Search for microscopic black hole signatures at the Large Hadron Collider

CMS Collaboration

Abstract

A search for microscopic black hole production and decay in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 pb\(^{-1}\). Events with large total transverse energy are analyzed for the presence of multiple high-energy jets, leptons, and photons, typical of a signal expected from a microscopic black hole. Good agreement with the standard model backgrounds, dominated by QCD multijet production, is observed for various final-state multiplicities and model-independent limits on new physics in these final states are set. Using simple semi-classical approximation, limits on the minimum black hole mass are derived as well, in the range 3.5–4.5 TeV. These are the first direct limits on black hole production at a particle accelerator.

© 2011 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

One of the exciting predictions of theoretical models with extra spatial dimensions and low-scale quantum gravity is the possibility of copious production of microscopic black holes in particle collisions at the CERN Large Hadron Collider (LHC) [1,2]. Models with low-scale gravity are aimed at solving the hierarchy problem, the puzzlingly large difference between the electroweak and Planck scales.

In this Letter we focus on microscopic black hole production in a model with large, flat, extra spatial dimensions, proposed by Arkani-Hamed, Dimopoulos, and Dvali, and referred to as the ADD model [3,4]. This model alleviates the hierarchy problem by introducing \(n \) extra dimensions in space, compactified on an \(n \)-dimensional torus or sphere with radius \(r \). The multidimensional space–time is only open to the gravitational interaction, while the gauge interactions are localized on the \(3 + 1 \) space–time observer. The relationship between \(3 + 1 \) space–time and \(4 + n \) space–time can be found by solving Einstein’s general relativity equations and is given by [6–8]:

\[
\text{Pl, which is the case for a } 3 + 1 \text{ space–time. Colliding particles would collapse in a black hole if their impact parameter were smaller than approximately the Schwarzschild radius of a black hole with the mass } M_{\text{BH}} \text{ equal to the total energy accessible in the collision. The Schwarzschild radius of a black hole with mass } M_{\text{BH}} \text{ embedded in } 4 + n \text{ space–time can be found by solving}
\]

The parton-level cross section of black hole production is derived from geometrical considerations and is given by \(\sigma \sim \pi r_S^4 \) [1,2]. At LHC energies, this cross section can reach 100 pb for \(M_D \) of 1 TeV. The exact cross section cannot be calculated without knowledge of the underlying theory of quantum gravity and is subject to significant uncertainty. It is commonly accepted [1,2] that the minimum black hole mass \(M_{\text{BH}} \min \) cannot be smaller than \(M_D \); although the formation threshold can be significantly larger than this. When a black hole is formed, some fraction of the colliding parton energy may not be trapped within the event horizon and will be emitted in the form of gravitational shock waves, which results in energy, momentum, and angular momentum loss [9–11]. This effect is particularly model-dependent for black hole masses close to \(M_D \). In general, black holes in particle collisions are produced with non-zero angular momentum, which also affects their properties and production cross section.

Once produced, the microscopic black holes would decay thermally via Hawking radiation [12], approximately democratically (with equal probabilities) to all standard model (SM) degrees of freedom.
freedom. Quarks and gluons are the dominant particles produced in the black hole evaporation ($\sim 75\%$) because they have a large number of color degrees of freedom. The remaining fraction is accounted for by leptons, W and Z bosons, photons, and possibly Higgs bosons. Emission of gravitons by a black hole in the bulk space is generally expected to be suppressed [13], although in some models it can be enhanced for rotating black holes for the case of large n [10,11,14]. In some models the evaporation is terminated earlier, when the black hole mass reaches M_D, with the formation of a stable non-interacting and non-accreting remnant [15]. The Hawking temperature for a black hole in $4 + n$ space–time is given by $\frac{\hbar}{2 \pi T_H}$ (in Planck units $\hbar = c = k_B = 1$, where k_B is the Boltzmann constant) and is typically in the range of a few hundred GeV. The lifetime for such a microscopic black hole is $\sim \hbar^{-\frac{2}{n-2}}$ [1,2,8].

