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Abstract: Chipman contended, in stark contrast to the conventional view, that, utility is not a real
number but a vector, and that it is inherently lexicographic in nature. On the other hand, in recent
years continuous multi-utility representations of a preorder on a topological space, which proved
to be the best kind of continuous representation, have been deeply studied. In this paper, we first
state a general result, which guarantees, for every preordered topological space, the existence of a
lexicographic order-embedding of the Chipman type. Then, we combine the Chipman approach and
the continuous multi-utility approach, by stating a theorem that guarantees, under certain general
conditions, the coexistence of these two kinds of continuous representations.

Keywords: Hausdorff space; continuous multi-utility representation; order-embedding; semi-closed
preorder
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1. Introduction

The first author attended and presented a contribution at an international conference
that took place in Essen (Germany) in October 1997. It was the case of a very impressive
conference, which concerned mathematical utility theory and brought together economists,
mathematicians, and psychologists. On that occasion, the first author knew personally, for
the first time, Professor Gerhard Herden, an extremely fertile and intelligent mathematician,
who was the principal organizer of the conference. Professor Herden personally compiled
the list of all the invited speakers (there were no contributed talks). Professor Herden,
who became a frequent coauthor of the first author, passed away on 30 January 2019. His
enthusiasm remains unforgettable, as well as his capacity to formulate problems and to
furnish extremely sharp definitions and axiomatizations. His work inspired the present
contribution. In addition, the first author met in Essen Professor Chipman, who was also
an invited speaker. He was a very kind person, whose contributions were invasive.

1.1. The Chipman Approach

Let (X,≾) be some arbitrarily chosen non-empty preordered set. Using R as the
codomain of a utility function (order-preserving function) on (X,≾) is of almost universal
practice in mathematical utility theory. But, as it has been shown by many illustrating
examples in Herden and Mehta [1], there are cogent economic (and mathematical) reasons
for not insisting on real-valued utility representations. In order to approach the general
(continuous) utility representation problem, we, therefore, follow, in a first step, the views
of Chipman. Chipman explicitly and wittingly studies utility functions with values in a set
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of lexicographically ordered transfinite sequences of length equal to an ordinal number λ.
Indeed, in an elegant paper, Chipman [2] contends, in stark contrast to the conventional
view, that utility is not a real number but a vector, and that it is inherently lexicographic
in nature. Chipman also says that the concept of utility as a vector is easier to understand
than that of utility as a real number.

In the same paper, he argues that, even if there is a real-valued utility function, it is
preferable from an economic point of view to use a utility representation of the commodity
space (which always exists) into a Dedekind-complete chain ({0, 1}λ,≤lex) of transfinite
sequences of length λ, where λ is an appropriately chosen ordinal number and ≤lex is
the lexicographic ordering on {0, 1}λ. In addition, Chipman [3] argues that requiring the
existence of a real-valued utility representation implies the commodity space to have a
countable order-dense subset (this is a necessary condition in the case of a total preorder).
But countability does not have any intuitive appeal from an economic point of view.

In order to now mathematically approximate the Chipman approach, let (X,≾) be an
arbitrarily chosen preordered set. We denote, for every point x ∈ X, by l(x) the set of all
points y ∈ X such that y ≺ x and by r(x) the set of all points z ∈ X such that x ≺ z. In addition,
we still note that d(x) is, for every point x ∈ X, the set of all points y ∈ X such that y ≾ x,
and i(x) is, for every point x ∈ X, the set of all points z ∈ X such that x ≾ z. Then, the order
topology t≾ on X is the coarsest topology on X for which the sets l(x) and r(x) are open. In
order to avoid artificial and superfluous considerations, we assume, for the moment, that
t≾
∣∼

is a Hausdorff topology on X
∣∼

. Recall that ∼ is the indifference relation associated to the
preorder ≾ on X (i.e., for all points x, y ∈ X, x ∼ y is equivalent to the assertion that x ≾ y and
y ≾ x). For underlining the importance of this assumption and for later use, we still notice
that in case X

∣∼
contains at least two elements, the following necessary conditions for t≾

∣∼
to

be Hausdorff hold. For the sake of brevity, the straightforward proofs of these conditions
may be omitted. Nevertheless, the reader should notice that the validity of condition LR is
based upon the validity of condition lSB.
SB: In order for t≾

∣∼
to be Hausdorff, it is necessary that the sets l(x) and r(x), where x runs

through X, constitute a sub-basis of t≾.
LR: In order for t≾

∣∼
to be Hausdorff, it is necessary that, for all points x ∈ X and y ∈ X, the

validity of the following implication holds for all z ∈ l(x) and for all u ∈ r(x):

(y ∈ r(z))∧ (y ∈ d(u))⇒ x ∼ y.

In Lemma 2, it will be proved that, when ≾ is semi-closed, i.e., d(x) and i(x) are closed
subsets of (X, t≾) for every x ∈ X, the validity of the conditions SB and LR already im-
plies that t≾

∣∼
is Hausdorff. The general case, however, is difficult. No simple solution can

be expected.
Let us proceed by considering an ordinal number 0 < λ. Then, the triplet

({0, 1}λ,≤lex, t≤lex) is the preordered topological space that consists of the lexicographically
ordered set ({0, 1}λ,≤lex) endowed with its order topology t≤lex . Now, we set κ ∶=∣ X

∣∼
∣,

i.e., κ is the cardinality of the set X
∣∼

of indifference classes [x] of ≾, and consider the
particular triplet ({0, 1}κ ,≤lex, t≤lex). As it is at least implicitly well-known, there exists
a natural order-embedding ψ ∶ (X,≾) Ð→ ({0, 1}κ ,≤lex). But for some arbitrarily chosen
topology t on X that is finer than t≾, in general, there exists no order preserving function
γ ∶ (ψ(X),≤lex)Ð→ ({0, 1}κ ,≤lex) such that the composition

γ ○ψ ∶ (X,≾, t)Ð→ ({0, 1}κ ,≤lex, t≤lex)

is continuous. The reader may notice that this observation principally excludes the existence
of some continuous order-embedding ϑ ∶ (X,≾, t)Ð→ ({0, 1}κ ,≤lex, t≤lex). Therefore, using
a construction that is due to Beardon [4], an effort has been made in coarsening ≤lex
to some preorder ≲ in such a way that the indifference classes of ≲ are (in some sense)
the smallest possible closed intervals of ({0, 1}κ ,≤lex) with respect to the property of



Axioms 2024, 13, 148 3 of 14

guaranteeing a continuous order-embedding ϑ ∶ (X,≾, t) Ð→ ({0, 1}κ ,≤, t≤). This is the
content of Theorem 1.

