LETTER

Conditional phase-shift enhancement through dynamical Rydberg blockade

To cite this article: Jin-Hui Wu et al 2017 EPL 120 54002

View the article online for updates and enhancements.
Conditional phase-shift enhancement through dynamical Rydberg blockade

JIN-HUI WU, M. ARTONI, F. CATALIOTTI and G. C. LA ROCCA

1 Center for Quantum Sciences and School of Physics, Northeast Normal University - Changchun 130024, China
2 European Laboratory for Nonlinear Spectroscopy (LENS) - 50019 Florence, Italy
3 Department of Engineering and Information Technology and Istituto Nazionale di Ottica (INO-CNR), Brescia University - 25133 Brescia, Italy
4 Department of Physics and Astronomy, University of Florence - 50019 Florence, Italy
5 Scuola Normale Superiore and CNISM - 56126 Pisa, Italy

received 31 August 2017; accepted in final form 26 January 2018
published online 22 February 2018

PACS 42.50.Gy – Effects of atomic coherence on propagation, absorption, and amplification of light; electromagnetically induced transparency and absorption
PACS 32.80.Ee – Rydberg states
PACS 42.65.-k – Nonlinear optics

Abstract – Large cross-phase shifts per photon can be attained through an all-optical polarization control of dipole blockade in Rydberg atoms. A pair of weak circularly polarized signal and control light pulses experience a giant nonlinear cross-interaction through the conditional excitation of a Rydberg state. Conditional cross-phase modulations on the order of π-radians may be attained under specific symmetric EIT quasi-resonant driving conditions at large degrees of transparency. We also suggest the possibility of extending our scheme to work at very low intensities and within a few-blockade-radii regions.

Copyright © EPLA, 2018

Introduction. – Photons are ideal carriers of information because they can easily be transmitted over long distances and loosely couple to the environment, yet their use is often largely hampered by the absence of significant photon-photon interactions especially when cross-phase nonlinearities are needed [1,2]. Effective interactions between photons must be then mediated by a suitable medium to reach useful cross-phase shifts. For potential applications in advanced optical information processing [3] one is required to deal with conditional nonlinear interactions that are enabled when a “control” light pulse imprints a phase shift onto another “signal” light pulse [4]. Promising strategies consist in coupling an optical cavity to single atoms [5,6], atomic ensembles [7], and artificial atoms [8]. Alternative approaches comprise light-atoms interfaces [9] driven into a regime of electromagnetically induced transparency (EIT) [10]. These implementations are challenging though the observed cross-nonlinearities yield conditional phase shifts far less than the desired value of π [11,12]. Cross-phase modulations in the range 1–10 micro-radians per photon have been observed in slow-light cold atoms [13] while slightly larger phase shifts have been achieved through specific post-selection procedures [14].

Rydberg atoms, on the other hand, have attracted extensive attention owing to the presence of strong dipole-dipole interactions [15,16]. These manifest themselves directly through a dipole blockade effect [15,17] preventing the simultaneous excitations of two or more atoms within a Rydberg superatom (SA) [18]. Such a mechanism has been exploited to create fairly robust light-atoms interfaces [9,19,20] where the combination with EIT makes Rydberg media appealing to foster significant cooperative optical nonlinearities [7,16,21,22]. Recently a single-photon π phase shift [23] has been measured in such Rydberg-EIT media through a pulse storage-retrieval technique entailing large absorptive losses1, as well as in high-finesse optical resonators for atoms [24,25].

Here we show that large conditional cross-phase shifts per signal photon can be attained over lengths of a few Rydberg SAs with weak and freely propagating signal and control pulses. Conditional π phase modulations are found to occur over a wide parameter range and at relatively small optical depths. This hinges on polarization-selective

1The π phase-shifted post-selected signal photon in [23] is observed upon the detection of a control photon exhibiting more than 90% absorption.
nonlinearities occurring in cold Rydberg atoms under a specific EIT-symmetric driving regime [20] and is at variance with cross-Kerr like [27], resonant absorbing [28], transversely separated [29], and site addressable [30] Rydberg nonlinear mechanisms. In the EIT-symmetric driving approach pursued here the pulsed regime is further shown to benefit from intrinsic group-velocity matching and high spatial-temporal coherence of the signal and control beams. We finally discuss the feasibility of extending our scheme to work with low photon-numbers pulses subject to small losses and distortions, a critical step toward the implementation of a deterministic low-intensity optical gate [31,32].