Here we consider semi-classical black holes, whose properties are similar to those for classical black holes described by general relativity and whose mass is close enough to M_D so that quantum effects can not be ignored completely. There are also models [16–18] of quantum black holes that decay before they thermalize, mainly into two-jet final states. We do not consider this signature here, leaving it for dedicated searches in the dijet channel [19,20].

In what follows, we further assume that the semi-classical approximation, which is strictly valid only for $M_B \gg M_D$, still holds even for the BH masses as low as M_D. While we expect that unknown quantum corrections to the black hole production and decay may become very important, if not dominant, for $M_B \approx M_D$, we still use semi-classical approximation as a benchmark due to the lack of a better, quantum model of black hole production and decay.

The microscopic black holes produced at the LHC would be distinguished by high multiplicity, democratic, and highly isotropic decays with the final-state particles carrying hundreds of GeV of energy. Most of these particles would be reconstructed as jets of hadrons. Observation of such spectacular signatures would provide direct information on the nature of black holes as well as the structure and dimensionality of space–time [1]. Microscopic black hole properties are reviewed in more detail in [10,11].

The search for black holes is based on high multiplicity, democratic, and highly isotropic hadrons. Observation of such spectacular signatures would provide direct information on the nature of black holes as well as the structure and dimensionality of space–time [1]. Microscopic black hole properties are reviewed in more detail in [10,11].

The separation between any two objects (jet, lepton, or photon) is required to be $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} > 0.3$.

Black hole signal events are simulated using the parton-level BlackMax [27] generator (v2.01.03), followed by a parton-showering fragmentation with PYTHIA [28] (v6.420), and a fast parametric simulation of the CMS detector response [29], which has been extensively validated for signal events using detailed detector simulation via GEANT4 [30].

Several parameters govern black hole production and decay in the ADD model in addition to M_D and n. For each value of M_D, we consider a range of the minimum black hole masses, M_{BH}^{min}, between M_D and the kinematic limit of the LHC. We assume that no parton–collision energy is lost in gravitational shock waves, i.e. it is all trapped within the event horizon of the forming black hole. We consider both rotating and non-rotating black holes in this analysis, although the description of rotating black holes in the existing MC generators is only approximate. Graviton radiation by the black hole is not considered. For most of the signal samples we assume full Hawking evaporation without a stable non-interacting remnant.

The parameters used in the simulations are listed in Table 1 for a number of characteristic model points. The MSTW2008LO68 [31] parton distribution functions (PDF) were used. In addition we compare the BlackMax results with those of the CHARYBDIS 2 MC
Table 1
Monte Carlo signal points for some of the model parameters probed, corresponding leading order cross sections (σ), and the minimum required values for the event multiplicity (N ≥ Nmin) and ST (ST > Smin), as well as the signal acceptance (A), the expected number of signal events (n Sig), the number of observed events (nobs), and the observed (σ ST) and expected (σ STSig) limits on the signal cross section at 95% confidence level.

