Letter to the Editor

A novel monoallelic gain of function mutation in p110δ causing atypical activated phosphoinositide 3-kinase δ syndrome (APDS-1)

ARTICLE INFO

Keywords:
- APDS-1
- p110δ
- B cells
- T cells
- Hypogammaglobulinemia
- Bone marrow

ABSTRACT

This study reports on a novel activating p110δ mutation causing adult-onset hypogammaglobulinemia with lymphopenia without the classical presentation of atypical Activated phosphoinositide 3-kinase δ syndrome (APDS-1), underlining thus the heterogeneous clinical and immunological presentation of p110δ mutated individuals and offers additional data on the role of p110δ in early and late B cell development in humans.

To the Editor,

Class I Phosphatidylinositol-3 kinases (PI3Ks) are expressed in leukocytes and play a major role in diverse cell functions including cell growth, proliferation, differentiation and survival [1]. They are formed by heterodimers comprising a catalytic and a regulatory subunit. There are five variants of the p85 regulatory subunit, designated p85α, p55α, p50α, p85β, and p55γ, while the p110 catalytic subunit includes three variants designated p110α, β, or δ catalytic subunits [1]. In recent years, monoallelic gain of function mutations in p110δ or p85α were identified as responsible for a novel form of immunodeficiency named Activated phosphoinositide 3-kinase δ syndrome (APDS-1 and 2 respectively) [2,3]. Regarding APDS1 in particular, the clinical presentation is mainly characterized by lymphopenia, normal to elevated IgM serum levels, recurrent respiratory infections, lymphoproliferation and increased risk of lymphomas [2–6]. The immunological phenotype includes perturbed T and B cell maturation and increased activation of the AKT/S6/mTOR pathway [2,3]. To date, the majority of affected patients present a recurrence of monoallelic mutations in p110δ, with a limited number of novel ones reported since the identification of this disorder [2,3,5–7]. We report on a female patient affected with adult onset hypogammaglobulinemia with lymphopenia harbouring a novel gain of function mutation in p110δ, with a normal spleen size and no lymphoadenopathies. Lung CT scanning did not reveal mediastinal lymphoadenopathies or development of bronchiectasis during sequential lung CT scans (Supplementary Fig. 1).

Endoscopic evaluation at 39 years revealed mild gastritis and duodenitis without T cell infiltrate with complete lack of plasma cells (Supplementary Fig. 2). Regarding the immunological evolution during follow-up, lymphopenia was persistent over time (Fig. 1A). In addition, the patient showed a progressive reduction of peripheral B cells (Fig. 1A and Supplementary Table 1) with lack of terminal B cell differentiation (Supplementary Table 2). Bone marrow evaluation showed impaired B cell maturation with an accumulation of precursors at the pro-B stage (Fig. 1B).

Next generation sequencing revealed the presence of the novel c.1973C > T; p.P658L mutation in p110δ. Sanger sequencing confirmed the presence of this mutation in the patient (Fig. 1C). This mutation has not been reported before, but the P658 position is highly conserved among species (Fig. 1D). Since activating mutations in p110δ have been reported to cause an increased activation of the Akt/pS6K/mTOR pathway, phosho-S6K levels were evaluated in T cell blasts from the index patient, from an APDS-1 patient harbouring the p.E1021K previously reported mutation [2,3] and from two healthy controls (Fig. 1E and F). The phosphorylation pattern of S6K of the index patient was increased when compared to the healthy controls and from two healthy controls (Fig. 1E and F).

The index patient is of Italian descent born to Italian non-consanguineous parents. She came to our attention at the age of 27 years due to recurrent respiratory infections mainly of the upper tract. Her clinical history included upper respiratory tract infections during adolescence and an episode of hidradenitis suppurativa at the age of 21 years. Family history was negative for primary immunodeficiencies. Immunological work up showed lymphopenia with hypogammaglobulinemia of all classes and absent response to vaccinations (Supplementary Table 1). T cells were present at normal percentages, while B cells were slightly below the lower range of the norm (Supplementary Table 1). The patient was diagnosed with CVID at 27 years of age and was started on immunoglobulin replacement treatment. During 20 years of follow-up, the clinical course of the patient was particularly mild: she only presented one episode of gastroenteritis at the age of 36 years, and occasional upper respiratory tract infections were treated with oral antibiotics. She has always remained negative for CMV and EBV. Annual abdominal ultrasonography showed a normal spleen size and no lymphoadenopathies. Lung CT scanning did not reveal mediastinal lymphoadenopathies or development of bronchiectasis during sequential lung CT scans (Supplementary Fig. 1).

Endoscopic evaluation at 39 years revealed mild gastritis and duodenitis without T cell infiltrate with complete lack of plasma cells (Supplementary Fig. 2). Regarding the immunological evolution during follow-up, lymphopenia was persistent over time (Fig. 1A). In addition, the patient showed a progressive reduction of peripheral B cells (Fig. 1A and Supplementary Table 1) with lack of terminal B cell differentiation (Supplementary Table 2). Bone marrow evaluation showed impaired B cell maturation with an accumulation of precursors at the pro-B to pre-B1 stage (Fig. 1B).

