

UNIVERSITY **OF BRESCIA**

The idea

We propose a **Mixture Model** to cluster **rating data** derived from Likert scales.

- Likert scales are commonly used in questionnaires to measure respondents' opinions.
- One of the most notable models for analyzing such data is the CUB model.

The CUB Framework

Assumption: the underlying Decision **Process** leading to respondents' final ratings is characterized by two latent components:

Feeling: Reasoned and logical thinking, the set of emotions that individuals have with regard to the latent trait being evaluated.

• Modeled by a shifted Binomial:

$$P_B(\xi) = \binom{m-1}{r-1} (1-\xi)^{r-1} \xi^{m-r}$$

• Measured by the feeling parameter $1 - \xi$.

Uncertainty: Indecision inherently present in any human choice.

• Modeled by a discrete Uniform:

$$P_U(m) = \frac{1}{m}$$

• Measured by the uncertainty parameter $1 - \pi$.

The final distribution is obtained as a **Combination of Uniform** and shifted Binomial [D'Elia and Piccolo, 2005], the CUB model:

$$P(R = r \mid \xi, \pi) = \pi P_B(\xi) + (1 - \pi) P_U(m)$$

with $\pi \in (0, 1]$ and $\xi \in [0, 1]$.

The MLC-CUB model

To cluster multivariate rating data \boldsymbol{R} with J independently and identically distributed ordinal variables, we propose the Multivariate Latent Class CUB (MLC-CUB) model:

$$P(\boldsymbol{R} \mid \boldsymbol{\pi}, \boldsymbol{\xi}, \boldsymbol{\omega}) = \sum_{k=1}^{K} \omega_k \prod_{j=1}^{J} \Big[\pi_{jk} P_B(\xi_{jk}) + (1 - \pi_{jk}) P_U(m_j) \Big],$$

with K being the number of clusters, $\boldsymbol{\pi} = (\pi_{jk}), \boldsymbol{\xi} = (\xi_{jk}),$ $\boldsymbol{\omega} = (\omega_k)$ for $k = 1, \ldots, K$ and $j = 1, \ldots, J$.

- Estimation via **EM algorithm**.
- Uncertainty and feeling vary both across clusters and variables.
- It is possible to manage different numbers of categories.

A Mixture of Multivariate CUB Models for Clustering Rating Data

Matteo Ventura¹, Julien Jacques², Paola Zuccolotto¹

¹ Department of Economics and Management, University of Brescia, Italy ² ERIC Laboratory, University Lumière Lyon 2, France

	Simulation s
The performances of our model have been compared	with:
• Ordinal Latent Block Model (OLBM) [Corneli et al.	, 2020]
Gaussian Mixture Model (GMM)Multinomial Mixture Model (MMM)	0.75
To study the effect of sample size , 100 data sets v	0.50 vith sample
size $n \in \{100, 500, 1000\}$ have been simulated from an model with the following parameters:	MLC-CUB 0.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00
$\frac{1}{\xi} 0.30 0.20 0.10 0.70 0.80 0.70$	Figu
Table 1: Parameters set	1.00
	0.75
9 0.4 0.50	8 0.50 ·
	0.25
0.01 MLC-CUB OLBM MMM GMM Method 0.00- 0.00- 0.00- 0.1	ω ₂ 0.00
sample size ⊨ 100 ⊨ 50 Figure 1: ARI for each compared	0 🛱 1000
model. The horizontal line represents Figure 2: Effect of samp	le size on the Figu
the optimal ARI. estimates of the paramet	ter ω_k .

Case study Evaluation of the University Orientation Service

Data : univer data set (publicly available in the R package CUB). Collection : sample survey.	1.00
Aim: evaluating the students' satisfaction about the Orienta- tion services of the University of Naples Federico II, Italy. Variables: five $(J = 5)$ different aspects were evaluated:	0.7
 Acquired information Willingness of the staff Opening hours Competence of the staff Global satisfaction 	Feeling (1 – ξ)
 Total observations: 2179 Interpretation Three main clusters (clusters 3, 4, 5) characterized by low 	0.2

- uncertainty and generally high levels of satisfaction.
- Two minor clusters:
- Cluster 1 includes students who are not satisfied at all.
- Cluster 2 includes students with a medium-low level of satisfaction.

values of π_{ik} are high.

How to detect identifiability problems? We propose to:

- bootstrap the data;

M. Corneli, C. Bouveyron, and P. Latouche. Co-clustering of ordinal data via latent continuous random variables and not missing at random entries. Journal of Computational and Graphical Statistics, 29(4):771–785, 2020. A. D'Elia and D. Piccolo. A mixture model for preferences data analysis. Computational Statistics & Data Analysis, 49(3):917–934, 2005.

Preliminary study of identifiability: simulation of 100 data

Figure 5: Ientifiability problem – Distribution of ARI when the values of

Figure 6: No Identifiability problem – Distribution of ARI when the

• fit an MLC-CUB model on each bootstrapped data set;

• compute the ARI between the original partition and the one obtained with bootstrapped data;

• look at the distribution of ARI.

Future works

In the future, we plan to:

• extend the model to a multilevel setting;

• use other models within the CUB framework;

• relax the independence assumption through copulas.

References