t-Intersection sets in $AG(r, q^2)$ and two-character multisets in $PG(3, q^2)$

A. Aguglia*, L. Giuzzi†

Abstract

In this article we construct new minimal intersection sets in $AG(r, q^2)$ with respect to hyperplanes, of size q^{2r-1} and multiplicity t, where $t \in \{q^{2r-3} - q^{(3r-5)/2}, q^{2r-3} + q^{(3r-5)/2} - q^{(3r-3)/2}\}$, for r odd or $t \in \{q^{2r-3} - q^{(3r-4)/2}, q^{2r-3} - q^{r-2}\}$, for r even. As a byproduct, for any odd q we get a new family of two-character multisets in $PG(3, q^2)$.

The essential idea is to investigate some point-sets in $AG(r, q^2)$ satisfying the opposite of the algebraic conditions required in [1] for quasi–Hermitian varieties.

Keywords: Hermitian variety, quadric, two-character set.

1 Introduction

All non–degenerate Hermitian varieties of $PG(r, q^2)$ are projectively equivalent; furthermore, they sport just two intersection numbers with hyperplanes, see [6]. Quasi–Hermitian varieties \mathcal{V} of $PG(r, q^2)$ are combinatorial objects which have the same size and the same intersection numbers with hyperplanes as a (non–degenerate) Hermitian variety \mathcal{H}; see [1] for details and some constructions. In the present paper we shall consider varieties \mathcal{V} arising by taking algebraic conditions opposite to those of [1] and show that these are in turn interesting geometric objects with 3 intersection numbers. The topic is also of interest for applications, as the projective system induced by \mathcal{V} will determine linear codes with few weights; see [2] for a description of this correspondence.

Fix a projective frame in $PG(r, q^2)$ and assume the space to have homogeneous coordinates (X_0, X_1, \ldots, X_r). Consider the affine plane $AG(r, q^2)$ whose infinite

* Dipartimento di Meccanica, Matematica e MAnagement, Politecnico di Bari, Via Orabona 4, I-70126 Bari
† D.I.C.A.T.A.M., Università di Brescia, Via Branze 43, l-25123 Brescia
hyperplane Π_∞ has equation $X_0 = 0$. Then, $\text{AG}(r, q^2)$ has affine coordinates (x_1, x_2, \ldots, x_r) where $x_i = X_i / X_0$ for $i \in \{1, \ldots, r\}$.

Consider now the non–degenerate Hermitian variety H with affine equation of the form

$$x_r^q - x_r = (b^q - b)(x_1^{q+1} + \ldots + x_{r-1}^{q+1}),$$

where $b \in GF(q^2) \setminus GF(q)$. The set of the points at infinity of H is

$$F = \{(0, x_1, \ldots, x_r) | x_1^{q+1} + \ldots + x_{r-1}^{q+1} = 0\};$$

this can be regarded as a Hermitian cone of $PG(r - 1, q^2)$, projecting a Hermitian variety of $PG(r - 2, q^2)$ from the point $P_\infty := (0, \ldots, 0, 1)$. In particular, observe that the hyperplane Π_∞ is tangent to H at P_∞.

For any $a \in GF(q^2)^*$ and $b \in GF(q^2) \setminus GF(q)$, let $B := B(a, b)$ be the affine algebraic equation of variation

$$x_r^q - x_r + a^q(x_1^{2q} + \ldots + x_{r-1}^{2q}) - a(x_1^2 + \ldots + x_{r-1}^2) = (b^q - b)(x_1^{q+1} + \ldots + x_{r-1}^{q+1}).$$

It is shown in [1] that $B(a, b)$, together with the points at infinity of H, as given by [2], is a quasi–Hermitian variety V of $PG(r, q^2)$ provided that either of the following algebraic conditions are satisfied: for q odd, r is odd and $4a^{q+1} + (b^q - b)^2 \neq 0$, or r is even and $4a^{q+1} + (b^q - b)^2$ is a non–square in $GF(q)$; for q even, r is odd, or r is even and $\text{Tr} \left(a^{q+1}/(b^q + b^2)\right) = 0$.

