
Citation: Micheli, M.; Papa, G.; Negri,

I.; Lancini, M.; Nuzzi, C.; Pasinetti, S.

Sensorizing a Beehive: A Study on

Potential Embedded Solutions for

Internal Contactless Monitoring of

Bees Activity. Sensors 2024, 24, 5270.

https://doi.org/10.3390/s24165270

Academic Editors: Abdul M.

Mouazen and Viacheslav Adamchuk

Received: 12 July 2024

Revised: 5 August 2024

Accepted: 12 August 2024

Published: 14 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sensorizing a Beehive: A Study on Potential Embedded
Solutions for Internal Contactless Monitoring of Bees Activity

Massimiliano Micheli 1 , Giulia Papa 2 , Ilaria Negri 2 , Matteo Lancini 3,* , Cristina Nuzzi 1,*

and Simone Pasinetti 1

1 Department of Mechanical and Industrial Engineering (DIMI), University of Brescia, Via Branze 38,
25128 Brescia, Italy; massimiliano.micheli@unibs.it (M.M.); simone.pasinetti@unibs.it (S.P.)

2 Department of Sustainable Crop Production (DI.PRO.VE.S.), Catholic University of the Sacred Heart, Via E.
Parmense 84, 29122 Piacenza, Italy; giulia.papa@unicatt.it (G.P.); ilaria.negri@unicatt.it (I.N.)

3 Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health (DSMC),
University of Brescia, Viale Europa 11, 25128 Brescia, Italy

* Correspondence: matteo.lancini@unibs.it (M.L.); cristina.nuzzi@unibs.it (C.N.)

Abstract: Winter is the season of main concern for beekeepers since the temperature, humidity, and
potential infection from mites and other diseases may lead the colony to death. As a consequence,
beekeepers perform invasive checks on the colonies, exposing them to further harm. This paper
proposes a novel design of an instrumented beehive involving color cameras placed inside the
beehive and at the bottom of it, paving the way for new frontiers in beehive monitoring. The
overall acquisition system is described focusing on design choices towards an effective solution for
internal, contactless, and stress-free beehive monitoring. To validate our approach, we conducted
an experimental campaign in 2023 and analyzed the collected images with YOLOv8 to understand
if the proposed solution can be useful for beekeepers and what kind of information can be derived
from this kind of monitoring, including the presence of Varroa destructor mites inside the beehive. We
experimentally found that the observation point inside the beehive is the most challenging due to the
frequent movements of the bees and the difficulties related to obtaining in-focus images. However,
from these images, it is possible to find Varroa destructor mites. On the other hand, the observation
point at the bottom of the beehive showed great potential for understanding the overall activity of
the colony.

Keywords: measurement science; hardware instrumentation; honeybee monitoring; precision
agriculture; Varroa destructor; embedded measurements; object detection

1. Introduction

Despite being a relatively young sector, Italian honey and bee wax production is
extremely flourishing. According to the 2024 report of iCRIBIS [1], there are more than
1.6 million beehives located mostly in the northwest (32.1% compared to 19.1% in the
northeast, 18.2% in the center, 17.2% in the south, and 13.4% on the two isles of Sicily
and Sardinia). Of these beehives, 79% are managed by professional beekeepers running
mostly micro companies (fewer than 10 people), and 25.6% of them are managed by
young professionals. Micro companies typically lack the funding to invest in technological
advances; thus, they are forced to rely on traditional methods instead of digital solutions
due to the costs of the hardware and the lack of experience in operating it. However,
innovation in this sector can still be achieved by leveraging simple and low-cost solutions [2].

The European honey bee Apis mellifera is a semi-domesticated species that can populate
artificial beehives (such as the common Dadant beehive [3]) for commercial purposes [4].
Bee colonies are subject to human selection but are not restricted in their foraging since
they can freely access the surrounding landscape, thus requiring the beekeepers to place
the beehives in a protected environment to ensure a good quality product. Unfortunately,
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external stressors such as weather conditions, pesticide applications, habitat quality, and
potential infections due to viruses and pests can affect a colony’s health and determine its
mortality [5]. In particular, winter plays a huge role in the survival of a colony because of
the temperature drop, which could cause stress to the colony and its queen [6,7], and the
potential infection of mites during fall that spreads inside the colony undisturbed during
winter [8]. Among the potential parasites, the most dangerous one is Varroa destructor, a red
and round mite of 2 mm diameter that attacks and feeds on the bees [9,10]. If the infestation
is not treated in time, the mite population grows during winter, and genomic diseases are
passed on to newborn bees, leading to the colony’s death [11,12].

