Search for a heavy gauge boson \(W' \) in the final state with an electron and large missing transverse energy in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV \(^\star\)

CMS Collaboration

CERN, Geneva, Switzerland

A search for a heavy gauge boson \(W' \) has been conducted by the CMS experiment at the LHC in the decay channel with an electron and large transverse energy imbalance \(E_T^{\text{miss}} \), using proton–proton collision data corresponding to an integrated luminosity of 36 \(\text{pb}^{-1} \). No excess above standard model expectations is seen in the transverse mass distribution of the electron-\(E_T^{\text{miss}} \) system. Assuming standard-model-like couplings and decay branching fractions, a \(W' \) boson with a mass less than 1.36 TeV/\(c^2 \) is excluded at 95% confidence level.

\(^\star\) © CERN, for the benefit of the CMS Collaboration.
energy deposit with that expected for an electron. The electrons must have a transverse energy greater than 30 GeV, and should be isolated in a cone of radius \(\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.3 \) around the electron candidate direction, both in the tracker and in the calorimeter. In the tracker, the sum of the \(p_T \) of the tracks, excluding tracks within an inner cone of 0.04, is required to be less than 7 (15) GeV for electron candidates reconstructed within the barrel (endcap) acceptance. For the isolation using calorimeters, the total transverse energy in the barrel, excluding deposits associated to the electron, should be less than 0.03 \(\cdot E_{T}^{\text{ele}} + 2.0 \) GeV. In the endcap, the isolation exploits the segmentation of the hadron calorimeter to minimize contamination from the multi-jet background. For electrons in the endcap with \(E_{T}^{\text{ele}} > 50 \) GeV, the sum of \(E_T \) of deposits in the electromagnetic and the first segment of the hadron calorimeter, not associated to the electron itself, must be less than 0.03 \(\cdot (E_{T}^{\text{ele}} - 50) + 2.5 \) GeV. For endcap electrons of less than 50 GeV the sum of \(E_T \) should be below 2.5 GeV. The \(E_T \) of deposits in the second segment of the hadron calorimeter must be less than 0.5 GeV [9]. These selections are designed to ensure high efficiency for electrons and a high rejection of misreconstructed electrons from multi-jet backgrounds. Since the amount of background from multi-jet events differs in the central and the forward region, the selections described are optimized for high energy electrons separately in the two regions [9].

To account for the energy imbalance due to the escaping neutrino, we use a particle flow technique, which reconstructs a complete list of particles in an event using all the available information [10]. Muons, electrons, photons, and charged and neutral hadrons are reconstructed individually. We denote the negative vector sum of the energy of all reconstructed particles in the event projected on the transverse plane as \(\mathbf{E}_{\text{miss}} \). It represents an estimate of the vector sum of the transverse momentum of all escaping neutral particles, such as neutrinos.

Since we are searching for a two-body decay which reconstructs to a high mass, the energy of the neutrino and electron are expected to be mostly balanced in the transverse plane, both in direction and in magnitude. We therefore require \(0.4 < E_{T}^{\text{ele}}/E_{T}^{\text{miss}} < 1.5 \). For the same reason, we require that the angle between the electron and the \(\mathbf{E}_{\text{miss}} \) be close to \(\pi \) radians: \(\Delta \phi_{\text{ele}E_{\text{miss}}} > 2.5 \) rad.

The primary discriminating variable is the transverse mass \(M_T \). The transverse mass is the equivalent of the invariant mass of a four-vector computed with only the transverse components of those four-vectors: \(M_T = \sqrt{2 \cdot E_{T}^{\text{ele}} \cdot E_{T}^{\text{miss}} \cdot (1 - \cos \Delta \phi_{\text{ele}E_{\text{miss}}})} / c^2 \). As with a \(W \), we expect the \(M_T \) distribution of \(W \) events to exhibit a characteristic Jacobian edge at the value of the mass of the decaying particle.