In this paper, as stated before, we shall study the variety $B(a, b)$ when the opposite of the previous conditions holds. More precisely our main results are the following

Proposition 1.1. Suppose q odd, $4a^{q+1} + (b^q - b)^2 = 0$ and r odd. Then $B(a, b)$ is a set of q^{2r-1} points of $\text{AG}(r, q^2)$ of characters:

- for $r \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$
 $$q^{2r-3} - q^{(3r-5)/2}, q^{2r-3}, q^{2r-3} - q^{(3r-5)/2} + q^{3(r-1)/2};$$

- for $r \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$
 $$q^{2r-3} + q^{(3r-5)/2} - q^{3(r-1)/2}, q^{2r-3}, q^{2r-3} + q^{(3r-5)/2};$$

- for r even,
 $$q^{2r-3} - q^{(3r-4)/2}, q^{2r-3}, q^{2r-3} + q^{(3r-4)/2}.$$

Furthermore $B(a, b)$ is always a minimal intersection set with respect to hyperplanes.
Theorem 1.2. Suppose q odd and $4a^{q+1} + (b^q - b)^2 = 0$. In $PG(3, q^2)$ there exists a 2–character multiset $\mathcal{B}(a, b)$ containing $\mathcal{B}(a, b)$ and characters either $q^3 - q^2$ and $2q^3 - q^2$ if $q \equiv 1 \pmod{4}$, or q^2, and $q^3 + q^2$ if $q \equiv 3 \pmod{4}$.

These results are proved respectively in Section 3 and in Section 4.

Finally, in Section 5 we prove that in the remaining cases we again get minimal intersection sets of the same size but multiplicity $q^{2r-3} - q^{r-2}$.

2 Preliminaries

2.1 Intersection sets with respect to hyperplanes

A set of points \mathcal{B} in a projective or an affine space is a t–fold blocking set with respect to hyperplanes if every hyperplane contains at least t points of \mathcal{B}. Such a set \mathcal{B} is also known as a t-intersection set, or an intersection set with multiplicity t, or a multiple intersection set.

A point P of a t-intersection set \mathcal{B} is said to be essential if $\mathcal{B} \setminus \{P\}$ is not a t-intersection set. When all points of \mathcal{B} are essential then \mathcal{B} is minimal. If the size of the intersection of \mathcal{B} with an arbitrary hyperplane takes m values, say v_1, \ldots, v_m, then the non-negative integers v_1, \ldots, v_m are called the characters of \mathcal{B} and \mathcal{B} is also an m-character set. We observe that if \mathcal{B} is an m–character set consisting of n points and spanning the projective space where it is contained, then the linear code having as columns of its generator matrix the coordinates of the points of \mathcal{B} has exactly m distinct nonzero weights and length n. The dimension k of this code is the vector dimension of the subspace spanned by \mathcal{B}.

Quasi-Hermitian varieties are examples of 2-character sets of $PG(r, q^2)$. In [1] a new infinite family of quasi–Hermitian varieties have been constructed by modifying some point-hyperplane incidences in $PG(r, q^2)$. To this purpose, the authors kept the point set of $PG(r, q^2)$ but replaced the hyperplanes with their images under a suitable quadratic transformation, obtaining a non–standard model Π of $PG(r, q^2)$. This model arises as follows.

Fix a non-zero element $a \in GF(q^2)$. For any choice $m = (m_1, \ldots, m_{r-1}) \in GF(q^2)^{r-1}$ and $d \in GF(q^2)$ let $Q_a(m, d)$ denote the quadric of equation

$$x_r = a(x_1^2 + \ldots + x_{r-1}^2) + m_1 x_1 + \ldots + m_{r-1} x_{r-1} + d. \quad (4)$$

Consider now the incidence structure $\Pi_a = (P, \Sigma)$ whose points are the points of $AG(r, q^2)$ and whose hyperplanes are the hyperplanes of $PG(r, q^2)$ through the infinite point $P_a(0, 0, \ldots, 0, 1)$ together with the quadrics $Q_a(m, d)$ as m and d range as indicated above.
Lemma 2.1. For every non-zero \(a \in \text{GF}(q^2) \), the incidence structure \(\Pi_a = (\mathcal{P}, \Sigma) \) is an affine space isomorphic to \(\text{AG}(r, q^2) \).