As a result, to ensure the colony overwintering, beekeepers have to check on the
colony’s health from time to time, provide enough food to sustain the colony’s well-being,
and eventually perform treatments to remove mites and other parasites. These are, however,
invasive procedures because by removing the protective cover of the beehive, the bees are
exposed to frigid temperatures, and their activity is disturbed, sometimes in irreparable
ways. This is why the research community tried to come up with solutions to monitor
the overall health and status of the colony using sensors and digital devices. In ref. [13],
the authors discussed an approach based on image analysis to detect the presence of
Varroa destructor mites on the bees and an audio-based method to analyze the sounds
produced by the colony and understand its health status. However, both methods were only
discussed as preliminary and using laboratory data such as good-quality images and public
audio datasets. Audio-based methods were also studied in refs. [14,15], in conjunction with
other sensors such as internal temperature and humidity for better prediction results. Other
analyses were conducted involving weight sensors [16] to periodically check the production
and health status, and colony anomalies based on swarms prediction [17]. Low-cost multi-
sensor approaches such as refs. [18–20] propose integrated solutions with the beehive
and Internet of Things communication protocols for data transfer, analysis, and storage.
By combining different sources of information, it is possible to obtain a comprehensive
analysis of the colony status, and this is why such solutions are recently preferable [2].

However, these works do not include vision systems to monitor the colony’s sta-
tus inside the beehive despite being a successful inspection method as highlighted by
refs. [21,22], where images of infected bees were analyzed in an automated way to detect
the presence of the parasite. The only solution that does actually include a vision system
inside the beehive (hence, it runs on real operative conditions instead of laboratory ones) is
presented in ref. [23]. This work involved an infrared camera mounted inside the beehive’s
box; however, no experimental data nor feasibility information were reported apart from
the prototype design.

This study presents a camera-based monitoring system designed for observing bees
throughout the colder seasons, which, to the best of our knowledge, has never been
proposed before. In Section 2, particular attention is paid to the technical strategies for
simultaneously monitoring beehives from different observation points without harming
them, evaluating the feasibility of each developed solution compared to our initial design
presented in ref. [24]. Preliminary data collected during experimental campaigns are used
to validate the proposed instrumentation design and analyze if the observation points of
the commercial beehive can be informative enough to draw relevant conclusions about the
beehive’s status as discussed in Section 3. Results of the experimental campaigns conducted
in 2023 are presented in Section 4 and, despite not being the focus of this work, we include
a small discussion about the potential detection of Varroa destructor inside the beehive
with our solution. Considering the promising results obtained from the experiments, we
are positive that our sensor-based beehive design can pave the way for new frontiers in
monitoring paradigms for beekeepers.

2. Materials

The measurement system has been developed considering the technical constraints
and design criteria necessary to respect the daily activities of the beehive during winter:
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• Space constraints: The structure of a beehive is very compact, with an intra-frame
distance of about 15 mm (typically 10 to 12 frames are used, thus occupying all the
hive’s space). Inspection points like the top and bottom of the hive also have limited
space. As a result, the developed monitoring device should be small enough to fit
the beehives.

• Non-invasiveness: Since bees can be easily disturbed by external devices, light,
intense odors, or heat, the developed device should be as least invasive as possible,
avoiding interference with the hive’s activities and preventing constrained pathways,
both outgoing and incoming from the hive (such as channels as recently proposed by
the scientific literature [25]).

• Low cost: The selection of potential hardware for internal monitoring of the beehive
should also consider costs alongside technical aspects, in anticipation of potential
larger-scale prototypes. While a set-up with industrial cameras and lighting would
offer higher data quality, robustness, and speed of implementation, it would be too
expensive to be used by beekeepers in practice.

• Lighting conditions: Observing bees within their hive during winter presents a
significant technical challenge. Limited daylight hours, the number of bees inside the
hive, and the near absence of light within the hive itself make it crucial to develop
customized solutions to ensure sufficient brightness to obtain quality images while
keeping the invasiveness of the illumination system to a minimum.

• Flexibility: During winter, the beehive forms a cluster, known as the glomerulus, a
mass of bees that sequentially maintains a stable temperature inside the hive to endure
the harsh winter temperatures. The glomerulus shifts to different locations in the
hive for various reasons, primarily to access nectar stores necessary for temperature
maintenance. Therefore, a flexible set-up should be able to track the movement of the
glomerulus and ensure continuous observation of the bees.

Before establishing the measurement set-up, a team of expert entomologists from the
University of the Sacred Heart conducted an assessment of the Dadant model beehive [3]
used in this work. They evaluated the internal dimensions of the beehive, identified key
points where bees perform their primary activities, and assessed the overall functionalities
of the beehive. This evaluation aimed to pinpoint measurement locations and strategically
position the hardware and lighting system, ensuring alignment with the above-mentioned
criteria. Therefore, two points of interest were identified, where the bee colony primarily
engages in its activities, taking into account the natural behavior of bees during winter:
(i) in-between frames, close to the brood (“Frame”), and (ii) looking up from the bottom
section of the beehive, where bees move to change frames and the eventual dead bees fall
to be collected by the bottom plate (“Bottom”). Notably, entrance monitoring was excluded
due to minimal to negligible bee activity during winter. Given its proximity to the bees
inside the beehive, the “Frame” inspection point could potentially serve as a sentinel of
pest infections such as Varroa destructor, which is a parasite affecting young bees [9].

