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A deposit-refund system for managing the economical circulation of  
returnable transport items 

 
 
 

 
Abstract 
The use of Returnable Transport Items (RTI) is a consolidated practice in supply chains committed to 
sustainability. Therefore, a mechanism ensuring profitability must be implemented to boost the efficiency 
of RTI circulation. This paper presents a deposit-refund system (DRS) designed for RTI circulation to 
maximize supply chain profitability. The profit optimization analysis considered three scenarios: vendor's 
profit, retailer's profit, and overall system profit. Tailored solution strategies have been developed for each 
case, considering the retail price components. The optimal deposit amount required to maximize RTI 
circulation has been derived. Then, it has been examined how the retail price affects the profits of supply 
chain actors relative to the RTI return rate and observed how changes in return rates influence the profit 
patterns of supply chain actors. The results are scrutinized via several sensitivity analyses, leading to 
important implications for the design of deposit-refund systems for RTI. It is noted that the vendor’s 
wholesale price has a significant effect in establishing the decision-maker’s optimal policy in designing a 
DRS for RTI circulation. In other words, the wholesale price is a key component in assessing the economic 
viability in determining the deposit amount for RTI. Moreover, through a couple of real cases of RTI 
application with specific peculiar parameter settings, it has been shown that the vendor's position would be 
significant or insignificant according to the difference between the value of the RTI and that of the goods it 
holds. 

Keywords  
Returnable transport items; Deposit-refund system; Price-dependent demand; Return rate; Profit 
maximization 
1. Introduction 
Recent studies have shown that using reusable containers instead of single-use ones is more 
environmentally sustainable [1]. Thus, the economical circulation of Returnable Transport Items (RTI), 
which can be pallets, trays, boxes, or crates [2], has become a critical concern for companies, striving for 
enhanced sustainability and closed-loop supply chains, while at the same time keeping economic 
considerations in mind. Since this effective circulation relies on the collaboration and integration of various 
supply chain members, agreeable and mutually profitable operational conditions must be designed for 
supply chain entities. Once this alignment has been achieved, meeting the economic objectives of all 
partners involved, sustainability can be pushed to the next level. Interested readers are encouraged to look 
at the study [3], for a comprehensive review and future challenges of inventory models for reverse logistics 
. 
Several studies have analyzed real cases related to RTI: e.g. [4] discussed the design of the return logistic 
system of returnable collapsible containers in The Netherlands, [5] looked at the impact of control strategies 
of roll containers for food in Sweden. Moreover, as outlined in [5], a single RTI can range in cost from a 
few euros to thousands of euros each, and it is not uncommon for the value of the RTI to surpass that of the 
goods it contains. Therefore, maintaining an RTI fleet, which often requires a substantial initial capital 
investment, can also incur significant operating costs due to shrinkage. Moreover, it should be noted that 
RTI can also be equipped for the transportation of refrigerated items (in food or pharmaceutical sectors) 
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with significant environmental benefits as shown in [6]. 

How to design and structure a deposit-refund system that meets the objectives of all supply chain members 
is however a non-trivial undertaking. Critical factors to be considered in this vein include the costs of 
utilizing the RTI, which can be associated with their procurement, delivery, return, inspection, and repair. 
These factors can impact the retail price, rendering this problem both relevant and important. In this vein, 
the ways of promoting the willingness to return the used RTI have been of particular concern [7]. As an 
option for promoting the return performance, it has been said that RTI returns can be incentivized by 
offering a refund [8]. However, related research that investigates this option is scarce. We, therefore, follow 
the claim by [2] for research that considers alternate design options for RTI deposit-refund systems. 

Specifically, we study in the present work the design of a deposit-refund system and its impact on the retail 
price. We consider the circulation of RTI between a vendor and a retailer, with the RTI deposit amount 
being included in the retail price. This is done since the number of RTI needed for supplying the finished 
products to the customers depends on the pricing mechanism, which considers the cost factors involved for 
the effective use of RTI among supply chain partners (i.e., the vendor and the retailer in our setting). As the 
ultimate objective we consider the profit of the vendor, the retailer, and the system overall, and develop 
solution mechanisms for the different cases based on the composition of the retail price. The results are 
scrutinized via several sensitivity analyses, leading to important implications for the design of deposit-
refund systems for RTI. 
  
The paper is structured as follows: Section 2 presents a brief overview of previous works related to several 
key topics pertinent to the problem addressed in this study. Section 3 provides the problem description, 
including basic assumptions and notations used. Section 4 presents the development of a mathematical 
model that demonstrates the optimal deposit policy based on the retail pricing structure, along with the 
characteristics of the profit functions for the supply chain actors. Section 5 includes extensive numerical 
analyses, illustrative examples, and key sensitivity analyses. Finally, Section 6 concludes the paper and 
suggests possible future research contributions. 
 
 
 
 
 
 
2. Literature review 
Prior research has focused on optimizing logistical systems responsible for circulating RTI to enable 
efficient and economical operations of both forward and reverse logistics. While RTI can take on many 
formats ([2], [4], [9]), a critical concern among all of them has been the economic circulation of used or 
empty RTI. This is important in setting the foundation for a circular economy since it enables the continuous 
re-supply of finished goods without interruption or delay. This was also stressed in the literature review 
[10], which identified the cost of reusable packaging as an influential factor in determining the feasibility 
and viability of this approach, most notably since it can significantly impact the retail price paid by 
consumers. As such, the retail price generally has to recoup the cost of the reusable packaging as well as 
the logistics associated with its return. This makes the study of the deposit-return system an important area 
of investigation [10].  
 



3 

 

The broader literature on which we rely in our study can be classified into three literature streams, including 
(1) RTI inventory management, (2) deposit-refund systems, and (3) retail pricing decisions. Specifically, 
within the literature on RTI inventory management, [11] proposed a mathematical model to determine the 
optimal shipment lot size for RTI carrying perishable items to customers, and [12] developed analytical 
models to investigate the effects of RFID-based RTI management when the rate of used RTI is not 
deterministic. The authors further considered the time needed to upgrade non-RFID-tagged RTI to RFID-
tagged RTI, considering the return rate of used RTI when both tagged and non-tagged RTI are used 
simultaneously. In addition, [13] proposed safety measures by considering the safety stocks for both the 
finished goods and the RTI, since a shortage in RTI can be directly responsible for shortages in finished 
goods (if RTI are not available to transport the finished goods). [14] proposed a decision-making model 
determining the optimal ratio of owned versus rented RTI to minimize operational costs while at the same 
time satisfying demand requirements for a single buyer. In addition, [15] developed a model to forecast 
container returns considering both the return rate and the cycle time, while [16] aiming to quantify the 
economic and environmental impacts of reusable plastic containers compared a multi-use system to a 
traditional single-use packaging. The literature on decision support models for managing RTI was reviewed 
by [2], who called for the future study of deposit-refund systems for RTI in a closed-loop supply chain. We 
are following their call with the present research.  
 
The second stream of research on deposit-refund systems focuses on the return rate of used RTI as a function 
of the deposit-refund mechanism. As such, consumers generally pay a deposit that is added to the price of 
a product, incentivizing them to return the used product by refunding the deposit amount [17]. In this vein, 
[18] analyzed the beverage packaging deposit-refund system, categorized by material and deposit flows, 
highlighting challenges related to smart collection, the encouragement of eco-friendly design, and the 
advancement of circular business models. In addition, factors affecting both the economic and 
environmental impacts of reusable packaging were reviewed by [19], highlighting that return rates vary 
between different systems and noting the positive impact of deposit fee approaches. However, few works 
have studied the consumer’s willingness to participate in waste collection programs or the customer’s 
attitude in determining the effectiveness of deposit-refund systems ([20], [21]). In this vein, [10] reviewed 
the literature on reusable packaging considering their environmental and economic costs, and highlighted 
the impact of consumers’ behavior on the cost of reusable packaging as a promising research avenue. [22]  
addressed this issue by examining consumers' willingness to pay for reusable food packaging when ordering 
from food delivery platforms. Respondents expressed a willingness to pay a specific amount for reusable 
packaging but emphasized the need for convenient return options for used packaging 
(i.e., the merchant picking up the packaging or the customer returning it to a collection facility). We follow 
this stream of research in that we study how the deposit-refund system can be designed to maximize the 
return rate, with the ultimate objective of moving to a closed-loop supply chain.  
The third stream of research we rely on considers retail pricing decisions and their impact on the demand 
for RTI. This are of research is relevant to our investigation since the demand rate is generally sensitive to 
the retail price. In this vein, [23] contended that cost-plus pricing mechanisms can be used for developing 
fair (or reasonable) prices without precise knowledge of market demand or marginal cost conditions. In 
addition, [24] investigated pricing and production decisions involving reusable containers under conditions 
of stochastic customer demand, assuming that the return quantity depends on both customer demand and 
the manufacturer's acquisition fee. Similarly, [25] analyzed the impact of a packaging tax policy on the 
decisions of food manufacturers and retailers, considering the effects on output reduction and input 
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substitution. They also examined the sensitivity of material prices to reductions at the source of product 
packaging. 
We build on this stream of research in that we consider a generalized retail pricing structure that includes 
factors for handling RTI. With this approach, we can discern the impacts of RTI-related dynamics. Building 
upon this context, this contribution encompasses three primary investigations. Firstly, as the deposit amount 
is expected to have a positive association with the return rate, we explore what the optimal deposit amount 
should be for different supply chain actors to maximize the RTI return rate. In addition, we examine what 
the optimal return rate should be for maximizing profits given a predetermined deposit amount. Secondly, 
we investigate several options for composing the retail price based on RTI deposits and study the impact 
on supply chain actors’ profits. Finally, typical patterns in the supply chain actors’ profits based on the 
changes in return rate will be examined. Overall, to the best of our knowledge, this is the first paper that 
studies a deposit-refund system coupled with the operational performance of RTI to improve supply chain 
profitability. 
 
3. Problem description 
We consider a business situation where a single vendor supplies a single type of finished goods to a retailer 
using RTI as depicted in Figure 1. The return of used RTI is encouraged by a deposit-refund system, which 
allows the vendor to use the RTI again (thus saving money for not having to purchase single-use transport 
items) or to compensate for lost or damaged RTI. In this setting, a retailer pays a deposit 𝜏 to a vendor for 
the receipt of the finished goods that are transported with the RTI. The retailer then sells the finished goods 
to customers with a selling price 𝑝, which is assumed to be a function of the wholesale price 𝑝! and the 
costs associated with using the RTI (the deposit 𝜏). The customer’s demand rate 𝐷 is assumed to be a 
function of the retail price, i.e., the demand is price-sensitive. A retailer obtains a refund of the deposit 𝜏 
when s/he returns the used (empty) RTI to the vendor. If it is not returned (e.g., due to loss or damage), the 
deposit remains unredeemed. As a result, the return rate of used RTI is an important measure for determining 
the profits of both vendors and retailers. In particular, the return rate can also determine the retailer’s selling 
price, since the foregone deposit amount of unreturned RTI needs to be recouped.  
 

 

Figure 1: The deposit-refund system for RTI operations 
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In developing our model, we make the following assumptions.  

1. All parameters are deterministic, known, and constant over time. In addition, we assume that a single 
vendor supplies a single type of finished goods to a single retailer (according to [12]).  

2. A retailer pays a deposit (i.e.,𝜏) for each RTI and receives a refund of the same amount when the retailer 
returns the used RTI to the vendor (according to [18]).  

3. A vendor purchases new RTI from an RTI manufacturer if the used RTI are not returned or damaged 
RTI cannot be repaired (according to [12]).  

4. Based on the cost-plus pricing policy, a retailer determines its selling price (i.e.,𝑝) based on the 
wholesale price (i.e.,𝑝!) and the RTI deposit-related cost due to lost or damaged RTI. This means that 
the retailer’s selling price (i.e.,𝑝) would be dependent on the cost of utilizing the RTI (i.e.,𝜃") as well 
as a markup rate (i.e.,𝜃#) (according to [26]).  