Completing \(\Pi_a \) with its points at infinity in the usual way gives a projective space isomorphic to \(\text{PG}(r, q^2) \). We shall make use of this non-standard model of \(\text{PG}(r, q^2) \) in our work.

2.2 Multisets

A multiset in a \(r \)-dimensional projective space \(\Pi \) is a mapping \(M : \Pi \to \mathbb{N} \) from points of \(\Pi \) into non-negative integers. The points of a multiset are the points \(P \) of \(\Pi \) with multiplicity \(M(P) > 0 \). Assume that the number of points of \(M \), each of them counted with its multiplicity, is \(n \). For any hyperplane \(\pi \) of \(\Pi \), the non-negative integer \(M(\pi) = \sum_{P \in \pi} M(P) \) is a character of the multiset \(M \), whereas \(n - M(\pi) \) is called a weight of \(M \). If the set \(\{ M(\pi) \}_{\pi \in \Pi} \) consists of two non-negative integers only, then \(M \) is a 2-character multiset.

Suppose the points of \(M \) span a projective space \(\text{PG}(r, q) \). Then, it is possible to regard the coordinates of the points of \(M \) as the columns of a generator matrix of a code \(C \) of length \(n \) and dimension \(r + 1 \). In this case it is straightforward to see that the weights of \(M \) are indeed exactly the weights of \(C \). We observe that points with multiplicity greater than one correspond to repeated components in \(C \).

3 Proof of Proposition 1.1

From now on, we shall always silently assume \(a \in \text{GF}(q^2)^* \), \(b \in \text{GF}(q^2) \setminus \text{GF}(q) \). Recall that for any quadric \(Q \), the radical \(\text{Rad}(Q) \) of \(Q \) is the subspace \(\text{Rad}(Q) := \{ x \in Q : \forall y \in Q, \langle x, y \rangle \subseteq Q \} \),

where, as usual, by \(\langle x, y \rangle \) we denote the line through \(x \) and \(y \). It is well known that \(\text{Rad}(Q) \) is a subspace of \(\text{PG}(r, q^2) \).

Assume \(B := B(a, b) \) to have Equation (3). It is straightforward to see that \(B(a, b) \) coincides with the affine part of the Hermitian variety \(\mathcal{H} \) of equation (1) in the space \(\Pi_a \); hence, any hyperplane \(\pi_{P_{\infty}} \) of \(\text{PG}(r, q^2) \) passing through \(P_{\infty} \) meets \(B \) in \(|\mathcal{H} \cap \pi_{P_{\infty}}| = q^{2r-3} \) points.

Now we are interested in the possible intersection sizes of \(B \) with a generic hyperplane \(\pi : x_r = m_1 x_1 + \cdots + m_{r-1} x_{r-1} + d \), of \(\text{AG}(r, q^2) \) with coefficients \(m_1, \ldots, m_r, d \in \text{GF}(q^2) \). This is the same as to study the intersection of \(\mathcal{H} \) with the quadrics \(Q_a(m, d) \). Choose \(\varepsilon \in \text{GF}(q^2) \setminus \text{GF}(q) \) such
that $\varepsilon^q = -\varepsilon$; for any $z \in \text{GF}(q^2)$ write $z = z^0 + \varepsilon z^1$ with $z^1, z^2 \in \text{GF}(q)$. The number N of affine points which lie in $\mathcal{B} \cap \pi$ is the same as the number of points of the affine quadric Q of $\text{AG}(2r - 2, q)$ of equation

$$
\sum_{i=1}^{r-1} ((b^1 + a^1)\varepsilon^2(x_i^1)^2 + 2a^0 x_i^0 x_i^1 + (a^1 - b^1)(x_i^1)^2) + \sum_{i=1}^{r-1} (m_i^0 x_i^1 + m_i^1 x_i^0) + d^1 = 0.
$$

(5)

Following the approach of [1], in order to compute N, we first count the number of points of the quadric at infinity $Q_\infty := Q \cap \Pi_\infty$ of Q and then we determine $N = |Q| - |Q_\infty|$. Observe that the quadric Q_∞ of $\text{PG}(2r - 3, q)$ has a matrix of the form

$$
A_\infty = \begin{pmatrix}
(a^1 - b^1)^2 & a^0 \\
(a^1 - b^1) a^0 & (b^1 + a^1)\varepsilon^2 \\
\vdots & \vdots \\
(a^1 - b^1) a^0 & (b^1 + a^1)\varepsilon^2 \\
\end{pmatrix}.
$$

Since $(a^0)^2 - \varepsilon^2[(a^1)^2 - (b^1)^2] = [a^{q+1} + (b^q - b)^2]/4 = 0$, we have $\det A_\infty = 0$. This is possible if, and only if,

$$
\det \begin{pmatrix}
(a^1 - b^1) & a^0 \\
(a^1 + b^1)\varepsilon^2 & a^0 \\
\end{pmatrix} = 0,
$$

that is, each of the 2×2 blocks on the main diagonal of A_∞ has rank 1. Consequently, the rank of A_∞ is exactly $r - 1$.

If $a^1 = b^1$, then $a^0 = 0$, the matrix A_∞ is diagonal and the quadric Q_∞ is projectively equivalent to

$$(x_1^1)^2 + (x_2^1)^2 + \cdots + (x_{r-1}^1)^2 = 0.$$

Otherwise, take

$$
M = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
-a^0/(a^1 - b^1) & 1 \\
\vdots & \ddots & \ddots & \ddots \\
1 & 0 & \cdots & -a^0/(a^1 - b^1) \\
\end{pmatrix};
$$

5
a direct computation proves that

\[
M^T A \infty M = \begin{pmatrix}
 a^1 - b^1 & 0 & \cdots & 0 \\
 0 & 0 & \cdots & 0 \\
 \cdots & \cdots & \cdots & \cdots \\
 0 & 0 & \cdots & a^1 - b^1
\end{pmatrix}.
\]

Hence, \(Q \infty \) is projectively equivalent to the quadric of rank \(r - 1 \) with equation

\[
(x_1^0)^2 + (x_2^0)^2 + \cdots + (x_{r-1}^0)^2 = 0.
\]

For \(r \) odd we see that in both cases \(Q \infty \) is either

- a cone with vertex \(\text{Rad}(Q \infty) \simeq \text{PG}(r - 2, q) \) and basis a hyperbolic quadric \(Q^+(r - 2, q) \) if \(q \equiv 1 \pmod{4} \) or \(r \equiv 1 \pmod{4} \), or

- a cone with vertex \(\text{Rad}(Q \infty) \simeq \text{PG}(r - 2, q) \) and basis an elliptic quadric \(Q^-(r - 2, q) \) if \(q \equiv 3 \pmod{4} \) and \(r \equiv 3 \pmod{4} \).

For \(r \) even, \(Q \infty \) is a cone with vertex \(\text{Rad}(Q \infty) \simeq \text{PG}(r - 2, q) \) and basis a parabolic quadric \(Q(r - 2, q) \).

We now move to investigate the quadric \(Q \). Clearly, its rank is either \(r - 1 \) or \(r \). Observe that

- \(Q \) has rank \(r - 1 \) if, and only if, there exist a linear function \(f : \text{GF}(q) \to \text{GF}(q) \) such that for all \(i = 1, \ldots, r - 1 \) we have \(m_i^1 = f(m_i^0) \); also, the value of \(d_1 \) turns out to be uniquely determined. Thus, the number of distinct possibilities for the parameters is exactly \(q^r \).

Write now \(\Pi \infty = \Sigma \oplus \text{Rad}(Q \infty) \). As \(\Sigma \) is disjoint from the radical of the quadratic form inducing \(Q \infty \), we have that \(\Sigma \cap Q \infty \) is a nondegenerate quadric (either hyperbolic, elliptic or parabolic according to the various conditions). Since \(Q \) has the same rank as \(Q \infty \), we have \(\dim \text{Rad}(Q) = \dim \text{Rad}(Q \infty) + 1 \). Observe that \(\text{Rad}(Q) \cap \Pi \infty \leq \text{Rad}(Q \infty) \). Thus, \(\text{Rad}(Q) \cap \Sigma = \{0\} \) and \(\Sigma \) is also a direct complement of \(\text{Rad}(Q) \). It follows that \(Q \) is cone of vertex a \(\text{PG}(r - 1, q) \) and basis a quadric of the same kind as the basis of \(Q \infty \).

- \(Q \) has rank \(r \) in the remaining \(q^{2r} - q^r \) possibilities. Here \(Q \) is a cone of vertex a \(\text{PG}(r - 2, q) \) and basis a parabolic quadric \(Q(r - 1, q) \) for \(r \) odd or \(Q \) is a cone of vertex a \(\text{PG}(r - 2, q) \) and basis a hyperbolic quadric \(Q^+(r - 1, q) \) or an elliptic quadric \(Q^-(r - 1, q) \) for \(r \) even.

We can now determine the complete list of sizes for \(r \) odd.
\[
|Q_{\infty}| = \frac{q^{2r-3} - 1}{q - 1} \pm q^{(3r-5)/2};
\]

- in case \(\text{rank}(Q) = r - 1 \), then
 \[
 |Q| = \frac{q^{2r-2} - 1}{q - 1} \pm q^{(r-1)/2};
 \]

- in case \(\text{rank}(Q) = r \),
 \[
 |Q| = \frac{q^{2r-2} - 1}{q - 1}
 \]

In particular, the possible values for \(|Q| - |Q_{\infty}| \) are
\[
q^{2r-3} + q^{3(r-1)/2} - q^{(3r-5)/2}, q^{2r-3} - q^{(3r-5)/2}
\]
for \(q \equiv 1 \pmod{4} \) or \(r \equiv 1 \pmod{4} \) and
\[
q^{2r-3} - q^{3(r-1)/2} + q^{(3r-5)/2}, q^{2r-3} + q^{(3r-5)/2}
\]
for \(q \equiv 3 \pmod{4} \) and \(r \equiv 3 \pmod{4} \).

When \(r \) is even we get:

- \[
 |Q_{\infty}| = \frac{q^{2r-3} - 1}{q - 1};
 \]

- in case \(\text{rank}(Q) = r - 1 \), then
 \[
 |Q| = \frac{q^{2r-2} - 1}{q - 1};
 \]

- in case \(\text{rank}(Q) = r \),
 \[
 |Q| = \frac{q^{2r-2} - 1}{q - 1} \pm q^{(3r-4)/2}.
 \]

Thus, the possible list of cardinalities for \(|Q| - |Q_{\infty}| \) is
\[
q^{2r-3}, q^{2r-3} + q^{(3r-4)/2}, q^{2r-3} - q^{(3r-4)/2}.
\]

Now we are going to show that \(\mathcal{B}(a, b) \) is a minimal intersection set. First of all, we prove that for any \(P \in \mathcal{B}(a, b) \) there exists a subspace \(\Lambda_n(P) \cong \text{AG}(n, q^2) \),
\(1 \leq n \leq r - 1 \) through \(P \) such that \(|\mathcal{B}(a, b) \cap \Lambda_n(P)| \leq q^{2n-1} - q^{n-1} \). The
argument is by induction on n. Assume $n = 1$. Then, for any $P \in \mathcal{B}$ there exists at least one line ℓ through P such that $|\ell \cap \mathcal{B}| < q$, otherwise \mathcal{B} would contain more than q^{2r-1} points. Suppose now that the result holds for $n = 1, \ldots, r - 2$, take $P \in \mathcal{B}$ and suppose that any hyperplane π through P meets \mathcal{B} in at least q^{2r-3} points. By induction, there exists a subspace $\pi' := \Lambda_{r-2}(P) \simeq \text{AG}(r - 2, q^2)$ through P meeting \mathcal{B} in at most $q^{2r-5} - q^{r-3}$ points. By considering all hyperplanes containing π' we get $|\mathcal{B}| \geq (q^2 + 1)(q^{2r-3} - q^{2r-5} + q^{r-3}) + q^{2r-5} - q^{r-3} > q^{2r-1}$, a contradiction. Thus, through any N implies that \mathcal{B} meets at least one line ℓ. By induction, there exists a subspace σ for which ℓ is a minimal intersection set.

Corollary 3.1. For q odd and $4a^{q+1} + (b^q - b)^2 = 0$, the number of hyperplanes N_j meeting $\mathcal{B}(a, b)$ in exactly j points are as follows:

(a) for r odd,

$$N_{q^{2r-3} + q^{3(r-5)/2}} = q^{2r} - q^r, \quad N_{q^{2r-3}} = \frac{q^{2r} - 1}{q^2 - 1} - 1,$$

$$N_{q^{2r-3} - q^{3(r-1)/2} + q^{3(r-5)/2}} = q^r.$$

(b) for r even,

$$N_{q^{2r-3} - q^{3(r-4)/2}} = \frac{1}{2}(q^{2r} - q^r), \quad N_{q^{2r-3}} = q^r + \frac{q^{2r} - 1}{q^2 - 1} - 1,$$

$$N_{q^{2r-3} + q^{3(r-4)/2}} = \frac{1}{2}(q^{2r} - q^r).$$

Proof. Case (a) is a direct consequence of the arguments of Theorem 3.1. In Case (b), when r is even, we need to count how often \mathcal{Q} turns out to be elliptic rather than hyperbolic. For any choice of the parameters m_1, \ldots, m_{r-1}, d there is exactly one quadric \mathcal{Q} to consider. As \mathcal{Q}_∞ is always a parabolic quadric, we can assume it to be fixed. Denote by $\sigma^0, \sigma^+, \sigma^-$ respectively the number of quadrics \mathcal{Q} which are parabolic, elliptic or hyperbolic. Clearly σ_0 corresponds to the case in which $\text{rank}(\mathcal{Q}) = \text{rank}(\mathcal{Q}_\infty)$. We have

$$\sigma^+ + \sigma^0 + \sigma^- = q^{2r}, \quad \sigma^0 = q^r.$$

Each point of $\mathcal{B}(a, b)$ lies on $\frac{q^{2r-2}}{q^2 - 1}$ hyperplanes; of these $\frac{q^{2r-2} - 1}{q^2 - 1}$ pass through P_∞ (and they must be discounted). Thus, we get

$$q^{2r-2}|\mathcal{B}| = q^{4r-3} = \sigma^0 q^{2r-3} + \sigma^+(q^{2r-3} + q^{3(r-3)/2}) + \sigma^-(q^{2r-3} - q^{3(r-4)/2}) = q^{2r-3}(\sigma^0 + \sigma^+ + \sigma^-) + q^{3(r-4)/2}(\sigma^+ - \sigma^-) = q^{4r-3} + (\sigma^+ - \sigma^-)q^{3(r-4)/2}.$$

Hence, $\sigma^+ = \sigma^- = \frac{1}{2}(q^{2r} - q^r)$. \qed
Remark 3.2. The quadric $Q_{a}(m, d)$ of Equation (4) shares its tangent hyperplane at P_{∞} with the Hermitian variety (1).

The problem of the intersection of the Hermitian variety H with irreducible quadrics Q having the same tangent plane at a common point $P \in Q \cap H$ has been considered for $r = 3$ in [3, 4].

4 A family of two-character multisets in $PG(3, q^2)$

In [2, Theorem 4.1] it is shown that for $r = 2$, q odd and $4a^{q+1} + (b^q - b)^2 \neq 0$ or $r = 2$, q even and $\text{Tr}(a^{q+1}/(b^q + b)^2) = 1$, the set $B(a, b)$ can be completed to a 2–character multiset $\overline{B}(a, b)$. An analogous result holds for $r = 3$. In this section we now prove Theorem 1.2.

Assume q odd and $4a^{q+1} + (b^q - b)^2 = 0$. From the proof of Proposition 1.1 the quadric Q_{∞} is the union of two distinct planes for $q \equiv 1 \pmod{4}$ or just a line for $q \equiv 3 \pmod{4}$. Therefore, if $q \equiv 1 \pmod{4}$ then either

$$N = q^3 + q^2 + q + 1 - (2q^2 + q + 1) = q^3 - q^2$$

or

$$N = 2q^3 + q^2 + q + 1 - (2q^2 + q + 1) = 2q^3 - q^2,$$

according as Q is either the join of a line to a conic or a pair of solids; hence, the list of intersection numbers of $B(a, b)$ with affine hyperplanes is $q^3 - q^2$, q^3 and $2q^3 - q^2$.

If $q \equiv 3 \pmod{4}$ we get either

$$N = q^3 + q^2 + q + 1 - q - 1 = q^3 + q^2,$$

or

$$N = q^2 + q + 1 - q - 1 = q^2,$$

according as Q is either the join of a line to a conic or a plane; therefore, in this case, the intersection numbers are q^2, q^3 and $q^3 + q^2$.

Now consider the multiset $\overline{B}(a, b)$ in $PG(3, q^2)$ arising from $B(a, b)$ by assigning multiplicity bigger than 1 to just the point P_{∞}.

More in detail the points of the 2–character multiset $\overline{B}(a, b)$ are exactly those of $B(a, b) \cup \{P_{\infty}\}$ where each affine point of $B(a, b)$ has multiplicity one, and P_{∞} has either multiplicity $q^3 - q^2$ for $q \equiv 1 \pmod{4}$, or multiplicity q^2 when $q \equiv 3 \pmod{4}$. Our theorem follows.

Remark 4.1. Let C be the linear code associated to $\overline{B}(a, b)$. In the first case C is a $[q^5 + q^3 - q^2, 4, q^5 - q^3]_{q^2}$ two-weight code, while in the second it has parameters $[q^5 + q^2, 4, q^5 - q^3]_{q^2}$. In either case the non–zero weights are q^5 and $q^3 - q^5$. 9
If \(A_i \) is the number of words in \(C \) of weight \(i \) then by Corollary 3.11 it follows that

\[
A_{q^i} = (q^6 - q^3 + 1)(q^2 - 1); \quad A_{q^i - q^i} = (q^4 + q^3 + q^2)(q^2 - 1).
\]

5 Intersection sets with multiplicity \(q^{2r-3} - q^{r-2} \)

We keep the notation of the previous sections and examine the remaining cases. Even though the results we obtain are a direct consequence of the construction of [1], we provide some further technical details so that this paper can be considered self-contained.

Proposition 5.1. Suppose \(r \) to be even and that either \(q \) is odd and \(4a^{q+1} + (b^q - b)^2 \) is a non–zero square in \(GF(q) \) or \(q \) is even and \(\text{Tr}(a^{q+1}/(b^q + b)^2) = 1 \). Then, \(B(a, b) \) is a set of \(q^{2r-1} \) points of \(AG(r, q^2) \) with characters

\[
q^{2r-3} - q^{r-2}, q^{2r-3}, q^{2r-3} - q^{r-2} + q^{r-1}.
\]

This is also a minimal intersection set with respect to hyperplanes.

Proof. We first discuss the nature of \(Q_\infty \). Observe that, under our assumptions, for \(q \) odd \((-1)^{r-1} \text{det} A_\infty \) is always a square; hence, \(Q_\infty \) is a hyperbolic quadric.

For \(q \) even choose \(\epsilon \in GF(q^2) \setminus GF(q) \) such that \(\epsilon^2 + \epsilon + \nu = 0 \), for some \(\nu \in GF(q) \setminus \{1\} \) with \(\text{Tr}(\nu) = 1 \). Then, \(\epsilon^{q+\nu} + \nu^2 + \nu = 0 \). Therefore, \((\epsilon^q + \epsilon)^2 + (\epsilon^q + \epsilon) = 0\), whence \(\epsilon^q + \epsilon + 1 = 0 \). With this choice of \(\epsilon \), the system given by (3) and (4) reads as

\[
(a^1 + b^1)(x^0)^2 + [(a^0 + a^1) + \nu(a^1 + b^1)](x^1)^2 + b^1 x^0 x^1_1 + m^1_1 x^0_1 + (m^1_0 + m^1_1)x^1_1 \\
+ \ldots + (a^1 + b^1)(x^0_{r-1})^2 + [(a^0 + a^1) + \nu(a^1 + b^1)](x^1_{r-1})^2 + b^1 x^0_{r-1} x^1_{r-1} \\
+ m^1_{r-1} x^0_{r-1} + (m^0_{r-1} + m^1_{r-1})x^1_{r-1} + d^1 = 0.
\]

The discussion of the (possibly degenerate) quadric \(Q \) of Equation (6) may be carried out in close analogy to what has been done before.