2.1. Developed Set-Up

Considering the technical constraints described in Section 2, the experimental beehive
was instrumented considering the two points of interest: (i) inside the beehive (“Frame”
Camera), and (ii) on the bottom of the beehive (“Bottom” Camera). The electrical com-
ponents to operate the hardware were placed in the honey super to provide isolation
from rainfalls.

The camera model was the same for each point of interest, consisting of an RGB camera
manufactured by The Imaging Source (Charlotte, NC, USA) model DFK ECU010-M12,
with a pixel resolution of 1280 × 720 px, pixel size 3 × 3 µm, a frame rate of 30 frames
per second (fps), and overall dimensions of 22 × 13 × 60 mm. This size is perfect for the
small available space in the beehive. A novel contribution proposed in this work, following
the idea described in our previous work [24], is the integration of the “Frame” Camera
within a comb. This innovation results in an instrumented frame capable of observing
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young bees predominantly engaged in cell cleaning and brood nourishment activities.
Given their close interaction with the brood and potential exposure to infections, this
arrangement was deemed fundamental by the expert entomologists. Moreover, the cam-
era and all-encompassing lighting have been seamlessly integrated into a single device,
positioned at the center of a comb, allowing the monitoring of the comb adjacent to the
instrumented one. As a result, while the “Bottom” Camera was equipped with fixed
optics with a focal length of 8 mm, the “Frame” Camera utilized liquid lenses, model
Caspian M12-316-26 manufactured by Corning Varioptic (Glendale, AZ, USA), mounting
a built-in Arctic 316 liquid lens, a special type of optics that can change the optical focal
length dynamically according to the external tension applied. This technology allows
obtaining clear and sharp images of the inside of the beehive due to the reduced space
between the frames [26]. The minimum focal length of this model is 2.6 mm up to infinity,
with an angular field of view of 160◦, an iris aperture ranging from 2.5 to 10 mm, 4 mm
to infinity focus range, and optical power that spans from −15 diopters to +38 diopters,
resulting in a 53 diopters dynamic range, depending on the supply voltage. The de-
vice’s response time is less than 15 ms after a new tension is provided to change the focal
length, and the overall power consumption is 0.1 mW. The device is compatible with up to
1/2.5” image sensors and M12 ×0.5 mounts (S-Mount), as well as off-the-shelf FPC con-
nectors. They are actuated by the control board HV892 manufactured by Supertex Inc.
(Sunnyvale, CA, USA) operating in the voltage range of 25 to 60 VDC. The two commu-
nicate via the I2C protocol using a dedicated software driver. The cameras are connected
to a single Raspberry Pi 4 (Cambridge, England) via a USB interface that manages the
custom-made acquisition software and data storage.

It is worth noting that in the case of the “Frame” inspection point, the bees do not
move on a single plane. Instead, they transition from one comb to the next, leading to
random changes in their distance from the camera. To address this behavior and maximize
the number of in-focus images, it is necessary to adjust the focal distance of the liquid
lenses instead of choosing a fixed focal length. Auto-focus technology could help in
this regard; however, the response times of the liquid lenses are longer than the bees’
dynamics, meaning that the adjusted focal length becomes effective after the bees move. As
a workaround, we decide to continuously actuate the liquid lenses using a sinusoidal law at
a frequency of 1 Hz in their voltage range (sweep). In this way, a portion of the images will
surely be in focus regardless of the bees’ movements and positions. A graphical example
of what happens is shown in Figure 1. The sinusoidal law corresponds to the actuation
voltage generated by the control board and sent to the liquid lenses to modify the focal
length. Hence, for each portion of the sine wave, we can obtain different images according
to the focal length. The example shows real data taken from a single sweep, highlighting
that most of the images taken are not in focus. Moreover, for each sweep, the in-focus
portions change position according to the bees’ movements, preventing calibration. The
selection of in-focus images will be described in Section 3.1.