Next generation sequencing revealed the presence of the novel c.1973C > T; p.P658L mutation in p110δ. Sanger sequencing confirmed the presence of this mutation in the patient (Fig. 1C). This mutation has not been reported before, but the P658 position is highly conserved among species (Fig. 1D). Since activating mutations in p110δ have been reported to cause an increased activation of the Akt/pS6K/mTOR pathway, phosho-S6K levels were evaluated in T cell blasts from the index patient, from an APDS-1 patient harbouring the p.E1021K previously reported mutation [2,3] and from two healthy controls (Fig. 1E and F). The phosphorylation pattern of S6K of the index patient was increased when compared to the healthy controls and was similar to the one observed in the classical APDS-1 patient (Fig. 1E and F). Of note, T cell blasts from the two patients treated with CAL-

Abbreviations: p110δ, phosphatidylinositol 3-kinase catalytic delta; PI3K, Phosphatidylinositol 3-kinase; APDS-1, activated PI3K syndrome; CVID, Common Variable Immunodeficiency

https://doi.org/10.1016/j.clim.2019.01.003

Received 16 November 2018; Received in revised form 3 January 2019; Accepted 8 January 2019
Available online 09 January 2019

1521-6616/ © 2019 Elsevier Inc. All rights reserved.
101, a selective p110δ potent inhibitor [8], down-regulated pS6K levels in a similar manner (Fig. 1E and F), confirming that the p.P658L mutation behaves as the other mutations reported in patients affected with APDS-1.

Two large cohort studies in patients with APDS-1 have recently better defined the clinical hallmarks of this disorder [5,6]. Recurrent pneumonias characterized 85% of affected patients with development of bronchiectasis in 60% of cases [5]. Viral infections, acute and/or chronic, were identified in almost 50% of affected patients [5,6]. Gastrointestinal involvement was present in 25–50% of affected patients [5,6]. Finally, benign lymphoproliferation was reported in more than two thirds of affected patients [5,6]. Of note, our index patient harboring the novel P658L mutation in p110δ does not present any of the hallmarks of the P13K pathway may be involved.

The effect of the gain of function mutation in p110δ in early B cell development has been studied in a very limited number of patients with variable results: while one study showed impairment in bone marrow early B cell development in APDS-1 patients (N = 10) [9], the second one did not confirm these findings (N = 4) [10]. The index patient showed progressive severe B cell lymphopenia with early B cell developmental impairment, further suggesting that possibly additional factors besides activating p110δ mutations influence bone marrow B cell maturation.

In conclusion, we report on a novel activating P658L mutation in p110δ resulting in “atypical” APDS-1 without the hallmarks of the disease, associated with early B cell developmental impairment, underlining how next generation sequencing may be a useful tool in defining the genetic basis of PIDs, even in the absence of clinical hallmarks of the disease, with evidential implications in affected patients’ management.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcill.2019.01.003.

Funding

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007–2013 under grant no 15495 (EURO-PADnet HEALTH-F2-2008-201549), the Italian Ministerial GrantGR-2010-2315762, the “Fondazione C. Golgi”, Brescia, Italy, the German Ministry of Education and Research (BMBF, grants # 01E01303 and 01ZX1306F), the German Research Society (DFG; SF61160 – IMPATH), and the Jeffery Modell Foundation.

Disclosure of conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

We thank the patient’s family and their nurses for all their efforts.
Letter to the Editor

Clinical Immunology 200 (2019) 31–34

Vassilios Lougaris⁎, Manuela Baronioa, Daniele Morattob, Giacomo Tampilac, Luisa Gazzurellia, Mattia Facchettic, Baldassarre Martireb, Fabio Cardinaleb, Francesco Lanzarottoc, Maria Pia Bondionig, Vincenzo Villanaccic, Bodo Grimbachere, Alessandro Plebania

a Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
b Institute for Molecular Medicine A. Nocivelli, Department of Pathology, Laboratory of Genetic Disorders of Childhood, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Italy
c Institute of Pathology, ASST-Spedali Civili of Brescia, Brescia, Italy
d Paediatric Hematology Oncology Unit, “Policlinico-Giovanni XXII” Hospital, University of Bari, Italy
e Allergy, Immunology and Pediatric Pulmonology Unit, Ospedale Pediatrico Papa Giovanni XXIII, Bari, Italy
f Gastroenterology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
g Pediatric Radiology, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
h Center for Chronic Immunodeficiency (CCI), University Hospital, Medical Faculty, Albert-Ludwig University, Freiburg, Germany

E-mail address: vlougarisbs@yahoo.com (V. Lougaris).

⁎ Corresponding author at: Pediatrics Clinic and Institute of Molecular Medicine “A. Nocivelli”, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.