5. The customer’s demand rate is assumed to be sensitive to the retailer’s selling price (i.e.,𝑝).  
6. A vendor’s unit wholesale price(i.e.,𝑝!) is given enough to compensate for the cost of operating and 

maintaining an RTI, i.e., 𝑝! ≥ 𝐾$  
 
Further, in developing our model, we use the following notations.  
 
Given parameter:  
𝑝! : Vendor’s wholesale price for one unit of product (in dollars) 
𝑐% : Inspection cost for one RTI unit (in dollars) 
𝑐" : Repair cost for one RTI unit (in dollars) 
𝑐& : Procurement cost for one RTI unit (in dollars), where 𝑐& > 𝑐" 
𝐾 : Handling cost for one RTI unit (in dollars) 
𝑞 : RTI size (i.e., capacity) (in number of items) 
𝜃# : Markup rate on the wholesale price 𝑝! (in percentage) 
𝜃"#%' : Customer’s maximally acceptable economic burden for an RTI deposit (in dollars) 
𝛼 : Fraction of returned RTI (in percentage), where 0 ≤ 𝛼 ≤ 1 and 𝜌 = 1 − 𝛼 
𝛽 : Fraction of returned but damaged RTI that can be repaired, where 0 ≤ 𝛽 ≤ 1 

Decision variable: 
𝜏$ : Deposit for one unit of product (in dollars), where 𝜏$ = 𝜏/𝑞 and 𝜏$ ≥ 0 

Derived quantities: 
𝑢( : Unredeemed deposit (in dollars), where 𝑢( = 𝜏(1 − 𝛼)𝐷( 
𝜃" : RTI deposit-related cost, which is imposed on the retail price (in dollars), where 𝜃" =

6𝑐)𝜏$ + 𝑐*𝑢(8 and 𝜃" ≤ 𝜃"#%'. Note that the parameter of 𝑐) presents the weight of the 
unit deposit which is paid for one RTI unit (i.e., 𝜏$) while 𝑐* is one for the aggregated 
unredeemed deposit considering the return performance (i.e.,	𝑢(), where 𝑐), 𝑐* ≥ 0. 

𝜏 : Deposit for one RTI unit (in dollars), where 𝜏 = 𝑞𝜏$  
𝐾$ : Unit handling cost for one unit of product (in dollars), where 𝐾$ = 𝐾 𝑞⁄  

𝑝(𝜏$ , 𝛼) : Retailer’s selling price (i.e., retail price) (in dollars), where 𝑝(𝜏$ , 𝛼) = (1 + 𝜃#)𝑝! + 𝜃".  
𝐷(𝜏$ , 𝛼) : Demand rate for the product (in number of items), expressed as a retail price-sensitive 

demand function, i.e., 𝐷(𝜏$ , 𝛼) = 𝑎 − 𝑏𝑝6𝜏$ , 𝛼8(a > b > 0) , where 𝑎  represents the 
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market size and 𝑏 the price sensitivity, with the latter being assumed to have a non-zero 
positive value (according to [27]). 

𝐷( : Demand rate for RTI (in number of RTI), where 𝐷( = 𝐷(𝜏$ , 𝛼)/𝑞 
 
As noted above, the retailer’s selling price (i.e., 𝑝(𝜏$ , 𝛼)) is assumed to be determined by considering the 
margin rate (i.e., 𝜃#) as well as the deposit-related costs (i.e., 𝜃"). As such, the retailer considers the costs 
of utilizing the RTI, which include the deposit cost 𝜏$ and the unredeemed deposit 𝑢(, together with the 
markup, to determine the retail price. Thus, the components determining the retail price would be changed 
according to the values of 𝑐) and 𝑐*. In other words, the retailer’s selling price changes according to whether 
the values for 𝑐)  or 𝑐*  are greater than zero or not. As a result, a retailer adopts a cost-plus pricing 
mechanism, where the deposit-related cost of using the RTI (i.e.,	𝜃") and the markup (i.e., 𝜃#𝑝!) is added 
to the cost of procuring the product (i.e., 𝑝!) (according to [26]). In this work, it is assumed that both 𝑐) 
and 𝑐* are arbitrarily given to analyze the properties of the optimal policies for an individual supply chain 
actor. In this work, we assume a generalized form of the retail price when the RTI-related factors are 
included thereby incorporating both 𝑐) and 𝑐*. Indeed, both 𝑐) and 𝑐* are used to take into account the 
retailer’s generalized pricing policy when the RTI-related cost factors are considered. In other words, for 
the generalizability of the developed models, we consider the following whether these two individual 
components (i.e., 𝑐) and 𝑐*) are included or not. Thus, there would be three possible cases in formulating 
the retail price, i.e., (i)	𝜃" = 𝑐)𝜏$ (i.e., 𝑐) > 0 and 𝑐* = 0), (ii) 𝜃" = 𝑐*𝑢( (i.e.,	𝑐) = 0 and 𝑐* > 0), and (iii) 
𝜃" = 6𝑐)𝜏$ + 𝑐*𝑢(8 (i.e., 𝑐), 𝑐* > 0). The case with 𝜃" = 𝑐)𝜏$  represents the deposit-based pricing by 
taking into account the deposit for one unit of product while the case with 𝜃" = 𝑐*𝑢( for the performance-
based pricing based on the return performance of the used RTI. In addition, the case with 𝜃" =
6𝑐)𝜏$ + 𝑐*𝑢(8 represents the cost-performance pricing schemes, i.e., the mixture of deposit cost and return 
performance.  
 
Hereafter, for the brevity of the presentation, please note that we omit two variables, i.e., 𝜏$ and 𝛼 when  
both 𝐷(𝜏$ , 𝛼) and 𝑝(𝜏$ , 𝛼) are presented. As noted above, the handling cost for an RTI unit (i.e., 𝐾) for the 
vendor can be captured by Eq. (1), where 𝑐% is the fixed inspection cost, 𝑐" is the repair cost, and 𝑐& is the 
purchasing cost for an RTI unit (according to [12]).  

𝐾 = (𝑐% + 𝛽𝑐")𝛼 + 𝑐&(1 − 𝛽𝛼) = 𝑐& + 𝑐+𝛼 , where 𝑐+ = 𝑐% − 6𝑐& − 𝑐"8𝛽            (1) 

As stated earlier, we further capture the demand rate (i.e., 𝐷 is also assumed to be a function of the retail 
price (i.e.,𝑝) as shown in Eq. (2). 

𝐷 = 𝑎 − 𝑏𝑝 = 𝑎 − 𝑏(1 + 𝜃#)𝑝! − 𝑏𝜃" = 𝑎 − 𝑏(1 + 𝜃#)𝑝! − 6𝛿)𝜏$ + 𝛿*𝑢(8       (2) 
, where 𝛿) = 𝑏𝑐) and 𝛿* = 𝑏𝑐*  

As presented in Eq. (2), the parameter 𝛿) accounts for the sensitivity of the demand rate based on the unit 
deposit (i.e., 𝜏$), while 𝛿*	accounts for the sensitivity of total unredeemed deposit (i.e., 𝑢(). Further, the 
function of 𝐷 in Eq. (2) can be generalized according to three different pricing policies, i.e., (i) 𝜃" = 𝑐)𝜏$, 
(ii)	𝜃" = 𝑐*𝑢(, and (iii) 𝜃" = 6𝑐)𝜏$ + 𝑐*𝑢(8. From Eq. (2), we observe that the upper bound of 𝑝, i.e., 
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𝑝#%', is given as (𝑎 𝑏⁄ ) to ensure the non-negative demand rate at the retailer regardless of both 𝛿) and 𝛿*. 
The equation of 𝐷 in Eq. (2) could be further re-arranged as captured in Eq. (3). 

𝐷 = ?
,!-."/#
)0.$/#1

@, where 𝑑! = 𝑎 − 𝑏(1 + 𝜃#)𝑝! and 𝜌 = (1 − 𝛼)                         (3) 

In addition, from the definition of 𝑑! in Eq. (3), the inequality of 𝑝! ≤ B %-."/#
2()04%)

C is further derived to assure 

the upper bound of the wholesale price (i.e., 𝑝!) if the other factors are given. First, it would be necessary 
to investigate the basic properties of the demand function with the key factors for the deposit-refund system, 
i.e., 𝜏! and 𝛼. As captured in Eqs. (4.1) and (4.2), the demand rate is a strictly decreasing function based 
on 𝜏$ - this is due to the reimbursed deposit increasing the retail price. In other words, the consumer would 
be reluctant to buy the finished goods if the portion of the deposit in retail price becomes larger. It also 
means that the retailer should carefully design the retail pricing framework if s/he wants to maximize the 
obtainable profit.  

"#
"$!

= − (&"'&#($))

+,'&#$!)-
# ≤ 0                                                     (4.1) 

"##
"$!

# =
.(&"'&#($))&#)

+,'&#$!)-
% ≥ 0                                              (4.2) 

In addition, we now consider the effects of the return rate on customer demand. The demand rate (i.e.,𝐷) 
can be expressed as an increasing function of 𝛼 (i.e., the return rate of used RTI). As such, the retailer is 
willing to buy the goods due to there being less burden associated with unredeemed deposits as the return 
rate of used RTI increases. This is captured in Eqs. (5.1) and (5.2).  

67
68
= ?

.$/#
)0.$/#1

@𝐷 ≥ 0                                                              (5.1) 

6$7
68$

= 2?
.$/#

)0.$/#1
@
*
𝐷 ≥ 0                                                         (5.2) 

As presented in Appendix A, it is necessary to satisfy the allowable range of 𝜏$ for keeping the relevance 
of the developed model as shown in Eq. (6).  

0 ≤ 𝜏$ ≤ 𝜏$#%' = 𝑚𝑖𝑛	(𝜏$,,!
#%' , 𝜏$,4&

#%')                                                (6) 

, where 𝜏$,,!
#%' = B,!

."
C and 𝜏$,4&

#%' = 4&%'(

:;"01;$(,!-4&%'(2)<
 

Therefore, the value of 𝜏$#%' in Eq. (6) would be a significant reference in establishing the deposit for a 
single product. From Eq. (6), the upper bound of 𝜏 can be derived as 𝜏 ≤ 𝜏#%', where 𝜏#%' = 𝑞𝜏$#%'.  

 

4. Model development 
Our model aims to investigate the effects of deposit-related factors to determine the optimal deposit amount 
and its impact on profit. As such, the problem of determining the optimal deposit amount (i.e.,𝜏$∗) is studied 
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under a given RTI return rate (i.e.,𝛼) in Section 4.1. This is then followed by the derivation of the optimal 
return rate (i.e.,𝛼∗) in Section 4.2, where the deposit amount (i.e.,𝜏$) is given as a pre-determined constant. 
 
4.1 Optimal deposit amount (i.e.,𝜏$∗) with a given value of 𝛼 
We formulate a corresponding profit function for both the vendor (Section 4.1.1) and the retailer (Section 
4.1.2), followed by an analysis of the system profit function (Section 4.1.3) to identify an optimal policy 
with a given set of parameters. As noted earlier, we consider three possible case when formulating the 
demand function, capturing the effect of deposit-related cost factors, i.e., (i) 𝜃" = 𝑐)𝜏$, (ii)	𝜃" = 𝑐*𝑢(, and 
(iii) 𝜃" = 6𝑐)𝜏$ + 𝑐*𝑢(8. We, therefore, need to consider the different mechanisms based on to whether 𝑐) 
and 𝑐*	are applicable in determining the retail price.  
 