Since the inside of the beehive is dark, a custom-made red LED ring was designed to
provide minimum illumination without harming the insects, positioned around the optics
of the “Frame” Camera. Three strips of red LEDs were positioned inside the beehive as well
to improve the general illumination and benefit images taken from the “Bottom” Camera.
Since this camera was placed at the bottom of the beehive, the metallic grid partially occluded
its view. Therefore, the LED strips were positioned vertically on both inner hive walls in
correspondence with the central frames to minimize reflections resulting from the metal grid.
All the LEDs of the illumination system were actuated by the Raspberry Pi which sends a
PWM to a Mosfet driver operating at 12 VDC, thus modulating the light intensity according
to operational needs. To mitigate overexposure effects, the illumination system’s duty cycle
of the LED ring was set to 50%, while the duty cycle of the LED strips placed on the hive’s
walls was set to 70%. The red light was chosen because it is the least disruptive wavelength to
the colony (which remains in the dark within the beehive). Furthermore, red light has been
scientifically tested as a positive treatment during winter [27] because it helps increase the
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bees’ mitochondrial function, protects them against pesticide exposure, and aids in keeping
suitable heat inside the colony during adverse weather conditions.

From a technical standpoint, the “Bottom” Camera was mounted using aluminum
profiles that allowed it to glide along the observation plane, facilitating manual adjustments
at points of interest with higher activity or bee cluster concentration. The instrumented
beehive was placed on an elevated support to allow suitable space for the camera and to
avoid stagnant water during and after rainfalls.

Figure 1. Example of the liquid lenses sweep actuation. Red areas depict focal lengths for which the
image is completely out of focus, yellow areas depict focal lengths for which the image is still out
of focus but objects are distinguishable from the background, and finally, green areas depict focal
lengths for which the output image is in focus.

A scheme of the final experimental set-up and the wiring of components is shown
in Figure 2.

Figure 2. Scheme of the proposed set-up presenting the wiring of electrical components. Images of
the mechanical mounting are also shown for both cameras (“Frame” and “Bottom”).



Sensors 2024, 24, 5270 6 of 20

2.2. Data Acquisition Software

The cameras were connected to a single Raspberry Pi 4, on which the custom-made
acquisition software was installed. The main constraint when working with affordable
embedded devices is limited computational power, so the data acquisition software should
be optimized to guarantee that no data are lost. The developed software was written in
Python 3.9 and leverages the multi-process library to (i) acquire frames from each camera
and (ii) save all the stored frames. The idea, illustrated in Figure 3, is to create a new sub-
process for each camera dealing with the independent acquisition of the frames whenever
the corresponding red light illuminator is active (“Acquisition” sub-processes). These
sub-processes acquire frames and store them in a queue, exploiting the device’s RAM.
At the same time, the “Saving” sub-processes write the frames to disk until the queue is
emptied. When the corresponding red light illuminator is powered off, the “Acquisition”
sub-processes stop as well, while the “Saving” sub-processes keep working until their task
is completed. The procedure is repeated according to the illumination duty cycle.

The procedure is summarized as follows:

• The main program automatically detects the number of cameras connected (in our
case, only 2) and prepares the saving directories. Due to the USB bandwidth limitation
and board processing speed, this set-up can manage up to 4 cameras.

• The main program manages (i) the triggering of the two red light illuminators, posi-
tioned around the “Frame” Camera (led ring) and inside the beehive (led strips), at
the predefined duty cycle frequency set during configuration (50% for the led ring,
70% for the led strips), and (ii) the activation signal of the liquid lenses through the
dedicated driver connected to the Raspberry Pi 4 (as described in Section 2.1).

• “Acquisition” sub-processes are launched on separate cores for each connected camera.
They capture frames at a resolution of 640 × 480 pixels and a rate of 30 fps. Each
frame is temporarily stored on a queue leveraging the board RAM; hence, to limit the
memory usage, each acquisition lasts only 60 s.

• Concurrently, “Saving” sub-processes for each camera are launched. They grab the
frames on top of the corresponding queues and save them onto an external disk.

Figure 3. Scheme of the multi-process software that deals with frames acquisition and saving. In this
example, only two cameras are shown; however, the software works with up to 4 devices (due to
USB bandwidth limitations).
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2.3. Acquired Data

Our dataset is composed of images taken from the “Frame” Camera and the “Bottom”
Camera. To save space, the original image was saved after resizing to 640 × 480 px. For the
“Frame” Camera, we acquired a total of 17,210 images during the last days of April and the
first week of May 2023. However, only a portion of them were in focus, thus requiring a
pre-processing procedure to extract only the valid images (as detailed in Section 3.1). Data
from the “Bottom” Camera were acquired in September 2023 for a total of 1494 images.

3. Methods

3.1. In-Focus Images Automatic Selection

This method was developed in Mathworks MATLAB 2023b (Natick, MA, USA and
applied only to the data acquired from the “Frame” Camera since the optimal focus of the
liquid lenses was unknown and varied according to the movements of the bees in the FoV.

As described in ref. [28], a variety of focus measure operators can be computed on an
image to compute its overall focus measure. Focus measure operators are obtained pixel
by pixel, and the resulting value of the focus measure of an image depends on the image
noise level, contrast, saturation, and window size. As a result, by changing the acquisition
conditions (e.g., the camera, the lenses, and the illumination), the values of the focus measure
considered to separate in-focus images from unfocused ones may change, thereby requiring
a specific calibration step to identify their values.

Among the plethora of focus measure operators, we experimentally selected only the
ones that showed distinct differences between in-focus and unfocused images in our dataset.
These are Gaussian derivative (GDER), Gray-level local variance (GLLV), Steerable filters
(SFIL), Tenengrad (TENG), and Tenengrad variance (TENV). For their mathematical and
MATLAB implementations, see ref. [28] and ref. [29] respectively.

We computed the values of the 5 focus measure operators for each image in our
dataset and stored them in a table. We manually labeled a subset of 200 images as in fo-
cus or unfocused, and plotted their distribution, highlighting two distinct clusters. As a
result, we found that in-focus images have GDER ≥ 26, GLLV ≥ 0.5, SFIL ≥ 1.1 · 1018,
TENG ≥ 400, and TENV ≥ 480 · 103. These values were used as thresholds to identify
in-focus images automatically. As a result, from the original 17,210 images, we obtained
2057 images (12% of the original dataset). Since we aim to use these images to perform
transfer learning on a pre-trained object detector, this number is sufficient to reach a
satisfactory level of accuracy (for transfer learning, even hundreds of images are typi-
cally enough [30,31]). It is worth noting that among the in-focus images, bees were not
always present or fully visible, leading to a two-class detection problem as described
in Section 3.2.1.

To visualize how the in-focus images are expressed in a five-dimension space, we
used a dimensionality reduction algorithm named t-SNE (t-distributed Stochastic Neighbor
Embedding) [32], which is a non-linear alternative to PCA (Principal Component Analysis).
We reduced the visualization space to 2D, highlighting in green the instances of “in-focus”
images selected by our thresholding algorithm (Figure 4a). Apart from a few belonging
to a separate cluster (e.g., containing image features different from the other cluster, such
as a cluttered view of several bees on top of each other or empty images depicting the
honeycombs only), the main cluster is well separated from the rest (black points). For
better visualization, we also obtained the 3D visualization of the same reduced space in
Figure 4b. In this case, the in-focus cluster (green) is almost completely separated from the
rest, highlighting the validity of our custom thresholding procedure.
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(a) (b)

Figure 4. Representation of images subdivision into out-of-focus and in-focus according to the custom
thresholding developed. (a) The 2D t-SNE visualization. (b) The 3D t-SNE visualization.

3.2. Bees Detection

The model adopted for the automatic detection of the bees was the state-of-the-art
open-source object detector YOLO v8.2 of Ultralytics [33]. The model used was the pre-
trained version from the Ultralytics library, allowing us to perform transfer learning instead
of training from scratch. Transfer learning is a common procedure adopted by the research
community to exploit models trained on large datasets with a general task (e.g., recognize
up to 1000 different classes) and “refine” them to work on a very specific subset of classes
by retraining only a few levels of the network. Consequently, only a few hundred images
are typically sufficient to reach satisfactory results [30,31].

We trained the models on Google Colab [34], a web service based on Jupyter Notebook
that provides remote access to computing machines equipped with GPUs. We used the
standard plan, which provides a machine with RAM of 12 GB, disk space of 78 GB, and a
GPU of 15 GB. The training code was developed in Python 3. Training parameters were the
same for the two models: epochs 300, patience 50, image batch 16, intersection over union 0.7,
momentum 0.937, and weight decay 0.0005. Images were resized to 640 × 640 px.

All data were manually labeled by an expert for the object detection task, thus identi-
fying a number of rectangles (bounding boxes) corresponding to the bees inside the image.
Each bounding box is defined in the image plane (in pixels) with four parameters: the
coordinates of the box center CX and CY and the box size W (width) and H (height). To
use these four parameters in the model, their original values must be normalized over the
image width IW (CX and W) and height IH (CY and H) respectively, obtaining values in the
range [0, 1]. An example is depicted in Figure 5, highlighting the image coordinate system
origin centered on the top-left corner.

We wish to stress that the analysis conducted with the YOLO detector has the sole
purpose of studying the behavior of the bees and understanding if the proposed instru-
mentation set-up could provide insightful information for beekeepers. As a result, the
detector of choice is merely a tool; it could even be another one among the plethora of
state-of-the-art detectors, and we do not aim to prove its ability to detect bees.
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Figure 5. Example of the bounding boxes coordinate system with respect to the image coordinate
system. Every parameter is expressed in pixels. The bounding box is depicted in yellow.

3.2.1. “Frame Detector” Dataset

The 2057 in-focus images of the “Frame” Camera were divided as follows: 1440 images
were used for training (70% of the total), 411 for validation (20% of the total), and 206 for
testing (10% of the total). This is a standard subdivision adopted by the research community
dealing with artificial intelligence models (refer to ref. [31] for further explanations). We
used two classes: “bee”, referring to an in-focus and fully visible bee, and “blurred_bee”,
corresponding to unfocused bees or portions of them (e.g., the head or the back). This
classification was necessary since some bees were captured while moving; hence, they were
blurred or only partially visible. However, since the objective of the “Frame detector” is to
monitor the bees’ activity, counting how many bees passed in front of the camera is useful
information that any detector can obtain. In this sense, counting blurred and occluded bees
is also necessary. Examples taken from the dataset are shown in Figure 6.

(a) (b) (c) (d)
Figure 6. Examples taken from the “Frame detector” dataset. (a) The left bee is labeled as
“blurred_bee”, and the right bee as “bee” (in-focus). (b) Example of a “bee” class fully visible.
(c) Example of several “blurred_bee” not fully visible. (d) Example of a true negative image where
no boxes are drawn. A bee or two seem to appear on the right; however, they are so blurred that a
confident detection is impossible even for an expert.

3.2.2. “Bottom Detector” Dataset

The dataset of 1494 images taken from the “Bottom” Camera was divided into training
(1044 images, 70% of the total), validation (303 images, 20% of the total), and test (147 images,
10% of the total) sub-datasets. We used two classes: “bee”, referring to a perfectly visible
bee, and “occluded_bee”, corresponding to a bee partially occluded by the bottom grid of
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the honeycomb or appearing at the edges of the FoV. Examples taken from the dataset are
shown in Figure 7.

(a) (b) (c) (d)
Figure 7. Examples taken from the “Bottom detector” dataset. The visible bees are mostly located
on the right (red spot), inside the frames. (a) An “occluded_bee” is seen at the bottom center. (b) A
couple of “occluded_bees” are at the top center. (c) Example of a visible “bee” on the left area between
the frames. (d) Example of a visible “bee” on the right almost outside the frames.

3.2.3. Detection Metrics

Since experts manually labeled the bees depicted in the images of both datasets, a
first analysis can be conducted on the labels themselves. This helps us understand in which
area of the image the bees appear more frequently and, hence, if the point of interest is
meaningful or not, and if there are visual disturbances that limit its efficacy. To this end,
we computed the correlogram of the labels for both datasets (see [35] for technical details).
It is worth noting that, to ensure that no labeling mistakes (e.g., wrong class assignment
and misplaced bounding box) were made during the labeling process, another expert not
previously involved in the process checked the labels of both the “Frame” and “Bottom”
datasets. A correlogram is a group of 2D histograms and heatmaps showing, for each axis
combination, the distribution of the bounding boxes’ coordinates (CX , CY, W, and H) in the
range [0, 1] (normalized coordinates space). It is drawn as a triangular matrix of graphs of
4 rows × 4 columns, only showing the diagonal and the bottom portion of the matrix. For
convenience, we will refer to individual graphs considering their location as (row, column)
pairs, where the first row is the top one and the first column is the left one. Darker colors of
the heatmaps represent more frequent occurrences in the dataset.

Secondly, after training the two detectors “Frame detector” and “Bottom detector” on
the corresponding datasets, we analyze their performance according to a set of common
parameters used by the research community: precision, recall, and mean average precision
(mAP) [33,36]. Precision refers to the number of true positives (TPs) among all the positive
predictions (considering also the false positives, FPs), while recall refers to the number
of TPs among all the predictions (considering also the false negatives, FNs). Hence, if
precision measures the model’s capability to avoid FPs, recall measures the model’s ability
to detect positive instances of a specific class. Both values are in the range [0, 1] and
represent proportions. If precision and recall are metrics typically used for any AI model,
mAP only refers to object detectors. This metric was created specifically to understand if
the positioning of the bounding box (or mask) is correct by exploiting another metric called
Intersection over Union (IoU), which specifies how much of the predicted bounding box
area overlaps the ground-truth box area. As a result, object detectors FPs can be produced
in two cases: (i) when a box is correctly overlapping the ground-truth but the class is
wrong, or (ii) when the class of the predicted box is correct but the IoU is below a threshold,
meaning that the predicted box’s area is mostly outside the ground-truth box area. This
also extends the general definition of precision and recall since the conditions to obtain
TPs, FPs, TNs, and FNs change according to the IoU threshold specified. The average
precision (AP) of a model is therefore calculated by first obtaining the precision-recall
curve and then calculating the area under it. However, since the curve may have a non-
monotonous pattern, it is typically smoothed considering that at each recall value Xi, the
corresponding precision Yi is replaced by the maximum precision value located on the
right of that particular point (XN , Ymax), considering N > i and that XN corresponds to
Ymax which is a local maximum. Hence, at each Xi, the corresponding Yi is substituted with
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the maximum value Ymax. This smoothing principle takes into consideration the eventual
spikes in the curve, and the result is a curve that has a monotonically decreasing step shape,
which is easier to interpolate to obtain AP. Finally, mAP is obtained by finding the AP of
each class of the model and then averaging it for the total number of classes. Therefore,
mAP is the metric to look at when training multi-class object detectors. Several mAP
can be obtained according to the IoU threshold considered to calculate AP; in this work,
we will analyze mAP-50 (AP calculated at IoU = 50%, considered an “easy” threshold,
hence allowing a lot of incorrect positioning of the boxes) and mAP-50-95 (AP calculated
considering varying IoU thresholds ranging from 50% to 95%, thus giving a comprehensive
view of the model performance at different levels of detection difficulties), which are the
standard outputs of YOLO detectors.

The final metric we will consider is the confusion matrix [37] computed on the test
sub-dataset of each model (“Frame detector” and “Bottom detector”), also comprehending
the row-wise and column-wise summaries representing the True Positive Rate (TPR), False
Negative Rate (FNR), Positive Predicted Values (PPVs), and False Discovery Rates (FDRs).
This is a powerful tool that helps us understand if the model correctly detects the bees
and if it is able to distinguish between the two classes (“bee” against “blurred_bee” or
“occluded_bee”) and the background (corresponding to a “no detection” class or a “true
negative” instance). It provides a summary of the model’s performance at a glance thanks
to the heatmap representation and row-wise and column-wise summary that represent
the True Positive Rate (TPR), False Negative Rate (FNR), Positive Predicted Values (PPVs),
and False Discovery Rates (FDRs). TPR and FNR represent the proportion of correctly and
incorrectly classified observations per true class, respectively. These two values are obtained
as a row summary of the confusion matrix. PPV and FDR represent the proportion of
correctly and incorrectly classified observations per predicted class, respectively, obtained
as the column-summary of the confusion matrix. They are a useful metric to understand
the behavior of the model with respect to false positive predictions.

4. Results

4.1. “Frame Detector” Model Results

Looking at Figure 8, which shows the correlogram plot of all the ground-truth labels
of the dataset, we can observe the following:

• The boxes’ center is located everywhere in the image, mostly in the middle and in
the bottom-left corner (graph at row 2, column 1). This is also highlighted by the two
histograms at (row 1, column 1) and (row 2, column 2).

• The relationship between CX and W (row 3, column 1) and CY and H (row 4, column 2)
similarly depicts an arrow-like shape. This shape suggests that boxes with the CX or
CY coordinate around 0.5 (middle of the image) have bigger dimensions, while at the
edges of the frame, the bounding box size is smaller. At the same time, by looking
at the colors of the squares in the graphs (darker means more occurrences), we can
deduce that boxes at the frame’s edges frequently have W > H, while at the center, it
is more common to have W < H.

• Looking at the graph at (row 3, column 2), for CY coordinates corresponding to the
center and bottom parts of the frame, the bounding boxes have W values ranging
from 0.5 to 0.25. Considering that the graph shows all the combinations of CY and W
values, this may suggest that the bees identified in those image portions are usually
not fully visible (hence, the bounding box is thin) or laterally rotated. This claim is also
backed up by the other graph in (row 4, column 1) showing the relationship between
CX and H.

• Considering the graph at (row 4, column 3), it is evident that the bounding boxes are
typically big, with H close to 1 and W close to 0.5 (probably bees that appear in the
camera’s FoV from the bottom moving upwards or vice versa), or very shallow, with
H close to 0.5 and W close to 0.2 (probably bees appearing in the camera’s FoV but
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not fully visible). This correlation is also suggested by the two histograms at (row 3,
column 3) and (row 4, column 4).

Figure 8. Labels correlogram computed on the “Frame detector” dataset. The diagonal shows the
histograms corresponding to the bounding boxes’ coordinates (CX , CY , W, H) respectively. The
off-diagonal graphs show the relationship between the four coordinates accordingly.