<table>
<thead>
<tr>
<th>M0 (TeV)</th>
<th>Mmin (TeV)</th>
<th>n</th>
<th>σ (pb)</th>
<th>Nmin</th>
<th>Smin (TeV)</th>
<th>A (%)</th>
<th>nSig</th>
<th>nobs</th>
<th>σ ST (pb)</th>
<th>σ STSig (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>2.5</td>
<td>6</td>
<td>118</td>
<td>3</td>
<td>1.5</td>
<td>90</td>
<td>571</td>
<td>203</td>
<td>241 ± 45</td>
<td>1.69</td>
</tr>
<tr>
<td>1.5</td>
<td>3.0</td>
<td>6</td>
<td>25.9</td>
<td>3</td>
<td>1.8</td>
<td>91.3</td>
<td>823</td>
<td>45</td>
<td>62 ± 22.2</td>
<td>0.62</td>
</tr>
<tr>
<td>1.5</td>
<td>3.5</td>
<td>6</td>
<td>4.97</td>
<td>4</td>
<td>2.1</td>
<td>88.3</td>
<td>153</td>
<td>6</td>
<td>12.1 ± 6.3</td>
<td>0.21</td>
</tr>
<tr>
<td>1.5</td>
<td>4.0</td>
<td>6</td>
<td>0.77</td>
<td>5</td>
<td>2</td>
<td>84.4</td>
<td>22.5</td>
<td>0</td>
<td>2.01 ± 1.48</td>
<td>0.11</td>
</tr>
<tr>
<td>1.5</td>
<td>4.5</td>
<td>6</td>
<td>0.09</td>
<td>5</td>
<td>2</td>
<td>80.9</td>
<td>2.55</td>
<td>0</td>
<td>0.46 ± 0.46</td>
<td>0.11</td>
</tr>
<tr>
<td>1.5</td>
<td>5.0</td>
<td>6</td>
<td>0.007</td>
<td>5</td>
<td>3.4</td>
<td>75.2</td>
<td>0.19</td>
<td>0</td>
<td>0.13 ± 0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>2.0</td>
<td>2.5</td>
<td>4</td>
<td>28.9</td>
<td>3</td>
<td>1.7</td>
<td>81.6</td>
<td>817</td>
<td>82</td>
<td>95.7 ± 28.1</td>
<td>1.16</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>4</td>
<td>6.45</td>
<td>3</td>
<td>2.0</td>
<td>83.2</td>
<td>386</td>
<td>21</td>
<td>30.8 ± 14.0</td>
<td>0.47</td>
</tr>
<tr>
<td>2.0</td>
<td>3.5</td>
<td>4</td>
<td>1.26</td>
<td>4</td>
<td>2.3</td>
<td>77.9</td>
<td>34.0</td>
<td>3</td>
<td>6.12 ± 4.05</td>
<td>0.20</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>4</td>
<td>0.20</td>
<td>4</td>
<td>2.8</td>
<td>73.4</td>
<td>5.07</td>
<td>0</td>
<td>1.35 ± 1.45</td>
<td>0.12</td>
</tr>
<tr>
<td>2.0</td>
<td>4.5</td>
<td>4</td>
<td>0.02</td>
<td>5</td>
<td>3.2</td>
<td>64.4</td>
<td>0.53</td>
<td>0</td>
<td>0.21 ± 0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>2.5</td>
<td>0.0</td>
<td>5</td>
<td>0.002</td>
<td>5</td>
<td>3.7</td>
<td>59.6</td>
<td>0.04</td>
<td>0</td>
<td>0.06 ± 0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>2</td>
<td>0.59</td>
<td>3</td>
<td>2.4</td>
<td>62.1</td>
<td>12.8</td>
<td>2</td>
<td>7.88 ± 5.80</td>
<td>0.21</td>
</tr>
<tr>
<td>3.0</td>
<td>3.5</td>
<td>2</td>
<td>0.12</td>
<td>3</td>
<td>2.8</td>
<td>58.9</td>
<td>2.41</td>
<td>0</td>
<td>2.40 ± 2.40</td>
<td>0.15</td>
</tr>
<tr>
<td>3.0</td>
<td>4.0</td>
<td>2</td>
<td>0.02</td>
<td>4</td>
<td>3.2</td>
<td>43.7</td>
<td>0.32</td>
<td>0</td>
<td>0.46 ± 0.46</td>
<td>0.19</td>
</tr>
<tr>
<td>3.0</td>
<td>4.5</td>
<td>2</td>
<td>0.002</td>
<td>5</td>
<td>3.6</td>
<td>33.6</td>
<td>0.03</td>
<td>0</td>
<td>0.08 ± 0.08</td>
<td>0.26</td>
</tr>
<tr>
<td>3.0</td>
<td>5.0</td>
<td>2</td>
<td>0.0002</td>
<td>5</td>
<td>4.0</td>
<td>34.5</td>
<td>0.002</td>
<td>0</td>
<td>0.03 ± 0.03</td>
<td>0.26</td>
</tr>
</tbody>
</table>