 
4.1.1 Vendor’s Problem (Model-V) 

We assume that a vendor aims to maximize its obtainable profit by considering the retailer’s return behavior 
for RTI. As such, we need to assess the pattern of the vendor’s profit function (i.e.,𝜋>(𝜏$|𝛼)) in 𝜏$ with a 
given value of 𝛼 , where 𝛼  presents the retailer’s return performance. We thus formulate the vendor’s 
problem as aiming to maximize their expected profit as shown in Eq. (7).  

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆	𝜋>(𝜏$|𝛼) = 𝑝!𝐷 + 𝜏𝐷(𝜌 − 𝐷(𝐾 = 𝐷6𝑝! + 𝜏$𝜌 − 𝐾$8                   (7) 

In determining the value of the optimal deposit amount for maximizing the vendor’s profit, we consider 
three possible cases when formulating the demand function, as noted above, i.e., (i) 𝜃" = 𝑐)𝜏$, (ii)	𝜃" =
𝑐*𝑢(, and (iii) 𝜃" = 6𝑐)𝜏$ + 𝑐*𝑢(8. These are denoted in the following as Case V1), Case V2), and Case 
V3), respectively. Specifically, we aim to determine the optimal value of 𝜏$(𝛼), maximizing the vendor’s 
profit under the assumption that the value of 𝛼 is given. Appendix B offers details on how the value for 
𝜏$∗(𝛼) is derived, together with the conditions that ensure the optimality of the developed solutions. 
 
 
Case V1) Deposit-based Pricing (i.e., 𝜃" = 𝑐)𝜏$) 

In the first case, from Eq. (2), we consider the case where the unredeemed deposit is assumed to not affect 
the retailer’s selling price, i.e., 𝑐* = 0. Considering the demand rate in Eq. (2), the optimal deposit amount, 
i.e.,	𝜏$,>)∗ (𝛼), can then be defined as captured in Eq. (8).   

𝜏$,>)∗ (𝛼) = 𝑚𝑎𝑥 B0, 𝜏$,>)! (𝛼)C                                                            (8) 

, where 𝜏$,>)! (𝛼) = )
* ?𝜏$,,!

#%' −
:&!-?#<
()-8) @ and 𝜏$,,!

#%' = B,!
."
C 

 
From Eq. (8), it is known that a non-negative value for 𝜏$,>)! (𝛼) can then be achieved given that 𝑝! ≤
6𝐾$ + 𝜏$,,!

#%'(1 − 𝛼)8 is satisfied. The parameter 𝐾$ captures the needed operating cost associated with the 
RTI for a single product, analogous to 𝐾 being defined in Kim and Glock (2014) as the handling cost for a 
single RTI. Eq. (8) also recognizes that the deposit amount increases with decreasing RTI return rates, based 
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on 
,/#,*"

! (8)
,8

= − )
*()-8)$ ?𝑝! −

:;+0;,<
$ @ < 0 , if 𝑝! >

:;+0;,<
$

= B𝐾$ +
;,1
$
C  because ,1

,8
< 0 , where 𝜌 =

1 − 𝛼. As such, the vendor aims to recover the economic burden from unreturned RTI by increasing the 
deposit amount. From Eq. (8), it is noted that the wholesale price (i.e., 𝑝!) is a critical criterion in observing 
the pattern of 𝜏$,>)! (𝛼) with the given return performanc (i.e., 𝛼). 
 
Case V2) Performance-based Pricing (i.e., 𝜃" = 𝑐*𝑢() 

For the second case, as explained in Appendix B, the vendor’s profit is either an increasing or a decreasing 
function of 𝜏$ according to the sign of	(1 − 𝛿&(𝑝' −𝐾()) as shown in Eq. (9). 
 

"/)($!|1)
"$!

=
($)2,3&#+4$35!-6

+,'&#$!)-
# = −

($)24$3+5!'𝛿2−1-6

&#+,'&#$!)-
#                                       (9) 

 
In other words, this condition implies that there is no stationary point for the deposit amount (i.e.,𝜏$) that 
maximizes the vendor’s profit function. As such, the vendor’s profit would increase as the deposit amount 
increases, given that 𝑝! ≤ 6𝐾$ + 𝛿*-)8, also since the demand rate and the number of RTI would increase. 
In other words, if 𝑝! ≤ 6𝐾$ + 𝛿*-)8 , then 𝜏$,>)∗ 	  should be set as 𝜏$#%'  whereas 𝜏$,>)∗ = 0  if 𝑝! >
6𝐾$ + 𝛿*-)8. As a result, the wholesale price (i.e., 𝑝!) is so critical factor in determining the behaviors of 
the vendor according to the changes in the unit deposit(i.e., 𝜏$).  
 
Case V3) Cost-Performance Pricing (i.e., 𝜃" = 𝑐)𝜏$ + 𝑐*𝑢() 

The third case considers that the pattern of the vendor’s profit function depends on whether 𝑝! ≤
6𝐾$ + 𝛿*-)8 is satisfied or not, as demonstrated in Appendix B. However, the stationary point satisfying the 
first-order condition can be re-arranged as follows.  

𝜏$,>A∗ (𝛼) = 𝑚𝑎𝑥 B0, 𝜏$,>A! (𝛼)C , where 𝜏$,>A! (𝛼) =
-."0B."(."0.$,!1)C)-.$:&!-?#<D

.".$1
          (10) 

We note that the inequality of 𝜏$,>A! (𝛼) ≤ 𝜏$,,!
#%' is always satisfied if 𝑝! ≥ 𝐾$ as assumed above, given that 

the stationary value for maximizing the vendor’s profit can be found. As a result, as shown in Eqs. (8) and 
(9), the effects of the wholesale price would be so significant in analyzing the vendor’s obtainable profit. 
Thus, we must perform the numerical analyses taking into account the different values of the wholesale 
price.  
 
4.1.2 Retailer’s Problem (Model-R) 
Similar to the vendor’s case, the retailer aims to maximize its profit, which is a function of the deposit 
amount as presented in Eq. (11):  

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆	𝜋((𝜏$|𝛼) = 𝑝𝐷 − 𝜏𝜌𝐷( = 6𝑝 − 𝜏$𝜌8𝐷                                (11) 
 
Analogous to the vendor’s profit function, we aim to determine the optimal value of 𝜏$, which maximizes 
the retailer’s profit with the assumption that the value of 𝛼 is given. Depending on the signs of 𝛿) and 𝛿*, 
there are three possible cases for determining the optimal deposit amount that maximizes the retailer’s profit, 
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similar to what was done above for the determination of the vendor’s profit. Appendix C offers details on 
how the properties for 𝜋((𝜏$|𝛼) were determined.   

Case R1) Deposit-based Pricing (i.e., 𝜃" = 𝑐)𝜏$) 
Similar to the vendor’s problem, the optimal deposit amount (i.e.,𝜏$,()∗ (𝛼)), which maximizes the retailer’s 
profit, can be obtained based on Eq. (12).  

𝜏$,()∗ (𝛼) = 𝑚𝑎𝑥 B0, 𝜏$,()! (𝛼)C                                                (12) 

, where 𝜏$,()! (𝛼) =
2C&%'(-/#,0!

%'(1D

*(21-.")
+ 𝜏$,,!

#%', 𝜏$,,!
#%' = B,!

."
C, and 𝑝#%' = B%

2
C 

 
From Eq. (12), it is definite that the inequality of 𝜏$,()! (𝛼) ≤ 𝜏$,,!

#%' is always satisfied if 𝑝#%' ≥ 𝜏$,,!
#%'𝜌. 

Additionally, the value of 𝜏$,()! (𝛼) can be considered as an increasing function of 𝛼, based on the property 

of 
,/#,1"

! (8)
,8

= 2
* ?

%-/#,0!
%'(."

(21-.")$
@ = 2(%-,!)

*(21-.")$
> 0, since 𝑎 > 𝑑! is always satisfied by the definition of 𝑑! in Eq. 

(3). As such, the retailer seeks to decrease the deposit amount with decreasing RTI return performance, to 
reduce the economic burden inherent to the unredeemed deposit.   

Case R2) Performance-based Pricing (i.e., 𝜃" = 𝑐*𝑢() 

If the unredeemed deposit is only considered for determining the retail price, the retailer’s profit can be 
maximized if the value of the deposit amount is determined as shown in Eq. (13).   

𝜏$,(*∗ (𝛼) = 𝑚𝑎𝑥60, 𝜏$.(*! (𝛼)8 , where 𝜏$,(*! (𝛼) = )
1
B *,!
.$%02

− )
.$
C                   (13) 

We further note that the retailer’s profit function is concave if 𝜏$ ≤ 𝜏$,(*2 (𝛼) , where 𝜏$,(*2 (𝛼) =
)
1
B A,!
.$%02

− )
.$
C and the inequality of 𝜏$,(*! (𝛼) ≤ 𝜏$,(*2 (𝛼) being always satisfied. Details on this derivation 

are included in Appendix C.  
Case R3) Cost-Performance Pricing (i.e., 𝜃" = 𝑐)𝜏$ + 𝑐*𝑢() 

Considering both 𝑐)  and 𝑐*  simultaneously when formulating the retail price makes the problem more 
complex, similar to Case V3. As presented in Appendix C, it is indeed so hard to derive the closed-form 

satisfying the first-order optimality from the structure of 6F1(/#|1)
6/#

. However, it is also known that the 

retailer’s profit function would be either concave or convex according to the value of 𝜏$,(A2 (𝛼). In other 
words, the retailer’s profit function would be concave if 𝜏$ < 𝜏$,(A2 (𝛼) in Eq. (14).  

𝜏$,(A2 (𝛼) = B(A.$,!-.$%-2)10."(.$%10*."021).$1
C                                               (14) 

Thus, it is useful to find out the optimal solution which maximizes the retailer’s profit using other analytical 
approaches such as cubic formula, methods for the numerical analyses if 𝜏$,(A2 (𝛼) < 𝜏$#%'.  In this work, 
we use a bi-section method to find out the solution satisfying the first-order optimality condition in Eq. 
(C.11). 
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As a result, the following Table 1 is developed to summarize the optimal values of 𝜏$ for both a vendor and 
a retailer with different settings of the deposit-refund system.  

Table 1: Properties of the optimal solutions for both a vendor and a retailer 
Case Vendor’s profit (𝜋>(𝜏$|𝛼)) Retailer’s profit (𝜋((𝜏$|𝛼)) 

Case 1) 
Deposit-based 

Pricing 

Case V1) Concave function for all 𝜏! 
𝜏!,#$∗ = 𝑚𝑎𝑥(0,𝑚𝑖𝑛:𝜏!,#$& , 𝜏!'()<) 

, where 𝜏!,#$& = $
*
P𝜏!,+!