After applying these event selection criteria, the main background consists of \(W \rightarrow e\nu \) decays in the tails of the SM \(W \) mass distribution. Given the high transverse mass of a potential signal, multi-jet production constitutes a background when one jet is misreconstructed and the \(E_{T}^{\text{miss}} \) is a result of this misreconstruction. Further contributions are due to \(W \rightarrow \tau\nu \) decays where the tau-lepton subsequently decays to an electron and neutrinos. Since these electrons result from several preceding decays, their energies are rather low and do not spread much into the signal region. Electrons from semi-leptonic decays of \(t \) events may also constitute a background primarily at low energies. Small contributions are caused by Drell–Yan \(Z/\gamma \) production followed by decays into \(e^+e^- \) pairs where one electron is not detected, diboson production and other QCD backgrounds such as \(\gamma + \text{jet} \). All backgrounds are summarized in Table 1.

Estimates of the \(M_T \) distribution for all backgrounds except for the two backgrounds, \(W \rightarrow e\nu \) and multi-jet events, are obtained using Monte Carlo simulations, with a combination of PYTHIA v6.422 [11] and MADGRAPH [12] event generators. The geometric and kinematic acceptances are calculated using a GEANT-based simulation of the CMS detector [13]. The CTQG61 parton distribution functions are used to model the momentum distribution of the initial-state partons [14]. For the signal sample, the PYTHIA event generator with its implementation of the reference model [4] is used at varying mass points up to \(M_W = 2.0 \) TeV/c\(^2\). A mass-dependent \(K \)-factor of about 1.3 approximating the next-to-next-to-leading-order (NNLO) cross sections is applied [15,16], varying between 1.26 (for \(M_W = 2 \) TeV/c\(^2\)) and 1.32 (for \(M_W = 0.6 \) TeV/c\(^2\)). After the final event selections, the product of geometric acceptance and efficiency for the \(W \) signal is greater than 64%, independent of mass, for the range \(M_W = 0.9-2.0 \) TeV/c\(^2\). The electron identification efficiency is measured with the tag-and-probe method in data and simulation using a clean sample of \(Z \rightarrow e^+e^- \). In this method one lepton candidate, called the “tag”, satisfies certain selection criteria while the other lepton candidate, called the “probe”, is required to pass specific criteria which define the particular efficiency under study. This method measured the electron identification efficiency to be about 2% lower in data than in Monte Carlo simulations and therefore a correction factor was applied to the simulation.

The \(W \) and multi-jet background estimates are derived from a combination of experimental data and Monte Carlo simulations. For the \(W \rightarrow e\nu \) background, we obtain an initial estimate of the \(M_T \) shape from simulations using the PYTHIA event generator. Differences in the \(E_{T}^{\text{miss}} \) resolution between the data and simulations are corrected using a technique based on the measurement of \(E_{T}^{\text{miss}} \) in \(Z \rightarrow e^+e^- \) events [17]. The absolute normalizations of the multi-jet and \(W \) backgrounds are obtained using the \(E_{T}^{\text{ele}}/E_{T}^{\text{miss}} \) distribution. A Crystal Ball [18] function is used to describe the distribution for \(W \) bosons and an empirical shape is used for the multi-jet background, while for all other backgrounds the distributions and the normalisations are fixed to the standard model predictions. After subtraction of the latter backgrounds, a simultaneous fit to the \(E_{T}^{\text{ele}}/E_{T}^{\text{miss}} \) distribution in the data provides the multi-jet and \(W \) normalizations. Fig. 1 shows the result of this fit.

Table 1 shows the resulting number of predicted background and observed events. The background estimate models the number of observed events well, including the low transverse mass region (\(M_T > 45 \) GeV/c\(^2\)), which contains most of the \(W \)-boson sample and provides a validation of the background model. For \(M_T > 400 \) GeV/c\(^2\) the total expected background amounts to

Fig. 1. Distributions of the variable \(E_{T}^{\text{ele}}/E_{T}^{\text{miss}} \). The curves show the result of a simultaneous fit of the normalizations of multi-jet and \(W \) background shapes to the data, after subtraction of the contribution of the other backgrounds.
recoil correction. If we examine a region 39% for $t \tau$ and $W \mu$ for the main background $W \tau \nu$ and $t \tau$ [20] using the CMS measurement for the latter. With respect to electrons, reconstruction and identification efficiency uncertainties of 1.9 and 1.8%, respectively, are included for signal and backgrounds as determined in an analysis of $Z \rightarrow e^+ e^-$ events. For the electron energy scale an uncertainty of 1% in the central section and 3% for electrons in the endcaps of the electromagnetic calorimeter [21] is included. For the E_T^{miss} resolution we assume a new W boson-like gauge particle with standard-model-like couplings and branching fractions with masses ranging from 5% for diboson and $Z \rightarrow e^+ e^-$ to 39% for $t \tau$ [20] using the CMS measurement for the latter. With respect to electrons, reconstruction and identification efficiency uncertainties of 1.9 and 1.8%, respectively, are included for signal and backgrounds as determined in an analysis of $Z \rightarrow e^+ e^-$ events. For the electron energy scale an uncertainty of 1% in the central section and 3% for electrons in the endcaps of the electromagnetic calorimeter [21] is included. For the E_T^{miss} resolution we assume an uncertainty of 10% [22], applied as an extra smearing to the reconstructed E_T^{miss} in the simulation. The impact on the number of events from all backgrounds is below 1%. A similar approach is used to evaluate the impact of the E_T^{miss} scale. A shift of 5% is applied event by event to the E_T^{miss} scale [23] and the impact on the event count for $M_T > 200$ GeV/c2 is found to be smaller than 10% for all backgrounds considered. For the $W \rightarrow e\nu$ background, the E_T^{miss} and its associated uncertainty are derived using the hadronic recoil correction. If we examine a region $M_T > 200$ GeV/c2, the resulting uncertainty on the predicted number of event counts is 8% for the main background $W \rightarrow e\nu$ (dominated by the uncertainty on the shape of the M_T distribution due to the energy scale uncertainty) and 50% for the sub-dominant multi-jet background (studied by inverting the isolation requirement and analyzing the multi-jet template in bins of M_T). The uncertainty on the number of signal events, shown in Table 2, is dominated by the luminosity uncertainty (11%) unlike the number of background events which is determined by the electron and E_T^{miss} scale and resolution uncertainties (in total 28.7%). The limits reported in the same table are relatively insensitive to systematic uncertainties.

With all background estimates in hand, we examine the data for evidence of non-SM events. Fig. 2 shows the CMS data overlaid with background expectations. Since no excess is observed in the data beyond the SM background prediction, we set a lower bound on the mass of the W' boson in the reference model. For each mass point, we choose a minimum M_T requirement that provides the best a priori limit and use the M_T region above this threshold as the search window.

The resultant minimum M_T requirement ranges from 400 to 675 GeV/c2 across the W' mass range and is shown in Table 2 along with the corresponding number of potential signal and background events. The errors include all systematic uncertainties. The number of events found in data is also shown. The highest transverse mass event we observe has $M_T = 493$ GeV/c2 and is shown in Fig. 3.

We use a Bayesian technique to determine an upper limit on the cross section as a function of the W' boson mass with a C.L. of 95%, following the method described in [24]. We assume a flat prior probability distribution for the cross section. To incorporate the systematic uncertainties described above, we treat them as nuisance parameters and use a log-normal distribution to integrate over these parameters. Fig. 4 shows both the expected and the observed limit. The uncertainty on the theoretical cross section was determined by re-weighting each event using all the eigenvectors of the CTEQ6 PDF set. We exclude the existence of W' bosons with standard model-like couplings and branching fractions with masses up to 1.36 TeV/c2 at 95% C.L. using the central value of the theoretical cross section.

