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The idea

We propose a Mixture Model to cluster rating data derived
from Likert scales.

• Likert scales are commonly used in questionnaires to measure
respondents’ opinions.

•One of the most notable models for analyzing such data is the
CUB model.

The CUB Framework

Assumption: the underlying Decision
Process leading to respondents’ final ratings
is characterized by two latent components:

Feeling: Reasoned and logical thinking, the
set of emotions that individuals have with re-
gard to the latent trait being evaluated.

•Modeled by a shifted Binomial:

PB(ξ) =

(
m− 1

r − 1

)
(1− ξ)r−1ξm−r

•Measured by the feeling parameter 1− ξ.

Uncertainty: Indecision inherently present in any human choice.

•Modeled by a discrete Uniform:

PU(m) =
1

m
•Measured by the uncertainty parameter 1− π.

The final distribution is obtained as a Combination of Uniform
and shifted Binomial [D’Elia and Piccolo, 2005], the CUB
model:

P (R = r | ξ, π) = πPB(ξ) + (1− π)PU(m)

with π ∈ (0, 1] and ξ ∈ [0, 1].

The MLC-CUB model

To cluster multivariate rating data R with J independently and
identically distributed ordinal variables, we propose the Multi-
variate Latent Class CUB (MLC-CUB) model:

P (R | π, ξ,ω) =
K∑
k=1

ωk

J∏
j=1

[
πjkPB(ξjk) + (1− πjk)PU(mj)

]
,

with K being the number of clusters, π = (πjk), ξ = (ξjk),
ω = (ωk) for k = 1, . . . , K and j = 1, . . . , J .

•Estimation via EM algorithm.
•Uncertainty and feeling vary both across clusters and variables.
• It is possible to manage different numbers of categories.

Simulation study

The performances of our model have been compared with:

•Ordinal Latent Block Model (OLBM) [Corneli et al., 2020]
•Gaussian Mixture Model (GMM)
•Multinomial Mixture Model (MMM)

To study the effect of sample size, 100 data sets with sample
size n ∈ {100, 500, 1000} have been simulated from an MLC-CUB
model with the following parameters:

k = 1 k = 2

ω 0.25 0.75
j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

π 0.80 0.90 0.60 0.60 0.80 0.70
ξ 0.30 0.20 0.10 0.70 0.80 0.70

Table 1: Parameters set
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Figure 1: ARI for each compared
model. The horizontal line represents
the optimal ARI.
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Figure 2: Effect of sample size on the
estimates of the parameter ωk.
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Figure 3: Effect of sample size on the estimates of the parameter πjk.
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Figure 4: Effect of sample size on the estimates of the parameter ξjk.

Case study
Evaluation of the University Orientation Service

Data: univer data set (publicly available in the R package CUB).
Collection: sample survey.
Aim: evaluating the students’ satisfaction about the Orienta-
tion services of the University of Naples Federico II, Italy.
Variables: five (J = 5) different aspects were evaluated:

1 Acquired information
2 Willingness of the staff
3 Opening hours
4 Competence of the staff
5 Global satisfaction

Total observations: 2179

Interpretation

•Three main clusters (clusters 3, 4, 5) characterized by low
uncertainty and generally high levels of satisfaction.

•Two minor clusters:
• Cluster 1 includes students who are not satisfied at all.
• Cluster 2 includes students with a medium-low level of

satisfaction.
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Identifiability

The model is not identifiable due to the Uniform component.
Preliminary study of identifiability: simulation of 100 data
sets with sample size n = 1000 from two MLC-CUB models char-
acterized by:

• low values of the parameters πjk (high uncertainty);
• high values of the parameters πjk (low uncertainty).
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Figure 5: Ientifiability problem – Distribution of ARI when the values of
πjk are low.
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Figure 6: No Identifiability problem – Distribution of ARI when the
values of πjk are high.

How to detect identifiability problems? We propose to:

• bootstrap the data;
• fit an MLC-CUB model on each bootstrapped data set;
• compute the ARI between the original partition and the one

obtained with bootstrapped data;
• look at the distribution of ARI.

Future works

In the future, we plan to:

• extend the model to a multilevel setting;
• use other models within the CUB framework;
• relax the independence assumption through copulas.

References

M. Corneli, C. Bouveyron, and P. Latouche. Co-clustering of ordinal data
via latent continuous random variables and not missing at random entries.
Journal of Computational and Graphical Statistics, 29(4):771–785, 2020.

A. D’Elia and D. Piccolo. A mixture model for preferences data analysis.
Computational Statistics & Data Analysis, 49(3):917–934, 2005.


	References