'() − $
,
:𝑝& − 𝐾!<T 

Case R1-1) Concave function if 𝑐$ ≥ 𝜌 

𝜏!,-$∗ = 𝑚𝑎𝑥 C0,𝑚𝑖𝑛:𝜏!,-$& , 𝜏!'()<D 

, where 𝜏!,-$& = ((/*+!)1"2+!,3
*(3,/1")1"

 

Case R1-2) Convex function if 𝑐$ < 𝜌 
𝜏!,-$∗ ∈ {0, 𝜏!'()} 

Case 2) 
Performance-
based Pricing 

Case V2-1) Increasing function if 𝑝& ≤ :𝐾! + 𝛿*/$< 
𝜏!,#$∗ = 𝜏!'()	 

Case V2-2) Decreasing function if 𝑝& > :𝐾! + 𝛿*/$< 
𝜏!,#$∗ = 0  

Case R2) The mixture of a concave and convex function 

𝜏!,-*∗ = 𝑚𝑎𝑥 C0,𝑚𝑖𝑛:𝜏!,-*& , 𝜏!'()<D 

, where 𝜏!,-*& = *+!
,(1#(23)

− $
,1#

 

Case 3) 
Cost-

Performance 
Pricing 

Case V3-1) Concave function if 𝑝& ≤ :𝐾! + 𝛿*/$< 

𝜏!,#4∗ = 𝑚𝑎𝑥 C0,𝑚𝑖𝑛:𝜏!,#4& , 𝜏!'()<D 

, where 𝜏!,#4& =
/1"251"(1"21#+!,)6$/1#78!/9$:;

1"1#,
 

 
Case V3-2) Convex function if 𝑝& > :𝐾! + 𝛿*/$< 

𝜏!,#$∗ ∈ {0, 𝜏!'()} 

The mixture of a concave and convex function 

Case R3-1) if <=%(>$|,)
<>$

`
>$@&

≥ 0, i.e., 𝜌 ≤ 1"(*+!/()
+!73/1#(*+!/():

 

Using a one-dimensional search, 
 𝜏!,-4∗ ∈ [0,𝑚𝑖𝑛	(𝜏3,-4, 𝜏!'())] 

, where 𝜏!,-43 = (41#+!/1#(/3),21"
(1#(,2*1"23,)1#,

 

Case R3-2) if <=%(>$|,)
<>$

`
>$@&

< 0, i.e., 𝜌 > 1"(*+!/()
+!73/1#(*+!/():

 

 𝜏!,-4∗ ∈ {0, 𝜏!'()} 

 

4.1.3 System Problem (Model-S) 

In the third problem, as presented in Eq. (15), we consider the problem involving both a vendor and a 
retailer to determine the best policy to maximize the system performance (instead of individual performance 
before). Specifically: 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆	𝜋c(𝜏$|𝛼) = 𝜋>(𝜏$|𝛼) + 𝜋((𝜏$|𝛼) = 𝐷6𝑝! − 𝐾$ + 𝑝8                       (15) 
 
Apart from the above two problems, i.e., Model-V and Model-R, it is noted that there is no need to 
categorize the solution procedure according to the values of 𝑐) and 𝑐* since the derived optimal solution 
can be used for all the cases. Details for deriving the properties of the optimal deposit amount are provided 
in Appendix D. As such, the optimal value of 𝜏$  maximizing the system profit (i.e., 𝜋c(𝜏$|𝛼)) can be 
obtained as seen in Eq. (16).  

𝜏$,c∗ (𝛼) = 𝑚𝑎𝑥60, 𝜏$,c! (𝛼)8 , where 𝜏$,c! (𝛼) = B *,!-d
*."0.$d1

C and 𝜑 = 𝑏(𝑝! − 𝐾$) + 𝑎    (16) 

Further, we can see from Eq. (16) that the inequality of 
,/#,2

! (8)
,8

= (*,!-d).$d
(*."0.$d1)$

> 0 is satisfied if 𝜏$,c! (𝛼) >

0, i.e., 𝜑 < 2𝑑!. Thus, it is better to reduce the deposit amount as the return rate of used RTI becomes lower 
to maximize the system's profit. In other words, we can say that the decrement in the deposit amount leads 
to a lowering of the retail price, subsequently increasing the total profit with an increase in the demand rate. 
Furthermore, if 𝜑 > 2𝑑!, the value of 𝜏$ = 0 is an optimal point maximizing the value of 𝜋c(𝜏$|𝛼), since 
𝜋c(𝜏$|𝛼) has a unique stationary point as presented in Eq. (16). Note that the stationary value satisfying 
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the first-order optimality condition is valid for all cases regardless of the signs of both 𝛿) and 𝛿*. Also, we 
know that the system profit function is concave when 𝜏$ ≤ 𝜏$,c2 (𝛼), where the value of 𝜏$,c2 (𝛼) is given in 
Eq. (17). 

𝜏$,c2 (𝛼) = .$1(A,!-d)0."
.$1(*."0.$d1)

                                                              (17) 

As shown in Eq. (18), the value of 𝜏$,c2 (𝛼) in Eq. (17) can be represented with the value of 𝜏$,c! (𝛼) in Eq. 
(16). 

𝜏$,c2 (𝛼) = 𝜏$,c! (𝛼) + (."0.$1,!)
.$1(*."0.$d1)

                                                    (18) 

In other words, we know that the unique stationary value of 𝜏$,c! (𝛼) can be considered as the optimal value 
maximizing the system profit while satisfying the concavity condition.  
 

4.2 Optimal return rate (i.e.,𝛼∗) with the given value of 𝜏$ 
In this section, the optimal return rate (i.e.,𝛼∗) is analyzed under the assumption that the value of the deposit 
amount (i.e.,𝜏$) is fixed. Appendix E details the effects of the return rate (i.e.,𝛼) on the profit functions 
since it can be one of the decision variables under the assumption that the deposit amount is arbitrarily 
given. As derived in Appendix E, the values of 𝛼 , which satisfies the first-order optimality condition 
maximizing the retailer’s profit, are obtained as follows: 

𝛼(!(𝜏$) = 1 − )
/#
?
*:,!-."/#<
(%.$02)

− )
.$
@                                                  (19) 

We obtain the stationary value maximizing the corresponding profit functions, except for the vendor’s profit, 
since the vendor’s profit function is a monotonically increasing or decreasing function. Furthermore, from 

Eq. (19), we note that the inequality of ,81
!(/#)
,/#

= T(1 − 𝛼(!) +
*."

(%.$02)
U 𝜏$V > 0 is always satisfied if 

𝛼(!(𝜏$) < 1 . In addition, the stationary value of 𝛼  satisfying the first-order optimality condition for 
maximizing the system profit is derived as seen below: 

𝛼c!(𝜏$) = 1 − ?
*$:,!-."/#<
:/#.$%2$-2;,<

− )
.$/#

@ , where 𝑎c = 𝑎 + 𝑏 B𝑝! −
;+0;,
$
C               (20) 

Also, from Eqs. (19) and (20), the retailer’s return policy is identical to the one for maximizing the system 
profit, i.e., 𝛼(!(𝜏$) = 𝛼c!(𝜏$) when the following condition in Eq. (21) could be satisfied.  

𝑝! =
)
$
T6𝑐& + 𝑐+8 +

;,
.$/#

U + )
.$

                                                     (21) 

In other words, if the vendor’s wholesale price is determined as presented in Eq. (21), then the retailer’s 
return policy is the same as in the situation where the system profit can be maximized. As explained in 
Appendix E, we note that the first-order optimality condition of 𝛼 for maximizing the vendor’s profit in Eq. 
(E.1) is the same as the condition for making the retailer’s preference identical to one for the return rates 
considering a system perspective. Thus, in a case where the deposit is arbitrarily given, it is possible to 
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make all supply chain actors profitable at the same time if the wholesale price (i.e.,𝑝!) is set as presented 
in Eq. (21).   

 

5. Numerical analyses 
In this section we provide several illustrative examples that apply the developed models, considering both 
demand-related and RTI-related parameters. This is followed by sensitivity analyses characterizing system 
behaviors when the values of key factors change. As presented up to now, there are a lot of parameters to 
determine the optimal deposit such that we assume the situation where there is no restriction on the value 

of 𝜃"#%' , i.e., 𝜃"#%' = ∞, because the value of 𝜏$,,!
#%'  could be used to ensure a non-negative customer 

demand rate. Hereafter, Please note that the following sections will be developed with a set of illustrative 
parameters.  
 
 
5.1 Illustrative examples 
We will use the parameters shown in Table 2 to develop the illustrative examples. These values can be 
referred to as a real case in the sector of automotive parts distribution, in particular in this case the RTI are 
referred to as returnable packaging racks for shipping casted brake disks. RTI are metal racks with wheels 
to facilitate the manual movement of the racks within the facility. The RTI are used to store and transport 
semifinished casted brake disks at the foundry which is a second-tier automotive supplier, then RTI are used 
to ship the products to the first-tier automotive supplier that is in charge of assembling the entire disk brake 
system. In this case, 𝑝!𝑞 ≫ 𝑐&, i.e. 3000≫ 20. In other words, the procurement cost for a single RTI is 
negligible compared with the vendor’s sales revenue per unit RTI. This situation can be referred to as a 
vendor-driven supply chain. Thus, a vendor would be indifferent to the amount of the deposit since s/he 
could guarantee a larger revenue by decreasing the retail price as much as possible (i.e., indeed zero deposit). 
We structure our analysis analogous to Sections 4.1 and 4.2 for studying the possible interactions between 
the value of the deposit amount (i.e.,𝜏$) and the return rate (i.e.,𝛼). We proceed with an analysis of the 
optimal deposit amount when the return rate is given, followed by the optimal return rate when the deposit 
amount is given since those are the two key parameters for managing the circulation of RTI.  

 
 

Table 2: Data for Illustrative Examples 
Demand-related parameters RTI-related parameters 

𝑎 𝑏 𝑐) 𝑐* 𝑝! 𝜃# 𝑞 𝛽 𝑐% 𝑐& 𝑐" 𝛼 
500 0.5 10.0 5.0 30.0 0.05 100 0.1 0.1 20 0.2 0.9 

 

5.1.1 Optimal deposit amount (i.e.,𝜏$∗) with a given value of 𝛼  
Using the data in Table 2, we first obtain the patterns of corresponding profit functions for a vendor, a 
retailer, and the overall system, as shown in Figure 2. As derived in Section 4, the properties of the optimal 
deposit amount can be different from each other according to whether the positivities of both 𝑐) and 𝑐*—
these are the parameters that determine the retail price. In other words, as presented in Figure 2, there are 
several different patterns of profit functions in 𝜏$  such that the optimal value of 𝜏$  can be explicitly 
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obtained. As summarized in Table 3, the optimal value of the deposit amount is significantly larger 
compared to the cases when the return rate (i.e.,𝛼) is not considered in determining the retail price. However, 
if the return rate is valid in determining the retail price, i.e.,𝑐* > 0, the optimal deposit amount maximizing 
the corresponding profit is lower than the value for Case 1). We can also see that the values of 𝜏$∗   become 
lower as we consider more parameters in formulating the retail price. In other words, the case with two 
parameters, i.e., 𝑐) and 𝑐*, has the lowest deposit amount in comparison to the other cases.  

 
(a) Vendor’s profits 

 
(b) Retailer’s profits 
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(c) System profits 

Figure 2: Profit profiles in 𝜏$ (with the data in Table 2) 
 

As shown in Table 3, there are no significant differences in obtainable profits between Model-R and Model-
S. However, there are noticeable changes in profits for all parties if Model-V is deployed. In other words, 
the vendor’s revenue with a single unit of RTI (i.e., 𝑝! ∙ 𝑞) is extremely larger than the procurement cost 
for one RTI unit(i.e.,	𝑐&). In addition, Model-V shows the same results regardless of the retail pricing 
mechanism. In other words, the vendor’s profit could have no effects from the pricing schemes by setting 
the value of the unit deposit to zero since the wholesale price is significantly large as explained earlier for 
Eqs. (8) and (9).  

 
 

Table 3: Details for the optimal deposit policy with illustrative example data  
Case Model-V Model-R Model-S 

Case 1) 
Deposit-based 

Pricing 

𝜏3,45∗ = 𝜏3,47∗  
= 𝜏3,48∗ = 0.0 

(Decreasing profit  
function in 𝜏3) 

𝜋*=14,438.8 
𝜋+=15,253.9. 
𝜋,=29,692.7 

𝜏3,95∗ = 46.8341 𝜏3,:5∗ = 45.3592 

𝜋*= 8,627.8 
𝜋+=123,828.8 
𝜋,=132,456.6 

𝜋*=8,844.3 
𝜋+=123,721.1 
𝜋,=132,565.4 

Case 2) 
Performance-
based Pricing 

𝜏3,97∗ = 3.7449 𝜏3,:7∗ = 3.5237 

𝜋*=7,550.9 
𝜋+=124,906.3  
𝜋,=132,457.2 

𝜋*=7,767.2 
𝜋+=124,798.2 
𝜋,=132,565.4 

Case 3) 
Cost-Performance 

Pricing 

𝜏3,98∗ = 3.4680 
(𝜏3,98; = 7.2014) 

𝜏3,:8∗ = 3.2697 
(𝜏3,:8; = 6.9045) 

𝜋*=7,543.5 
𝜋+=124,913.3 
𝜋,=132,456.8 

𝜋*=7,760.6 
𝜋+=124,804.7 
𝜋,=132,565.4 

 
Regarding the previously introduced case of racks for shipping casted brake disks, the vendor aims at 
reducing as much as possible the deposit, while the optimal deposit for maximizing supply chain profit is 
very close to the one to optimize the retailer profit. 
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In addition, we study the results for different values of 𝑝!= 2 and 𝑞= 10, representing a low wholesale price 
and a small RTI capacity, respectively, for assessing other system behaviors. These modified values can be 
referred to as a real case in the sector of beer distribution, in particular in this case the RTI are referred to 
as beer crates for 10 x 0,33 l bottles. The beer crate is personalized with the colors and name of the beer 
producer and the value of the crate is comparable to that of the goods it holds, i.e. in this case,  𝑝!𝑞 = 𝑐&,  
i.e. 20 = 20. This situation can be referred to as a retailer-driven supply chain. In this case, the vendor’s 
sales revenue with a single RTI is indeed identical to the procurement cost of a unit RTI. In this modified 
scenario, as shown in Figure 3 and Table 4, the vendor’s profit functions have a completely different pattern 
when compared to the ones presented in Figure 2 when the wholesale price is very low (compared to the 
procurement cost for one RTI unit), as explained in Section 4.1.1. As such, the vendor seeks to determine 
the optimal value of the deposit amount to maximize their profit while managing the economic burden 
associated with the RTI, i.e., procurement, inspection, and repair. As explained in Section 4.1.1, the overall 
pattern of the vendor’s profit function changes according to whether the inequality of 𝑝! ≤ 6𝐾$ + 𝛿*-)8 is 
satisfied or not. In the given illustrative examples, the value of 6𝐾$ + 𝛿*-)8  is evaluated as 2.2308, 
rendering 𝑝! ≤ 6𝐾$ + 𝛿*-)8 as not satisfied since 𝑝!= 2.  
 

 
(a) Vendor’s profits 

 
(b) Retailer’s profits 
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(c) System profits 

Figure 3: Profit profiles in 𝜏$ with 𝑝!=2 and 𝑞 = 10  
 
As presented in Table 4, the vendor’s profit is insignificantly smaller than other parties for all cases. In 
addition, there are no differences in profits between Model-R and Model-S. In other words, the lower 
wholesale price has no significant effect on the performance in terms of the corresponding profits. In this 
case, the retailer has more significant influence in developing the system profit.  
 

Table 4: Details of the optimal deposit policy with 𝑝!=2 and 𝑞 = 10 
Case Model-V Model-R Model-S 

Case 1) 
Deposit-based 

Pricing 

𝜏3,45∗ = 49.0490 𝜏3,95∗ = 49.7889 𝜏3,:5∗ = 49.7815 

𝜋*= 1,287.3 
𝜋+=123,728.1 
𝜋,=125,015.5 

𝜋*=1,287.1 
𝜋+=123,755.3 
𝜋,=125,042.3 

𝜋*= 1,287.1 
𝜋+= 123,755.2 
𝜋,=125,042.3 

Case 2) 
Performance-based 

Pricing 

Increasing profit 
 function in 𝜏3 

𝜏3,97∗ = 3.9800 𝜏3,:7∗ = 3.9818 

𝜋*=141.9 
𝜋+=124,900.4 
𝜋,=125,042.3 

𝜋*=141.9 
𝜋+=124,900.4 
𝜋,=125,042.3 

Case 3) 
Cost-Performance 

Pricing 

𝜏3,48∗ = 11.4773 
𝜏3,98∗ = 3.6857 
(𝜏3,98; = 7.5280) 

𝜏3,:8∗ = 3.6869 
(𝜏3,:8; = 7.5304) 

𝜋*=150.3 
𝜋+=87,941.7 
𝜋,=88,092.0 

𝜋*=134.5 
𝜋+=124,907.8 
𝜋,=125,042.3 

𝜋*=134.5 
𝜋+=124,907.8 
𝜋,=125,042.3 

 
Concerning the previously introduced case of the beer crate, the vendor to optimize its profit aims at a 
specific deposit that is three times higher than the optimal deposit for maximizing retailer profit that is very 
close to the one to optimize the supply chain profit. Generally speaking, there are no noticeable changes in 
the corresponding profit according to the owner of the RTI-related decision-making. In other words, the 
adopted retail pricing scheme has a strictly significant impact on the obtainable profits.  
 
5.1.2 Optimal return rate (i.e.,𝛼∗) with a given value of 𝜏$ 
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This section analyzes illustrative numerical examples for the optimal return rate as studied in Section 4.2. 
For purposes of this illustration, the value of the deposit for a single RTI (i.e.,𝜏) is assumed to be given as 
50. As explained earlier, the value of the deposit for a single unit of finished goods (i.e.,𝜏$) can be different 
based on the value of the handling capacity for a single RTI (i.e.,𝑞). We develop the corresponding profit 
function based on the value of the return rate (i.e.,𝛼) while fixing other parameters as constant with three 
different values of 𝑞 (i.e., 100, 50, and 10). As presented in Figure 4, the vendor’s profit function is an 
increasing function in 𝛼, such that it is straightforward to determine the optimal return rate if values of both 
𝜏$ and 𝑞 are given. However, as explained above, the optimal return rate that maximizes the retailer’s profit 
and the system profit needs to be carefully established. The optimal values of 𝛼 are obtained as 𝛼(∗= 0.2590 
and 𝛼c∗= 0.3031 when the value of 𝑞 is given as 100, while 𝛼(∗= 0.6335 and 𝛼c∗= 0.6553 are obtained for 𝑞= 
50. As seen in Figure 4, the vendor has a strict policy in determining the optimal return rate as the profit 
function must be an increasing function in 𝛼. As such, the vendor desires the value of the unreturned rate 
of used RTI to be either 0 or 1, based on the pattern of the profit function. As demonstrated in Appendix E, 
the value of the wholesale price (i.e.,𝑝!) can be a significant measure of the patterns in the vendor’s profit 
function. Thus, with the fixed value of 𝜏$, the vendor’s profit function tends to be a decreasing function 
when the value of 𝑞 increases. Also, as presented in Figure 4, there are similar patterns in both the retailer’s 
profit and the system’s profit when the value of the return rate changes. Furthermore, there are more rapid 
changes in both cases when the value of 𝑞 becomes less. Thus, the value of 𝛼∗ increases as the value of 𝑞 
changes in sequence from 100 to 50 and 10. We note that the profit function is closely dependent on the 
return rate based on the given deposit amount. A critical consideration is also sustainable RTI operations, 
which are dependent on the design of the RTI and the economical RTI capacity.  

 
(a) Vendor’s profits 
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(b) Retailer’s profits 

 
(c) System Profits 

Figure 4: Profit profiles in 𝛼	(with the data in Table 2) 

 

5.2 Sensitivity analyses 
In this section, we investigate the effects of three key parameters on the profits of the vendor, the retailer, 
and the system overall. The first factor we consider is the retail price structure, i.e., 𝑐) and 𝑐*, which is 
discussed in Section 5.2.1. As a second factor, we investigate price sensitivity (i.e.,𝑏) and its impact on 
profits, while considering other parameters as fixed, which is done in Section 5.2.2. Obtaining insight into 
these factors seems prudent since both the retail price structure and price sensitivity influence the product’s 
demand rate, which in turn triggers RTI requirements. As a last factor look at the return rate (i.e.,𝛼) and its 
impact on profits, which we do in Section 5.2.3. We expect useful insight to be derived from this sensitivity 
analysis since the return rate is a key determinant for further RTI requirements. Please note that the 
following works would be done using the parameter values in Table 2 while selectively changing the values 
of the parameter to be analyzed.  
 
5.2.1 The effects of the retail price structure (i.e.,𝜹𝟏 and 𝜹𝟐) on the profit functions 
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We first investigate the sensitivity of the parameters (i.e., 𝛿) and 𝛿*) to profit functions, using a fixed value 
of 𝑞 = 100. As defined above, three different cases are considered for which the sensitivity analyses are 
performed by changing the values of 𝛿) and 𝛿* according to the given case. Specifically, for Case 1), the 
values of 𝛿) are given as 2.0, 6.0, and 10.0; for Case 2) the values of 𝛿* are given as 5.0, 15.0, and 25.0; 
for Case 3) the value of 𝛿* is given as 2.5 and the value of 𝛿) changes as done for Case 1). As presented in 
Figure 5, the profit functions for Case 1) vary significantly as the value of 𝛿) gradually changes. However, 
in other cases, the patterns of the profit function themselves do not change noticeably when the parameters 
of 𝛿) and 𝛿* change. Above all, the optimal value of 𝜏$ maximizing the retailer’s and the overall system’s 
profit seems to be invariant with different values of 𝛿) in Case 3). 
 

 
(a) Case 1: Deposit-based Pricing 

 
(b) Case 2: Performance-based Pricing 



21 

 

 

(c) Case 3: Cost-Performance Pricing 
Figure 5: Profit profiles in 𝜏$ with given values of 𝛿) and 𝛿* (𝛼=0.9 and 𝑏=0.5) 

 
5.2.2 The effects of the price sensitivity (i.e., 𝒃) on the profit functions 
We now investigate the effects of changes in price sensitivity (i.e.,𝑏 ), since it can be a significant 
determinant for the needed RTI requirements. We consider two different values of 𝑏 (i.e., 0.5 and 0.1) and 
a fixed value of 𝑞= 100, together with the other parameters in Table 2. The results are presented in Figure 
6. When comparing these profit function patterns to Figure 5, the changes in 𝑏  across identical 
cases(considering both 𝛿) and 𝛿*) can be observed. One noticeable change is when the value of 𝑏	changes 
from 0.5 to 0.1 i.e. when the customer demand is less sensitive to retail price changes. As can be seen in 
Figure 6, the drops in profits across the three cases seem to be less significant as the value of the deposit 
becomes larger. In addition, we observe that the vendor can increase the deposit amount since the consumers 
are less sensitive to increments in the retail price when the return rate is not considered.  

 
(a) Case 1: Deposit-based Pricing 
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(b) Case 2: Performance-based Pricing 

 

(c) Case 3: Cost-Performance Pricing 
Figure 6: Profit profiles in 𝜏$ with given values of 𝛿) and 𝛿* (𝛼=0.9 and 𝑏=0.1) 

 
5.2.3 The effects of the return rate (i.e., 𝛼) on the profit functions 
In a third set of sensitivity analyses, we consider the return rate (i.e.,𝛼), which is a key operational 
characteristic in yielding profits for the vendor, the retailer, and the system overall. We obtain the profit 
function patterns by changing the value of 𝛼 from 0.9 to 0.5 such that the return rate is reduced. When 
comparing Figure 5 (where all plots were developed with the value of 𝛼= 0.9) with Figure 7, we can see 
that the profit functions in Case 1) do not change since the return rate is not considered. However, we 
observe that the profit functions for both Case 2) and Case 3) have a similar pattern. We can thus conclude 
that the profit effects of 𝛿)  become insignificant as the return rate reduces when the value of 𝛿*  is 
considered. As such, there are no noticeable gaps among the profit functions with different values of 𝛿) and 
𝛿*.  
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(a) Case 1: Deposit-based Pricing 

 
(b) Case 2: Performance-based Pricing 

 

(c) Case 3: Cost-Performance Pricing 
Figure 7: Profit profiles in 𝜏$ with given values of 𝛿) and 𝛿* (𝛼=0.5 and 𝑏=0.5) 

 
As shown in this section, it is noted that there would be an influence on profit profiles when either the return 
performance(i.e., 𝛼) or the price sensitivity(i.e., 𝑏) changes. Thus, it would be necessary to establish the 
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decisions considering the given operating environment, such as the operational performance, and the 
customer’s perception of the changes in the retail price, in a sophisticated manner.  
 