Phase shift. — We use cold Rydberg 87Rb atoms driven by a pair of strong continuous-wave (CW) coupling and dressing fields into the level configurations shown in fig. 1 to manage the phases of another pair of weak signal and control pulsed fields. Our scheme relies on three key features. First, the uppermost Rydberg level $|r\rangle$ coupled to the intermediate excited level $|e\rangle$ by the strong CW dressing field Ω_D provides the large nonlinear mechanism. Second, the unpopulated ground-state level $|a\rangle$ coupled to the intermediate excited level $|e\rangle$ by the strong CW coupling field Ω_C ensures that both the signal (Ω_s) and control (Ω_c) pulses always propagate in the EIT regime. Third, the equally populated ground-state levels $|g\rangle$ and $|m\rangle$ allow for symmetric response [33] experienced by the signal and control pulses (their role could actually be exchanged); this, in particular, turns out to be crucial for their group-velocity matching.

Upon impinging on a sample of length L, a monochromatic signal beam of wavevector $k_s = \omega_s/c$ will acquire the nonlinear phase shift $\phi_s = \phi_0 \text{Re}[\chi_s]$, where $\phi_0 = k_sL/2$ is half the vacuum phase shift, and will experience absorption characterized by half the nonlinear optical depth $\kappa_s = \phi_0 \text{Im} [\chi_s]$ ($|\chi_s| \ll 1$). The signal susceptibility χ_s is found to depend critically on whether the Rydberg transition is allowed or blocked. The latter case occurs when one atom is excited to the Rydberg level and strong dipole-dipole interactions shift the level $|r\rangle$ of other atoms within a SA far-off-resonance from the dressing field Ω_D (dipole blockade) [15]. When the control beam is present with the σ^-_c polarization (see fig. 1(a)), atoms inside a SA are driven into a “π” or a “π” configuration respectively in the limit of small ($P^a \rightarrow 0$) or large ($P^a \rightarrow 1$) SA Rydberg excitations. Similarly, when the control beam is absent with the σ^+_c polarization (see fig. 1(b)), atoms inside a SA are driven into a “χ” or a “χ” configuration in the limit of small ($P^b \rightarrow 0$) or large ($P^b \rightarrow 1$) SA Rydberg excitations. The simpler “π” and “χ” configurations occur because of dipole-blockade and most importantly, the SA Rydberg populations themselves strongly depend on whether the control beam is present (P^a) or absent (P^b), which triggers a very large cross-nonlinearity.

Such polarization-selective Rydberg nonlinearities can, in fact, be exploited to bring about large conditional changes in the signal phase over a wide range of the coupling and dressing Rabi frequencies ($\Omega_{C,D}$) and detunings ($\delta_{C,D}$). In what follows, we choose to work with equal signal and control detunings $\delta_s = \delta_c \equiv \delta$, Rabi frequencies $\Omega_s = \Omega_c$, and ground levels $|g\rangle$, $|m\rangle$ populations, i.e., with a symmetric-EIT driving configuration (see the Supplementary Material Supplementarymaterial.pdf (SM) for details). We further adopt a universal relation for the dependence of the signal susceptibility χ_s on the SA Rydberg population $P^{a,b}$ akin to the one introduced in [17]. Then the signal phase shift in the presence (ϕ^a_s) or
absence (ϕ_b^o) of the control beam can be written as:

$$\phi_s^a = \phi_0 [P^a \text{Re}[\chi_{a}^{2}](1 - P^a)\text{Re}[\chi_{b}^{1}]], \{a1 \leftrightarrow a2\}, \ (1)$$

$$\phi_s^b = \phi_0 [P^b \text{Re}[\chi_{a}^{2}](1 - P^b)\text{Re}[\chi_{b}^{1}]], \{b1 \leftrightarrow b2\}, \ (2)$$

Such relations are found to agree with rate equation models of multilevel Rydberg atoms exhibiting strong dipole-dipole interactions, based both on many-body simulations [17] and on semi-analytical one-body approaches [34]. In fact, they have been used to explain the observation of nonlinear dispersive effects in cold Rydberg atoms [7,35]. The phase shift ϕ_s^a depends on the susceptibility χ_{a}^{s} which we term here cooperative as it is determined by the interplay of the two individual susceptibilities χ_{a}^{o} and χ_{b}^{2} (see SM for details). The susceptibility χ_{a}^{s} strongly depends on the SA Rydberg population P^a provided χ_{a}^{s} is significantly different from χ_{b}^{a}. The same holds for ϕ_b^o.

The population P^a specifically represents the averaged Rydberg excitation probability (see SM for details), i.e., the Rydberg excited fraction for a single SA containing n_{SA} atoms [34]. In the presence of the control beam, for weak dressings the Rydberg population may decrease to $P^a \rightarrow 0$ so that the signal experiences the five-level (Φ) dispersive shift $\phi_s^a \text{Re}[\chi_{a}^{1}]$; conversely for intense dressings the Rydberg population may increase to $P^a \rightarrow 1$ so that the signal experiences the four-level (π) dispersive shift $\phi_s^b \text{Re}[\chi_{a}^{2}]$. The latter is based on the fact that an atom excited to the Rydberg level can detune from resonance all neighboring atoms inside a blockade sphere of radius R_b [34]-[3]. Analogous considerations hold for the population P^b and for the shift ϕ_b^o in eq. (2) which will reduce in one case to $\phi_s^a \text{Re}[\chi_{b}^{1}](\Lambda)$ and in the other case to $\phi_s^b \text{Re}[\chi_{b}^{2}](\Lambda)$. It is further worth noting that for the specific symmetric-EIT driving configuration considered here, the signal exhibits almost identical responses for the Λ $(b2)$ and the π $(a2)$ configurations as well as for the Λ $(b1)$ and the Φ $(a1)$ configurations\(^5\). The conditional phase shift, i.e., the difference between the signal phase shift when the control is present $(a1 \leftrightarrow a2)$ and the signal phase shift when the control is absent $(b1 \leftrightarrow b2)$, then becomes

$$\Delta \Phi_s = (\phi_b^o - \phi_s^a) \approx \phi_0 \text{Re}[\chi_{a}^{2} - \chi_{b}^{1}] \times (P^b - P^a), \ (3)$$

where the challenge is to achieve $|\Delta \Phi_s| = \pi$. Individual susceptibilities χ_{a}^{b} and χ_{b}^{o} in eq. (3) are defined in the absence of dipole-dipole interactions and can be computed by solving standard equations for atomic density matrix elements [36]. The Rydberg populations P^a and P^b, on the other hand, can be computed upon replacing $\Omega_{a,c} \rightarrow \Omega_{a,c}/\sqrt{n_{sa}/2}$ with $n_{sa} = N_0 (4\pi R_b^3/3)$ (see footnote \(^3\)) in the corresponding equations for SA density matrix elements. Such a scaling takes into account the fact that the signal $\{g \leftrightarrow |e\rangle\}$ and control $\{|m \leftrightarrow |e\rangle\}$ transitions are enhanced by the atomic number $n_{sa}/2$ in relevant collective states of each SA, being the atoms taken to be equally distributed between ground levels $|g\rangle$ and $|m\rangle$.

These qualitative arguments are now quantified for a realistic sample of cold 87Rb atoms. While details of the procedure used to compute both individual susceptibilities...
and Rydberg populations in eq. (3) can be found in the SM for the case of monochromatic CW signal and control fields, we plot in fig. 2 the resulting cross-phase shift as a function of the common detuning δ, the coupling Rabi frequency Ω_C (fig. 2(a)) and the dressing Rabi frequency Ω_D (fig. 2(b)), showing the characteristic parameter regions where $\Delta \Phi_s$ equals π. There we also plot the corresponding high-optical depth (see footnote 2) showing maximal transmission $e^{-2\kappa_s} \approx 87\%$ (fig. 2(c)) for the driving configuration $\{a \rightleftharpoons b\}$ in fig. 1(a) yet $e^{-2\kappa_s} \approx 66\%$ (fig. 2(d)) for the configuration $\{\Lambda \rightleftharpoons \Lambda\}$ in fig. 1(b).

The large shifts observed in fig. 2 hinge on appreciable differences both in the i) individual susceptibilities and in the ii) Rydberg populations, as eq. (3) suggests and also confirmed in the SM through analytical and numerical computations. The former i) arises from the fact that the signal experiences different dispersions in the Λ-type single-EIT regime (b2) and the Λ-type double-EIT regime (b1) [33], whereas the latter ii) arises from the fact that Rydberg excitations, clearly occurring when the control is present ($a \rightleftharpoons a\Lambda$), are instead largely suppressed when the control is absent ($b1 \rightleftharpoons b2$), are instead largely suppressed when the control is present ($a \rightleftharpoons a\Lambda$), whereas the latter ii) arises from the fact that Rydberg excitations, clearly occurring when the control is present ($a \rightleftharpoons a\Lambda$). Such a quenching of the excitation probability P_s is due to the destructive interference between the competing excitation paths $\{|g\} \rightarrow |e\} \rightarrow |r\}$ and $\{|g\} \rightarrow |e\} \rightarrow |m\} \rightarrow |e\} \rightarrow |r\}$. This competing behavior is instead absent for P_b whereby the only excitation path is $\{|g\} \rightarrow |e\} \rightarrow |r\}$. It is to be noted that although the path $\{|g\} \rightarrow |e\} \rightarrow |m\} \rightarrow |e\} \rightarrow |r\}$ represents a high-order process, its contribution to the transition amplitude is nevertheless significant due to the enhanced SA Rabi frequencies ($\Omega_{s,c} \rightarrow \Omega_{s,c}/n_{sa}/2$) on the probe and control transitions shared by $n_{sa}/2$ atoms.

Reaching the π cross-phase shifts in fig. 2 thus depends on the signal and control polarizations, through a careful selection of specific dispersive EIT regimes and specific Rydberg blockade effects. This polarization-sensitive blockade mechanism, in particular, is an important and novel feature that may be easily implemented to achieve large optical cross-nonlinearities in atomic media. Such a novelty could be especially appreciated through the comparison with familiar cross-nonlinear mechanisms without Rydberg blockade. This comparison is presented in the SM, showing that the relevant $\Delta \Phi_s$ turns out to be orders of magnitude smaller (as there is no appreciable differences on σ_{ab}^s between the situations in which the control field is on or off) while κ_{ab}^s (indicating absorption) remain largely the same level. There we also discuss the influence of the Rydberg dephasings ($\gamma_{gr,mr,ar}$) on absorption.

Dynamics. – In a realistic setup one should consider signal and control pulses rather than monochromatic beams. The extension is not straightforward owing to typical pulse distortion effects [37] during the propagation in a dense dispersive sample of cold Rydberg atoms [7]. So we examine in the following the intrinsically time-dependent [11] cross-phase dynamics for narrow-band signal and control pulses under the same symmetric EIT driving conditions adopted before. The signal pulse slowly varying envelope wave equations can be written as

$$\frac{\partial \Omega^a_s}{\partial z} + \frac{1}{c} \frac{\partial \Omega^a_s}{\partial t} = \frac{i\pi N \bar{\omega}_{eg}^2}{2 \bar{c} \bar{\omega}_{eg}^2} \left[P^a_{ge} \sigma_{ge}^a + (1 - P^a) \sigma_{ge}^{a1} \right],$$

$$\{a1 \rightleftharpoons a2\}, \quad (4)$$

$$\frac{\partial \Omega^b_s}{\partial z} + \frac{1}{c} \frac{\partial \Omega^b_s}{\partial t} = \frac{i\pi N \bar{\omega}_{eg}^2}{2 \bar{c} \bar{\omega}_{eg}^2} \left[P^b_{ge} \sigma_{ge}^b + (1 - P^b) \sigma_{ge}^{b1} \right],$$

$$\{b1 \rightleftharpoons b2\}. \quad (5)$$

The signal pulse evolution when the control pulse is on ($a1 \rightleftharpoons a2$) or off ($b1 \rightleftharpoons b2$) is determined by the coupled Maxwell-Liouville equations [38], including eqs. (4), (5) and relevant dynamic equations for the atomic coherences $\sigma_{ge}^{a1,a2,b1,b2}$ and for the SA Rydberg populations $P_{ge}^{a,b}$, as discussed in detail in the SM.

For a pair of identical signal and control Gaussian pulses, the signal amplitudes $|\Omega_{s,b}^{a,b}|$ are plotted in fig. 3(a) $\{a1 \rightleftharpoons a2\}$ and in fig. 3(b) $\{b1 \rightleftharpoons b2\}$. It is clear that the signal pulse experiences only slightly different losses, deformations, and time delays at the sample exit regardless of the control pulse. More interestingly, the signal phases $\phi_{s,b}^{a,b} = \arg(\Omega_{s,b}^{a,b})$ plotted in fig. 3(c) $\{a1 \rightleftharpoons a2\}$ and in fig. 3(d) $\{b1 \rightleftharpoons b2\}$ turn out to be significantly inhomogeneous or roughly homogeneous depending on whether the control pulse is on or off. It should be stressed, in particular, that $\Delta \Phi_s$ as inferred from fig. 3(c), (d) cannot exceed $\sim 0.85\pi$, at variance with the value of π predicted by fig. 2(a), (b) in the steady-state case. One main reason...
is that absorptive loss is not negligible for the signal and control pulses during propagation, which is more evident around the pulse centers.

