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A B S T R A C T   

The study proposes an agent-based model to investigate how adoption of climate smart agriculture (CSA) affects 
food security. The analysis investigates the role of social and ecological pressures (i.e. community network, 
climate change and environmental externalities) on the adoption of physical water and soil practices as well as 
crop rotation techniques in rural Ethiopia. The findings reveal that CSA can be an effective strategy to improve 
the rural populations’ well-being for farm households with access to capital, strong social networks and access to 
integrated food markets. The climate scenario simulations indicate that farmers adopting CSA fare better than 
non-adopters, although CSA adoption does not fully counterbalance the severe climate pressures. In addition, 
farmers with poor connections to food markets benefit less from CSA due to stronger price oscillations. These 
results call for an active role for policy makers in encouraging adaptation through CSA adoption by increasing 
access to capital, improving food market integration and building information sharing among farmers.   

1. Introduction 

As the world grapples with the potential problems created by global 
climate change a great deal of analysis has turned toward considering 
adaptation possibilities, especially for farmers in poor countries. One 
such adaptation which has shown promise in the developing world and 
garnered a lot of recent academic interest is climate smart agriculture 
(CSA) (Amadu et al., 2020; Marenya et al., 2020; Tesfaye et al., 2020). 
Climate smart agriculture is a package of micro-level soil and water 
conservation improvements such as planting and agroforestry tech
niques that can help farmers adapt to climate change. A number of 
recent papers have shown the current effectiveness and in some cases 
willingness of farmers to adopt CSA techniques in such places as 
Ethiopia, Peru, and Malawi (Amadu et al., 2020; Marenya et al., 2020; 
Tesfaye et al., 2020). While this literature shows CSA adoption under 
current circumstances, understanding longer term adaptation to climate 
change requires understanding the dynamics and effectiveness of this 
adaptation strategy over time and into the future. Specifically, the 

literature on technology adoption has shown the importance of learning 
by doing and learning from neighbours (Bramoullé and Kranton, 2016; 
Conley and Udry, 2010), and the potential failure of some technologies 
as the current climate changes. An accurate assessment of the ability of 
CSA techniques to help developing country farmers adapt to climate 
change requires modelling both adoption paths and future climate dy
namics. How will the future dynamics of climate and farmer social in
teractions determine climate smart agriculture’s success or failure in 
improving food security? 

Answering such a question requires moving beyond current econo
metric approaches, which take past data as the guide to future farmer 
adaptation behavior. While this provides well identified answers for the 
current state of knowledge and climate, projecting into the future from 
such work requires strong assumptions on the static nature of adapta
tion, farmer behavior, and farmer networks. Our work innovates on the 
adaptation literature by using an agent-based modelling (ABM) 
approach to understand farmer adoption of CSA innovations in rural 
Ethiopia while facing current and future climate change. Such a 
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forward-looking modelling exercise allows us to generate an under
standing of future adaptation dynamics, in which the agents themselves 
learn, choose, and adapt to a changing climate dealing with uncertainty 
(Berger et al, 2017). Understanding such future adaptation dynamics is 
fundamental to helping current policy makers make forward looking 
choices for how to promote climate adaptation. 

To contextualise the analysis, we initialize the model to the adoption 
rate of climate smart agriculture practices and soil fertility derived from 
farm survey data in the lowland and valley fragmented agroecosystem of 
Ethiopia’s Choke mountain watershed (Simane et al., 2013). We choose 
this region because historically it is capable of registering surplus agri
cultural production, but also suffers from serious land and water 
resource degradation which may produce food shortages especially as 
the climate changes (Zaitchik et al., 2012; Teferi et al., 2013). In addi
tion, it is the major production zone for Ethiopia’s national crop, tef 
(Simane et al., 2013). 

This work brings a novel modeling approach to the study of CSA 
adoption and farmer climate adaptation. Agent based models (ABM) 
develop a computational approach able to study complex socio- 
economic systems characterised by different degrees of organisation 
and to interpret the interaction between heterogeneous agents who can 
have complex and non-linear behaviours. ABMs allow us to model 
agents that may have different information sets and behave according to 
rules derived from empirical data or laboratory experiments thereby 
enhancing the realism of the analysis (Tesfatsion and Judd, 2006; 
Branch and Evans, 2006). Adopting an iterative bottom-up approach 
and agents’ adaptive learning process (Delli Gatti et al., 2011), ABMs 
allow us to investigate system dynamics endogenously generated within 
the model while taking into account the possible redistributive impli
cations. This bottom up approach with endogenously determined system 
dynamics allows for a more comprehensive policy assessment for future 
climate adaptation. Like the standard micro-econometric approach to 
CSA adoption, ABMs focus on the behavior of individual actors faced 
with economic and information incentives. Unlike micro-econometric 
approaches, the ABM allows us to simulate future scenarios and 
endogenous interactions between individuals, which is vital for under
standing adaptation to future climate change. 

Our ABM incorporates agent interactions in peer-to-peer networks, 
recognizing that human cognition and management ability is itself a 
scarce resource and depends on environmental and cultural context, 
incentives, and past experiences (Conlisk,1996; Duffy, 2006). The 
agents in our ABM represent a range of autonomous farmers who have 
dynamic behaviours and heterogeneous characteristics (Heckbert et al., 
2010; An, 2012; Dobbie et al., 2018). Agents interact with each other 
according to social and ecological pressures, resulting in emergent 
macro-scale outcomes that can be used to study the whole system 
through scenario analyses (Smajgl et al., 2011; Bazzana et al., 2021). 

According to Adesina and Zinnah (1993) and Ngwira et al. (2014), 
CSA practice adoption is affected by the farmer’s perceptions of these 
technologies, as much as the characteristics of the technologies them
selves. Smallholder farmers have subjective preferences for character
istics of CSA techniques which may also be affected by their social 
context. For these reasons, we take into account farmers’ neighbours 
adoption, their social interactions, and their impact on the rate of 
adoption of different types of CSA techniques. With our ABM modeling 
we also distinguish between short and long-term practices, which can 
have different dynamics. 

The objective of this study is to investigate whether CSA adoption 
dynamics positively affect the food security of households. In line with 
the Food and Agriculture Organization of the United Nations (FAO, 
2021), we use a multidimensional definition of the food security ac
counting for: food availability, food self-sufficiency, food instability, and 
food insecurity severity. Because they may produce different dynamics, 
all four dimensions are important in analysing the effectiveness of CSA 
adoption and adaptation to future climate change. 

In order to provide input into how policy makers might influence the 

climate adaptation process, the ABM allows us to explicitly investigate 
multiple channels that can impact the adoption and food security im
pacts of CSA. The variations in channels of impact we investigate are 
social networks, market integration, and drastic climate change. The 
ABM explicitly models the role of social networks (participation in 
community activities) in changing the adoption of CSA strategies that 
reduce farmers’ food insecurity. More precisely, we compare the system 
dynamics of a baseline scenario with two scenarios with higher and 
lower social network participation rates. In addition, we extend the 
analysis by exploring the adaptive responses to the surrounding market 
integration characteristics (Williams et al., 2020) by altering the price 
transmission mechanism, i.e., varying market conditions generated by 
geography and remoteness, which affects the market price dynamics of 
the food commodities and local wealth. A final enquiry expands the 
analysis by comparing the baseline scenario to a case in which climate 
change is more dramatic. The aim of this analysis is to investigate from a 
food security perspective, whether CSA is an effective mitigation strat
egy for drastic climate change that increases the vulnerability of farmers 
to production risk. 

Our agent-based modelling of CSA adoption investigates the impor
tance of key policy relevant parameters for adaptation to climate 
change: social networks, the workings of food markets in price trans
mission, and the severity of future climate change to farmers’ abilities to 
adapt and their concomitant food security outcomes. It provides a proof 
of concept for how researchers and policy makers can think about and 
analyze farmer adaptation to future climate change in developing 
countries where agriculture is characterized by small-holder subsistence 
farming. In particular, it demonstrates how common features of micro- 
econometric models, networks and adoption dynamics, can be 
modeled in a future oriented ABM to show how policy makers can 
leverage these features to affect future farmer adaptation to climate 
change. The big advantage of an ABM for future policy analysis is that 
the scenarios allow the individual farmers to choose their own adapta
tion paths. Moreover, the methodological framework is sufficiently 
flexible and general that, changing the data source used for the initial
ization and the parametrization, it can be implemented to investigate 
CSA innovation adoption and its effect on food security in other 
geographical contexts. 

The remainder of the paper is structured as follows: Section 2 pre
sents the methodological approach. In Sections 2.1 and 2.2 are presented 
the overview of the model and the sequence of the events. Section 2.3 
describes the willingness to adopt innovations and the actual CSA 
adoption; Sections 2.4 and 2.5 define the supply and demand side of the 
food commodities, whereas Section 2.6 presents the aggregate variables. 
Section 2.7 concludes with the scenario description and the simulation 
parameters. Section 3 describes the simulation results: in Section 3.1 are 
shown the aggregated effects of CSA adoption, Sections 3.2 and 3.3 show 
the impact of the social network and the market access to the adoption 
rate and the food demand satisfaction, Section 3.4 investigates the 
effectiveness of CSA in managing drastic climate change, whereas in 
Section 3.5 we perform some robustness analysis. Sections 4 and 5 close 
with policy suggestions and concluding remarks. 

2. Methodological approach 

2.1. Overview 

The model represents a stylized small agricultural community living 
in a village in Africa and choosing CSA practices. We calibrate the model 
itself to data from villages in northwest Ethiopia. The basic structure of 
the agent based modelling system considers a population of small-holder 
subsistence farmers (j = 1,⋯, J) characterized according to age, social 
network participation, land size (H), and economic endowment (M). The 
household sector consists of farmers who may work in their own fields or 
supply labour to the other farmers within the village boundaries. 
Farmers have limitations in their ability to process new information, 
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based on differences in human, physical, and social capital, i.e,. they are 
not perfectly rational and have heterogeneous management abilities. 
Specifically, they differ in available land, land productivity, financial 
resources, family size and age of the household head, participation in 
social networks and initial CSA technique adoption choices. 

In each period (t = 1,⋯, T), the households perform the following 
activities: 1) decide whether to adopt long and/or short term CSA 
practices, 2) cultivate land using production input as farmers, 3) supply 
labour to the local labour market, 4) consume food commodities (i = 1,
⋯, I), and 5) exchange agricultural products on the market (Fig. 1). We 
assume that farmers have information processing limitations and live in 
an incomplete and asymmetric information context; thus, they are 
boundedly rational and follow simple rules of behaviour. 

2.2. Sequence of events 

The economy is an iterative system where agents repeat the same 
group of actions at each time step. First of all, agents decide whether to 
adopt CSA practices. Farmers who are members of a social network may 
randomly meet another community member. If the farmers meet, they 

modify positively/negatively their WSA/CP adoption probability based 
on the new information gained from their fellow farmers’ experiences. 

Based on the expectation on climate variables, productivity and 
farmer’s type (degree of innovativeness), farmers set their land use and 
desired production inputs. Output depends on farmers’ financial con
straints, rainfall during the production period, and neighbour’s soil and 
water practices (positive or negative externalities). According to the 
household’s composition, the farmer computes its food security 
requirement. If production is higher than self-consumption demand, the 
farm household consumes their own food commodities and sells on the 
market the surplus. In the opposite case, households access the market to 
satisfy their household food requirements. 

At the end of the period, the household members become one period 
older, except for those who die. Hence, the household’s size evolves 
according to the difference between mortality and birth rate. Births are 
distributed among households according to a uniform distribution 
whereas, to define the j-th household member who dies, we use a death 

Fig. 1. Flow chart of the methodology. This flowchart shows the major components and how they are linked in our agent-based model. The model simulates 
farmers’ decision-making on technology adoption of CSA practices, adapting both, either or none of the two general categories of WSA and CP. Their decisions are 
affected by participating in social networks, affecting farm productions and the subsequent household consumption. Households also have access to markets for 
selling and purchasing food products, which affects their available economic resources and food consumption. The model outcomes are measured by four food 
security metrics, including availability, self-sufficiency, instability, and food insecurity severity (see Section 2.6). The model is run under scenarios that differ in 
network information diffusion extents, food price dynamics in integrated or non-integrate markets, and climate conditions. 
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probability drawn from a uniform distribution [0,1]. If this probability is 
lower than the household cohort death probability,1 the farmer dies. In 
the opposite case, she survives. According to this mechanism, older 
agents have a higher probability of dying. 

2.3. Climate smart agriculture practice adoption 

The CSA practices include two main types: physical water and soil 
management actions (WSA), which have high costs and are a long time- 
pay back investment; and conservation practices (CP), such as no or 
minimum tillage, crop residue management, and crop rotation (Howden 
et al., 2007), which affect the crop yields in the short term and have 
relatively lower initial investment costs. 

Following the literature we set the propensity to apply short/long 
term CSA practices to be driven by two main farmer attributes: social 
network memberships and the farmer’s age (Di Falco et al., 2011; 
Ahmed, 2014; Tefera and Larra, 2016). The membership in the com
munity network is assumed to create a higher exchange of information 
on the best practices or mitigation strategies to external climate shocks. 
Therefore, network information can affect the farmer’s beliefs on the 
benefits of different CSA practices. Based on the survey data and results 
reported in Simane et al. (2013): additional network information re
duces expectations on CP’s impact on soil productivity and subsequently 
the adoption rate, whereas it has a positive effect on the belief about the 
benefits due to WSA on crop yields and would increase its adoption rate. 
In line with empirical studies from Ethiopia, Simane et al. (2013) and 
Wossen et al. (2013), the choice of crop rotation is negatively affected by 
farmer age whereas soil and water management actions does not depend 
on her age. 

Farmer adoption depends on her belief (bf) of CSA adoption’s effect 

on soil productivity which is updated in the following manner: 

bf j,x,t = bf j,x,t− 1 + λx,Age + λx,Network;

where λx,Age and λx,Network are negative when x = CP, whereas when x =

WSA they are zero and positive, respectively. If farmer j has positive 
beliefs about the benefits, bf j,x,t ≥ 0, the farmer is willing to adopt the x- 
th CSA practice (WSA and CP) in period t, whereas in the opposite case 
the farmer does not adopt it. We parameterize the λ’s using data derived 
from the Simane et al. (2013) farm level survey of CSA adoption. 

At the beginning of each year, the farmer with positive beliefs about 
the CSA practices decides whether to implement the respective prac
tices. Given that WSA are long-term actions, which last for five periods, 
the farmer computes and compares the expected present value (U) of the 
economic return of the production types with and without the WSA 
implementation: 

Ux,t =
∑5

n=1
σn
(

p x,tY x,t − τx,t

)

. (2) 

In equation (2), σ is the discount factor of the future economic 
returns; τx,t is a fixed adoption cost when x = WSA (equal to zero in case 
of non-adoption, i.e., x = NWSA); p x,t and Y x,t are the average price 
and production over three food commodities (cereal, vegetable and 
fruits, and animal-based products) with/without soil and water man
agement practices adoption at the time period t. The adoption of WSA 
increases crop yields, but has a cost, τWSA,t , whereas if the farmer does 
not adopt WSA there is no gain in crop productivity and no adoption 
cost. Then, following standard random utility adoption models if 
UWSA,t ≥ UNWSA,t, the farmer adopts WSA. 

Farmers have heterogeneous expectations (E) on yields and climate 
variables, which evolve according to the following path dependent 
heuristic: 

Ej,t− 1
(
vj,t

)
= gjvj,t− 1; (3)  

with gj > 0 representing a farmer-specific bias coefficient and v acting as 
the reference variable. The behavioural assumption is that farmers form 
their expectations on future climate variables using the last observed 
levels, and then adjusted with some bias factor (see Conlisk, 1996; 
Duffy, 2006; Nolan et al., 2009; Groeneveld et al., 2017). Farmers are 
optimistic (or pessimistic) about the reference variables if gj > 1 (or 
gj < 1), whereas if gj = 1 the agents form their expectations only using 
the last observed level. 

Once the farmer has decided on the adoption of WSA, she allocates 
the available land to food production. The farmer population can be 
divided into four different behaviour types: double adopters, WSA 
adopters, CP adopters and non-adopters. In line with Bazzana et al. 
(2021), farmers implementing crop rotation process cultivate the h-th 
plot as follows: 

hi,t = hi+1,t− 1⋁hi,t− 1 = hi+1,t− 2⋁hi,t ∕= hi,t− 2; (4)  

where i = 1:3 represents the three different food crop production types 
(cereals, vegetables and fruits, and animal based products produced 
through grazing). We assume this type of crop rotation because it is 

Table 1 
Scenario parameters settings.  

Scenario Food Price Dynamics Network Representative Concentration Pathway1 

A (Baseline) Exogenous 60%  4.5 
B Exogenous 75%  4.5 
C Exogenous 45%  4.5 
D Endogenous 60%  4.5 
E Exogenous 60%  8.5  

1 Representative Concentration Pathway (RCP) is a trajectory of greenhouse gas concentration into the future decades adopted by the climate modeling and 
research community. RCP is labeled using a range of radiative forcings in the year 2100. RCP 4.5 falls in the mid-range, representing an intermediate climate 
change scenario, while RCP 8.5 represents the worst-case scenario with high levels of greenhouse concentrations. 

Table 2 
Values of model parameters and initial conditions.   

Description Value 

Model Parameters 
J Number of households 100 
H Maximum number of plots 20 
σ Discount factor 0.9 
δ Share of land affected by market driven mechanism 0.25 
s Share of income invested in the production process 0.95 
g Bias coefficient 1 
z Average family size 5 
λWSA,Age Ageing impact on WSA adoption propensity 0 
λCP,Age Ageing impact on CP adoption propensity − 0.012 
λWSA,Network Network impact on WSA adoption propensity +0.65 
λCP,Network Network impact on CP adoption propensity − 0.45  

Irrigation service extension 30% 
Initial Conditions 
A Soil fertility range 0.95; 1.05  

Percentage of population adopting WSA 78%  
Percentage of population adopting CP 32%  

1 See the Ethiopian life table for the cohort death probability (World Health 
Organization, 2018). 
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typical of the region and optimal in highland Ethiopia in order to pre
serve soil productivity. 

In contrast, farmers not adopting crop rotation primarily plant plots 
according to a “business as usual” rule with a market driven correction, 
i.e., they plant the same crop as the previous period, changing the 
allocation of land between crop types based on relative prices in the 
market. These farmers reallocate a share (δ) of the land from the lowest 
economic return crop in the previous period to the crop with the highest 
past economic return: 

Rj,i,t− 1 =
pi,t− 1Yj,i,t− 1

Kj,i,t− 1
. (5) 

In equation (5), Rj,i,t− 1 is the economic return of the i-th agricultural 
production for the j-th farmer in the last period; pi,t− 1, Yj,i,t− 1 and Kj,i,t− 1 

are the price, the production and the land planted with the i-th com
modity. To capture key features of subsistence farming, the available 
land for food crops that is not affected by the market driven mechanism 
will be cultivated as usual, i.e., with the same crop as in the past (hi,t =

hi,t− 1). 
The decisions on land use and CSA practices will affect farm plot 

fertility (Ah,t) as follows: 

Ah,t =
(
1 + κj + ηj + ηd

)
Ah,t− 1; (6)  

where κ represents a discount (degradation) rate and η is the WSA effect 

on soil fertility. Hence, plot fertility for the j-th farmer is determined by 
her short and long-term agriculture practice choices (Holden et al., 
2004). Continuous cropping reduces the plot productivity over time 
(κj ≤ 0) whereas crop rotation is able to maintain the plot productivity 
(κj = 0). Moreover, land productivity is positively affected by the 
adoption of soil and water management practices by both the landowner 
(ηj ≥ 0) and the farmers in the neighbouring plots (ηd ≥ 0, positive 
externality). 

2.4. Farmer’s production 

Based on their available income for farm production purposes 
(Mj,t− 1), the farmers hire labour and purchase production inputs (fer
tilizers and seeds), and use irrigation water if they have access to an 
irrigation scheme, to produce the i-th food commodity in each plot (h). 
The agricultural food production function (Qh,t) is defined according to a 
Leontief production functions with no substitution possibilities among 
the inputs: 

Qi,h,t = min
(

Li,h,t

ai,L
,
Si,h,t

ai,S

)

; (7)  

where Li,h,t and Si,h,t represent labour quantities and the other repre
sentative production inputs, whereas aL and aS are the positive tech
nologically determined parameters. 

Fig. 2. CSA adoption and evolution of the food security dimensions. This figure shows the results from running 100 Monte Carlo simulations of the ABM using 
scenario A with our baseline information in a village of 100 households over a 90-year period. Fig. 2a and b show the share of adopters in the farmers population, 
who adopt the Climate Smart Agriculture technology, crop rotation or water and soil management action, respectively. Fig. 2c, d and e show the level of the 
respective food security metric - availability, self-sufficiency, and instability, whereas Fig. 2f shows the average number of households (share in the population) as 
defined in food insecurity severity. Given that we are running 100 Monte Carlo simulations for each of the 14 climate scenarios, the figures represent both the average 
level (in blue line) and the results between the 10th and the 90th percentile (with the half-transparent band). 
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In making decisions on how to optimize the production process, the 
farmer is bounded by the following budget constraint: 

wtLi,h,t + ps,tSi,h,t = ϛMj,t− 1;

Mj,t− 1 =

[
∑3

i=1
πi,j,t− 1 +wtLj,t− 1 +(1 − ϛ)Mj,t− 2

]

;

where wt and ps,t are the price of labour and the other input;ϛ is the 

marginal propensity to save and ϛMj,t− 1 represents the available mone
tary resources from the previous periods which are the sum of past 
profits (πi,j,t− 1) from the production of the i-th commodity, labour in
come and savings.2 The farmer hires outside workers if the optimal 

Fig. 3. Average land allocation among agricultural productions. This figure shows the average results from running 100 Monte Carlo simulations of the ABM 
using scenario A with our baseline information in a village of 100 households over a 90-year period. The y-axis is the share of total available land allocated to cereals 
(blue bars), vegetables and fruits (red bars), and pasture for animal-based food products (yellow bars). (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of the article.). 

Fig. 4. Food availability evolution by CSA adoption. This figure shows the average results from running 100 Monte Carlo simulations of the ABM using scenario A 
with our baseline information in a village of 100 households over a 90-year period. The y-axis is the average level of food availability for the four types of farmers. 
double adopters (dotted line), WSA adopters (solid line), CP adopters (crossed line), non adopters (dashed line). 

2 In line with the current state of credit markets in Ethiopia we assume 
farmers are credit constrained and have to finance investments based on their 
available savings. 
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amount of labour required by the agricultural production process is 
higher than the farmer’s household labour supply. In the opposite case, 
the household sells excess labour time to the other farmers in the village 
generating income. 

In line with the empirical literature (Lobell and Burke, 2010), the 
actual crop yield (Yh,t) depends on both the soil productivity (Ah,t) and 
the effects of available water (rainfall and irrigation) and air tempera
ture (ρ): 

Yh,t = ρtAh,tQh,t;

where 0 ≤ ρt ≤ 1 represents the water stress parameter. Following the 
analysis and parameterization in Block et al. (2008), ρt = 1 means that 
yields are not limited by water stress (e.g. if farmers have access to 
irrigation), although limitations by other factors such as soil fertility or 
management skills are still possible, while ρt = 0 implies crop destroy
ing drought stress. The parameter ρt is computed for the study zone 
using a process-based soil–water balance model as described in Zhang 
et al. (2020). The model simulates soil moisture variation and crop 
growth in gridded soil columns using daily climate variables (rainfall 
and air temperature), irrigation if any, water holding capacities of the 
soil, and crop-specific characteristics (such as crop calendars and 
drought resistant features), and computes a yield factor (i.e., the water 

stress parameter ρt) for the entire growing period. 

2.5. Households basic needs satisfaction 

According to the family size, the total food requirements (C j,i,t) are 
defined as follows: 

C j,i,t = Θizj,t− 1. (8) 

In equation (8), Θi represents the basic food requirements per capita 
for the reference good and z is the household’s size. Hence farmers 
harvest their agricultural production and engage in market exchange if 
the production exceeds or falls behind the basic food requirements of the 
farmer’s household. We assume a preference ordering in the consump
tion choice: first, farmers try to satisfy their cereals demand, then the 
vegetable needs and finally the demand for animal-based food. To 
compensate for a potential food deficit, expenditure will be subject to 
the following budget constraint: 
∑3

i=1

[
pi,t

(
Yj,i,t − cj,i,t

) ]
+wtLj,t +(1 − ϛ)Mj,t− 1 = Mj,t. (9) 

At the end of the period, the households become one period older, 
except for those who die, and the population size evolves according to 
the differential between the birth rate and the death rate. 

Fig. 5. Distribution of effects across households within a village. This figure shows the histogram of the food security indicators from running 100 Monte Carlo 
simulations using scenario A (social network extension 60%), scenario B (social network extension 75%), and scenario C (social network extension 45%). The y-axis is 
the number of households that fall into each of the bins defined in x-axis based on the level of the respective food security indicator. The first row represents food 
availability, the second row is self-sufficiency, and the third row shows food instability. 
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2.6. Aggregated variable dynamics 

In this section we define the laws of motion for prices, wages, and 
population. In our baseline model, which follows the assumptions of 
Bakker et al. (2018) and Sankaranarayanan et al. (2020), we assume the 
existence of a village food market which is integrated enough so that 
local production does not endogenously change the commodity prices. 
Hence, the farmers are price takers and the agricultural commodity 
prices on the market evolve according to an exogenously given autore
gressive process: 

pi,t = ϖi,tpi,t− 1 + εi,t; (10)  

where ϖi,t is an exogenous price evolution coefficient and εi,t is a shock 
following a normal distribution.3 For labour cost, we assume that the 
wage level in the economy is equal across farmers and evolves as 
follows: 

wt = ϖw,twt− 1 + εt; (11) 

In the baseline scenario, we assume that agents supply their labour to 
the other farmers within the village border to endogenously generate 
labour market dynamics and potential unemployment. 

Finally, we assume that the prices of the agricultural production 
inputs (ps,t) also evolve according to an exogenous autoregressive pro
cess, which is comparable to equation (10) in which farmers are price 
takers: 

Fig. 6. CSA adoption rate in the three scenarios. This figure shows the average results from running 100 Monte Carlo simulations of the ABM in a village of 100 
households over a 90 year period using scenario A (social network extension 60%), scenario B (social network extension 75%), and scenario C (social network 
extension 45%). The y-axis is the share of adopters in the farmers population. The solid line is the baseline scenario (A), the dashed line represents scenario B whereas 
the dotted line shows scenario C. 

3 In Section 3, we relax this assumption developing a scenario in which the 
constraints generated by geography and remoteness affect the price trans
mission endogenizing its evolution as follows:p̂i,t =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βpi,t + γ
[
pi,t

(
1 + φi,t

) ]
whereφi,t = f

(
Ci,t

Yi,t

)

ifCi,t > Yi,t

βpi,t + γ
[
pi,t

(
1 − φi,t

) ]
whereφi,t = f

(
Yi,t

Ci,t

)

ifYi,t > Ci,t

, Where φi,t is increasing 

and φi,t(1) = 0. According to the new price definition, the food commodity 
price (p̂i,t) in the interested area depends both by the exogenous price trend and 
by the actual production in the period in the area: if the production 

(
Yi,t

)
is 

higher than the local demand (Ci,t), the households observe a reduction in the 
food commodities price, whereas if there is a shortage in the food commodity, 
its price increases. 
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ps,t = ϖs,tps,t− 1 + εs,t; (12)  

where ϖs,t is an exogenous trend component and εs,t is a shock following 
a normal distribution. 

2.7. Scenarios and simulations 

In the following sections, we run the ABM model to investigate 
whether CSA adoption dynamics positively affect the food security of the 
households. We design several representative scenarios (Table 1) to 
expand the analysis exploring: 1) how improving or reducing the 
extension services and community social network participation, which 
may change the information diffusion, affect the well-being of the 
farmers (Scenario A/Baseline, B, and C; Table 1); 2) how development 
policies (e.g., road and railway construction) affecting price trans
mission can change adoption dynamics and food security (Scenario D); 
3) whether the adoption of the CSA practices is an effective strategy to 
handle drastic climate change (Scenario E). 

In all the scenarios we have defined a representative Ethiopian rural 
village composed of 100 small-holder subsistence farmers with, on 
average, one hectare cultivated land as is common in northwest 
Ethiopia.4 Farmers participation in community social networks affect 
their CSA adoption rates. Following data collected by Simane et al. 
(2013) the community network involves 60% of the households under 

the reference Scenario A. We assume a growing population with a birth 
rate of 31.26 per 1000 people and a death rate of 6.67 per 1000 people 
(in line with Ethiopian data; United Nations, 2019). In line with the data 
for highland Ethiopia, the average initial family size is 5 people, but it 
evolves endogenously over time, affecting the total basic requirements 
and the households’ well-being (see Table 2). 

We assume a standardised African starch-based diet in line with the 
average value for Sub-Saharan Countries (FAO, 1997; 2008) as follows: 
0.52 cereals, 0.27 vegetables and fruits, and 0.21 animal-based food 
products (diary and meat). In relation with these dietary needs, we 
define four indicators: food availability, food self-sufficiency, food 
instability, and food insecurity severity. Food availability is the ratio 
between actual food consumption and total food requirements, whereas 
self-sufficiency is defined as the ratio between self-production and total 
food requirement. Food instability is measured using the cereal import 
dependency ratio (FAO, 2011) which, in the case of a household, is the 
ratio of cereal net purchases over cereal consumption. The higher a 
household is dependent on cereal purchases, the lower the household’s 
food stability is. Following Devereux (2006), we define severely food 
insecure households as those with food availability lower than 70%. 

We model the effects of climate on agricultural production using a 
water stress measure calibrated to 14 climate models5, which the 

Fig. 7. Market price of food commodities. This figure shows the average results from running 100 Monte Carlo simulations of the ABM in a village of 100 
households over a 90 year period using scenario A (exogenous price formation) and scenario D (endogenous price formation). The figures represent the price for 
cereals (first), vegetables and fruits (second), and animal-based food (third). The dotted line represents the price level if markets are integrated and prices are in
dependent of local production and demand levels (Scenario A/Baseline), whereas the solid line is the price in non-integrated markets (Scenario D). 

4 For a wider description of the geographical location of the main data 
sources see Gebreyes et al. 2020 and Simane et al. (2013). 

5 The 14 selected climate models that perform best for the Ethiopian high
lands are CanESM2, CESM1-BGC, CNRM-CM5, CSIRO-Mk3-6–0, GFDL-CM3, 
GFDL-ESM2G, GFDL-ESM2M, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MPI- 
ESM-LR, MPI-ES-MR, MRI-CGCM3, and NorESM1-M. 
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literature finds perform the best for our study zone in Ethiopia (Eggen 
et al. 2019). In our case, we calculate the water stress parameter ρ based 
on daily data simulated by the 14 climate models with representative 
concentration pathways (RCP) 4.5 and 8.5 over 2006–2095 (90 pe
riods). Data variables including daily minimum and maximum temper
ature, daily rainfall, and solar radiation are extracted from each of the 
14 climate models in order to calculate the associated water stress 
parameter. The 14 climate models are selected from 20 models in the 
Coupled Model Intercomparison Project, Fifth generation (CMIP5; 
Taylor et al., 2012) and the data are obtained from the NASA Earth 
Exchange Global Daily Downscaled Projections (NEX-GDDP; Thrasher 
et al., 2012). In addition, the data are bias-corrected through comparing 
the model simulations to data observations in the contemporary climate 

regimes, including the application of Climate Hazard Group InfraRed 
Precipitation with Stations (CHIRPS) product (Funk et al., 2015) and the 
Global Data Assimilation System (GDAS) (Derber et al., 1991) over 
1980–2009. As the rainfall amount during the main raining and growing 
season in the study region has been shown to be highly correlated with 
the phases of the El Niño–Southern Oscillation (ENSO) (e.g., Gisilla et al., 
2004; Zhang et al. 2016), the model selection criteria are based on 
whether the model is able to well represent ENSO and the rainfall 
characteristics over this climatic region (Eggen et al., 2019). 

Simulations of the ABM were run with a Monte Carlo process 
repeated 100 times for a period of 90 years for each climate model. The 
Monte Carlo runs differ by the actual distribution/allocation of births, 
deaths, wealth, and CSA adopters among the households in each period. 

Fig. 8. Difference in food security levels in Scenario D compared to Scenario A. This figure represents the difference in the food security indicators in Scenario D 
compared to Scenario A (blue solid line), and the indifference level (red dashed line). For each scenario the average results from running 100 Monte Carlo simulations 
of the ABM in a village of 100 households over a 90-year period is computed, and the difference between the scenarios is calculated. 

Table 3 
Difference in CSA adaptation rates and food security indicators in Scenario E compared to Scenario A.  

Scenario E minus Scenario A first twenty years last twenty years 

Crop rotation adoption rate  − 0.68%  +0.57% 
WSA adoption rate  +2.01%  − 2.08% 
Food availability  − 0.51%  +0.01% 
Food self-sufficiency  − 0.85%  +0.83% 
Food instability  +0.78%  +1.41% 
Food insecurity severity  +7.78%  − 0.00% 

This table shows the difference in the results from running 100 Monte Carlo simulations using scenario E (with 14 climate models under RCP 8.5) compared to Scenario 
A (with the same 14 climate models but under RCP 4.5). 
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Fig. 9. Water stress parameter dynamics in the two scenarios. This figure shows the average water stress parameter among 14 climate models using RCP 4.5 
(Scenario A) and RCP 8.5 (Scenario E). 

Fig. 10. WSA adoption and evolution of the food security dimensions. This figure shows the average results from running 100 Monte Carlo simulations for each 
of the 14 climate models under Baseline (Scenario A) (blue dashed line) vs. Baseline with longer lasting WSA practices (red solid line), i.e., 5 years vs. 20 years. 
Fig. 10a shows the average share of WSA adopters in the farmers population. Fig. 10b, c and d show the average level of the respective food security metrics - 
availability, self-sufficiency, and instability. 
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The initial parameters on the farmer and household characteristics such 
as the average family size, average available land, CSA adoption rates as 
well as impact of ageing and network on CSA adoption are derived from 
the survey data described in Simane et al. (2013). The data also align 
closely with parameters in another published work that describes survey 
data from highland Ethiopia (Gebreyes et al., 2020). Table 2 shows the 
values of model parameters and the initial conditions for soil fertility 
and CSA adoption rates.6 According to our parametrization, the initial 
soil fertility for each plot is distributed according to a uniform in the 
range [0.95; 1.05]. This low variance in the soil fertility is justified by 
the assumption that we are modelling a single village. In Section 3.5 we 
slightly relax these boundaries. 

3. Results 

The following subsections present the simulation results of food se
curity and CSA adoption starting from the baseline scenario. Then, we 
investigate the role of community networks in the implementation of 
mitigation strategies showing the possible impact of farmer’s wealth on 
food security dynamics. In Section 3.3 we change the food price trans
mission mechanism addressing the crucial role of market integration 
and actual food market access to the satisfaction of food basic needs. 
Finally, in scenario E the system is hit by a severe climate change shock 

aiming to explore the effectiveness of CSA adoption as a mitigation and 
adaptation strategy for severe climate change.7 

3.1. Individual decision and aggregated effects of climate smart 
agriculture adoption 

Looking at the ABM simulation results for aggregate dynamics of 
Scenario A (i.e., the baseline), Fig. 2 shows the climate smart agricul
tural adoption rate and the multidimensional aspects of food security: 
availability, self-sufficiency, instability, and food insecurity severity. 
The figures show 90% confidence bands as measures of model uncer
tainty. Fig. 2a and 2b show the adoption rates of CP and WSA tech
niques. Being costless, conservation practices exhibit a growing trend in 
their adoption in earlier periods, which reduces over time as the op
portunity to share information on best practices among farmers in
creases. The community relationship explains, on the other hand, the 
growing trend in Fig. 2b because it positively affects the WSA adoption. 
Positive information on WSA generates a cascade effect through the 
physical water and soil management practices and their positive exter
nalities on neighbours. 

Fig. 2c represents the ratio between food consumption and total food 
requirements, highlighting the capability of farmers to reach household 
food security by self-production and by market exchanges. Fig. 2d rep
resents the level of food security reached through self-production. The 
gap between food availability and self-sufficiency shows the crucial role 
played by market access in satisfying food basic needs. Indeed, in spite of 
the growing adoption of the soil and water management techniques 
(Fig. 2a), the food self-sufficiency level oscillates around 28.96% during 
the simulated period. Fig. 2e shows the dependence of household cereal 
consumption on cereals coming from the market, as a measure of 
instability. In the study area, the average percentage of purchased ce
reals over domestic supply of cereals is 44.89%. This index indicates the 
extent of vulnerability households are exposed to for cereal consump
tion, a main source of staples, when the access to market is disrupted or 
when the market price is volatile. Fig. 2f exhibits the number of 
households with severe food insecurity, i.e. households that are not able 
to reach a food availability level higher than 70%. 

As shown by Fig. 3, starting from a situation where there is an almost 
equal land allocation among the three agricultural productions (cereals, 
vegetables and fruits, and pasture for animal-based food products), the 
ABM modeling shows that land allocated to cereals and pasture in
creases to a final level of around 80% of total land.8 This redistribution 
of land among the crops favours the production of goods with higher 
economic returns (animal-based food) or that are more demanded by the 
households’ starch-based diet (cereals). With higher earnings, the 
farmers try to satisfy the demand for other food commodities on the 
market. Allocating more land to the food commodity at the base of their 
diet, the farmers are able to reach higher levels of self-sufficiency. 
However, the growth in level of satisfaction through self-sufficiency is 
bounded by physical constraints of the agricultural sector with concave 
yields and by population growth. 

Fig. 4 shows the results of the ABM simulations for food availability, 
i.e., the ratio between food consumption and total household food re
quirements. We divide the population in four groups according to 
climate smart agricultural practice adoption: non-adopters, farmers who 
adopt only WSA, adopters of CP but not WSA, and double adopters. 
Looking at the evolution of the food security indicators, all the four 
groups register an increasing trend in the average level of food avail
ability, but farmers who adopt both CSA practices are able to reach the 
highest food security level. Comparing the dynamics of the four trends, it 

Table 4 
Levels of food security dimensions in Baseline and Baseline with extended 
fertility range.    

Period 2 Period 
30 

Period 
60 

Period 
90 

Food availability – 
Baseline 

10th 
mean 
90th 

0.7897 
0.8110 
0.8273 

0.9738 
0.9770 
0.9800 

0.9929 
0.9940 
0.9950 

0.9986 
0.9989 
0.9992 

Food availability - 
Extended fertility range 

10th 
mean 
90th 

0.8018 
0.8026 
0.8032 

0.9785 
0.9807 
0.9820 

0.9947 
0.9955 
0.9960 

0.9987 
0.9989 
0.9993 

Self-sufficiency - Baseline 10th 
mean 
90th 

0.0778 
0.2478 
0.4764 

0.2306 
0.2921 
0.3333 

0.2381 
0.2848 
0.3299 

0.2284 
0.2858 
0.3273 

Self-sufficiency - Extended 
fertility range 

10th 
mean 
90th 

0.0748 
0.2368 
0.4751 

0.2719 
0.3085 
0.3333 

0.2735 
0.2997 
0.3295 

0.2411 
0.2902 
0.3273 

Food instability - Baseline 10th 
mean 
90th 

0.3911 
0.8115 
1 

0.1352 
0.4490 
0.8350 

0.2018 
0.3909 
0.4929 

0.3346 
0.4291 
0.4891 

Food instability - Extended 
fertility range 

10th 
mean 
90th 

0.4302 
0.8221 
1 

0.1290 
0.4252 
0.8069 

0.2718 
0.4114 
0.4812 

0.3641 
0.4374 
0.4886 

Food insecurity severity - 
Baseline 

10th 
mean 
90th 

27 
29.8571 
33.1000 

0 
0 
0 

0 
0 
0 

0 
0 
0 

Food insecurity severity - 
Extended fertility range 

10th 
mean 
90th 

26.9000 
30.4286 
34.1000 

0 
0.0714 
0.1000 

0 
0 
0 

0 
0 
0 

This table shows the results in different time periods from running 100 Monte 
Carlo simulations under Baseline (Scenario A) vs. Baseline with a wider soil 
fertility range. 

6 See Table A2 in the appendix for the references of the main parameters of 
the model. The parameters of the model are chosen to reflect data collected in 
rural Ethiopia and presented in Simane et al. (2013) and/or Gebreyes et al., 
(2020). They most closely resemble what is described as Agro-Ecosystem #3 in 
Simane et al. (2013), representing the rural villages in the area around Debra 
Markos, Ethiopia. The adoption rate parameters were provided by conversa
tions with Dr. Belay Simane from estimates he conducted on the data collection 
exercise reported in Simane et al. (2013). These unpublished estimates from 
Simane were then further calibrated with those reported in Wossen et al. 
(2013). 

7 The following subsections display a set of results from simulations run in 
Matlab.  

8 See Fig. A1 in appendix for the percentile distribution of the land allocation 
among the simulation results. 
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is possible to see that CP adopters register a higher food availability level 
than WSA adopters in the first part of the simulated periods. This 
dominance can be mainly explained by the characteristic to be costless 
of the crop rotation adoption. Being costless, CP does not drain farmer 
economic resources which can be used on the food market to increase 
the household’s food availability level. Additionally, CP has both a 
positive effect on food production and can benefit from the positive 
externality of the WSA adopters in the neighbourhood. Over time, the 
membership in the community network affects the farmer’s beliefs on 
the benefits of WSA practices and therefore most of the farmers imple
ment these practices (as shown in Fig. 2). This adoption produces pos
itive externality from the beginning and increases the agricultural 
economic return also for WSA non adopter. Hence, having more avail
able economic resources, farmers who were previously non adopters due 
to budget constraint can now implement WSA.9 Moreover we find that 
water and soil practices have a more stable impact on food availability 
than crop rotation in general, and a stronger positive impact in the long- 
run.10 

In summary, our analysis of the baseline scenario indicates that 
climate smart agriculture practice adoption is an effective strategy to 
improve the well-being of farmers faced by future climate change by 
increasing their food availability. Their food availability increases come 
through a combination of higher food production and market purchases 
given increases in income from selling agricultural production on the 
market. However, the positive number of severely food insecure farm 
households highlights how heterogeneity in wealth, in terms of eco
nomic resources and available land, plays a crucial role which may be 
lost looking only at the average effects. 

3.2. The impact of social network in the climate smart adoption practices 

This section uses the ABM to perform a comparative analysis on the 
role of social networks on farmers’ ability to reach adequate food se
curity for their household. The aim is to understand whether community 
social networks significantly increase the adaptive capacity of farmers 
through the sharing of best practices and mitigation strategies reducing 
their vulnerability in terms of food security. More precisely, we compare 
the system dynamics of the baseline scenario with two scenarios with 
altered social network participation rates. In Scenario B, the community 
network is wider with 75% of the farmers in the area participating in 
each period, whereas in Scenario C the share of participants reduces to 
45%. These differences in community networks also allow us to see how 
CSA might perform in a zone with lower levels of social connectivity and 
cohesion. 

Fig. 5 shows the results of the ABM simulations in Scenarios A, B and 
C on three dimensions of food security: availability, self-sufficiency, and 
instability. Each plot exhibits the distribution of a food security indicator 
level in the population for the three scenarios in one of the four 
demonstrated periods.11 

Looking at food availability in Fig. 5, we see that initially (t = 2) the 
levels are comparable across scenarios. At t = 30, almost all households 
in Scenario A and B reach the highest categorical level of food avail
ability, while in Scenario C, with smaller social networks among 
farmers, a few more households are left behind in the second to the 

highest food availability category. The lower social network participa
tion reduces the possibility to share experiences among peers, negatively 
affecting the adoption of the water and soil management actions and 
reducing the number of farmers who give up crop rotation practices as 
shown in Fig. 6. Interestingly, it seems that for food availability an in
come effect emerges. Indeed, although both the CSA practices positively 
affect agricultural yields, only the adoption of WSA requires strong in
vestments whereas CP does not need additional production costs leaving 
unaffected economic resources that the farmers can use to purchase food 
commodities on the market. A wider community network is beneficial if 
we look at the food security level achievable by self-production. 
Increasing the possibility to exchange information and learn best prac
tices from neighbours, the adoption rate of WSA is higher (Fig. 6). This 
higher adoption rate strengthens the resilience of farmers to adverse and 
unexpected conditions, e.g., reduced yield under climate impact and loss 
of market access due to physical constraints. Investing in these practices, 
the households are able to increase their yields positively affecting the 
food security achievable without market transaction and to reduce their 
dependence on cereals from other areas (i.e., higher food self-sufficiency 
and lower instability as shown in Fig. 5). This suggests the crucial role 
that social networks, market price dynamics of food commodities, and 
population wealth play in food security under future climate change. 

3.3. The role of market access on food demand satisfaction 

As shown in Section 3.2, market integration is important for food 
demand satisfaction when self-production is not able to achieve total 
household food demand. In this section we test the ABM with a scenario 
(Scenario D) where the transportation infrastructures are not as well 
developed, and the constraints generated by geography and remoteness 
affect price transmission. In this case the frictions in the food market 
endogenizes the evolution of prices, making them partially a function of 
local production and sales levels. 

Reducing the market integration of the simulated village produces a 
growth in the price volatility of the food commodities, as shown in Fig. 7 
(solid line). The price of vegetables and fruits, and animal-based food 
given limited market access are higher than the price when households 
do not have constraints on the market access (respectively + 1.36% and 
+ 5.56% on average), whereas, thanks to its higher local supply, cereals 
have a lower average price (− 6.12%). Apart from the average levels, it is 
worth noting that the prices of the commodities show higher volatility in 
less integrated markets, which decreases food availability and increases 
food instability and insecurity severity. Indeed, farmers living in remote 
areas or districts with less transportation infrastructure are more 
vulnerable to unexpected drops in yields because these directly affect 
the food available for supply and demand in the local market and the 
price of the food commodities on the market. The price dynamics can be 
explained by the complex relations between food preference, land use 
and low integration of the food market. Starting from a comparable 
distribution of land use among the food commodities in the two sce
narios, the African starch diet based on cereals activates some feedback 
dynamics between land use and food price. In geographically remote 
villages (scenario D), given the cereal production, the high level of the 
demand for this food commodity pushes up its price (see footnote 11). 
Unsatisfied demand coupled with expectation for higher economic re
turn from the cereals cultivation will induce farmers to allocate more 
land to cereals production in the next time period. Indeed, the land 
allocation is affected by the market driven mechanism. In the incoming 
period, in the village market there will be a higher supply of cereals that 
i) reduces the production deficit, ii) negatively affects the commodity 
price, iii) through the behavioural heuristic will produce a reduction in 
the expected economic return of cereals production for the following 
period leading to a shift in the land allocation among crops. The land 
allocation mechanism will spread the fluctuations originated in the ce
reals’ variables (production, price, land used) to the other food com
modities which in the meantime will become relatively more profitable 

9 The adoption of CSA practices is not complete, i.e. do not affect all the 
population, because new householders substituting died farmers can have 
negative beliefs on the CSA adoption benefits.  
10 For a separated representation of the food availability evolution for each 

farmer type see Fig. A2 in appendix with the average and percentile distribution 
of the simulation results. 
11 We do not represent food insecurity severity in Fig. 5 because it is graphi

cally less readable. The share of farmers in severe food insecure conditions 
becomes close to zero in the second plot (from period 30) for all the scenarios, 
suggesting little meaningful differences across scenarios in this dimension. 
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reinforcing the oscillating feedback dynamics. 
Fig. 8 shows the difference in food security levels reached by 

households in the ABM simulations between Scenario D and Scenario A/ 
Baseline. In Scenario A, where the area has high market integration (i.e., 
better connected with transport infrastructures), the farmers are more 
resilient to food shortages in their own district because we do not 
observe strong price oscillations which can reduce their ability to satisfy 
food demand by purchasing commodities on the market (see food 
availability; Fig. 8a). The higher average price levels farmers face in the 
market when purchasing food, the fewer economic resources remain to 
be invested in agricultural production. Even if the scenarios show 
comparable CSA adoption rates (the difference in adoption between 
scenarios D and A is less than 0.5%), the reduction in the economic 
endowment has a direct effect on agricultural productivity given that the 
farmers have more binding budget constraints for production input ex
penditures. This effect is even more severe for the farmers with less 
available resources, both in terms of land and economic assets, and it is 
translated into a wider share of population registering severe food 
insecurity in Scenario D than A, an absolute change of +27.14% 
(Fig. 8d).12 

3.4. Can climate smart agriculture practices manage drastic climate 
change? 

This section expands the analysis by comparing Scenario E with 
climate projections under RCP8.5 to Scenario A under RCP4.5. The aim 
of this analysis is to investigate whether, from a food security perspec
tive, CSA practice adoption is an effective mitigation strategy to 
different pathways of climate projections. 

As shown in Table 3, at the beginning of the simulations the farmers 
in Scenario E are worse off than in scenario A exhibiting a lower 
adoption rate of CP practices and a higher implementation of WSA 
techniques. However, the results are reversed in the last two decades of 
the time horizon. Over time, crop rotation adoption becomes higher in 
the Scenario E (+0.57%) whereas WSA adoption becomes lower 
(− 2.08%). These inversions in the CSA implementation rates mean that 
farmers prefer sustaining the soil fertility adopting costless practices to 
improve the self-sufficiency (+0.83%), exploiting the positive effects of 
the WSA adoption (i.e. positive externalities in the neighbourhood) 
acting as a free-rider. This behaviour allows the farmer to spend the new 
savings from non-adopting WSA in the food market to reach a higher 
food availability level (+0.01%). The stronger role of food market access 
in this drastic climate change scenario is also represented by the dete
rioration in household food stability. 

The reason why the results in the two scenarios are fairly similar 
despite major changes in the climate change scenario is shown in Fig. 9. 
Fig. 9 exhibits the average water stress parameter dynamics (ρt) among 
the 14 climate models in Scenario A and Scenario E.13 Importantly, in 
the reference geographic area, the climate scenarios exhibit comparable 
water stress parameters in the first twenty periods, equal to 0.475 and 
0.476 respectively for representative concentration pathway 8.5 and 
4.5. However, in the last twenty periods, the representative concentra
tion pathway 8.5 is coupled with a lower average water stress parameter 
(0.4857 in Scenario E and 0.4598 in Scenario A) positively affecting the 
crop yields and the food security metrics. 

In the first twenty years, Scenario E leads to higher water stress on 
average and the variation of climate impacts on crops is also higher, and 
therefore farmers register a drastic reduction in the food self-sufficiency 
levels coupled with slightly lower food availability, compared to Sce
nario A. The increase in WSA adopters in the farmer population in 

Scenario E with respect to Scenario A indicates that WSA is chosen by 
the farmers as a better adaptation strategy to more severe climate im
pacts, although the strategy cannot fully counteract the adverse climate 
impact. In the last twenty years, crops in Scenario E are projected to 
endure less water stress than Scenario A, and therefore the food self- 
sufficiency in Scenario E is higher than Scenario A while food insta
bility is higher indicating households rely on market purchases for cereal 
consumption more heavily in Scenario E than in Scenario A. Overall, the 
analysis suggests that farmers adopting CSA actions fare better than the 
non-adopters, in which the effect of water and soil management prac
tices on households well-being is the strongest in the scenario with more 
severe climate impacts.14 

3.5. Robustness check 

In this section, we perform additional simulations by changing some 
key parameters in order to investigate the robustness of our results. First, 
we analyze the effect of the land fertility on the model results. In the 
previous analyses, we assume a low variance in the fertility among the 
plots (from 0.95 to 1.05). This parametrization can be justified by the 
assumption that we are modelling the CSA adoption and food dimension 
dynamics focusing on a single (and representative) village. Here we 
assume a stronger variance in soil fertility to test the model’s sensitivity 
and adaptability. As shown in Fig. 10, we now extend the range of the 
initial soil fertility (from 0.9 to 1.10). It should be underlined that in 
these new simulations the variance of the soil fertility is wider but it has 
not changed the distribution. As shown by Table 4, extending the plot 
fertility range centered around the same mean does not strongly affect 
the average results. Hence, this model can be applied to study the impact 
of CSA practice adoption of food dimensions in other contexts adapting 
the fertility range, for example assuming that different locations or more 
extended areas (e.g. more villages) have a higher difference in soil 
fertility or a lower average level changing the parametrization (i.e. 
shifting the fertility window). 

We investigate the robustness of the results with respect to the 
persistence of the WSA practices. In the following simulations we as
sume that the water control structures last for twenty periods without 
changing the fixed adoption cost (τx,t). 

Extending the duration of the WSA practices reduces the fixed cost 
per period of their implementation and therefore positively affects the 
adoption rate and the food security dimensions (see Fig. 10). For 
example, in the first half of the simulated periods, the scenario with WSA 
lasting for more periods registers an average increase in their adoptions 
by 14.04% than the baseline scenario with positive consequences 
especially on the food self-sufficiency. The reason can be explained by 
the fact that higher WSA adoption rate relaxes the water stress, 
increasing the crop yields. As a consequence, in the experiment with 
longer WSA persistence, the households will register higher food avail
ability with lower food instability issues. 

These simulations support the previous insights on the crucial role of 
the economic environment in CSA adoption and food needs satisfaction. 
Indeed, by extending the lasting periods of the WSA practices we are 
implicitly lessening the economic burden of their adoption increasing 
their appeal (or economic sustainability) for more farmers. In future 
research development we will extend the analysis introducing mainte
nance costs and depletion rate of the structures in line with Bazzana 
et al. (2020). 

4. Policy implications 

This work provides a proof of concept for how an ABM designed to 
represent a village in rural Africa can help understand the future dynamics 

12 See Fig. A3 in appendix for the percentile distribution of the food metrics of 
Scenario D.  
13 See Fig. A4 in appendix for the distribution of the water stress parameter in 

the two scenarios. 

14 See Fig. A5 in Appendix for the percentage difference in food availability 
level between the two scenarios in the first (last) twenty simulated periods. 
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of farmer adaptation to climate change through climate smart agriculture. 
In providing a forward looking model with endogenous interactions among 
agents, this modeling exercise, carefully calibrated to survey data from 
highland Ethiopia, develops new insights for policy makers beyond the 
micro-econometric work that has so far developed in the literature (Di 
Falco et al., 2011; Asfaw et al. 2012). Specifically it identifies multiple 
interlinked policy efforts that will be needed to maintain food security for 
Ethiopian households in the face of climate change. 

The model results show the importance of farmer networks in CSA 
adoption, market infrastructure in maintaining farmer wealth and food 
security, the importance of the economic endowment of farmers espe
cially in the case of costly long-term investments. Policy makers would 
do well to develop extension models for the roll out of CSA that take 
advantage of farmer networks for spreading information. Our model 
does, however, have a warning for policy makers, which is that where 
CSA techniques are not especially profitable in the short-term, these 
social networks can severely reduce adoption of a long-term potentially 
profitable technology. This suggests the potential need for policy makers 
to lessen the short-term economic burdens of climate adaptation 
through CSA adoption. 

Policy makers also need to be aware that farmer willingness to adopt 
CSA does not guarantee food security for all farm households. Rather the 
model suggests that in zones with inadequate transport infrastructure we 
see volatility in endogenous local food prices that significantly reduces the 
ability of farmers to mitigate climate change through CSA adoption. This 
suggests that along with promoting climate smart agriculture, policy 
makers in Africa and elsewhere should seek to activate food markets and 
supply chains as a complementary climate adaptation policy. 

Similarly, even when most farmers adopt CSA, our model also 
demonstrates significant heterogeneity in the food security benefits of 
CSA adoption. Up to a quarter of farmers, even with adaptation to 
climate change through CSA adoption, will still not reach adequate 
levels of food security for their households. Policy makers will need to 
develop additional policies to mitigate the effects of climate change to 
help this sector of the population. 

Finally the modeling in this paper shows that climate adaptation 
through CSA adoption is useful but may not guarantee food security, 
especially with the strongest climate change scenarios. This suggests 
that policies to combat climate change are necessary complements to 
adaptation innovations. Policy makers cannot just hope that farmers can 
adapt their way out of climate change; they need to be focused on 
lessening the effects of climate change at the same time they are pro
moting adaptation. 

5. Conclusions 

We develop an Agent Based Model to investigate whether the Climate 
Smart Agriculture adoption dynamics positively affects food security of 
developing country farmers in a model calibrated to Ethiopian highland 
farmers. We do so using a multidimensional definition of the food security 
(availability, self-sufficiency, instability, and food insecurity severity) and 
incorporating social and ecological pressures (i.e., community networks, 
environmental externalities and climate change) to understand farmer 
adoption of short- and long-term CSA techniques in rural Ethiopia. The 
analysis shows that CSA adoption can be an effective strategy to improve 
the well-being of farmers through increases in crop yields and the economic 
returns from agricultural production (Gebreegziabher et al., 2016; Rasul 
and Sharma, 2016; Komarek et al., 2019). In coping with climate change, 
the model findings suggest that farmers adopting CSA fare better than non- 
adopters (Michler et al., 2019), although CSA practice adoption is not able 
to fully counterbalance the severe climate pressures. These results are in 
line with the empirical findings in other Sub-Saharan locations and confirm 
in a longer-term dynamic way the static results currently found in the 
literature (Mango et al., 2017). A high cost investment strategy such as 
WSA, however, is not always suitable for farmers who aim to reach higher 
food availability in a relatively short time frame. As shown also by the 

empirical work of Di Falco et al. (2011), the food security response to 
adaptation strategies critically depends on farmers’ investment capacity 
and economic resources for market purchases to satisfy consumption needs 
especially in the short-term. 

Among the novel findings is that by investigating the dynamic role of 
social networks, the analysis demonstrates the importance of commu
nity relationships to exchange information and best practices to increase 
the adoption rate of climate smart agriculture techniques (Makate et al., 
2019). Also by modeling the local community within which the farmers 
live, our simulations demonstrate that the economic environment plays 
an equally crucial role in the success of CSA adoption, because both 
market price dynamics of food commodities and population wealth play 
important roles in food security even with farmer adaptation of climate 
smart agriculture. Farmers living in more remote areas become more 
vulnerable to food shortage in their own district with CSA adoption. 
Having worse connections to food markets, these farmers face stronger 
price oscillations which negatively affect their food stability and well- 
being. This outcome is even more severe for the poorer farmers, both 
in terms of available land and economic assets. 

Methodologically this work adds to the literature on climate adap
tation by demonstrating how agent-based model simulations that take 
into account neighbourhood learning dynamics and market conditions 
can provide additional understanding to how farmers might adapt to 
climate change in the future. The farmers in this model are not passive 
recipients of climate change, but active learners who learn from their 
neighbours, past experiences, past climate, and market opportunities. 
The work shows how to move beyond backward looking models of 
climate smart agriculture to estimating adaptation possibilities in com
plex socio-economic environments such as the African context. Having 
demonstrated how an agent-based model can simulate farmer adapta
tion with climate smart agriculture, we see many future research ave
nues for use of this and similar agent-based models. These include 
calibrating the model to other locations in Africa and beyond, analysing 
other CSA-type interventions, and testing how market and supply chain 
interventions might inform policy makers about the ability of house
holds to adapt to future climate change. 
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Appendix A 

In Table A1 we show the sources for the parameters to calibrate our 
model. The parameters of the model are chosen to reflect the actual data 
presented in Simane et al. (2013) and Gebreyes et al., (2020), which report 
on survey data from rural areas of central Ethiopia. They most closely 
represent what is described as Agro-Ecosystem #3 in Simane et al. (2013), 
which describes rural villages in the area around Debra Markos, Ethiopia. 
The adoption rate parameters were provided by Dr. Belay Simane from 
estimates he calculated in the same data collection exercise reported in 
Simane et al. (2013). Those estimates were revised to be consistent with the 
social network estimates in Wossen et al. (2013). Broadly the data also 
comports with other data we can find in the literature about Ethiopian rural 
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Table A1 
Sources of the main parameters of the model.  

Parameter Value Source 

Maximum number of plots per household 20 Headley et al., 2014; Gebreyes et al. 2020 
Discount factor 0.9 Duflo et al. 2011 
Share of land affected by market driven mechanisms (i.e. cash crops) 0.25 Gebreyes et al. 2020; Bazzana et al. 2021 
Share of income re-invested in the production process 0.95 World Bank (2013) 
Bias coefficient 1 Gebreyes et al. 2020; Bazzana et al. 2021 
Average family size 5 Headley et al., 2014; Gebreyes et al. 2020 
Impact of age on WSA adoption propensity 0 Simane et al. 2013; Wossen et al., 2013 
Impact of age on CP adoption propensity − 0.012 Simane et al. 2013; Wossen et al., 2013 
Network impact on WSA adoption propensity +0.65 Simane et al. 2013 
Network impact on CP adoption propensity − 0.45 Simane et al. 2013 
Participation in social networks 60% Di Falco et al., 2011; Simane et al. 2013 
Percentage of farms with irrigation 30% Simane et al. 2013; Gebreyes et al. 2020 
Initial WSA adoption rate 78% Simane et al. 2013 
Initial CP adoption rate 32% Asfaw et al., 2012; Simane et al. 2013 
Population birth rate 31.26‰ United Nations, 2019 
Population death rate 6.67‰ United Nations, 2019  

Fig. A1. Average land allocation among agricultural productions (percentiles). The figure shows the results range from running 100 Monte Carlo simulations of 
the ABM using scenario A for the 14 climate models. The y-axis is the share of total available land allocated to each crop. Red bars represent the 10th percentile 
whereas the light blue bars are the 90th percentile. 
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Fig. A2. Food availability evolution by CSA adoption (percentiles). The figure shows the results range from running 100 Monte Carlo simulations of the ABM 
using scenario A for the 14 climate models. The y-axis is the level of food availability for the four types of farmers: double adopters, WSA adopters (solid line), CP 
adopters, non adopters. The continuous line represents the average results whereas the half-transparent band shows the results between the 10th and the 
90th percentile. 
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Fig. A3. Evolution of the food security dimensions in Scenario D. This figure shows the results from running 100 Monte Carlo simulations of the ABM for each 
climate scenario. Figure a, b and c show the level of the respective food security metric - availability, self-sufficiency, and instability, whereas Figure d shows the 
average number of households (share in the population) as defined in food insecurity severity. The blue line represents the average level whereas the half-transparent 
band shows the results between the 10th and the 90th percentile. 

D. Bazzana et al.                                                                                                                                                                                                                               



Food Policy 111 (2022) 102304

19

Fig. A4. Water stress parameter dynamics in the two scenarios, This figure shows the average, the 10th and 90th percentile of the water stress parameter among 
14 climate models using RCP 4.5 (Scenario A) and RCP 8.5 (Scenario E). 

Fig. A5. Difference in Food availability according to the farmer type in Scenario E compared to Scenario A. This figure presents the percentage difference in 
the food availability in Scenario E compared to Scenario A for the four adopter types. For each scenario the average results from running 100 Monte Carlo simulations 
are computed, and the difference between the scenarios is calculated. The solid line represents the difference in the first twenty periods, whereas the dashed line 
represents the percentage difference in the last twenty periods. 
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areas, such as Asfaw et al. (2012); Di Falco et al. (2011); and Headley et al. 
(2014). Additional information to appropriately calibrate the model to a 
rural Ethiopian setting comes from World Bank (2013) and the United 
Nations (2019) (see Figs A1–A5). 
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