6. Managerial insights and implications 

An extensive analysis has been conducted, investigating into a variety of real-world cases that can be 
categorized as either vendor-driven or retailer-driven, depending upon the settings of the wholesale price, 
container price, and capacity variables. Through this analysis, it has been elucidated that the significance 
of the vendor's position within these scenarios hinges upon subtle differentiations in the relative worth 
between the RTI and the goods it contains, underscoring the multifaceted nature of their relationship and 
its implications on supply chain dynamics. In the case of a vendor-driven supply chain, the vendor aims at 
reducing as much as possible the deposit, while the optimal deposit for maximizing supply chain profit is 
very close to the one to optimize the retailer profit. In the case of retailer-driven system, the retailer’s overall 
behaviors are so similar to ones for maximizing the system profits. Therefore the vendor wants to optimize 
its profit by aiming at a specific deposit higher than the optimal deposit for maximizing retailer profit, 
which is very close to the one to optimize the supply chain profit.  As general findings, it should be noted 
that the optimal return rate that maximizes the retailer’s profit and the system profit needs to be carefully 
established since the profit function is closely dependent on the return rate based on the given deposit 
amount. Furthermore, an essential factor to consider critically is the sustainability of  RTI operations, a 
facet reliant upon both the configuration of the RTI and their economic capacity. Sustainable RTI operations 
hinge not only on the initial design of the systems but also on their ongoing economic viability, emphasizing 
the importance of meticulous planning and resource allocation to ensure their long-term effectiveness. 

 

7. Concluding remarks 

We developed a profitable deposit-refund system for the circulation of RTI  to maximize the supply chain 
actor’s corresponding profitability in a single-vendor-single-retailer supply chain system. A retailer is 
assumed to determine the retail price with the cost-plus pricing policy when the deposit-refund system is 
used to circulate the RTI. Under the cost-plus pricing scheme, three different and optional profit functions 
were considered to study the effects of RTI-related parameters, including the deposit amount and the RTI 
return rate, and to determine optimal policies under different retail price structures. Specifically, we 
investigated what the optimal deposit amount should be to maximize the RTI return rate, what the effect of 
the retail price (which includes the deposit amount) is on the supply chain actors’ profits given the RTI 
return rate, and what the supply chain actors’ profit patterns are based on changes in the retailer’s return 
performance of the used RTI. The contributions of this work are three-fold. First, we developed solution 
mechanisms for the three cases based on the composition of the retail price. A key finding included that the 
vendor’s wholesale price (i.e.,𝑝!) plays a significant role in determining the decision-maker’s optimal 
policy in designing a DRS for RTI. Second, based on the numerical analyses, we observed that the pricing 
based on the return performance (i.e., (i.e.,𝑢() would be more significant in determining the value of the 
deposit than the pricing with the unit deposit cost (i.e.,𝜏$), since it is directly related to the return rate. The 
vendor’s profit function was able to be determined straightforwardly for most cases, based on the amount 
of the wholesale price, while other profit functions were more complex in their structure and even in the 
optimal deposit amount. Thus, it would be also interesting work to determine the vendor’s wholesale price 
in designing the sustainable and profitable closed-loop supply chain. And third, we identified the retailer’s 
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profit function to be similar to the system’s profit in most cases. It thus seems prudent to maximize the 
retailer’s profit as it would lead to a maximization of the overall system profit as well.  
 
Despite these contributions, our work is not void of limitations. First, in modeling the supply chain, we 
considered a single retailer. Future research should seek to develop a model with multiple retailers that can 
share RTI between themselves. Considering the multiple heterogeneous characteristics of retailers (e.g., 
demand structures, cost factors, return rates) would be a worthwhile extension of our work. In other words, 
there would be some unavoidable conflicts in establishing the deposit-refund system, which is commonly 
applied to multiple retailers. Thus, it would be valuable to develop a stable and satisfactory deposit-refund 
system for accelerating the adoption of RTI sharing for multiple retailers. Secondly, this work was based 
on the development of our models on static parameters, which included the return rate and the demand. 
Surely, it is also necessary to study the effects of variability in those key factors on the robust deposit-refund 
system circulating the RTI for a sustainable supply chain. Also, in this work, we did not explicitly define 
the customer’s willingness-to-pay when the deposit cost is imbursed on the retail price. Thus, as a valuable 
extension of this work, it is necessary to incorporate the customer’s willingness-to-pay for adopting the 
profitable deposit-refund system. As a result, future research is encouraged to extend our work by studying 
the stochastic dynamics of RTI-related operations for the design of the deposit-refund system. Finally, a 
possible extension of this work can consider a situation where RTI can be reused only a finite number of 
times, i.e. according to [28] which considered items with a finite number of recycling. 
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Appendix A: A feasibility condition of 𝜏$ 

There would be two conditions to be satisfied to keep the relevance of the value of 𝜏$ for the developed 

model. The first condition is needed to satisfy the non-negative demand rate in Eq. (3), i.e., 𝐷 = ?
,!-."/#
)0.$/#1

@. 

From Eq. (3), the following condition of 𝜏$ could be derived as shown in Eq. (A.1). 

𝜏$ ≤ 𝜏$,,!
#%' = B,!

."
C                                                            (A.1) 

And, the second condition is to establish the feasible value of 𝜏$ within the customer’s acceptable burden 
for a deposit, i.e., 𝜃"#%', as shown in Eq. (A.2).  

𝜃" = 6𝑐)𝜏$ + 𝑐*𝜏$𝜌𝐷8 ≤ 𝜃"#%', where 𝐷 = ?
,!-."/#
)0.$/#1

@                        (A.2) 

From the condition in Eq. (A.2), the following condition of 𝜏$ is further developed as presented in Eq. 
(A.3). 

𝜏$ ≤ 𝜏$,4&
#%' = 4&%'(

:;"01;$(,!-4&%'(2)<
                                                 (A.3) 

As a result, the feasibility condition of 𝜏$ would be developed as follows: 

0 ≤ 𝜏$ ≤ 𝜏$#%' = 𝑚𝑖𝑛	(𝜏$,,!
#%' , 𝜏$,4&

#%')                                          (A.4) 
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Appendix B: Properties of the vendor’s profit function, i.e., 𝜋>(𝜏$|𝛼) 

First, from Eq. (7), the first-order derivative of 𝜋>(𝜏$|𝛼) in 𝜏$ can be derived as seen in Eq. (B.1). 
6F*(/#|8)

6/#
= 67

6/#
6𝑝! + 𝜏$𝜌 − 𝐾$8 + 𝐷𝜌 = −T

.".$1$/#$0*."1/#-C,!1-(."0.$,!1):&!-?#<D

:)0.$/#1<
$ U   (B.1) 

With this, the following condition is satisfied to keep the first-order optimality condition, i.e., -.!(0"|2)
-0"

= 0: 

𝛿)𝛿*𝜌*𝜏$* + 2𝛿)𝜌𝜏$ − B𝑑!𝜌 − (𝛿) + 𝛿*𝑑!𝜌)6𝑝! − 𝐾$8C = 0                    (B.2) 

In addition, the equation of 6
$F*(/#|8)
6/#

$  can be derived as follows: 

6$F*(/#|8)
6/#

$ = 6$7
6/#

$ 6𝑝! + 𝜏$𝜌 − 𝐾$8 + 2𝜌
67
6/#

=
*.$1(."0.$,!1)C&!-:?#0.$<"<D

:)0.$/#1<
=         (B.3) 

As presented in Eqs. (B.2) and (B.3), the optimality condition for maximizing the vendor’s profit can be 
differently developed according to the signs of both 𝛿) and 𝛿*, which are defined as the key determinants 
of the retail price.  

 
Case V1) Deposit-based Pricing (i.e., 𝜃" = 𝑐)𝜏$) 
The first-order optimality condition in Eq. (B.2) can be further simplified as seen in Eq. (B.4) when the 
retail price is unrelated to the unredeemed deposit (i.e., 𝑢(), i.e., 𝑐* = 0. 

2𝛿)𝜌𝜏$ − 𝑑!𝜌 + 𝛿)6𝑝! − 𝐾$8 = 0                                             (B.4) 



29 

 

And then, from Eq. (B.4), the optimal deposit maximizing the vendor’s profit is obtained as follows: 

𝜏$,>)! (𝛼) = )
* ?𝜏$,,!

#%' −
:&!-?#<

1 @ , where 𝜏$,,!
#%' = B,!

."
C                          (B.5) 

Furthermore, from Eq. (B.1), the second-order derivative can be obtained as shown in Eq. (B.6) in case that 
𝛿* = 0. 

6$F*(/#|8)
6/#

$ = −2𝛿)𝜌 < 0                                                          (B.6) 

This means that the vendor’s profit function is strictly concave in 𝜏$ if 𝛿) > 0 and 𝛿* = 0. In addition, from 

Eq. (B.5), it is known that the inequality of 
,/#,*"

! (8)
,8

= &!-:;+0;,< $⁄
*()-8)$

> 0 is always valid such that a vendor 

wants to increase the value of the deposit amount as the return rate increases if 𝑝! > 6𝑐& + 𝑐+8 𝑞⁄ =

B𝐾$ +
;,1
$
C.  

 

Case V2) Performance-based Pricing (i.e., 𝜃" = 𝑐*𝑢() 

The equation of 6F*(/#|8)
6/#

 in Eq. (B.2) can be simplified based on the condition of 𝑐) = 0	:  

6F*(/#|8)
6/#

= −T
,!1.$C&!-:?#0.$<"<D

:)0.$/#1<
$ U ≥ 0 if 𝑝! ≤ 6𝐾$ + 𝛿*-)8                   (B.7) 

Further, we know that there is no stationary point satisfying the first-order optimality condition in Eq. (B.7), 

i.e., 6F*(/#|8)
6/#

= 0. As noted in Eq. (B.7), the function of 𝜋>(𝜏$|𝛼) is an increasing function of 𝜏$ if the 

wholesale price, i.e., 𝑝!, satisfies the given condition, i.e., 𝑝! ≤ 6𝐾$ + 𝛿*-)8. Note that the value of 𝐾$ 
represents the unit handling cost of an RTI per item to be sold and 𝛿*  denotes the sensitivity of the 
unredeemed deposit, i.e., 𝑢( = 𝜏(1 − 𝛼)𝐷(. With this, it is necessary to check the additional condition 
which makes the profit function concave in 𝜏$ for the cases considered. Specifically, from Eq. (B.3), the 
condition for a concave profit function to be obtained is shown in Eq. (B.8).  

6$F*(/#|8)
6/#

$ =
*1$,!.$$C&!-:?#0.$<"<D

:)0.$/#1<
= ≤ 0 if 𝑝! ≤ 6𝐾$ + 𝛿*-)8                   (B.8) 

Thus, the vendor’s profit function can be either a concave or a convex function based on whether the 

inequality condition of 𝑝! ≤ 6𝐾$ + 𝛿*-)8 is satisfied. As a result, according to the sign of 6F*(/#|8)
6/#

, the 

value of 𝜏$, which maximizes the vendor’s profit should be determined. In other words, if 𝜋>(𝜏$|𝛼) is an 

increasing function of 𝜏$ , i.e., 6F*(/#|8)
6/#

≥ 0, then the vendor’s profit can be maximized at 𝜏$ = 𝜏$#%' . 

Otherwise, the vendor’s profit is maximized at 𝜏$ = 0 if 6F*(/#|8)
6/#

< 0. 