The two generators yield different values of total cross section, as BlackMax introduces an additional n-dependent factor applied on top of the geometrical cross section. The CHARYBDIS cross sections are a factor of 1.36, 1.59, and 1.78 smaller than those from BlackMax for n = 2, 4, and 6, respectively. In addition, CHARYBDIS has been used to simulate black hole evaporation resulting in a stable non-interacting remnant with mass M0 (this model is not implemented in BlackMax). In the generation, we use the Particle Data Group [5] definition of the Planck scale M0. (Using another popular choice for M0 from Dimopoulos and Landsberg [1] would result in a suppression of the production cross section by a factor of 1.35, 5.21, or 9.29 for n = 2, 4, or 6, respectively.)
Fig. 1. Total transverse energy S_T, for events with the multiplicities of a) $N = 2$, and b) $N = 3$ objects in the final state. Data are depicted as solid circles with error bars; the shaded band is the background prediction obtained from data (solid line) with its uncertainty. Non-multijet backgrounds are shown as colored histograms. Also shown is the predicted black hole signal for three different parameter sets.

Fig. 2. Total transverse energy S_T, for events with multiplicities a) $N \geq 3$, b) $N \geq 4$, and c) $N \geq 5$ objects in the final state. Data are depicted as solid circles with error bars; the shaded band is the background prediction (solid line) with its uncertainty. Also shown are black hole signals for three different parameter sets.

$S_T = 1000$–1100 GeV, where no black hole signal contribution is expected.

Since no excess is observed above the predicted background, we set limits on the black hole production. We assign a systematic uncertainty on the background estimate of 6% to 125% for the S_T range used in this search. This uncertainty comes from the normalization uncertainty (4–12%, dominated by the statistics in the normalization region) added in quadrature to the uncertainties arising from using various ansatz fit functions and the difference between the shapes obtained from the $N = 2$ and $N = 3$ samples. The integrated luminosity is measured with an uncertainty of 11% [22]. The uncertainty on the signal yield is dominated by the jet-energy-scale uncertainty of $\approx 5\%$ [24] which translates into a 5% uncertainty on the signal. An additional 2% uncertainty on
the signal acceptance comes from the variation of PDFs within the CTEQ6 error set [35]. The particle identification efficiency does not affect the signal distribution, since an electron failing the identification requirements would be classified either as a photon or a jet; a photon failing the selection would become a jet; a rejected muon would contribute to the E_T. In any case the total value of S_T is not affected.

We set limits on black hole production using the optimized S_T and N selections by counting events with $S_T > S_T^{\text{min}}$ and $N > N^{\text{min}}$. We optimized the signal (S) significance in the presence of background (B) using the ratio $S/\sqrt{S+B}$ for each set. The optimum choice of parameters is listed in Table 1, as well as the predicted number of background events, the expected number of signal events, and the observed number of events in data. Note that the background uncertainty, dominated by the choice of the fitting function, is highly correlated for various working points listed in Table 1 and also bin-to-bin for the S_T distributions shown in Figs. 1 and 2.

We set upper limits on the black hole production cross section using the Bayesian method with flat signal prior and log-normal prior for integration over the nuisance parameters (background, signal acceptance, luminosity) [5,37]. These upper limits at the 95% confidence level (CL) are shown in Fig. 3, as a function of $M_{\text{BH}}^{\text{min}}$. For the three model parameter sets shown in the figure, the observed (expected) lower limits on the black hole mass are 3.5, 4.2 and 4.5 TeV (3.2, 4.0, and 4.5 TeV), respectively.

Translating these upper limits into lower limits on the parameters of the ADD model, we can exclude the production of black holes with minimum mass of 3.5–4.5 TeV for values of the multidimensional Planck scale up to 3.5 TeV at 95% CL. These limits, shown in Fig. 4, do not exhibit significant dependence on the details of the production and evaporation within the set of models we studied. These are the first limits of a dedicated search for black hole production at a particle accelerator.

We point out that the semi-classical approximation used in this search is valid only for the lowest values of the M_D, for which the limits on the minimum black hole mass exceed M_D by a factor of a few. For higher values of M_D the limits become comparable with M_D, which implies that the approximation is no longer valid and that the BH production cross section may be modified significantly. Nevertheless, due to the exponentially falling nature of production cross section with the black hole mass, even large changes in the cross section translate only in moderate changes in the minimum black hole mass limit, as evident from Fig. 3.