In summary, we have performed a search for a heavy gauge boson W' in the decay channel with an electron and large transverse energy imbalance. We observe no excess over the background. A new W boson-like gauge particle with standard-model-like couplings and branching fractions up to a mass of 1.36 TeV/c2 is excluded by the data, the most stringent limit to date.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China);
Table 2

Lower M_T requirement as a function of W' mass and expected and observed data counts. The entries n_s, n_b, and n_d correspond to the expected signal and background counts and the observed data counts, respectively. The cross sections σ_t, σ_e, and σ_o correspond to the theoretical W' production cross section and the expected and observed limits, respectively. The errors include all systematic uncertainties.

<table>
<thead>
<tr>
<th>$M_{W'}$ (TeV/c^2)</th>
<th>$\text{min} M_T$ (TeV/c^2)</th>
<th>n_s</th>
<th>n_b</th>
<th>n_d</th>
<th>σ_t (pb)</th>
<th>σ_e (pb)</th>
<th>σ_o (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.400</td>
<td>129.38 \pm 20.16</td>
<td>3.29 \pm 0.61</td>
<td>2</td>
<td>8.290</td>
<td>0.379</td>
<td>0.289</td>
</tr>
<tr>
<td>0.7</td>
<td>0.500</td>
<td>60.77 \pm 9.61</td>
<td>1.21 \pm 0.35</td>
<td>0</td>
<td>4.264</td>
<td>0.314</td>
<td>0.215</td>
</tr>
<tr>
<td>0.8</td>
<td>0.500</td>
<td>39.54 \pm 6.08</td>
<td>1.21 \pm 0.35</td>
<td>0</td>
<td>2.426</td>
<td>0.274</td>
<td>0.188</td>
</tr>
<tr>
<td>0.9</td>
<td>0.500</td>
<td>25.24 \pm 3.85</td>
<td>1.21 \pm 0.35</td>
<td>0</td>
<td>1.389</td>
<td>0.246</td>
<td>0.168</td>
</tr>
<tr>
<td>1.0</td>
<td>0.500</td>
<td>16.10 \pm 2.45</td>
<td>1.21 \pm 0.35</td>
<td>0</td>
<td>0.838</td>
<td>0.232</td>
<td>0.159</td>
</tr>
<tr>
<td>1.1</td>
<td>0.500</td>
<td>10.06 \pm 1.53</td>
<td>1.21 \pm 0.35</td>
<td>0</td>
<td>0.516</td>
<td>0.229</td>
<td>0.157</td>
</tr>
<tr>
<td>1.2</td>
<td>0.650</td>
<td>6.02 \pm 0.92</td>
<td>6.00 \pm 0.24</td>
<td>0</td>
<td>0.334</td>
<td>0.215</td>
<td>0.170</td>
</tr>
<tr>
<td>1.3</td>
<td>0.675</td>
<td>3.92 \pm 0.60</td>
<td>0.51 \pm 0.21</td>
<td>0</td>
<td>0.215</td>
<td>0.207</td>
<td>0.168</td>
</tr>
<tr>
<td>1.4</td>
<td>0.675</td>
<td>2.52 \pm 0.38</td>
<td>0.51 \pm 0.21</td>
<td>0</td>
<td>0.136</td>
<td>0.203</td>
<td>0.164</td>
</tr>
<tr>
<td>1.5</td>
<td>0.675</td>
<td>1.89 \pm 0.29</td>
<td>0.51 \pm 0.21</td>
<td>0</td>
<td>0.099</td>
<td>0.196</td>
<td>0.159</td>
</tr>
<tr>
<td>2.0</td>
<td>0.675</td>
<td>0.27 \pm 0.04</td>
<td>0.51 \pm 0.21</td>
<td>0</td>
<td>0.014</td>
<td>0.206</td>
<td>0.167</td>
</tr>
</tbody>
</table>