 
Case V3) Cost-Performance Pricing (i.e., 𝜃" = 𝑐)𝜏$ + 𝑐*𝑢() 
The value of 𝜏$ satisfying the first-order optimality condition in Eq. (B.2) can be obtained as shown in 
Eq. (B.9). 
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𝜏$,>A! (𝛼) =
-."0B."(."0.$,!1)C)-.$:&!-?#<D

.".$1
                                  (B.9) 

As explained in Case V2), from Eq. (B.3), if the condition for a concave profit function, i.e., 𝑝! ≤
6𝐾$ + 𝛿*-)8, is satisfied, then the value of 𝜏$,>A! (𝛼) in Eq. (B.9) is an optimal value maximizing the vendor’s 
profit function. Otherwise, if the condition of 𝑝! ≤ 6𝐾$ + 𝛿*-)8 is not satisfied, then the vendor’s profit 
function can be maximized at one of the available boundary values, i.e., 0 or 𝜏$#%', since the vendor‘s profit 
function is a convex function. Thus, the value of 𝜏$ can be differently established according to whether the 
inequality of 𝑝! ≤ 6𝐾$ + 𝛿*-)8 is satisfied or not as shown in Case V2). Furthermore, it is known that the 
inequality of 𝜏$,>A! (𝛼) ≤ 𝜏$,,!

#%' is always satisfied if the assumption of 𝑝! ≥ 𝐾$ is satisfied as presented 
below: 

𝜏$,>A! (𝛼) ≤ 𝜏$,,!
#%' →

-."0B."(."0.$,!1)C)-.$:&!-?#<D

.".$1
≤ B,!

."
C                 (B.10) 

The inequality in Eq. (B.10) could be further simplified as shown in Eq. (B.11). 

𝜌𝑑! +
.$(1,!)$

."
+ (𝛿) + 𝛿*𝑑!𝜌)6𝑝! − 𝐾$8 ≥ 0                       (B.11) 

As assumed earlier, the inequality in Eq. (B.11) is always valid in cases when 𝑝! ≥ 𝐾$ since the other 
terms are given as nonnegative-valued ones. 

 
Appendix C: Properties of the retailer’s profit function, i.e., 𝜋((𝜏$|𝛼) 

The first-order derivative of 𝜋((𝜏$|𝛼), i.e.,6F1(/#|8)
6/#

, is obtained as shown in Eq. (C.1).  

6F1(/#|8)
6/#

= ? 6&6/#𝐷 + 𝑝
67
6/#

− 𝐷𝜌 − 𝜏$𝜌
67
6/#
@ = 67

6/#
B%-*7

2
− 𝜏$𝜌C − 𝐷𝜌                 (C.1) 

, where 𝑝 = %-7
2

 and ,&
,/#

= − )
2 ?

67
6/#
@ 

Hereafter, as done for the vendor’s profit function in Appendix B, the optimality properties of 𝜋((𝜏$|𝛼) 
are developed according to the signs of both 𝛿) and 𝛿*. 
 
Case R1) Deposit-based Pricing (i.e., 𝜃" = 𝑐)𝜏$)  
In the case where 𝛿) > 0	and	𝛿* = 0, Eq. (C.1) can be re-arranged with the condition of 𝛿* = 0 as 
follows: 

6F1(/#|8)
6/#

= B− ."
2
C T(𝑎 − 2𝑑!) +

21,!
."

+ 2(𝛿) − 𝑏𝜌)𝜏$U                       (C.2) 

With this, the stationary value of 𝜏$,()! (𝛼), which satisfies the first-order optimality condition, can be 
obtained as seen below: 

𝜏$,()! (𝛼) = ."(%-*,!)0,!12
*."(21-.")

=
2C&%'(-/#,0!

%'(1D

*(21-.")
+ 𝜏$#%'                        (C.3) 
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, where 𝜏$,,!
#%' = B,!

."
C and 𝑝#%' = B%

2
C 

 
Furthermore, from Eq. (C.2), the second-order derivative of 𝜋((𝜏$|𝛼) can be derived as seen in Eq. (C.4). 

6$F1(/#|8)
6/#

$ = 2𝛿)(𝜌 − 𝑐)) , where 𝛿) = 𝑏𝑐)                               (C.4) 

Thus, from Eq. (C.4), the retailer’s profit function can be identified as either convex or concave according 
to whether 𝜌 ≤ 𝑐)  or not. As a result, if 𝜌 ≤ 𝑐) , the retailer’s profit function is concave such that the 
stationary point in Eq. (C.3) is a unique optimal point. In addition, if 𝜌 > 𝑐), the retailer’s profit function 
must be a convex function, and the optimal value of 𝜏$ is one of two extreme points, i.e., 𝜏$,()∗ ∈ {0, 𝜏$#%'}. 
 

Case R2) Performance-based Pricing (i.e., 𝜃" = 𝑐*𝑢() 
With the assumption of 𝛿) = 0	and	𝛿* > 0, the first-order derivative of 𝜋((𝜏$|𝛼) is developed as shown 
in Eq. (C.5). 

6F1(/#|8)
6/#

= 67
6/#

B%
2
− *7

2
− 𝜏$𝜌C − 𝐷𝜌 = −

,!1C(.$(%-*,!)02)0.$1(.$%02)/#D

2:)0.$/#1<
=         (C.5) 

With this, the unique stationary value satisfying the condition of 6F1(/#|8)
6/#

= 0 in Eq. (C.5) can be presented 

in Eq. (C.6). 
𝜏$,(*! (𝛼) = .$(*,!-%)-2

.$1(.$%02)
= )

1
B *,!
.$%02

− )
.$
C                                          (C.6) 

Furthermore, from Eq. (C.5), the second-order derivative of 𝜋((𝜏$|𝛼) can be derived as follows.  

6$F1(/#|𝛼)
6/#

$ = −2𝛿* T
,!1$:)0.$/#1<

$

2
UTA.$,!-

(.$%02)-1.$(.$%02)/#
:)0.$/#1<

> U                (C.7) 

Thus, with the condition that ensures the concavity of the retailer’s profit function, i.e., 6
$F1(/#|8)
6/#

$ ≤ 0, the 

value of 𝜏$ should satisfy the following condition: 

𝜏$ ≤ 𝜏$,(*2 (𝛼), where 𝜏$,(*2 (𝛼) = )
1
B A,!
.$%02

− )
.$
C                                 (C.8) 

From Eqs. (C.6) and (C.8), note that the inequality of 𝜏$,(*! (𝛼) ≤ 𝜏$,(*2 (𝛼) is always satisfied such that 
there must be a stationary point satisfying the first-order optimality condition in [0, 𝜏$,(*2 (𝛼)]. In other 
words, it is certain that the stationary value in Eq. (C.6), i.e., 𝜏$,(*! (𝛼), always satisfies the condition for the 
existence of the optimal deposit amount, since the profit function is concave, i.e., 𝜏$,(*! (𝛼) ≤ 𝜏$,(*2 (𝛼). 
Thus, it is necessary to check whether the retailer’s profit function is either a concave increasing function 

or a concave decreasing function at 𝜏$ = 𝜏$,(*2 (𝛼). As shown in Eq. (C.9), the value of 6F1(/#|8)
6/#

 at 𝜏$ =

𝜏$,(*2 (𝛼) is always negative such that the retailer’s profit function is a decreasing function at 𝜏$ = 𝜏$,(*2 (𝛼). 

6F1(/#|8)
6/#

d
/#h/#,1$

?
= -.$,!$1

2:)0.$/#1<
= < 0                                            (C.9) 
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Case R3) Cost-Performance Pricing (i.e., 𝜃" = 𝑐)𝜏$ + 𝑐*𝑢() 
Eq. (C.1) can be further re-arranged when both 𝛿) and 𝛿* are significant as shown in Eq. (C.10).  
 

𝜕𝜋9(𝜏3|𝛼)
𝜕𝜏3

=
𝜕𝐷
𝜕𝜏3

5
𝑎 − 2𝐷
𝑏 − 𝜏3𝜌: − 𝐷𝜌 = ;−

(𝛿5 + 𝑑@𝛿7𝜌)

?1 + 𝛿7𝜏3𝜌@
7AB

𝑎
𝑏 −

2?𝑑@ − 𝛿5𝜏3@
𝑏?1 + 𝛿7𝜏3𝜌@

− 𝜏3𝜌C −
?𝑑@ − 𝛿5𝜏3@𝜌
?1 + 𝛿7𝜏3𝜌@

= ;
𝑧5𝜏38 + 𝑧7𝜏37 + 𝑧8𝜏3 + 𝑧A

𝑏?1 + 𝛿7𝜏3𝜌@
8 A 

(C.10) 
, where 𝑧4 = 𝑏𝛿4𝛿&&𝜌5, 𝑧& = 3𝑏𝛿4𝛿&𝜌&, 𝑧5 = 4(𝛿4 + 𝛿&𝑑'𝜌)(𝑏𝜌 − 2𝛿4 − 𝛿&𝑎𝜌) − (2𝛿&𝑑'𝜌 − 𝛿4)𝑏𝜌9, 

and 𝑧6 = (𝛿4 + 𝛿&𝑑'𝜌)(2𝑑' − 𝑎) − 𝑏𝑑'𝜌 

It is hard to handle the closed-form of 𝜏$, which satisfies the condition of 6F1(/#|8)
6/#

= 0, since Eq. (C.10) 

is the polynomial of degree three when 𝜏$ is set as an unknown variable. Thus, one possibility is to use an 
analytical approach in finding the value of 𝜏$ , for instance via the bi-section method, after having 

investigated the pattern of the retailer’s profit function. Also, the equation of 6
$F1(/#|8)
6/#

$  can be further re-

arranged as follows: 
𝜕7𝜋9(𝜏3|𝛼)

𝜕𝜏3
7 =

𝜕7𝐷
𝜕𝜏3

7 5
𝑎 − 2𝐷
𝑏 − 𝜏3𝜌: −

2
𝑏 B

𝜕𝐷
𝜕𝜏3

C
7

− 2𝜌
𝜕𝐷
𝜕𝜏3

=
2(𝛿5 + 𝛿7𝑑@𝜌) E(𝛿7𝑎𝜌 + 2𝛿5 + 𝑏𝜌)𝛿7𝜌𝜏3 + (𝑎𝛿7 + 𝑏 − 3𝛿7𝑑@)𝜌 − 𝛿5F

𝑏?1 + 𝛿7𝜏3𝜌@
A  

(C.11) 

From Eq. (C.11), it is known that 𝜋((𝜏$|𝛼) is a concave function, i.e., 6
$F1(/#|8)
6/#

$ ≤ 0, if 𝜏$ ≤ 𝜏$,(A2 (𝛼), 

where the value of 𝜏$,(A2 (𝛼) is presented as follows: 

𝜏$,(A2 (𝛼) = (A.$,!-%.$-2)10."
(%.$10*."021).$1

                                                 (C.12) 

In other words, the inequality of 6
$F1(/#|8)
6/#

$ > 0 is always satisfied if 𝜏$ > 𝜏$,(A2 (𝛼). Thus, it is definite that 

𝜋((𝜏$|𝛼) is a concave-convex function with a reflection point of 𝜏$,(A2 (𝛼). As a result, 𝜏$,(A2 (𝛼) can be 
used as the upper bound when we search for the value of 𝜏$ , which satisfies the first-order optimality 

condition, i.e., 6F1(/#|8)
6/#

= 0. So, it is necessary to check the sign of  6F1(/#|8)
6/#

d
/#h!

 to investigate the pattern 

of 𝜋((𝜏$|𝛼) because it is known that the function of 𝜋((𝜏$|𝛼) is a concave-convex function.  

Based on the property that 𝜋((𝜏$|𝛼) is a concave-convex function, we could develop the following rules 

in finding out the optimal deposit for a retailer with the following steps. Above all, the function of 6F1(/#|8)
6/#

 

in Eq. (C.10) can be further simplified with 𝜏$ = 0 as shown in Eq. (C.13). 

6F1(/#|8)
6/#

d
/#h!

= (."0.$,!1)(*,!-%)
2

− 𝑑!𝜌                                  (C.13)  
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Thus, we can say that the function of 𝜋((𝜏$|𝛼)  is an increasing function at 𝜏$ = 0  if the following 
condition is satisfied: 

6F1(/#|8)
6/#

d
/#h!

> 0 → 𝜌 < ."(*,!-%)
,!:2-.$(*,!-%)<

                                    (C.14) 

As a result, according to the return performance, i.e., 𝜌 = (1 − 𝛼), the retailer’s profit function has a 
different pattern as shown in Eq. (C.14). Thus, we can say that the value of 𝜏$ maximizing the retailer’s 

profit exists between 0 and 𝜏$,(A2 (𝛼) if the condition in Eq. (C.14) is satisfied. Otherwise, if 𝜕𝜋𝑅(𝜏𝑞|8)
𝜕𝜏𝑞

d
/#h!

<

0, the boundary values of 𝜏$ , i.e., 0 and 𝜏$#%' , should be selected as an optimal value of 𝜏$ , since the 
retailer’s profit function can be maximized at the available extreme points.  

 

 
Appendix D: Properties of the system profit function, i.e.,𝜋c(𝜏$|𝛼) 

From the function of 𝜋c(𝜏$|𝛼) in Eq. (15), the first-order derivative, i.e.,6F2(/#|8)
6/#

, can be presented as 

follows: 
6F2(/#|8)

6/#
= 67

6/#
B𝑝! − 𝐾$ +

%-7
2
C − 7

2
67
6/#

= 67
6/#

:2:&!-?#<0%-*7<
2

                (D.1) 

Note that there is no need to categorize the possible cases according to the signs of 𝛿) and 𝛿*, since some 

cost terms are void when it comes to the system profit. Thus, the stationary value satisfying 6F2(/#|8)
6/#

= 0 

can be arranged as seen in Eq. (D.2). 

𝜏$,c! (𝛼) = *,!-d
*."0.$d1

 , where 𝜑 = 𝑏(𝑝! − 𝐾$) + 𝑎                              (D.2) 

From Eq. (D.2), it is known that the condition of 𝜑 ≤ 2𝑑! should be satisfied to ensure that the value of 

𝜏$,c! (𝛼) is non-negative. In addition, the function of 6
$F2(/#|8)
6/#

$  can be further presented as follows: 

𝜕&𝜋,(𝜏(|𝛼)
𝜕𝜏(

& =
𝜕&𝐷
𝜕𝜏(

& >
4𝑝' −𝐾(9𝑏 + 𝑎 − 2𝐷(𝜏( , 𝛼)

𝑏 @ −
2
𝑏 >

𝜕𝐷
𝜕𝜏(

@
&

=
2(𝛿4 + 𝛿&𝑑'𝜌)

𝑏41 + 𝛿&𝜏(𝜌9
6 A𝛿&𝜑𝜌 − 3𝛿&𝜌𝑑' − 𝛿4 + 𝛿&𝜏(𝜌(𝛿&𝜌𝜑 + 2𝛿4)C 

(D.3) 

Thus, under the condition that the concavity of the system’s profit function is assured, i.e.,6
$F2(/#|8)
6/#

$ ≤ 0, 

the value of 𝜏$ should satisfy the following: 

𝜏$ ≤ 𝜏$,c2 (𝛼), where 𝜏$,c2 (𝛼) = .$1(A,!-d)0."
.$1(*."0.$d1)

                                      (D.4) 
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From Eq. (D.4), it is also shown that the function of 𝜋c(𝜏$|𝛼) is a concave-convex function, which can be 

characterized by the value of 𝜏$,c2 (𝛼). Also, it is necessary to check the sign of 6F2(/#|8)
6/#

d
/#h!

 to obtain the 

details as captured in Eq. (D.5). 

6F2(/#|8)
6/#

d
/#h!

= (."0,!.$1)(*,!-d)
2

> 0 if 𝜑 ≤ 2𝑑!                                  (D.5) 

It is also noted that the condition of 6F2(/#|8)
6/#

d
/#h!

> 0 in Eq. (D.5) is identical to the one for a positive 

value of 𝜏$,c! (𝛼) in Eq. (D.2). Thus, when the inequality of 𝜑 ≤ 2𝑑!  is satisfied, we can say that the 
function of 𝜋c(𝜏$|𝛼) is an increasing function at 𝜏$ = 0 from Eq. (D.5), having a positive stationary value 

of 𝜏(,,' (𝛼) as shown in Eq. (D.2). Also, one additional property of 𝜋c(𝜏$|𝛼) is the sign of 6F2(/#|8)
6/#

d
/#h/#,2

?
 , 

which we need to check the pattern of 𝜋c(𝜏$|𝛼) using 𝜏$,c2 (𝛼) in Eq. (D.4).  
 

6F2(/#|8)
6/#

d
/#h/#,2

?
= 67

6/#
? ,!.$10."
2.$1:)0.$/#1<

@ = − (."0,!.$1)

:)0.$/#1<
$ ?

,!.$10."
2.$1:)0.$/#1<

@ < 0          (D.6) 

From Eqs. (D.5) and (D.6), it is said that there is a unique stationary value of 𝜏$,c! (𝛼) maximizing the value 
of 𝜋c(𝜏$|𝛼) if a positive value of 𝜏$,c! (𝛼) exists with the condition of 𝜑 ≤ 2𝑑!. As shown in Eq. (D.2), if 
𝜑 > 2𝑑!, then the function of 𝜋c(𝜏$|𝛼) has a negative stationary point and a downward slope at 𝜏$ = 0, 

i.e., 𝜏$,c! (𝛼) < 0 and 6F2(/#|8)
6/#

d
/#h!

< 0. Thus, the value of 𝜏$ = 0 is the optimal value for maximizing the 

function of 𝜋c(𝜏$|𝛼) since it has a single and unique stationary point as shown in Eq. (D.2). Indeed, the 
inequality condition of 𝜑 ≤ 2𝑑! can be re-arranged as the condition of 𝑝! as shown in Eq. (D.7).  
 

𝜑 ≤ 2𝑑! → 𝑝! ≤
%02?#

2(*4%0A)
                                              (D.7) 

As a result, the pattern of 𝜋c(𝜏$|𝛼) is characterized according to the value of 𝑝! and other given parameters, 
including the unit handling cost of RTI(i.e.,	𝐾$) and the mark-up rate(i.e.,	𝜃#). 

 

 

Appendix E: Effects of the return rate on the profit functions 

In this section, we study how the return rate affects the profit functions under the condition that the value 
of the deposit is given. As assumed earlier, the unredeemed deposit amount is a component influencing the 
retail price such that the return rate is a critical factor in calculating it. Thus, we consider only the case 
where 𝑐* > 0, because the retail price (or equivalently, the profit functions) is not dependent on the return 
rate if 𝑐* = 0. 
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[E1] The effects of return rates on the vendor’s profit 
We need to investigate the effect of 𝛼 on 𝜋>(𝛼|𝜏$) since the return rate of used RTI to the vendor for 

subsequent deliveries is critical. Thus, the first-order derivative of 𝜋>(𝛼|𝜏$), using the equality of 67
68
=

?
.$/#

)0.$/#1
@𝐷 concerning 𝜌, can be composed as follows: 

𝜕𝜋4(𝛼|𝜏3)
𝜕𝛼 =

𝜕𝐷
𝜕𝛼 ?𝑝@ + 𝜏3𝜌 − 𝐾3@ − 𝐷B𝜏3 +

𝑑𝐾3
𝑑𝛼 C = 𝐷I

𝛿7𝜏3?𝑝@ + 𝜏3𝜌 − 𝐾3@
?1 + 𝛿7𝜏3𝜌@

− 5
𝜏3𝑞 + 𝑐B

𝑞 :L

= 𝐷I
𝛿7𝜏3 E𝑞𝑝@ − ?𝑐C + 𝑐B@F − ?𝜏3𝑞 + 𝑐B@

?1 + 𝛿7𝜏3𝜌@𝑞
L 

(E.1) 

, where 𝐾$ =
;+0;,8

$
 and ,?#

,8
= B;,

$
C   

As seen in Eq. (E.1), the vendor’s profit function is either an increasing function or a decreasing function 
according to the value of 𝑝!. Thus, from Eq. (E.1), the following condition can be derived, which maximizes 
the vendor’s profit. 

𝑝! = ?
;,0;+
$

+ ;,0$/#
.$$/#

@ = )
$
T6𝑐& + 𝑐+8 +

;,
.$/#

U + )
.$

                          (E.2) 

In other words, the vendor’s profit function is an increasing function when the vendor’s selling price is less 

than a specific limit in Eq. (E.2). In addition, we obtain the second-order derivative using 6F*(8|/#)
68

 in Eq. 
(E.1) as follows: 
 
𝜕7𝜋4(𝛼|𝜏3)

𝜕𝛼7 =
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− 5𝜏3 +
𝑐B
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(E.3.1) 

In addition, 6
$F*(8|/#)
68$

 in Eq. (E.3.1) can be further re-arranged as presented in Eq. (E.3.2). 
6$F*(8|/#)

68$
= B*

7
C 67
68

6F*(8|/#)
68

= ?
*.$/#

)0.$/#1
@
6F*(8|/#)

68
                        (E.3.2) 

As a result, the vendor’s profit function depends on the condition for 𝑝! in Eq. (E.2), since both 6F*(8|/#)
68

 

and 6
$F*(8|/#)
68$

 have the same sign as shown in Eq. (E.3.2).   
 
 
[E2] The effects of return rate on the retailer’s profit 
As done for the vendor’s profit function, the following equations of the retailer’s profit function are used to 
analyze the properties of the retailer’s profit functions.  

6F1(8|/#)
68

= 67
68
B%
2
+ )

.$
− *7

2
C		                                           (E.4.1) 

6$F1(8|/#)
68$

= 6$7
68$

B%
2
+ )

.$
− A7

2
C	                                           (E.4.2) 
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From Eq. (E.4.1), the stationary value of 𝛼(!, which satisfies the first-order condition, is obtained as seen in 
Eq. (E.5).  

𝛼(!(𝜏$) = 1 − )
/#
?
*:,!-."/#<
(%.$02)

− )
.$
@                                              (E.5) 

 

Also, we can say that 6
$F1(8|/#)
68$

= − 6$7
68$

B7
2
C < 0 at 𝛼 = 𝛼(!(𝜏$), where B%

2
+ )

.$
C = *7(/#,81

!)
2

. As a result, 

the value of 𝛼(!(𝜏$) in Eq. (E.5) can maximize the retailer’s profit when the value of 𝜏$ is fixed.  

[E3] The effects of return rate on the system’s profit 
Similar to previous sections, the system profit has the following properties in 𝛼 as presented below: 
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From Eq. (E.6.1), a stationary value of 𝜌, which satisfies the first-order condition, can be presented as 
follows: 

𝛼c!(𝜏$) = 1 − ?
*$:,!-."/#<
/#.$%2$-2;,

− )
.$/#

@ , where 𝑎c = 𝑎 + 𝑏 B𝑝! −
;+0;,
$
C           (E.7) 

 

Thus, we can say that 6F2(8|/#)
68

< 0  if 𝛼 < 𝛼c!(𝜏$)  and 6F2(8|/#)
68

> 0  if 𝛼 > 𝛼c!(𝜏$) . In addition, the 

inequality of 6
$F2(8|/#)
68$

< 0 is satisfied if 6F2(8|/#)
68

< 0. We can further rearrange the function of 6
$F2(8|/#)
68$

 

at the stationary point, i.e., 𝛼 = 𝛼c!(𝜏$), into 6
$F2(8|/#)
68$

e
8h82

! = − *
2 ?

.$/#7
)0.$/#1

@
*
< 0 from the condition of 

6F2(8|/#)
68

= 0. Thus, the value of 𝛼c! can maximize the system profit when the value of 𝜏$ is arbitrarily 
given. 
 