In the literature, various Dedekind-complete chains (D,≤) have been considered for
possibly appropriate codomains of a utility function (cf. the papers that are quoted in
Herden and Mehta [1]).

In order to examine these possible codomains of a utility function more closely, let
(D,≤) be a fixed chosen preordered set, and consider an order-embedding ϕ ∶ (X,≾) Ð→
(D,≤). Let, furthermore, λ run through the class of all ordinal numbers. Then, the universal
character of ({0, 1}λ,≤lex) as codomain of a utility function is underlined by the observation
that there exist an ordinal number λ and order-embeddings ψ ∶ (X,≾) Ð→ ({0, 1}λ,≤lex)
and η ∶ (D,≤)Ð→ ({0, 1}λ,≤lex) such that the following diagram commutes

({0, 1}λ,≤lex)
η
← (D,≤)

↑ ψ ↗ ϕ
(X,≾)

.

Moreover, (total) preorders ≤⊂⊴ on D and ≤lex⊂≾ on {0, 1}λ, and order-embeddings

ν ∶ (ϕ(X),≤)Ð→ (D,⊴)

and
ρ ∶ (ψ(X),≤lex)Ð→ ({0, 1}λ,≲),

can be chosen in such a way that the compositions

θ ∶= ν ○ ϕ ∶ (X,≾, t)Ð→ (D,⊴, t⊴),

ϑ ∶= ρ ○ψ ∶ (X,≾, t)Ð→ ({0, 1}λ,≾, t≾)

and
χ ∶= ρ ○ η ∶ (D,⊴, t⊴)Ð→ ({0, 1}λ,≾, t≾)

are continuous and the following diagram commutes

({0, 1}λ,≲, t≲) χ← (D,⊴, t⊴)
↑ ϑ ↗ θ

(X,≾, t)

These are the contents of Theorem 2.

1.2. The Continuous Multi-Utility Representation Theorem

In this section, we want to compare the Chipman approach to mathematical utility
theory with the standard real-valued approach to mathematical utility theory.

We, thus, choose a preordered topological space (X,≾, t), whose topology t is finer than
t≾. Then, the reader may recall that ≾ is said to have a continuous multi-utility representation
if there exists a family F of increasing and continuous functions f ∶ (X,≾, t)Ð→ (R,≤, tnat)
such that

≾= {(x, y) ∈ X ×X ∣ ∀ f ∈ F ( f (x) ≤ f (y))}

or, equivalently, if there exists, for every pair (x, y) ∈ X × X such that not(x ≾ y), some
continuous and increasing function fxy ∶ (X,≾, t)Ð→ (R,≤, tnat) such that fxy(y) < fxy(x).

In addition, the reader may recall that ≾ is said to be closed if ≾ is a closed subset of
X ×X with respect to the product topology t × t on X ×X that is induced by t.

We recall that multi-utility representations were introduced by Levin [5]. A full study
of this kind of representation, compatible with nontotal preorders, was provided by Evren
and Ok [6], after a seminal paper by Ok [7]. Contributions to this topic were presented
by Bosi and Herden [8,9], Minguzzi [10,11], and Pivato [12]. Very interesting applications
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to expected utility theory are due to Dubra et al. [13], Evren [14], and Galaabaatar and
Karni [15]. We also mention that continuous representations of interval orders by a pair
of functions were axiomatized by Bosi et al. [16]. Hack et al. [17] studied, in a very
recent paper, the classification of preordered spaces in terms of their possible multi-utility
representations.

With the help of this notation, we shall prove that the assumption t≾
∣∼

to be Hausdorff
guarantees the equivalence of the assertions ≾ to admit a continuous multi-utility represen-
tation, ≾ to be semi-closed and ≾ to be closed (cf. Theorem 3).

Let, for the moment, ω be the cardinality of the set N(≾) of all pairs ([x], [y]) ∈ X
∣∼
×X
∣∼

such that not(x ≾ y). Then, we arbitrarily choose a bijective function σ ∶ [0, ω[Ð→ N(≾)
in order to consider the direct sum (R,≤, tnat) × ([0, ω[,<) of ordered topological spaces
(R,≤, tnat).

We proceed by assuming t≾
∣∼

to be Hausdorff, and ≾ to satisfy the equivalent asser-
tions of Theorem 3, which, in particular, means that ≾ admits a continuous multi-utility
representation. Let now (X,≾, t) × ([0, ω[,<) be the direct sum of preordered topologi-
cal spaces (X,≾, t). Since ≾ has a continuous multi-utility representation, the definition
of σ ∶ [0, ω[Ð→ N(≾) implies the existence of a continuous order-preserving function
Φ ∶ (X,≾, t) × ([0, ω[,<) Ð→ (R,≤, tnat) × ([0, ω[,<). This obvious consideration already
clarifies the relation of the multi-utility approach for representing a preorder with the
Richter–Peleg approach for representing a preorder (cf. Herden [18], Peleg [19], and Evren
and Ok [7]).

We recall that a Richter–Peleg representation (or utility function, or else order-preserving
function) of a preordered set (X,≾) is a real-valued function u on X which is order-preserving
(i.e., u is increasing and, for all points x, y ∈ X, x ≺ y implies that u(x) < u(y)).

Let, finally, κ ∶=∣ X
∣∼
∣ and ξ ∶= ω ⋅ κ =∣ ω × κ ∣. Then, an application of Theorem 2 (cf. the

last paragraph of Section 1.1) guarantees the existence of a continuous order-embedding

Ψ ∶= (R,≤, tnat)× [0, ω[Ð→ (({0, 1}ω)κ ,≲, t≲) = ({0, 1}ξ ,≲, t≲)

and of a continuous order-embedding

Υ ∶ (X,≾, t)× [0, ω[Ð→ ({0, 1}ξ ,≲, t≲)

such that the following diagram commutes

(({0, 1}ω)κ ,≲, t≲) = ({0, 1}ξ ,≲, t≲) Ψ← (R,≤, tnat)× ([0, ω[,<)
↑ Υ ↗ Φ

(X,≾, t)× ([0, ω[,<)
.