Finally, we produce model-independent upper limits on the cross section times the acceptance for new physics production in high-S_T inclusive final states for $N \geq 3$, 4, and 5. Fig. 5 shows 95% CL upper limits from a counting experiment for $S_T > S_T^{\text{min}}$ as a function of S_T^{min}, which can be used to test models of new physics that result in these final states. A few examples of such models are production of high-mass $t\bar{t}$ resonances [38] in the six-jet and lepton + jet final states, R-parity violating gluino decay into three jets, resulting in the six-jet final state [39,40], and a class of models with strong dynamics, with a strongly produced resonance decaying into a pair of resonances further decaying into two jets each, resulting in the four-jet final state [41]. In addition, these limits can be used to constrain black hole production for additional regions of the parameter space of the model, as well as set limits on the existence of string balls [42], which are quantum precursors of black holes predicted in certain string models. We have checked that for the black hole model parameters we probed with the dedicated optimized analysis, the sensitivity of the search in terms of the excluded black hole mass range exceeds that from the model-independent cross section limits by as little as 5–8%. Thus, model-independent limits can be used efficiently to constrain the allowed parameter space in an even broader variety of black hole models than we covered in this Letter.

To conclude, we have performed the first dedicated search for microscopic black holes at a particle accelerator and set limits on their production in the model with large extra dimensions in space using simple semi-classical approximation of the black hole production and decay [1,2]. The lower limits on the black hole mass at 95% CL range from 3.5 to 4.5 TeV for values of the Planck scale up to 3 TeV. Additionally, we have produced model-independent limits on the production of energetic, high-multiplicity final states, which can be used to constrain a variety of models of new physics.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA (Hungary); CERN

Fig. 3. The 95% confidence level upper limits on the black hole production cross section (solid lines) and three theoretical predictions for the cross section (dashed lines), as a function of the black hole mass.

Fig. 4. The 95% confidence level limits on the black hole mass as a function of the multidimensional Planck scale M_D for several benchmark scenarios. The area below each curve is excluded by this search.
Fig. 5. Model-independent 95% confidence level upper limits on a signal cross section times acceptance for counting experiments with \(\sqrt{s} > 5\text{ TeV} \) as a function of \(S_T^\text{min} \) for (a) \(N \geq 3 \), (b) \(N \geq 4 \), and (c) \(N \geq 5 \). The solid (dashed) lines correspond to an observed (expected) limit for nominal signal acceptance uncertainty of 5%.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[26] CMS Collaboration, Missing transverse energy performance in minimum-bias and jet events from proton-proton collisions at \(\sqrt{s} = 7 \text{ TeV} \), CMS Physics Analysis Summary CMS-PAS-JME-10-004, URL http://cdsweb.cern.ch/record/1279142.

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

L. Gouskos, T.J. Mertzimekis, A. Panagiotou ¹

University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

University of Ioánnina, Ioánnina, Greece

A. Aranyi, G. Bencze, L. Boldizsar, G. Debreczeni, C. Hajdu ¹, D. Horvath ¹⁰, A. Kapusi, K. Krajczar ¹¹, A. Laszlo, F. Sikler, G. Vesztergombi ¹¹

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India

S. Banerjee, S. Dugad, N.K. Mondal

Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Arfaei, H. Bakhshiansohi, S.M. Ettesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad, A. Mohammad, M. Mohammad Najafabadi, S. Paktinat Mehdiaabadi, B. Safarzadeh, M. Zeinali

Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran
Moscow State University, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Vinogradov
P.N. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic 18, M. Djordjevic, D. Krpic 18, J. Milosevic
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz
Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC – Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu

Brunel University, Uxbridge, United Kingdom

K. Hatakeyama

Baylor University, Waco, USA

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

A. Biselli, G. Cirino, D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

C. Ceron, V. Gaultney, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralic, I. Vodopiyanov

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA