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INTRODUCTION 

Most of the prototypes of instrumented crutches available in literature [1]–[3] require external motion 

capture devices to perform a gait analysis and to report the load applied on the crutches respect to the 

gait cycle. Motion capture systems with markers require a controlled laboratory with cameras, instead 

IMU-based systems are more transportable, but the user must be instrumented [3]. A new version of 

instrumented crutches, previous developed by the authors [1], allows to measure the axial forces and 

to detect the gait phases during a two-point assisted walking [3] thanks to the cameras mounted on the 

lower part of the crutches. 

 

MATERIAL AND METHODS 

The instrumented crutches allow 

to measure the axial forces applied 

with less than 13 N (P=95%) of 

uncertainty. They are provided of 

a D435I Intel Realsense camera to 

capture and store the depth images 

of the contralateral foot. The 

camera is placed on the lower part 

of the crutch and it acquires at 15 

fps. 

 

To get the step phases references a set of four external IMUs are used during the tests. Two IMUs are 

placed on the shoes as shown in Figure 1 and an approach similar to the one used in [4] allows to 

extract the gait phases. Another two IMUs are fixed on the crutches to allow the data synchronization 

by signals comparison. The test campaign involves 13 young healthy subjects (gender: 10 male and 3 

female; age: 29.3 ± 5.1 years; height: 1.76 ± 0.05 m; weight: 74.6 ± 12.5 kg). The participants are 

asked to perform a two-point contralateral assisted walking [3] on a flat indoor surface of 25 meters 

with self-selected speed. The walk is repeated at least three times and the subjects must load partial of 

their body weight on the crutches. 

 

Following the indications in [5], a neural 

network is trained using five percentiles of the 

foot-floor distances distribution of the 

contralateral foot framed in the depth images, 

hence the floor’s plane parameters and the 

contralateral foot’s point cloud must be 

extracted from each frame. Due to the camera 

orientation and the walking pattern, more 

objects are usually included in the point cloud: 

the floor, the ipsilateral foot, the contralateral 

foot, the contralateral crutch and background 

objects. Each depth frame is filtered in 

distance with a depth threshold of 1 meter to 

exclude undesired distant objects. The floor 

plane is easily extract using a RANSAC 

 
Figure 2 - Confusion matrixes of the test dataset 

predictions of the left and right foot. 

 
Figure 1 - IMUs placement on the feet. 

 



algorithm and the point cloud without the floor is then passed to an iterative k-means clustering to 

separate each element. Since the contralateral crutch’s point cloud, if it is present, is the farthest 

element from the camera, the clusters of the contralateral crutch should be composed by few points. 

An empirically threshold of 3000 points is chosen to remove all the clusters under this value. The 

remaining clusters should belong to the ipsilateral and contralateral feet. The cluster with the 

maximum distance of the centroid from the camera is selected as the contralateral foot’s point cloud. 

For each point the point-plane distance is computed and five percentiles are extracted from the 

distribution. Since during the two-points walking pattern a swing phase of the contralateral foot 

imposes a stance phase in the ipsilateral foot, the percentiles extracted by both the crutches are useful 

to predict the step phases. To take advantage of the chronological sequence of the recorded frames a 

Neural Network with three fully connected layers is trained passing the percentiles from the i-9 frame 

to the i+9 frame from both the crutches (PCA enabled with 95% of explained variance). 10 random 

subjects (81% of the dataset) are used to train the model and the other 3 subjects are included in the 

test. 

RESULTS AND CONCLUSION 

In Figure 2 the confusion matrixes of the test show a general accuracy about 90% for both the side. In 

Table 1 reports an intra-subject comparison among the predictions and the reference (IMU-based gait 

detection) results computing the root mean squared error (RMSE).  

 

The presented instrumented crutches measure the load applied with respect to the gait cycle during a 

two-point assisted walking. Thanks to the depth cameras mounted on the lower part of the crutches 

the gait analysis is performed without other external devices. Good accuracy in step phases detection 

(~90%) is obtained and the gait parameters as cadence and stance, swing and stride time are well 

estimated. It is not more necessary to set thresholds based on the walking behavior of subjects to 

properly filter depth images, as was done in the previous version of the algorithm [5]. The database 

should be expanded, also including subjects with walking disorders. Differents gait pattern should be 

investigated to cover more rehabilitation approaches. 
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Table 1 - Intra-subject comparison of gait parameters. 

Foot 

side 

Stride time 

[ms] 

Stance time 

[ms] 

Swing time 

[ms] 

Cadence 

[step/min] 

mean RMSE mean RMSE mean RMSE mean RMSE 

left 1708 64 1164 87 544 61 33.2 1.7 

right 1707 83 1167 78 541 44 33.3 1.5 

 