Fig. 3. Displays of the highest M_T event. The projection on the left shows the envelope of the inner tracking detector along with the electromagnetic and hadron calorimeters, and part of the muon system. The 3D view on the right shows an enlarged view of the inner region. Charged particle tracks as well as the deposited energy per calorimeter cell are displayed. The electron energy and E_{miss} are shown in red, with the amount of energy represented graphically by the length of the bar. For scale, the largest tower in the electromagnetic calorimeter has an energy of 258 GeV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 4. Limit using a Bayesian technique with a counting experiment in the search window, for the reference model. The intersection of the cross section limit curve and the central value of the theoretical cross section yields a lower limit of $M_{W'} > 1.36$ TeV/c^2 at 95% CL for the assumed $\sigma \times B(W' \rightarrow e\nu)$.

References

[18] M.J. Oregia, A study of the reactions $\psi' \rightarrow \gamma \psi$, Ph.D. Thesis SLAC-R-236, Appendix D.
[22] CMS Collaboration, Missing transverse energy performance in minimum-bias and jet events from proton–proton collisions at $\sqrt{s} = 7$ TeV, CMS Physics Analysis Summary CMS-PAS-JME-10-004.

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
N. Beliy, T. Caebergs, E. Daubie
Université de Mons, Mons, Belgium

G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima,
V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

F.A. Dias, M.A.F. Dias, T.R. Fernandez Perez Tomei, E.M. Gregores, F. Marinho, S.F. Novaes,
Sandra S. Padula
Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

N. Darmenov, L. Dimitrov, V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov,
V. Tcholakov, R. Trayanov, I. Vankov
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

M. Dyulendarova, R. Hadjiiska, V. Kozhuharov, L. Litov, E. Marinova, M. Mateev, B. Pavlov, P. Petkov
University of Sofia, Sofia, Bulgaria

M. Yang, J. Zang, Z. Zhang
Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, K. Lelas, R. Plestina, D. Polic, I. Puljak
Technical University of Split, Split, Croatia

Z. Antunovic, M. Dzelalija
University of Split, Split, Croatia

V. Brigljevic, S. Duric, K. Kadija, S. Morovic
Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

Y. Assran, M.A. Mahmoud
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

A. Hektor, M. Kadastik, K. Kannike, M. Müntel, M. Raidal, L. Rebane
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

V. Azzolini, P. Eerola
Department of Physics, University of Helsinki, Helsinki, Finland
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu
University of Seoul, Seoul, Republic of Korea

Y. Choi, Y.K. Choi, J. Goh, J. Lee, S. Lee, H. Seo, I. Yu
Sungkyunkwan University, Suwon, Republic of Korea

Vilnius University, Vilnius, Lithuania

H. Castilla Valdez, E. De La Cruz Burelo, R. Lopez-Fernandez, A. Sánchez Hernández, L.M. Villasenor-Cendejas
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen
Benemérita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

P. Allfrey, D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler, R. Doesburg, H. Silverwood
University of Canterbury, Christchurch, New Zealand

M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

N. Bondar, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev
Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

E. Aguiló, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

M. Deliomeroglu, D. Demir, E. Gülmez, A. Halu, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Bogazici University, Istanbul, Turkey

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

J. Gronberg, D. Lange, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Mississippi, University, USA

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams
The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

P. Jindal, N. Parashar
Purdue University Calumet, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian, M. Yan
The Rockefeller University, New York, USA

Rutgers, the State University of New Jersey, Piscataway, USA

G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York
University of Tennessee, Knoxville, USA
35 Also at Suleyman Demirel University, Isparta, Turkey.
36 Also at Ege University, Izmir, Turkey.
37 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
38 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
39 Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
40 Also at Institute for Nuclear Research, Moscow, Russia.
41 Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania.
42 Also at Istanbul Technical University, Istanbul, Turkey.