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Abstract 
Beck et al. [2019. Integration of energy aspects into the economic lot scheduling problem. 
International Journal of Production Economics 209, 399-410] extended the Economic Lot 
Scheduling Problem (ELSP) to account for energy costs as well as tool change and 
inventory holding costs. In particular, the authors considered the cost arising from the 
product-dependent energy usage of the production facility during machine startups and 
shutdowns as well as during tool change, idle, and production phases. This note extends 
the model proposed by Beck et al. (2019) in two ways: it 1) considers variable production 
rates and 2) includes power-demand costs, i.e. the energy cost component that depends on 
the maximum power demand required, thus taking account of a more realistic 
representation of energy costs in the model.  
The resulting problem is solved using the common cycle policy, and a numerical 
experiment is performed to investigate the behaviour of the proposed model. The 
experiment illustrates that the modified model leads to significant cost savings as compared 
to the traditional ELSP or the model proposed by Beck et al. (2019), which illustrates the 
potential usefulness of the proposed approach in practice for reducing energy costs. 
 
Keywords. ELSP, Economic Lot Scheduling Problem, Energy Scheduling, Variable 
Production Rates 
 
1. Introduction 
The economic rebound after the COVID-19 pandemic and the conflict in Ukraine has led 
to a surge in energy prices, thus forcing most companies to look at viable ways for reducing 
energy costs.  
Companies have two main approaches to improve energy efficiency: 

1.  Improve equipment, e.g. by upgrading facilities or by replacing old machines by 
more energy-efficient ones; 

2. Use existing equipment in a more energy-efficient way.  

Especially the second objective has attracted some attention in the industrial engineering 
literature recently, as it is usually not associated with high investment cost (see Biel and 
Glock, 2016, for an overview). 



Beck et al. (2019) propose an extension of the classical Economic Lot Scheduling Problem 
(ELSP) by considering different machine operating states associated with different energy 
requirements. The machine operating states considered in their paper are: I) startup, II) tool 
change, III) processing, IV) idle, V) shutdown, and VI) off. The authors showed that taking 
account of machine operating states and the consequent energy requirements in the ELSP 
influences the scheduling of products on the machine and the resulting total costs. Hence, 
including energy costs explicitly in the ELSP may both lower total production costs and 
improve the energy efficiency of the company’s production processes. 
In developing their model, Beck et al. (2019) did not take into account the fact that 
production rates can often be varied in practice, and that they have frequently been 
considered as a main determinant of the energy demand during the actual processing of a 
product (e.g., Gutowski et al., 2006). Moreover, Beck and Glock (2020) publish a literature 
review about the evolution of the ELSP over time. In particular, after the examination of 
242 papers, they underline a strong focus of the research about the development of solution 
methodologies, but not about aspects such as energy cost and sustainability. Böning et al. 
(2017) present a memetic algorithm with local search to generate a production plan by 
considering energy costs that result from the power peak. They show that energy costs 
affect the optimal solution. Compared to the present work, the size of the jobs is given in 
their model. Mokhtari and Hasani (2017) define a multi-objective optimization model for 
a flexible job-shop production system by considering production and maintenance 
operations together with energy consumption and three objectives (total completion time, 
total availability of the system, and energy consumption) in the objective function. They 
determine both the best sequence of operations on the machines as well as a suitable 
schedule for maintenance operations that minimizes energy consumption. Masmoudi et al. 
(2019) propose two linear models that minimize the energy cost for a job-shop scheduling 
problem considering the power peak limitation. These models do not consider lot sizing as 
in the model proposed in this research, and again assume a given job size. Their results 
show that the power limit changes the scheduling of the different jobs. Park and Ham 
(2022) propose an energy-efficient flexible job shop scheduling problem considering time-
of-use pricing and scheduled downtime. They develop an integer linear programming 
model and a constrained model where it is possible to shift production to off-peak periods 
to minimize energy cost. As in the previous cases, the size of the jobs is given in this paper. 
Ferretti et al. (2022) propose an analytical method based on queueing theory useful to 
define the contractual power level and calculate the related service level in a productive 
system where it is not possible to obtain field data (green field design). With this work they 
underline the importance to consider the power requirements in the definition of the energy 
production systems contracts.  
In the inventory control literature, research on variable production rates has mainly focused 
on single-item inventory models, with examples being the works of Khouja (1997), Glock 
(2010, 2011) and Zanoni et al. (2014). In the context of the ELSP, prior research has shown 
that lowering production rates may reduce inventory carrying cost, and it has therefore 
mainly concentrated on identifying those products for which the production rate should be 
reduced (e.g., Silver, 1990; Moon, 1991; Eynan, 2003). The influence of variable 
production rates on energy consumption has not yet been discussed in the context of the 
ELSP. 
A second aspect that Beck et al. (2019) did not consider is that energy costs are usually not 
only linked to the energy consumed in kWh in practice. To correctly account for the cost 
of energy, it is necessary to add to the cost per kWh the peak power demanded during a 
given period, i.e., the cost per peak power demand in kW, such that a price premium has to 
be paid the higher the peak power demand, regardless of how much energy is consumed in 



total during the period (e.g., Artigues at al 2013). Utility companies offer such pricing 
schemes to incentivize consumers to avoid peaks in their energy consumption, which helps 
to avoid periods of high energy demand on the grid level. 
This note extends the work of Beck et al. (2019) to take into account variable production 
rates and a peak power cost component, and it investigates how varying the production 
rates and the power-demand cost influence both energy demand and the total cost. The 
paper is organized as follows: Section 2 defines the problem to be solved and its main 
assumptions, while Section 3 presents the model formulation and solution procedure. 
Section 4 offers a numerical example along with numerical results and sensitivity analyses. 
Finally, Section 5 covers conclusions and suggestions for discussion. 
 
2. Problem definition, notation and assumptions 
This research studies the Economic Lot Scheduling Problem (ELSP) where multiple items 
are produced on a single production facility. The paper assumes that the energy demand 
during the processing of items is a function of the production rate, and that the production 
rate can be varied within given limits. 
In developing the proposed model, the following notation is used: 
Parameters 
i item index 
n number of items produced on the facility 
ri demand rate of item i (units/h) 
Ai setup cost of item i ($/setup) 
si setup time of item i (h/setup) 
hi unit inventory holding cost of item i ($/h/unit) 
vi fixed energy component to process one unit of item i (kWh/unit) 
fi Multiplication factor representing the relation of the power required during the tool 

change of the machine for product i to the idle power of the machine (-) 
e unit energy-based cost ($/kWh) 
ep unit power demand-based cost that has to be paid for the maximum power demand 

($/kW)/h: this corresponds to the ratio between the charge for the maximum rate at 
which the electricity is consumed during a specified period, and the length of the 
reference period (i.e. given a monthly charge of 20 $/kW and considering 160 
productive hours in the month, ep = 20/160 = 0.125($/kW)/h. 

g multiplication factor for the power required during the shutdown and startup of the 
production line (-), with g>1; 

W idle power demand of the machine (kW) 
lsdsu sum of the durations of the shutdown and startup phases (h) 
PL power-demand limit (kW) 
pimin  minimum production rate (units/h), with pimin ≥ ri 
pimax  maximum production rate (units/h) 
Decision variables: 
pi production rate (units/h) 
T cycle time (h) 
Definitions: 
SC total setup cost ($/h) 
HC total inventory holding cost ($/h) 
EC total energy-based cost ($/h) 
PC total power demand-based cost ($/h) 
TC total cost ($/h) 
x  non-productive time interval, that can be assigned as idle or off state 



LBE break-even duration of the non-productive time interval to be assigned as idle state 
z binary variable that is equal to 1 if the non-productive time is assigned to the idle 

state or equal to 0 if it is assigned to the off state 
The objective of the proposed model is to minimize the total costs of producing a given set 
of items in a cyclic fashion, considering controllable production rates and energy costs. In 
addition to what has already been stated, this paper makes the following assumptions in 
developing the proposed model: 

• Each product has a deterministic, known and constant demand rate. 
• Setup costs and setup times do not depend on the production sequence. 
• The production facility’s capacity is sufficient to satisfy the entire demand over the 

planning horizon. 
• Energy consumed during processing is a function of the production rate that can be 

adjusted for each item only once before the start of the production process. This has 
often been referred to as the “rigid case” in the literature; (see, e.g., Glock, 2011). 

• During idle phases, the machine can be switched-off or be kept in the idle mode. 

In order to decide on whether the machine should be switched off or be kept in the idle 
mode, we extend the concept of break-even duration (LBE) introduced by Mouzon et al. 
(2007). In particular, the machine should be shut down and switched on between processing 
two successive lots if the energy required to shut the machine down and start it up again is 
lower than the energy required to keep the machine in the idle state. Since in this study, we 
consider the effect of power on the total cost, it is necessary to introduce the power cost in 
the definition of the LBE. Therefore, the machine should be shut down and switched on if 
the energy costs and the power costs required to shut the machine down and start it up again 
is lower than the energy costs and the power costs required to keep the machine in the idle 
state. Assuming that the maximum production power is max

!
{𝑊 + 𝜐!𝑝!} and the power 

required during start-up and shutdown of the machine equals gW, the break-even duration 
LBE can be calculated by equating the energy costs and power costs of the idle state with 
the energy costs and power cost of switch-on/off state if max

!
{𝑊 + 𝜐!𝑝!} < 𝑔 ∙ 𝑊, 

otherwise LBE is calculated only considering the energy costs. The power cost is paid only 
for the maximum value between Productive and Switched-off state. In equation (1) we 
explicit the relation in case of max

!
{𝑊 + 𝜐!𝑝!} < 𝑔 ∙ 𝑊. 

𝐿𝐵𝐸 ∙ 𝑊 ∙ 𝑒 = 𝑙"#"$ ∙ 𝑔 ∙ 𝑊 ∙ 𝑒 + (𝑔 ∙ 𝑊 −max
!
{𝑊 + 𝜐!𝑝!}) ∙ 𝑒𝑝 ∙ 𝑇(1) 

Following, we integrate the formulation of the LBE presented by Beck et al. (2019) adding 
the power demand cost component.  

𝐿𝐵𝐸

= 7
𝑙"#"$ ∙ 𝑔																												 max

!
{𝑊 + 𝜐!𝑝!} 	≥ 𝑔 ∙ 𝑊

𝑙"#"$ ∙ 𝑔 +
(𝑔 ∙ 𝑊 −max

!
{𝑊 + 𝜐!𝑝!}) ∙ 𝑒𝑝 ∙ 𝑇

𝑒 ∙ 𝑊 											max
!
{𝑊 + 𝜐!𝑝!} < 𝑔 ∙ 𝑊

								(2) 



For each machine, we consider the following operating states associated with a certain 
power demand (note that some of the states discussed in Beck et al. (2019) have been 
aggregated in the list below): 

• Idle state: the machine is turned on, but it does not produce; the energy consumed 
during this state is denoted idle energy; 

• Productive state: the machine produces; the energy consumed during this state is 
denoted processing energy; 

• Switched-off state: the machine is turned off (thus, its energy consumption is zero); 
at the end of a switch-off period, the machine must be turned on, which consumes 
energy referred to as start-up energy. 

This work considers the common cycle policy for solving the ELSP (presented by 
Hanssmann in 1962), where the objective is to produce a set of items in a cyclic fashion, 
minimizing the total cost in only one cycle (common). Figure 1 illustrates the inventory 
levels of three items in an example. In the lower part of the figure, the cycle time 𝑇 is split 
up into its components for the example with three products, namely setup times s1, s2 and 
s3, processing times t1, t2 and t3, and idle time tidle. During tidle, the facility can either be kept 
in an idle state, or it may be switched off and switched on again as soon as the next cycle 
starts. The decision whether to keep the facility in the idle state during tidle is made based 
on its impact on the energy- and power demand-based costs. 
Moreover, we introduce a limit for the power demand. Artigues et al. (2013) stated that the 
electricity bill is based on the cost of the energy consumed and on penalties for power 
overrun, in reference to a subscribed maximum power demand. In the following, the effects 
of introducing a power-demand limit (PL) are studied. The value of PL influences the 
production rates, as for each value of pi, a related power-demand is computed. 
In the following chapter we present in detail the mathematical model and the solution 
procedure. 

 
Figure 1. Inventory levels for three items scheduled according to the Common Cycle 

policy. 

 

3. Model formulation and solution procedure 
This section extends the Common Cycle model for solving the ELSP proposed in Beck et 
al. (2019) to explicitly take account of electricity costs depending on the items’ production 
rates and the power peak cost and constraint. 



The classical ELSP considers two types of costs, namely setup and inventory carrying 
costs: 

𝑆𝐶 = ∑ %!
&!

 (3) 

𝐻𝐶 = ∑ '!
(
𝑟! @1 −

)!
*!
B 𝑇!  (4) 

In addition to setup and inventory carrying costs, energy-based costs are considered in the 
work at hand. Eq. (5) takes account of four energy-related costs, namely processing, setup, 
idle and switched-off/on energy cost: 
 𝐸𝐶 = ∑ (𝑊 + 𝑣!𝑝!)

)!
*!
∙ 𝑒! + ∑ +!"!

&
∙ 𝑊 ∙ 𝑒! + 𝑧 ,∙.∙/

&
+ (1 − 𝑧) 0∙1

"#"$∙.∙/
&

   (5) 

where 𝑧 = E1			𝑖𝑓	x	 < 	𝐿𝐵𝐸								
0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒											

 
The first term (processing energy) is adapted from Gutowski et al. (2006) and Li and Kara 
(2011). The authors decompose processing energy-based cost into two components: 

• when the machine is idle, a fixed amount of power is required by the auxiliary 
components to ensure that the machine is ready for operation when required. The 
power demand during this phase does not depend on the production rate, and it is 
therefore represented by a constant coefficient W in Eq. (5); 

• when the machine produces, the power demand is a function of the production rate, 
and it is represented by the term 𝑊 + 𝜐!𝑝! . in Eq. (5). 

During setups, the machine has a fixed, item-specific power demand that is independent of 
the production rate. The energy costs from setups are computed according to the second 
term in Eq. (5). 
The third and fourth terms of Eq. (5) finally define the energy costs resulting from idle and 
switched-off/on states. The duration of these states is x units of time. If the machine is in 
the idle mode (i.e., if x < g·lsdsu), it requires W power-demand level during this time span. 
In contrast, if the machine is switched off and switched on again, it consumes energy during 
these operations, which takes lsdsu units of time, and the power-demand level during this 
time span would be g·W. 
Finally, a cost component depending on the maximum power demand reached during the 
cycle is considered (see, e.g., Artigues et al., 2013): 
𝑃𝐶 = 𝑚𝑎𝑥 Emax

!
{𝑊 + 𝜐!𝑝!} ; (1 − 𝑧) ∙ 𝑔 ∙ 𝑊S 𝑒𝑝          (6) 

 
 

The total cost can now be expressed as the sum of the cost components in Eqs. (3), (4) (5) 
and (6): 

𝑇𝐶 = 𝑆𝐶 + 𝐻𝐶 + 𝐸𝐶 + 𝑃𝐶 (7) 
The decision variables are the cycle time T and production rates pi, 𝑖 = {1, … , 𝑛}. Eq. (7) 
differs from the objective function proposed in Beck et al. (2019) by considering the power 
cost PC and by treating pi as a decision variable. 
To further highlight the novelty of the present work, Table 1 summarizes the different cost 
components of the objective functions of the Traditional model (Bomberger, 1996), the 
Energy model (Beck et al., 2019) and the Power model (present study). 
Table 1. Cost components of the objective functions of the Traditional model, Energy 
model and Power model. 

Model Traditional costs 



Setup 
costs  
SC 

Inventory 
carrying Costs 

HC 

Energy 
costs  
EC 

Power 
costs 
PC 

Traditional 
(Bomberger, 

1996) 
X X   

Energy 
 (Beck et al., 

2019) 
X 

X 
X  

Power  
(present study) X X X X 

 
The aim of the proposed “Power” model is to minimize the TC and find the optimal values 
of T, pi and z. 

𝑚𝑖𝑛	𝑇𝐶(𝑇, 𝑝! , 𝑧)  (8) 
Subject to: 

𝑟! − 𝑝! < 0											∀	𝑖 = 1,… , 𝑛														(9) 
𝑝! ≤

234.
5!

											∀	𝑖 = 1,… , 𝑛 (11) 

𝑥 = 𝑇 − @∑ 𝑠!! + ∑ )!
*!! ∙ 𝑇B ≥ 0  (12) 

In constraints (11), we consider that the power demand during production has to be less 
than the power limit PL (it should be noted that the power limit PL must be greater than the 
power used during the switch-on phase gW). Constraint (12) defines that the non-productive 
time interval x, that can be assigned as idle or off state, has to be greater than or equal to 
zero; this constraint also guarantees that the production facility’s capacity is sufficient to 
satisfy the demand. 
In the solution of the non-linear problem, we determine the energy costs resulting from idle 
or switched-off/on states and the cost related to the power demand based on the break-even 
duration. In order to determine if the machine is in the idle state or in switched-off/on states, 
we have to calculate x. 
As shown in Figure 2, we specify that if: 

• x > LBE, then the machine should be shut down and switched on, so the additional 

energy cost will be 0∙1
"#"$∙.∙/
&

, while the cost related to the power demand will be 

corrected to 𝑚𝑎𝑥 Emax
!
{𝑊 + 𝜐! ∙ 𝑝!∗} ; 𝑔 ∙ 𝑊S 𝑒𝑝 − max!

{𝑊 + 𝜐! ∙ 𝑝!∗} 𝑒𝑝. 

• x <= LBE, then the machine is in idle state, the additional energy cost will be ,∙.∙/
&

, 
while the cost related to the power demand does not change because the power 
demand during the idle mode is less than the power demand during production. 



 
Figure 2. Machine operating states and associated power demands. 

As reported in Khouja (1997), no proof of convexity of the objective function where pi are 
variables in a specific range can be provided. So, it is not possible to determine a closed 
form that permit to obtain the optimal value of T and pi. For this reason, we solve the non-
linear optimization problem presented above by using Matlab (R2022b). 
4. Numerical analysis 
This section develops a numerical analysis to investigate the influence of variable 
production rates and the peak power demand penalty on the ELSP using the dataset 
introduced by Bomberger (1966) and Beck et al. (2019).  
4.1 Base case solution 
Table 2 introduces the dataset of Bomberger (1966) that was extended to take account of 
the energy consumption coefficient v and the multiplication factor f (Beck et al., 2019).  
Table 2. Dataset used for numerical experimentation (Bomberger, 1966; Beck et al., 
2019) 

Pro
duct 
(i). 

Demand  
rate 

Unit holding 
cost 

Setup  
cost 

Setup 
time 

Multiplicato
r factor 

Energy cons. 
coeff. 

ri hi Ai si fi vi 
items/h $/(item x h) $/setup h/setup - kWh/item 

1 50 3.39E-07 15 1 1.25 0.0050 
2 50 9.24E-06 20 1 1.5 0.0400 
3 100 6.64E-06 30 2 2.5 0.0100 
4 200 5.21E-06 10 1 1.25 0.0250 
5 10 1.45E-04 110 4 3 0.0650 
6 10 1.39E-05 50 2 2.5 0.0300 
7 3 7.81E-05 310 8 1.5 0.0200 
8 42.5 3.07E-04 130 4 2.75 0.0500 
9 42.5 4.69E-05 200 6 1.75 0.0700 
10 50 2.0z8E-06 5 1 2 0.0150 

OFF

STARTUP
Wg

TOOL CHANGE
fW

PROCESSING
W+vipi

x

IDLE
W

x < LBE 

x > LBE 

SHUTDOWN    



 
Table 3 presents data related to energy-based and power demand-based cost components 
taken from the work of Beck et al. (2019). We introduce in this table a new data ep, unit 
power demand-based cost, not considered in the work of Beck et al. (2019). 
Table 3.  Energy data used for numerical experimentation (Beck et al., 2019). 

Idle power-demand W kW 50 
Unit energy-based cost e $/kWh 0.15 
Unit power demand-based cost  ep $/kW 0.1 
Multiplication factor for power during 
shutdown g - 4 

Shutdown time limit lSDSU h 2 
Power Limit PL kW 200 

 
The goal of this work is to introduce a new model that considers variable production rates 
and a peak power cost component in order to investigate how varying these components 
influences both energy demand and the total cost of production. In this section, we compare 
the behaviour of three different models: the Traditional model, i.e., the model presented by 
Bomberger (1966) that solves the ELSP using the Common Cycle method, the Energy 
model, i.e., the model presented by Beck et al. (2019) that solves the ELSP by considering 
the energy cost using the common cycle method, and the Power model, i.e., the model 
introduced in this work that solves the ELSP by considering the energy cost and the power 
cost using the common cycle method. In order to compare the different models in terms of 
the total cost, we calculate the energy cost and power cost for the Traditional model and 
the power cost for the Energy model. This is necessary to ensure that all models consider 
the same cost components in the comparison. To calculate optimal solutions, the different 
models were coded in Matlab R2022b (see Appendix A) and results were obtained on a 
computer equipped with an Intel Core i7 processor in less than 10 seconds for each instance. 
Table 4 presents the results for each cost component. 
 
Table 4. Results obtained for the optimal solutions of three models. 

 Traditional 
model 

(Bomberger, 
1966) 

Energy model 
(Beck et al., 

2018) 

Power model 
(present study) 

Total cost (TC) [$] 24.60 24.59 23.26 
Setup cost (SC) [$] 2.57 2.08 2.34 

Inventory holding cost (HC) 
[$] 2.57 3.18 2.99 

Traditional cost (SC + HC) 
[$] 5.15 5.26 5.33 

Energy-based cost (EC) [$] 10.46 10.33 10.39 
Power demand-based cost 

(PC) [$] 9.00 9.00 7.54 

Electricity cost (EC+PC) 
[$]  19.46 19.33 17.94 

 
The results show that the cost components that are traditionally considered in the ELSP 
(SC+HC) are lowest in the Traditional model, while EC is lowest in the Energy model. PC 



adopts its lowest value in the Power model. The solution obtained in the Power model leads 
to an increase of 0.73% in traditional cost compared to the Traditional model and to an 
increase of 0.67% in energy cost compared to the Energy model, while we have a reduction 
of the power cost of 5.38% in the Energy model. The total costs obtained in the Power 
model are the lowest, as expected. 
Figure 3 presents the power-demand profile for the three models. Comparing the 
Traditional model and the Energy model, we can see that the energy demand decreases 
(represented by the area under the lines of power-demand profile), while peak-power 
demand increases (higher value of power-demand profile). The Power model exhibits both 
lower energy demand and lower peak-power demand. In particular, the Traditional model 
schedule requires a maximum power-demand of 90 kW, the Energy model schedule 
requires a maximum power-demand of 90 kW, and the Power model schedule, according 
to the power limit fixed, requires a maximum power-demand of 75,44 kW (table 5). 
 
Table 5. Results obtained for the three models. 

 Traditional model 
(Bomberger, 1966) 

Energy model 
(Beck et al., 2018) 

Power model 
(present study) 

OptimalCycle 
time (T) [h]  342 422 376 

Product (i) 
Production 

Rate (pi) 
[items/h] 

Power 
[kW] 

Production 
Rate (pi)[ 
items/h] 

Power 
[kW] 

Optimal 
Production 
Rate (pi)[ 
items/h] 

Power 
[kW] 

1 3750 68.75 3750 68.75 3540 67.7 
2 1000 90 1000 90 452 68.08 
3 1187.5 61.875 1187.5 61.875 1808 68.08 
4 937.5 73.4375 937.5 73.4375 723 68.075 
5 250 66.25 250 66.25 278 68.07 
6 750 72.5 750 72.5 603 68.09 
7 300 56 300 56 904 68.08 
8 162.5 58.125 162.5 58.125 220 61 
9 250 67.5 250 67.5 258 68.06 

10 1875 78.125 1875 78.125 1696 75.44 
 
 
As shown in Figure 3, in the Power model, the change of the production rates, with respect 
to the Traditional model and Energy Model, permits minimizing the power demand and 
related costs. By considering this scenario data the switch-off/on state is avoided by all 
three models. 



 
Figure 1. Power-demand profiles for the three models. 

4.2 Sensitivity analysis 
Considering different values of unit electricity-based and unit power demand-based costs, 
the following graphs are obtained. In each graph, the x-axis displays the value of k, a 
coefficient that multiplies both unit electricity-based and unit power demand-based costs, 
starting from the values in the base case: 

• Unit energy-based cost e: 0.5 $/kWh. 
• Unit power demand-based cost ep: 0.2 ($/kW)/h. 
• Multiplier of electricity-based and power demand-based costs k: 0.5, 1, 2. 

Note that our sensitivity analysis considers quite high electricity costs compared to the 
values in Beck et al. (2019) to reflect the current surge in energy prices with the expectation 
that they will remain higher for longer. 

 
Figure 4. Cost variations while adopting the schedule of the Power model instead of the 

schedule of the Traditional model. 

Figure 4 illustrates cost savings obtained from the Power model compared to the 
Traditional model: by adopting the Power model, for all k values investigated, the total cost 
TC is reduced between -4.46% and -31.03% compared to the Traditional model. This is 
mainly due to the reduction in the power demand costs PC, while the energy cost EC 
increases from -1.23% to -0,35%.  
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Figure 5. Cost variations while adopting the schedule of the Power model instead of the 

schedule of the Energy model. 

Figure 5 illustrates cost savings obtained from adopting the Power model instead of the 
Energy model: by adopting the Power model, we observe a reduction in the total cost TC 
for all k values investigated (from -4.29% to -29.42%). This is due to the reduction of the 
power costs PC, while the energy cost EC in the Power model increases from +0.56% to 
+8.01%. Obviously, the Power model guarantees the minimization of the total cost TC, but 
not necessarily the minimization of all individual cost components. 
 
In order to evaluate the effect of the production rate pi variation on the optimal solution, in 
Table 6 we show the optimal pi value for the different scenarios and then the mean value, 
the standard deviation and finally the coefficient of variation (CV). 
Table 6. Optimal pi value for the different scenarios. 

k P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
0.75 3374 426 1550 681 262 563 541 298 243 1625 

1 3540 452 1808 723 278 603 904 220 258 1696 
1.25 3366.6 420.86 1664 673.38 258.98 560 581 328 240 1208 
1.5 3269 441 1601 706 271 252 582 353 252 911 

1.75 3254 418 1673 669 257 557 535 334 239 1282 
2 3241 416 1665 666 256 555 430 333 237 1485 

mean 3340.77 428.98 1660.17 686.40 263.83 515.00 595.50 311.00 244.83 1367.83 
dev.st 113.22 14.41 86.83 22.98 8.80 130.08 160.99 47.99 8.33 292.97 
CV 0.03 0.03 0.05 0.03 0.03 0.25 0.27 0.15 0.03 0.21 

 
As reported in Table 6, the CV is low compared with the variation of k, so it is possible to 
think that the values of pi obtained are robust with respect the variation of electricity 
parameters (energy cost e and power cost ep). 
In table 7, it is reported the variation between Bomberger’s pi values and the average value 
of pi evaluated in Table 6. 
 
Table 7. Results obtained for the three models. 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
Bomberger's 

pi value 3750 1000 1187,5 937,5 250 750 300 162,5 250 1875 
Optimal pi 
mean value 3340.77 428.98 1660.17 686.40 263.83 515.00 595.50 311.00 244.83 1367.83 
Percentage 
Variation -11% -57% 40% -27% 6% -31% 99% 91% -2% -27% 
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From the results in Table 7 it possible to see that the search for the optimal solution changes 
significantly the values of the different pi. This is due to that the model, by respecting the 
different constraints, changes the pi values minimizing the sum of the different cost 
components and penalizing in this case, as shown before, the logistics costs. 
Another important consideration is reported in Figure 6, which shows that with the 
increasing of electricity costs (k) the cycle time increases. This is due to the necessity of 
the model to maintain low power costs. 
 

 
Figure 6. Variation of the cycle time T for the different scenarios k. 

 
5. Conclusions and future research 
This note extended the work of Beck et al. (2019) on electricity costs in the Economic Lot 
Scheduling Problem (ELSP) by considering energy-based and power-demand based cost 
components. Energy and power demand were assumed to be related to processing and idle-
off time intervals of the production line where manufacturing operations are performed. A 
second extension of the model presented in Beck et al. (2019) is that production rates for 
the different items produced were considered controllable to minimize total cost. Moreover, 
a power-demand limit was considered for the definition of production rates, cycle time 
duration and idle-off assignment to no-productive time intervals of the production line. A 
numerical analysis was developed that used the common cycle policy to solve the ELSP. 
The results highlight the influence of energy-based and power-demand based cost 
components on the optimal decision variables values that minimize the total cost function.  
The sensitivity analysis shows that by varying the unit energy-based cost e and unit power 
demand-based cost ep, the Power model always leads to the best solution by minimizing 
the total cost function. 
The main managerial insight of the contribution resides in the opportunity of adjusting the 
production rate for different items produced (which was not included in Beck et al., 2019), 
which can be successfully implemented by companies while looking for a viable alternative 
for reducing overall energy consumption and thus lowering energy costs. 
Moreover, companies that are interested in reducing energy costs should pay attention not 
only to energy-based components but also to power-demand cost components that may be 
responsible for a significant share of the total expenditure. The Power model proposed in 
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this paper, in contrast to the base case, avoids switching the machine off and on if the power 
demand is particularly large. 
In the base case considered in the numerical analysis, a substantial cost reduction could be 
obtained. Moreover, it should be noted that schedules of the different model variants imply 
significantly different power-demand, and therefore via a proper adjustment of the 
schedule, a consistent reduction of the power-demand can be achieved. In particular, with 
the increasing of the weight of the electricity costs (energy costs and power costs) the 
optimal solutions present an increasing of the cycle time T. 
Future developments could consider different scheduling policies, e.g. the basic period 
policy. Moreover, future work could also investigate the presence of a grid-connected 
microgrid with renewable energy sources along the line of Smart Energy-Efficient 
Production-Planning (SEEPP) recently proposed by Golpira et al (2018) and Golpira 
(2020), where they introduce the problem of the distribution of manufacturing and non-
manufacturing loads. Finally, future research could incorporate non-deterministic features, 
e.g. by considering uncertain or variable data that could lead to the development of 
stochastic optimization approaches to take into account machine failures, for example. 
Data Availability Statement: The authors confirm that the data supporting the findings of 
this study are available within the article. 
Appendix A 
This section provides the code related to the mathematical model explained in the section 
3 in order to permit to replicate the simulation and the results. In particular we report the 
code for: 

• objective function; 
• constraints; 

In order to solve the problem, we use the fmincon solver for non-linear problem. 
Objective function 
function f = myfunALLNEW2(x) 
%UNTITLED Summary of this function goes here 
%   LBE evaluation 
e=0.15; 
ep=0.1; 
g=4; 
lsdsu=2; 
W=50; 
if 
max([50+0.005*x(2),50+0.04*x(3),50+0.01*x(4),50+0.065*x(6),50+0.03*x(7)
,50+0.02*x(8),50+0.05*x(9),50+0.07*x(10),50+0.005*x(11),50+0.025*x(5)])
>=g*W 
    LBE=lsdsu*g; 
else 
    LBE=lsdsu*g+(g*W-
max([50+0.005*x(2),50+0.04*x(3),50+0.01*x(4),50+0.065*x(6),50+0.03*x(7)
,50+0.02*x(8),50+0.05*x(9),50+0.07*x(10),50+0.005*x(11),50+0.025*x(5)])
*ep*x(1)/(e*W)); 
end 
if (x(1)-30-
(50/x(2)+50/x(3)+100/x(4)+200/x(5)+10/x(6)+10/x(7)+3/x(8)+42.5/x(9)+42.
5/x(10)+50/x(11))*x(1) < LBE) 
    % Idle 
    k=1; 
else 
    % set-up 
    k=0; 
end 



% objective function 
f=50*e*k*(1-
(50/x(2)+50/x(3)+100/x(4)+200/x(5)+10/x(6)+10/x(7)+3/x(8)+42.5/x(9)+42.
5/x(10)+50/x(11))-30/x(1))+(1-
k)*4*2*50*e/x(1)+15/x(1)+0.00000033854*50*x(1)/2*(1-
50/x(2))+((50+0.005*x(2))*50/x(2)+1.25*1*50/x(1))*e+20/x(1)+0.000009244
79*50*x(1)/2*(1-
50/x(3))+((50+0.04*x(3))*50/x(3)+1.5*1*50/x(1))*e+30/x(1)+0.00000664063
*100*x(1)/2*(1-
100/x(4))+((50+0.01*x(4))*100/x(4)+2.5*2*50/x(1))*e+110/x(1)+0.00014505
208*10*x(1)/2*(1-
10/x(6))+((50+0.065*x(6))*10/x(6)+3*4*50/x(1))*e+50/x(1)+0.00001393229*
10*x(1)/2*(1-
10/x(7))+((50+0.03*x(7))*10/x(7)+2.5*2*50/x(1))*e+310/x(1)+0.000078125*
3*x(1)/2*(1-
3/x(8))+((50+0.02*x(8))*3/x(8)+1.5*8*50/x(1))*e+130/x(1)+0.00030729167*
42.5*x(1)/2*(1-
42.5/x(9))+((50+0.05*x(9))*42.5/x(9)+2.75*4*50/x(1))*e+200/x(1)+0.00004
6875*42.5*x(1)/2*(1-
42.5/x(10))+((50+0.07*x(10))*42.5/x(10)+1.75*6*50/x(1))*e+5/x(1)+0.0000
0208333*50*x(1)/2*(1-
50/x(11))+((50+0.015*x(11))*50/x(11)+2*1*50/x(1))*e+10/x(1)+0.000005208
33*200*x(1)/2*(1-
200/x(5))+((50+0.025*x(5))*200/x(5)+1.25*1*50/x(1))*e+max([max([50+0.00
5*x(2),50+0.04*x(3),50+0.01*x(4),50+0.065*x(6),50+0.03*x(7),50+0.02*x(8
),50+0.05*x(9),50+0.07*x(10),50+0.005*x(11),50+0.025*x(5)],(1-
k)*50*4)])*ep; 
end 
 
 
% objective function 
f=50*e*k*(1-
(50/x(2)+50/x(3)+100/x(4)+200/x(5)+10/x(6)+10/x(7)+3/x(8)+42.5/x(9)+42.
5/x(10)+50/x(11))-30/x(1))+(1-
k)*4*2*50*e/x(1)+15/x(1)+0.00000033854*50*x(1)/2*(1-
50/x(2))+((50+0.005*x(2))*50/x(2)+1.25*1*50/x(1))*e+20/x(1)+0.000009244
79*50*x(1)/2*(1-
50/x(3))+((50+0.04*x(3))*50/x(3)+1.5*1*50/x(1))*e+30/x(1)+0.00000664063
*100*x(1)/2*(1-
100/x(4))+((50+0.01*x(4))*100/x(4)+2.5*2*50/x(1))*e+110/x(1)+0.00014505
208*10*x(1)/2*(1-
10/x(6))+((50+0.065*x(6))*10/x(6)+3*4*50/x(1))*e+50/x(1)+0.00001393229*
10*x(1)/2*(1-
10/x(7))+((50+0.03*x(7))*10/x(7)+2.5*2*50/x(1))*e+310/x(1)+0.000078125*
3*x(1)/2*(1-
3/x(8))+((50+0.02*x(8))*3/x(8)+1.5*8*50/x(1))*e+130/x(1)+0.00030729167*
42.5*x(1)/2*(1-
42.5/x(9))+((50+0.05*x(9))*42.5/x(9)+2.75*4*50/x(1))*e+200/x(1)+0.00004
6875*42.5*x(1)/2*(1-
42.5/x(10))+((50+0.07*x(10))*42.5/x(10)+1.75*6*50/x(1))*e+5/x(1)+0.0000
0208333*50*x(1)/2*(1-
50/x(11))+((50+0.015*x(11))*50/x(11)+2*1*50/x(1))*e+10/x(1)+0.000005208
33*200*x(1)/2*(1-
200/x(5))+((50+0.025*x(5))*200/x(5)+1.25*1*50/x(1))*e+max([max([50+0.00
5*x(2),50+0.04*x(3),50+0.01*x(4),50+0.065*x(6),50+0.03*x(7),50+0.02*x(8
),50+0.05*x(9),50+0.07*x(10),50+0.005*x(11),50+0.025*x(5)],(1-
z)*50*4)])*ep; 
end 
 



Constraints 
function [c, ceq] = constrTNEW(x) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 
% j=PL-W (power limit - idel power) 
j=150; 
c= [-x(1)+30/(1-50/x(2)-50/x(3)-100/x(4)-200/x(5)-10/x(6)-10/x(7)-
3/x(8)-42.5/x(9)-42.5/x(10)-50/x(11)) 
    -
0.9+50/x(2)+50/x(3)+100/x(4)+200/x(5)+10/x(6)+10/x(7)+3/x(8)+42.5/x(9)+
42.5/x(10)+50/x(11) 
    51-x(2) 
    51-x(3) 
    101-x(4) 
    201-x(5) 
    11-x(6) 
    11-x(7) 
    4-x(8) 
    43.5-x(9) 
    43.5-x(10) 
    51-x(11) 
     
    % (PL-W)/v 
    x(2)-j/0.005 
    x(3)-j/0.04 
    x(4)-j/0.01 
    x(5)-j/0.025 
    x(6)-j/0.065 
    x(7)-j/0.03 
    x(8)-j/0.02 
    x(9)-j/0.05 
    x(10)-j/0.07 
    x(11)-j/0.015 
     
   1-x(1) 
  %x(12)-1 
  ]; 
ceq=[]; 
end 
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