Cross-phase shifts $\Delta \Phi_s$ close to π may still be reached, e.g., through a slight change of the common detuning δ to enlarge its departure ($190 \text{kHz} \rightarrow 220 \text{kHz}$) from the double EIT resonance. Figure 4(a) shows the difference of individual signal phases (red dashed line), conditional to the Rydberg blockade occurrence, and the difference of SA Rydberg populations (blue dotted line), conditional to the control pulse polarization. They are so large that the corresponding cross-phase shift in fig. 4(b) displays a maximum $\sim 0.96\pi$ (red dashed line). This maximum is nearly concomitant with the signal output peak and exhibits a 6% departure from the top for a 5% time variation around the center. It is worth stressing that the slow Rydberg decay affects further the evolution of Rydberg populations difference and thus cross-phase shift δ results in a slow decay past the signal pulse. More homogeneous cross-phase shifts (blue dotted line) may be attained by using identical flat-top signal and control pulses [39]. Figure 4(c) shows that signal amplitude losses are about 8% or 22% while signal time delays are about 1.8 μs or 5.8 μs, depending on whether the control pulse ϕ_c is on $\{a_1 \leftrightarrow a_2\}$ or off $\{b_1 \leftrightarrow b_2\}$. The SA populations in fig. 4(d) for the $\{b_1 \leftrightarrow b_2\}$ case follow nearly adiabatically the pulse excitation though this is less apparent at the trailing edge. One main reason is that the pulse excitation in a Λ configuration is faster than the Rydberg decay so that repopulating the ground levels becomes a slow process. This does not happen instead for the $\{a_1 \leftrightarrow a_2\}$ case (not shown) because the destructive quantum interference in a Φ configuration well prevents the Rydberg excitation.

It is worth noting that, for pulses containing thousands of photons over a beam waist of $w \sim 12$ μm, the results shown in figs. 3 and 4 correspond to a cross-phase shift of mrads/photon, which is an important figure of merit for tasks such as the realization of low-light-intensity cross-phase modulations. Therefore, the results in fig. 4(b) definitely represent a significant achievement [32] with the sample parameters suitable to state-of-the-art magneto-optical traps [40], while the prospect of obtaining sizable cross-phase shifts even with weaker signal and control pulses down to tens of photons hinges on the availability of denser Rydberg samples, yet with appropriate dephasing rates (see SM for details). One main reason is that the variation of SA Rydberg populations P^a and P^b is determined by $n_{ra} \times \Omega_0^2/2$ so that a smaller Rabi frequency Ω_0 may be compensated through a larger atomic number n_{ra} per blockade sphere. Our scheme could also be adapted to setups that offer a closer prospect for applications such as cold atoms loaded into hollow-core optical fibers [41] and even solid-state setups such as Rydberg excitons in cuprous oxide [42,43].

Conclusions. – Specific polarization-conditional cooperative nonlinearities that occur in all-optically tunable far-off-resonance Rydberg-EIT media [26] can be harnessed to attain mrads/photon7 [44] cross-phase shifts between a signal and a control pulse. An important feature of this scheme is that a signal (control) pulse containing thousands or even less photons is already sufficient to reach π cross-phase shifts in a regime of intrinsically small losses and group-velocity matching. We foresee this as an asset for future applications of deterministic optical gates with no need of optical cavities [7,24,25], storage and retrieval [23], or post-selection procedures [14,23].

This work is supported by the National Natural Science Foundation (Nos. 11534002 and 11674049) of China, the 111 Project (No. B13013) of China, and the Cooperative program (No. PGR00960) by the Italian Ministry

6Phase noises for weak coherent-state incident pulses considered here can be safely neglected. Such noises may however amount to additional small dephasing rates on relevant atomic transitions when few photons are involved.

7At higher densities even steeper cross-phase shifts per photon can be achieved through a fewer-photons signal (control) pulse (see SM for details). Dephasing effects, however, will start to become important with increasing densities [44].
of Foreign Affairs & International Cooperation and the National Natural Science Foundation of China. J-HW, MA, and GCLR would like to acknowledge the kind hospitality, respectively, in Pisa and in Changchun.

REFERENCES