In this way, the Chipman approach, the multi-utility approach, and the Richter–Peleg
approach for representing a preorder have been combined (cf. Theorem 4)

2. On an Order-Embedding Theorem of Chipman-Type

In the remainder of this section, we shall consider some preordered topological space
(X,≾, t), whose topology t is finer than the order topology t≾, and it is such that the quotient
topology t≾

∣∼
that is defined on the set X

∣∼
of indifference classes of ≾ is Hausdorff. Then, it

is the first aim of this section to prove and to comment on the following theorem.

Theorem 1. The following assertions hold:
(i) There exists some cardinal number κ for which there exists an order-embedding
ψ ∶ (X,≾)Ð→ ({0, 1}κ ,≤lex).
(ii) There exists some cardinal number κ and a (complete) preorder ≲ on {0, 1}κ , that is coarser than
≤lex, for which there exists a continuous order-embedding ϑ ∶ (X,≾, t)Ð→ ({0, 1}κ ,≲, t≲).
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Proof. The validity of Assertion (i) is (at least implicitly) well known. It holds without
assuming (X

∣∼
, t
∣∼
) to be a Hausdorff-space. Nevertheless, we must repeat its proof here in

order to prepare the proof of Assertion (ii). Let, therefore, κ be the cardinality ∣ X
∣∼
∣ of X

∣∼
.

Then, we arbitrarily choose some bijective function β ∶ [0, κ[Ð→ X
∣∼

in order to define the
desired order-embedding ψ ∶ (X,≾)Ð→ ({0, 1}κ ,≤lex) by identifying ψ(x), for every x ∈ X,
with the tuple (xα)α<κ ∈ {0, 1}κ that is defined by setting

xα ∶= {
1 if β(α) ≾

∣∼
[x]

0 otherwise

for all ordinal numbers α < κ. Since for every point x ∈ X and every point y ∈ X the validity
of the equivalence x ≾ y⇔ d(x) ⊆ d(y) holds, it follows that ψ is an order-embedding.

In order to now verify Assertion (ii), let S be an arbitrary subset of {0, 1}κ . Then, a
lacuna of S is a non-degenerate (non-trivial) interval of {0, 1}κ that is disjoint from S and
has an upper and lower bound in S. A gap of S is a maximal lacuna. Although ≾ is not
necessarily complete, it is easy to see that the inclusion t ⊇ t≾ would imply the continuity
of ψ considered as a function ψ ∶ (X,≾, t) Ð→ ({0, 1}κ ,≲, t≲), if ψ(X) would not have any
gaps of the form [u, v[ or ]u, v], i.e., half-closed half-open or half-open half-closed gaps (cf.
Beardon [1]). But in order to eliminate these gaps, a difficulty appears. Indeed, let (xi)i∈I be
a net that converges to some point x ∈ X. Then, it may happen that lim

i∈I,ψ(xi)≤lexψ(x)
xi = x or

that lim
i∈I,ψ(xi)≥lexψ(x)

xi = x.

This means that a (crucial) gap to be eliminated in order to guarantee continuity of ψ
at x is of the form ⎡⎢⎢⎢⎢⎣

sup
i∈I,ψ(xi)<lexψ(x)

ψ(xi), ψ(x)
⎡⎢⎢⎢⎢⎣

or ⎤⎥⎥⎥⎥⎦
sup

i∈I,ψ(xi)≤lexψ(x)
ψ(xi), ψ(x)

⎤⎥⎥⎥⎥⎦
or

[ψ(x), inf
i∈I,ψ(xi)≥lexψ(x)

ψ(xi)[

or

]ψ(x), inf
i∈I,ψ(xi)>lexψ(x)

ψ(xi)].

Of course, there may exist another net (yj)j∈J that converges to x. It, thus, follows that a
possibility to eliminate these (crucial) gaps only exists if

⎡⎢⎢⎢⎢⎣
sup

i∈I,ψ(xi)<lexψ(x)
ψ(xi), ψ(x)

⎡⎢⎢⎢⎢⎣
=
⎡⎢⎢⎢⎢⎣

sup
j∈J,ψ(yj)<lexψ(x)

ψ(yj), ψ(x)
⎡⎢⎢⎢⎢⎣

or ⎤⎥⎥⎥⎥⎦
sup

i∈I,ψ(xi)≤lexψ(x)
ψ(xi), ψ(x)

⎤⎥⎥⎥⎥⎦
=
⎤⎥⎥⎥⎥⎦

sup
j∈J,ψ(yj)≤lexψ(x)

ψ(yj), ψ(x)
⎤⎥⎥⎥⎥⎦

in case that
lim

i∈I,ψ(xi)≤lexψ(x)
xi = lim

j∈J,ψ(yj)≤lexψ(x)
yj = x

and that

[ψ(x), inf
i∈I,ψ(xi)≥lexψ(x)

ψ(xi)[ =
⎡⎢⎢⎢⎣

ψ(x), inf
j∈J,ψ(yj)≥lexψ(x)

ψ(yj)
⎡⎢⎢⎢⎣
,
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in case that
lim

i∈I,ψ(xi)≥lexψ(x)
xi = lim

j∈J,ψ(yj)≥lexψ(x)
yj = x,

i.e., the precise form of the (crucial) gaps must be independent of the considered net that
converges to x. In order to guarantee the independence of (crucial) gaps from particularly
chosen nets that converge to x, the assumption t≾

∣∼
to be a Hausdorff-topology is needed (cf.

Example 1). Indeed, if t≾
∣∼

is Hausdorff, independence of (crucial) gaps from particularly
considered nets that converge to x follows by distinguishing between four different cases (cf.
the above-described possibilities of (crucial) gaps), each of which can be done by applying
always the same indirect argument that is based upon condition SB and the definition of
ψ applied to the equations lim

i∈I
xi = x = lim

j∈J
yj. Since this argument is routine and obvious

in nature, it may be omitted for the sake of brevity. The independence of (crucial) gaps
from particularly chosen nets that converge to x allows us to now proceed by considering
the collection H of all half-closed half-open and all half-open half-closed gaps of ψ(X). In
accordance with Beardon [1], we define as follows an equivalence relation ∼ on {0, 1}κ with
respect to H. If [r, s[ and [s, t[ are adjacent gaps of X ∖⋃H, then [r, t] is an equivalence
class of ∼. In addition, if [u, v[ and ]w, z], respectively, are gaps that do not belong to pairs
of adjacent gaps of X ∖⋃H, then [u, v] and [w, z], respectively, define the corresponding
equivalence classes of ∼. All the other equivalence classes of ∼ are defined to be singletons.
Since the equivalence classes of ∼ are closed intervals of ({0, 1}κ ,≤lex), we may define the
desired preorder ≲ on {0, 1}κ that is coarser than ≤lex by setting

x ≲ y⇔ [x] = [y] or sup[x] <lex inf[y]

for all x ∈ {0, 1}κ and all y ∈ {0, 1}κ . Since, for all x ∈ {0, 1}κ and all y ∈ {0, 1}κ , the inequality
x ≤lex y implies that x ≲ y, it follows that ≲, actually, is coarser than ≤lex. Hence, we
now consider the (continuous) identity-function id ∶ ({0, 1}κ ,≤lex, t≤lex) Ð→ ({0, 1}κ ,≲, t≲).
Furthermore, the definition of ∼ implies that the image of the composition

ϑ ∶ (X,≾, t)Ð→ ({0, 1}κ ,≲, t≲)

of the functions ψ ∶ (X,≾) Ð→ ({0, 1}κ ,≤lex) and id ∶ ({0, 1}κ ,≤lex, t≤lex) Ð→ ({0, 1}κ ,≲, t≲)
has, with respect to ≲, neither half-closed half-open nor half-open half-closed gaps.

Since ψ ∶ (X,≾)Ð→ ({0, 1}κ ,≤lex) is an order-embedding, we, therefore, may conclude
that ϑ ∶ (X,≾, t)Ð→ ({0, 1}κ ,≲, t≲) is a continuous order-embedding. This last observation
finishes the proof of the theorem.

Example 1. Let X be the real unit interval [0, 1]. Then, we endow X with the order

⊴∶= {(x, x) ∣ x ∈ X}∪ {(x, y) ∈ [0, 1[∪[0, 1[∣ x ≤ y}.

It follows that t⊴ = tnat∣[0,1] ∪ {[0, 1]}, which means that t⊴ is not Hausdorff. Let

ψ ∶ (X,⊴)Ð→ ({0, 1}2ℵ0 ,≤lex) be the order-embedding that has been described in Theorem 1.
Then, we may conclude that the nets (sequences) ( 1

2 −
1

2n)n≥1 and ( 1
4 −

1
4n)n≥1 converge,

with respect to t⊴, to 1, but that

⎡⎢⎢⎢⎢⎢⎣
sup

n≥1,ψ( 1
2−

1
2n )<lexψ(1)

ψ(1
2
− 1

2n
), ψ(1)

⎡⎢⎢⎢⎢⎢⎣
⫋
⎡⎢⎢⎢⎢⎢⎣

sup
n≥1,ψ( 1

4−
1

4n )<lexψ(1)
ψ(1

4
− 1

4n
), ψ(1)

⎡⎢⎢⎢⎢⎢⎣
.

Let ORD be the class of ordinal numbers. As it already has been outlined to some
degree in the last paragraph of Section 1.1, we now prove a theorem that underlines the
universal character of the class {({0, 1}λ,≤lex) ∣ λ ∈ ORD} of chains.
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Theorem 2. Let ϕ ∶ (X,≾)Ð→ (D,≤) be an order-embedding of (X,≾) into the Dedekind-complete
chain (D,≤). Then, the following assertions hold:

(i) There exist some ordinal number λ and order-embeddings

ψ ∶ (X,≾)Ð→ ({0, 1}λ,≤lex)

and
η ∶Ð→ ({0, 1}λ,≤lex)

such that the following diagram commutes

({0, 1}λ,≤lex)
η
← (D,≤)

↑ ψ ↗ ϕ
(X,≾)

.

(ii) In addition to Assertion (i), (total) preorders ≤⊂⊴ on D and ≤lex⊂≲ and order-embeddings

ν ∶ (ϕ(X),≤)Ð→ (D,⊴)

and
ρ ∶ (ψ(X),≤lex)Ð→ ({0, 1}λ,≲)

can be chosen in such a way that the compositions

θ ∶= ν ○ ϕ ∶ (X ≾, t)Ð→ (D,⊴, t⊴),

ϑ ∶= ρ ○ψ ∶ (X ≾, t)Ð→ ({0, 1}λ,≲, t≲)

and
χ ∶= ρ ○ η ∶ (D,⊴, t⊴)Ð→ ({0, 1}λ,≲, t≲)

are continuous and the following diagram commutes

({0, 1}λ,≲, t≲) χ← (D,⊴, t⊴)
↑ ϑ ↗ θ

(X,≾, t)
.

Proof. Of course, we may assume without loss of generality that κ ∶=∣ X
∣∼
∣≥ 2. In order to

now verify Assertion (i), we first notice that

x ≾ y⇔ d(x) ⊆ d(y)⇔ i(x) ⊇ i(y),

for all points x ∈ X and y ∈ X. Let λ be the maximum of ∣ D ∣, and β ∶ [0, κ[Ð→ X
∣∼

an arbitrarily chosen bijective function. Then condition LR implies the existence of an
order-embedding η ∶ (D,≤)Ð→ ({0, 1}λ,≤lex) that is defined by identifying η(a), for every

a ∈ D, with the tuple
⎛
⎜⎜
⎝

1, 1, . . . , 1, . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

λ-times

⎞
⎟⎟
⎠
∈ {0, 1}λ, if a /∈ ϕ(X). Let, therefore, a ∈ ϕ(X). Then,

we must at first verify that the subsequent definition is independent of the particular
chosen point x ∈ X such that ϕ(x) = a. This means that we must prove that the equation
ϕ(x) = ϕ(y) implies that [x] = [y]. Indeed, if ϕ(x) = ϕ(y), then we have that l(x) = l(y) and
r(x) = r(y). Hence, it follows that assumptions of condition LR are satisfied, which implies
that [x] = [y]. Let, consequently, some x ∈ X such that a = ϕ(x) be arbitrarily chosen. Then,
we may identify η(a)with the tuple (aα)α<λ that is defined by setting

aα ∶= {
1 if α < κ and β(α) ≾

∣∼
[x]

0 otherwise
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for all ordinal numbers α < λ (cf. the definition of ψ in the proof of Theorem 1). Of course,
the order-embedding ψ ∶ (X,≾) Ð→ ({0, 1}λ,≤lex) also has to be defined in the same way,
i.e., by identifying ψ(x) for every x ∈ X with the tuple (xα)α<λ that is defined by setting

xα ∶= {
1 if α < κ and β(α) ≾

∣∼
[x]

0 otherwise
,

for every ordinal number α < λ. The definitions of the order-embeddings η and ψ imply
that ψ = η ○ ϕ, which proves Assertion (i).

In order to prove the validity of Assertion (ii), we use the notation that has been
introduced in the proof of Assertion (ii) of Theorem 1. Then, we apply the arguments
that have been used in the proof of Assertion (ii) of Theorem 1 in order to verify that
the image of the order-embedding ρ ∶= idψ(X) ∶ (ψ(X),≤lex) Ð→ ({0, 1}λ,≲) neither has
half-closed half-open nor half-open half-closed gaps. The proof of Assertion (i) implies
that η−1 ∶ (ψ(X),≤lex) Ð→ (ϕ(X),≤) is an order-isomorphism. Hence, the validity of the
following implications, which will be abbreviated by (*), holds:

If the crucial gap I of ϕ(X) is the image of some half-closed half-open or some half-
open half-closed interval J, then J is a crucial gap of ϕ(X). And, conversely:

If the crucial gap J of ψ(X) is the image of some half-closed half-open or some half-
open half-closed interval I, then I is a crucial gap of ψ(X).

In particular, we may conclude that the crucial gaps of ϕ(X) are independent of
particularly chosen converging nets. Hence, we may apply the Beardon construction
that has been described in the proof of Assertion (ii) of Theorem 1 in order to define
a preorder ⊴ on D that is coarser than ≤ in such a way that neither the image of the
order-embedding ν ∶= idϕ(X) ∶ (ϕ(X),≤)Ð→ (D,⊴) nor the image of the order-embedding
η ∶ (ϕX),⊴) Ð→ ({0, 1}λ,≲) has any half-closed half-open or half-open half-closed gaps.
Hence, the validity of the implications (*) allows us to conclude that the compositions
θ ∶= ν ○ ϕ ∶ (X,≾, t) Ð→ (D,⊴, t⊴), ϑ ∶= ρ ○ψ ∶ (X,≾, t) Ð→ ({0, 1}λ,≲, t≲) and χ ∶= ρ ○ η ∶ (D,⊴
, t⊴)Ð→ ({0, 1}λ,≲) are continuous (cf. the proof of Assertion (ii) of Theorem 1). In addition,
the validity of Assertion (i) guarantees that ϑ = χ ○ θ. So, the proof is complete.

3. On a Relation of the Chipman Approach with the Continuous Multi-Utility
Representation Problem of Preorders

Let (X, t) be an arbitrarily chosen topological space. The problem of determining
(characterizing) all preorders ≾ on X, which admit a continuous multi-utility representation,
is the focus of this section. We shall further assume that the order topology t≾ of ≾ is coarser
than t. It is well known (cf, for instance, Bosi and Herden [3]) that the assumption ≾ to
admit a continuous multi-utility representation implies that ≾must be closed and, therefore,
also semi-closed. Hence, the following lemmas provide a first important step towards
a complete solution of the just mentioned characterization problem. As in the proof of
Theorem 2 throughout this section, we may assume without loss of generality that ∣ X

∣∼
∣≥ 2.

In order to proceed, let us denote for every point x ∈ X by N≾(x) the set of all points
y ∈ X ∖ l(x) such that not(x ≾ y). This notation allows us to verify the validity of the
following lemma.

Lemma 1. Let x ∈ X be arbitrarily chosen. Then, ≾ satisfies the following conditions:

HD: Let ≾ have a continuous multi-utility representation. Then, (X
∣∼

,≾
∣∼
) is a Hausdorff space.

OC: Let (X
∣∼

,≾
∣∼
) be a Hausdorff space and let ≾ be closed. Then, d(y) is open (and closed)

for every point y ∈ N≾(x) that is maximal with respect to (X,≾).

Proof. HD: Let ≾ have a continuous multi-utility representation, and let x ∈ X and y ∈ X
be arbitrarily chosen points such that not(x ≾ y). Then, there exists a continuous and
increasing function fxy ∶ (X,≾, t≾) Ð→ (R,≤, tnat) such that fxy(y) < fxy(x). Hence, the
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desired conclusion follows.
OC: Let y ∈ N≾(x) be a maximal element of (X,≾), which means that r(y) = ∅. Then, the
assumption according to which t≾

∣∼
is Hausdorff implies, with help of condition SB, that

l(y) ≠ ∅. Hence, we may distinguish between the cases when (l(y),≾) has a maximal
element, and, respectively (l(y),≾) has no maximal element. Let us, therefore, assume at
first that (l(y),≾) has a maximal element m. Then, the interval ]m, y[ is empty. This means,
in particular, that there exists no net (m(s))s∈S of points m(s) ∈ r(m) that converges to y.
Hence, the set U(y) ∶= {t ∈ r(m) ∣ t ∈ r(m)∖ [y]}must be closed, and we may conclude that
[y] = r(m) ∖U(y) is open and closed. We, thus, proceed by showing that both sets l(y)
as well as d(y) are open and closed. In order to verify these properties of l(y) and d(y),
respectively, it suffices to prove that l(y) is closed and that d(y) is open. Let, therefore, in a
first step, some point p ∈ l(y) be arbitrarily chosen. Then, we have to show that p ∈ l(y).
We, thus, consider some net (po)o∈O of points po ∈ l(y) that converges to p. Since ≾ is closed
and po ≺ y for all o ∈ O, it follows that p ≾ y, and it remains to verify that the equivalence
p ∼ y can be excluded. Indeed, if p ∼ y, then the just proved property that [y] is open (and
closed) implies that there exists some index oy such that po ∼ y for all points o ∈ O which are
at least as great as oy. This contradiction implies that l(y)must be closed. For later use, in
particular in the proof of Theorem 3, we abbreviate this conclusion by (*). Since l(y) is open
and [y] is open, it follows, in a second step, that d(y) = l(y)∪ [y] is open, which completes
the discussion of the case (l(y),≾) to have a maximal element. We now still must think of

the situation
⎡⎢⎢⎢⎢⎣

sup
q∈l(y)

q
⎤⎥⎥⎥⎥⎦

to coincide with [y]. Let, in this situation, (C,≾) be some sub-chain

of (l(y),≾) such that [sup
c∈C

c] = [y] Because of property (*), we may assume without loss of

generality that [y] is not open (and closed). We, thus, may arbitrarily choose some point
c ∈ C in order to then consider some net (yi)i∈I of points yi ∈ r(c) which converges to y.
Because of the maximality of y with respect to (X,≾), it follows that, for every i ∈ I, there
exist points c′ ∈ C and c′′ ∈ C such that c ≾ c′ ≾ yi ≾ c′′. Indeed, otherwise the definition
of t≾ implies that [y] is the meet of two open intervals and, thus, it is open (and closed),
which contradicts our assumption according to which [y] is not open (and closed). This
argument will be abbreviated by (M). But this consideration allows us to conclude that, for
every point l ∈ l(y), the set r(l)∩ d(y) is an open neighborhood of y. Hence, it follows that
d(y) = l(y)∪ (r(l)∩ d(y)) is open (and closed) for every point l ∈ l(y), which still was to be
shown.

As it already has been announced in the introduction, we now characterize those
semi-closed preorders ≾ on (X, t) for which t≾

∣∼
is Hausdorff.

Lemma 2. Let ≾ be a semi-closed preorder. Then, in order for t≾
∣∼

to be Hausdorff, it is necessary
and sufficient that ≾ satisfies the conditions SB and LR.

Proof. As it already has been mentioned in the introduction, the validity of the conditions
SB and LR is necessary in order to guarantee that t≾

∣∼
is Hausdorff. Hence, we may

concentrate on the sufficient part of the lemma. In order to verify that the assumption
according to which ≾ is semi-closed implies, in combination with validity of the conditions
SB and LR, that t≾

∣∼
is a Hausdorff topology on X

∣∼
we notice at first that condition SB is

equivalent to condition LU, which states that, for every point x ∈ X, at least one of the sets
l(x) or r(x) is not empty. Let now points x ∈ X and y ∈ X such that not(x ≾ y) be arbitrarily
chosen. Then, the cases y ≺ x and not(y ≾ x) are possible. Therefore, we have to distinguish
between these possible cases.

Case 1: y ≺ x. In this situation we distinguish between two more cases.
Case 1.1: There exist points u ∈ X and v ∈ X such that the interval ]u, v[ is empty and

y ≾ u ≺ v ≾ x. In this case, l(v) is an open set that contains y, and r(u) is an open set that
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contains x. Therefore, the equation l(v)∩ r(u) = ∅ settles 1.1.
Case 1.2: The closed interval [y, x] does not contain any jump. In this situation there

exists some point z ∈ X such that y ≺ z ≺ x. Hence l(z) and r(z), respectively, are disjoint
open sets, which contain y and x, respectively.

Case 2: not(y ≾ x). In this situation condition LU implies that the lemma will be
proven if the cases l(x) ≠ ∅ or r(x) ≠ ∅ successfully have been handled. Since both cases
can be settled by completely analogous arguments, it suffices to concentrate on the case
when l(x) is not empty. The inequality l(x) ≠ ∅ implies, with help of condition LR, that
there exists some z ∈ l(x) such that y /∈ i(z), in case that r(x) = ∅, or that there exist points
v ∈ l(x) and z ∈ r(x) such that y /∈ [v, z], in case that r(x) ≠ ∅. Since ≾ is semi-closed it, thus,
follows that r(z) and X ∖ i(z), respectively, or ]v, z[ and X ∖ [v, z], respectively, are disjoint
open sets which contain the point x and the point y, respectively, which still was to be
shown.

It is well known that a closed preorder ≾ on X is semi-closed. On the other side,
however, a semi-closed preorder, in general, is not closed. Indeed, in Bosi and Herden [9],
(Theorem 3.2) very restrictive necessary and sufficient conditions for a semi-closed preorder
to being closed have been presented. Because of this theorem it is somewhat surprising
that the following proposition holds, which surely is worth to be stated separately.

Proposition 1. Let t≾
∣∼

be Hausdorff, and let ≾ be semi-closed. Then, ≾ is closed.

Proof. In order to verify the proposition we must show that, for any two points x ∈ X and
y ∈ X such that not(x ≾ y), there exist (open) neighborhoods U of x and V of y such that,
for every point u ∈ U and every point v ∈ V, the relation not(u ≾ v) holds. Indeed, having
proved the existence of U and V, it follows that (U×V)∩ ≾= ∅, and we are done. An analysis
of the proof of Lemma 2 allows us to concentrate on the case that also the relation not(y ≾ x)
holds, and that neither l(x) nor r(x) is empty. Let us, therefore, assume in contrast that
every open neighborhood ]p, q[ of x, and every open neighborhood ]r, s[ of y which is
disjoint from ]p, q[ contains points h ∈]p, q[ and k ∈]r, s[, respectively, such that h ≾ k. In
order to proceed, we set I(x) ∶= {]a, b[∣ x ∈]a, b[⊆]p, q[} and I(y) ∶= {]c, d[∣ y ∈]c, d[⊆]r, s[}.
Since t≾

∣∼
is Hausdorff, we may conclude that [x] = ⋂

]a,b[∈I(x)
]a, b[ and [y] = ⋂

]c,d[∈I(y)
]c, d[.

Then we distinguish between the cases when [x] as well as [y] are open and closed, [x] is
open and closed, and [y] is only closed, [x] is only closed, and [y] is open and closed, and
[x] as well as [y] are only closed. The case when [x] as well as [y] are open and closed is
trivial. Indeed, in this case, we may set U ∶= [x] and V ∶= [y]. The remaining three cases can
be done by analogous arguments. Hence, we may concentrate, without loss of generality,
on the case when [x] as well as [y] are only closed. Let now, in every interval ]a, b[∈ I(x)
and every interval ]c, d[∈ I(y), points ha ∈]a, b[ and kc ∈]c, d[ such that ha ≾ kc be arbitrarily
chosen. Then, we may assume, without loss of generality, that ha ≾ ha′ for all intervals
]a′, b′[∈ I(x) such that ]a′, b′[⊆]a, b[, or that ha ≿ ha′ for all intervals ]a′, b′[∈ I(x) such that
]a′, b′[⊆]a, b[, and that kc ≾ kc′ for all intervals ]c′, d′[∈ I(y) such that ]c′, d′[⊆]c, d[, or that
kc ≿ kc′ for all intervals ]a′, b′[∈ I(y) such that ]c′, d′[⊆]c, d[. The symmetry of the cases
under consideration allows us to concentrate on the case when ha ≾ ha′ for all intervals
]a′, b′[∈ I(x) such that ]a′, b′[⊆]a, b[, and kc ≾ kc′ for all intervals ]c′, d′[∈ I(y) such that
]c′, d′[⊆]c, d[, and on the case ha ≾ ha′ for all intervals ]a′, b′[∈ I(x) such that ]a′, b′[⊆]a, b[,
and kc ≿ kc′ for all intervals ]c′, d′[∈ I(y) such that ]c′, d′[⊆]c, d[. Since ≾ is assumed to be
semi-closed, it follows, in the first case, that d(x) ⊆ d(y), which means that x ≾ y and, thus,
contradicts our assumption that x is not smaller or equivalent to y. The assumptions of the
second case imply that d(x) ⊆ ⋂

]c,d[∈I(y)
d(kc) But, since ≾ is semi-closed, we may conclude

that the smallest closed increasing set which contains ⋃
]c,d[∈I(y)

i(kc) is i(y). It, thus, follows
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that ⋂
]c,d[∈I(y)

d(kc) = d(y), which again implies that x ≾ y and, therefore, contradicts the

relation not(x ≾ y). This conclusion, finally, proves the validity of the proposition.

In combination with Lemma 1, Lemma 2, and Proposition 1, the following theorem
now presents a complete solution of the characterization problem, which is in focus of this
section, and, in this way, (in opinion of the authors) also allows an interesting comparison
of the Chipman approach on one side, and the real-valued approach, on the other side, to
mathematical utility theory (cf. Theorem 4).

Theorem 3. Let (X,≾, t) be a preordered topological space, the topology t of which is finer than the
order topology t≾. Then, the following assertions are equivalent:
(i) ≾ admits a continuous multi-utility representation.
(ii) t≾

∣∼
is Hausdorff and ≾ is closed.

(iii) t≾
∣∼

is Hausdorff and ≾ is semi-closed.

Proof. (i) ⇒ (ii): It already has been mentioned above that a preorder ≾ that admits a
continuous multi-utility representation must be closed. Therefore, Lemma 1 guarantees the
validity of the implication “(i)⇒ (ii)”.

(ii)⇒ (iii): Since a closed preorder ≾ is semi-closed nothing has to be proved.
(iii)⇒ (ii): See Proposition 1.
(ii)⇒ (i): Let Assertion (ii) be valid, and let points x ∈ X and y ∈ X such that y ∈ N≾(x)

be arbitrarily chosen. Then, we must prove that there exists some continuous and increasing
function fxy ∶ (X,≾, t) Ð→ (R,≤, tnat) such that fxy(y) < fxy(x). In order to verify the
existence of fxy, we distinguish between the cases when y is contained in X ∖ l(x), and y is
contained in l(x).

Case 1: y ∈ X ∖ l(x). In this case, we must distinguish between the situations when y is
a maximal element of (X,≾), and y is not a maximal element of(X,≾). In the first situation,
we may apply property OC in order to set

fxy(z) ∶= {
0 if z ∈ d(y)
1 otherwise

for all z ∈ X. In the second situation, i.e., when y is not a maximal element of (X,≾), there
exists some point u ∈ X such that y ≺ u. Of course, u may be a maximal element of (X,≾). In
this case, however, we may apply the argument which has been applied in the first situation.
Hence, we may assume, without loss of generality, that there exist points u ∈ X and v ∈ X
such that y ≺ u ≺ v. We proceed by assuming, at first, that v and, thus, also u is contained
in N≾(x). We abbreviate this assumption by (**). In addition, we assume that both (open)
intervals ]y, u[ and ]u, v[ are empty. These assumptions imply that there does not exist any
open interval ]r, t[ of (X,≾)which contains u and it is completely contained in ]y, v[. Hence,
there cannot exist any net (ui)i∈I of points ui ∈]y, v[which converges to u, which implies
that the set U(u) of all points s ∈]y, v[, the indifference classes [s] of which are different
from [u], must be closed. This means that we now may apply the conclusion that in the
proof of Lemma 1 has been abbreviated by (*), in order to conclude that l(u) is open and
closed. Since both points u and v are contained in N≾(x), these considerations, finally, allow
us to define the desired continuous and increasing function fxy ∶ (X,≾, t) Ð→ (R,≤, tnat)
by setting

fxy(z) ∶= {
0 if z ∈ l(u)
1 otherwise

for all z ∈ X. In addition, the above considerations imply that, for the moment, we may
assume without loss of generality that there exist no points h ∈]y, v[, k ∈]y, v[ and q ∈]y, v[
such that h ≺ k ≺ q, and that both intervals ]h, k[ and ]k, q] are empty. With the help of this
assumption, we now verify that the preordered set (]y, v[,≾) is not scattered. Indeed, the
assumption implies, by complete induction, each induction step of which may be settled by
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some straightforward indirect argument, that ]y, v[,≾) contains some order-dense subset,
i.e., a subset which does not contain any jumps, or that the set I(]y, v[) ∶= {[c, g] ⊆]y, v[∣
]c, g[= ∅}, which is ordered by setting [c, g] ⊴ [c′, g′] ⇔ [c, g] = [c′, g′] or g ≺ c′ for all
intervals [c, g] ∈ I(]y, v[) and [c′, g′] ∈ I(]y, v[), is order-dense. Let [0, 1] be the real unit
interval. Then, our considerations allow us to conclude that, in any case, there exists an
order-embedding i ∶ Q ∩ [0, 1],≤) Ð→ (]y, v[,≾). We, thus, proceed by showing that, for
all rationals q ∈ Q∩ [0, 1] and q′ ∈ Q∩ [0, 1] such that q < q′, the inclusion l(i(q)) ⊆ l(i(q′))
holds. Since ≾ is closed and, therefore, also semi-closed, it follows that l(i(q)) ⊆ d(i(q)).
The validity of the strong inequality i(q) ≺ i(q′), thus, implies the desired inclusions
l(i(q)) ⊆ d(i(q)) ⊆ l(i(q′)). These considerations imply that the assumptions of Peleg’s
Theorem (cf. Peleg [10]) are satisfied or, equivalently, that the family {l(i(q))}q∈Q∩[0,1] is a
(decreasing) separable system in the sense of Herden [8]. Peleg’s theorem or Theorem 4.1
in Herden [18], therefore, implies the existence of some continuous and increasing function
fxy ∶ (X,≾, t) Ð→ (R,≤, tnat) such that fxy(y) = 0 and fxy(x) = 1. Let us abbreviate these
arguments by (***). In order to finish the first case, we still must consider the situation
when v is not contained in N≾(x), i.e., the situation when v is contained in i(x). Of course,
it is possible that r(y) = i(x), which means that also u ∈ i(x). In this situation, however,
i(x) is an open and closed subset of X. Hence, we may define the desired continuous and
increasing function fxy ∶ (X,≾, t)Ð→ (R,≤, tnat) by setting

fxy(z) ∶= {
0 if z ∈ X ∖ i(x)
1 otherwise

for all z ∈ X. These considerations now allow us to assume that y ≺ u ≺ v, but u ∈ N≾(x) and
v ∈ i(x). Since it already has been shown that we may assume without loss of generality
that at least one of the (open) intervals ]y, u[ or ]u, v[ is not empty, we first briefly discuss
the case when ]y, u[ is not empty. In this case, however, we may apply the arguments that
have been summarized by (***), in order to guarantee the existence of some continuous
and increasing function fxy ∶ (X,≾, t)Ð→ ([0, 1],≤, tnat) such that fxy(y) = 0 and fxy(x) = 1.
Hence, we now may assume that the (open) interval ]u, v[ is not empty. In this situation,
reiteration of the just used argument in combination with an analysis of the arguments that
have been summarized by (***), imply that there exists some net (wk)k∈K of points wk ∈]u, v[
which converges to u. We now proceed by applying an indirect argument. This means
precisely that we assume that each point wk is contained in i(x), for all indexes k ∈ K. Since
≾ is a closed preorder, this assumption allows us to conclude, however, that u ∈ i(x), which
contradicts our assumption that u is an element of N≾(x). This contradiction guarantees
the existence of some point w ∈]u, v[ such that w ∈ N≾(x). Since y ≺ u ≺ w, now the same
situation is given, as the one which has been described in (**). This reduction to assumption
(**), finally, settles the first case.

Case 2: In this case we distinguish between the sub-case when i(x) coincides with r(y),
and the sub-case when i(x) is properly contained in r(y). But since the sub-case when
r(y) coincides with i(x) already has been discussed in the second part of the first case, we
only have to consider that strong inclusion i(x) ⫋ r(y). Here, also the arguments which
have been used in discussing the first case apply. Indeed, let in this sub-case some point
c ∈ r(y)∖ i(x) be arbitrarily chosen. Then, we have that c ∈ l(x) or c ∈ X ∖ l(x). If c ∈ l(x),
then the situation y ≺ c ≺ x is given, and we may apply the above arguments, concerning
the situation when y ≺ u ≺ v. If c ∈ X ∖ l(x), then the inclusion c ∈ r(y)∖ i(x) implies that
c ∈ N≾(x), and we may apply the above arguments concerning the last part of the first
case, in order to also handle this situation. This last conclusion completes the proof of
the theorem.

In the second section of this paper, the universal character of the Chipman approach
to mathematical utility has been demonstrated (cf. Theorems 1 and 2). Concentrating
on continuous multi-utility representation in Theorem 3, however, it could be shown
that the Chipman approach, at least formally, is not as far away from the real-valued
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approach, as it seems at first sight. Therefore, we now still discuss the relations between the
Chipman approach, the continuous multi-utility approach, and the Richter–Peleg approach
to mathematical utility theory in more detail (cf. Section 1.2 of the introduction). The
relation between the Chipman approach and the continuous multi-utility approach can be
described by combining Theorems 1 and 2 in order to state the following theorem.

Theorem 4. Let ≾ be a semi-closed preorder on a topological space (X, t), and let us assume, in
addition, that t≾

∣∼
is Hausdorff, and that the order topology t≾ is coarser than t. Then, the following

assertions hold:
(i) There exists some cardinal number κ and a preorder ≲ on {0, 1}κ , which is coarser than ≤lex, for
which there exists a continuous order-embedding ϑ ∶ (X ≾, t)Ð→ ({0, 1}κ ,≲, t≲);
(ii) ≾ admits a continuous multi-utility representation.

Proof. Let now ω be the cardinality of the set N(≾) of all pairs ([x], [y])) ∈ X
∣∼
× X

∣∼

such that not(x ≾ y). Then, we consider the direct sum (R,≤, tnat)× ([0, ω[,<) of ordered
topological spaces (R,≤, tnat), as well as the direct sum (X,≾, t)× ([0, ω[,<) of preordered
topological spaces (X,≾, t). As it already has been shown in Section 1.2 of the introduction, it
follows that there exists a continuous order-preserving function Φ ∶ (X,≾, t)× ([0, ω[,<)Ð→
(R,≤, tnat)× ([0, ω[,<). This consideration already clarifies the relation of the continuous
multi-utility approach for representing a preorder with the Richter–Peleg approach for
representing a preorder (cf. Evren and Ok [7]). Define, finally, κ ∶=∣ X

∣∼
∣ and ξ ∶= ω ⋅ κ =∣

ω × κ ∣. Then, Theorem 2 implies the existence of a continuous order-embedding

Ψ ∶ (R,≤, tnat)× ([0, ω[,<)Ð→ (({0, 1}ω)κ ,≲, t≲) = ({0, 1}ξ ,≲, t≲)

and of a continuous order-embedding

Υ ∶ (X,≾, t)× ([0, ω[,<)Ð→ ({0, 1}ξ ,≲, t≲),

such that the following diagram commutes

(({0, 1}ω)κ ,≲, t≲) = ({0, 1}ξ ,≲, t≲) Ψ← (R,≤, tnat)× ([0, ω[,<)
↑ Υ ↗ Φ

(X,≾, t)× ([0, ω[,<)
.

This last theorem completely clarifies the relations between the Chipman-approach,
the continuous multi-utility approach and the Richter–Peleg approach to mathematical
utility theory (cf. Section 1.2 of the introduction).

4. Conclusions

The Chipman approach to mathematical utility theory, on the one hand, and the
continuous multi-utility approach, on the other hand, chiefly are in the focus of this paper.
Indeed, it has been shown, in the second and in third sections of this paper, that both
approaches to mathematical utility theory are not as far away from each other as they seem
at first sight. In Section 1.2 of the introduction and in Theorem 4, the (formal) relations of
these approaches to mathematical utility theory still have been combined with the usual
Richter–Peleg approach to mathematical utility theory, in order to describe and visualize in
this way the intimate relations which exist between these generally used approaches. The
so-called Richter–Peleg multi-utility representations, which take place when all the functions
in multi-utility representations are order-preserving for the given preorder, will be studied
in a future paper within the perspective of the present paper.
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