Observe however that, as also pointed out in the remark before [5, Theorem 22.2.1], some caution is needed when quadrics and their classifications are studied in even characteristic. Indeed let \(A_\infty \) be the formal matrix associated to the quadric \(Q_\infty \) of equation

\[
(a^1 + b^1)(x^0)^2 + [(a^0 + a^1) + \nu(a^1 + b^1)](x^1)^2 + b^1 x^0 x^1 + \ldots \\
+ (a^1 + b^1)(x^0_{r-1})^2 + [(a^0 + a^1) + \nu(a^1 + b^1)](x^1_{r-1})^2 + b^1 x^0_{r-1} x^1_{r-1} = 0.
\]

Its determinant is equal to

\[
\text{det } A_\infty = [4(a^1 + b^1)(a^0 + a^1 + \nu(a^1 + b^1)) + (b^1)^2]^{r-1}.
\]
In order to encompass the case \(q \) even, \(\det A_\infty \) needs to be regarded as a formal function in the polynomial ring \(GF(q)[z_0, z_1, z_2, z_3] \) evaluated in \((a^0, a^1, b^0, b^1) \). This gives \(\det A_\infty = b_1^2 \). Here \(b_1 \neq 0 \), by our assumption \(b^q \neq b \). From [5] Theorem 22.2.1 (i), the quadric \(Q_\infty \) must be non-degenerate. Furthermore, by [5] Theorem 22.2.1 (ii) and the successive Lemma 22.2.2 the nature of \(Q_\infty \) can be ascertained as follows. Let \(B \) the matrix obtained from \(A_\infty \) by omitting all the entries on its main diagonal, and define

\[
\alpha = \frac{\det B - (-1)^{r-1} \det A_\infty}{4 \det B}.
\]

A straightforward computation shows that

\[
\alpha = \frac{(b^1)^{2(r-1)} + (4(a^1 + b^1)(a^0 + a^1 + \nu(a^1 + b^1)) + (b^1)^2)^{r-1}}{4(b^1)^2(r-1)}.
\]

Regard \(\alpha \) also as a function in the polynomial ring \(GF(q)[z_0, z_1, z_2, z_3] \) evaluated in \((a^0, a^1, b^0, b^1) \). Hence we get

\[
\alpha = \frac{(a^1 + b^1)(a^0 + a^1 + \nu(a^1 + b^1))}{(b^1)^2}.
\]

Arguing as in [1] p. 439, we see that \(\text{Tr}_{GF(q)|GF(2)}(\alpha) = 0 \) and, hence, \(Q_\infty \) is hyperbolic also for \(q \) even.

Now, in both cases \(q \) odd or \(q \) even we investigate the possible nature of \(Q \). Suppose \(Q \) to be non-singular; then

\[
N = \frac{(q^{r-1} + 1)(q^{r-1} - 1)}{q - 1} - \frac{(q^{r-1} + 1)(q^{r-2} - 1)}{q - 1} = q^{r-2}(q^{r-1} + 1).
\]

If \(Q \) is singular, then

\[
N = \frac{q(q^{r-1} + 1)(q^{r-2} - 1)}{q - 1} - \frac{(q^{r-1} + 1)(q^{r-2} - 1)}{q - 1} + 1 = q^{r-2}(q^{r-1} + 1) - q^{r-1}.
\]

This gives the possible intersection numbers.

Finally, in order to show that \(B(a, b) \) is a minimal \((q^{2r-3} - q^{r-2}) \)-fold blocking set we can use the same techniques as those adopted to prove that \(B(a, b) \) is a minimal blocking set in Section 3 for \(q \) odd and \(4a^q + 1 + (b^q - b)^2 = 0 \)

\[\square \]

References

Authors’ addresses:

Angela Aguglia
Department of Mechanics, Mathematics and Management
Politecnico di Bari
Via Orabona 4, I-70126 Bari (Italy)
angela.aguglia@poliba.it

Luca Giuzzi
D.I.C.A.T.A.M.
Section of Mathematics
Università di Brescia
Via Branze 53, I-25123, Brescia (Italy)
luca.giuzzi@unibs.it