the predicted expression of (es)citalopram
remitters should be more correlated with (es)citalopram-
induced expression than non remitters. Our approach can
further be extended by investigating the correlation between
a drug-induced expression profile and an individual’s pre-
dicted gene expression levels which can be used to rank
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drugs by their predicted efficacy. Hence, the given method
can be improved by considering genotype data at the indi-
vidual level and using expression signatures of brain cell
lines. A ‘one size fits all’ is not a valid strategy for the
treatment of MDD and our study proposed a new approach
aiming to contribute to the development of precision
psychiatry.
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