The model’s performance is shown in Table 1. The metrics described in Section 3.2.3
have been calculated for each sub-dataset (training, validation, and test) and are presented
subdivided per class, including a general class “all” that combines the results from all the
individual classes. Looking at the results, it is evident that class “bee” does not achieve
satisfactory results and this may be due to the labeling. The labeling guidelines adopted
define a “bee” as an in-focus bee that is typically fully visible, while a “blurred_bee” is
not only a blurred bee that is fully visible but also portions of the bee, such as the back or
the head. Moreover, our dataset includes just a few instances of a “bee” as defined earlier
(147 among the 2057 images of the dataset); hence, the higher number of “blurred_bee”
instances (3795 among the 2057 images of the dataset) in the whole dataset could have
led the model to wrong classifications of the occurrences quite often (unbalanced classes
problem). In contrast with the low performance of the model on “bee” occurrences, the
performance on “blurred_bee” is promising since it surpasses 80% for precision, recall,
and mAP-50 on the test sub-dataset. It is worth noting that the results on mAP-50-95 are
always below 80% (78% on the training sub-dataset, 64 on the validation sub-dataset, and
67% on the test sub-dataset), indicating that the model does not perform well if we consider
an IoU confidence higher than 50% (as described in Section 3.2.3). This situation is also
underlined by the confusion matrix in Figure 9, showing that for class “bee”, the TPR is
only 60% compared to the FNR at 40% (instances classified as “blurred_bee”). In contrast,
for class “blurred_bee”, the TPR is 86.7% with a FNR of just 13.3%. True negative instances
(e.g., images with no instances of either “bee” or “blurred_bee”) are always classified
wrongly, and this could be due to the presence of the honeycomb visible on the background
that could have been mistaken for a bee or a portion of a bee (see the examples in Figure 6).
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Furthermore, the PPV of class “bee” is just 17.6% with an FDR of 82.4%, meaning that
the model often produces “bee” outputs when there are not any. Similarly, the FDR of
“blurred_bee” is quite high (30%) and it is mostly due to the incorrect predictions occurring
on “background” images (true negative images with no bees in them).

Table 1. Performance metrics of the “Frame detector” model.

Data Class Precision Recall mAP-50 mAP-50-95

Training
all 76% 79% 85% 71%
bee 61% 69% 74% 64%

blurred_bee 90% 89% 95% 78%

Validation
all 60% 79% 70% 53%
bee 44% 70% 52% 43%

blurred_bee 77% 88% 88% 64%

Test
all 68% 65% 71% 57%
bee 50% 50% 53% 46%

blurred_bee 86% 80% 88% 67%

Figure 9. Confusion matrix of the “Frame detector” model computed on resulted data of test sub-
dataset. Row-wise and column-wise statistics are shown on the right and at the bottom of the
confusion matrix. Values inside the confusion matrix are normalized over the total observations in
the test sub-dataset.

4.2. “Bottom Detector” Model Results

Looking at Figure 10, which shows the correlogram plot of all the ground-truth labels
of the dataset, we can observe the following:

• The boxes’ center is located everywhere in the image, more frequently close to
CX = 0.8∼1 and CY = 0.5∼0.6 (graph at row 2 column 1). This is also highlighted by
the two histograms at (row 1, column 1) and (row 2, column 2).

• The relationship between CX and W (row 3, column 1), CY and W (row 3, column 2),
CX and H (row 4, column 1), and CY and H (row 4, column 2) is similar, showing that
according to the center coordinate considered the corresponding size of the box is
always in the range 0∼0.25. This relates to the size of the box according to its location
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in the image, suggesting that the boxes tend to be small with respect to the image
regardless of their position.

• The boxes tend to have similar sizes along the two dimensions, overall not higher
than 0.3, corresponding to the 30% of the image’s original size along both X and Y
dimensions (row 4, column 3). This is also highlighted by the histograms at (row 3,
column 3) and (row 4, column 4).

Figure 10. Labels correlogram computed on the “Bottom detector” dataset. The diagonal shows
the histograms corresponding to the bounding boxes’ coordinates (CX , CY , W, H) respectively. The
off-diagonal graphs show the relationship between the four coordinates accordingly.

The performance of the model is summarized in Table 2. Metrics were calculated
for each sub-dataset (training, validation, and test) and are presented subdivided per
class, including a general “all” class that combines the results from all the individual
classes. Looking only at the results obtained on the validation and test sub-datasets, we can
observe that the performance metrics are very similar and over 90% for precision, recall,
and mAP-50. An evident drop in performance can be seen for mAP-50-95 compared to
the training sub-dataset performance for class “occluded_bee” (78% versus 67% and 66%
respectively, for validation and testing). This is to be expected since the training sub-dataset
is bigger than the other two; additionally, it is worth noting that bees of both classes are
quite difficult to detect accurately due to the presence of the metallic grid. Nonetheless, the
model confidently predicts the “bee” class (84% and 85% mAP-50-95 for validation and test,
respectively) despite the instances of this class being fewer (190 boxes of class “bee” versus
610 boxes of class “occluded_bee” among all the 147 images of the test sub-dataset). This
result highlights that separating between types of bees is a successful approach, despite
using a single “generic bee” class that could have been better in terms of the detection of
bees with respect to the background. Moreover, even if the presence of the metallic grid
reduces the detection accuracy, the model is still successful in monitoring the bees’ activity.

The confusion matrix of the test sub-dataset is presented in Figure 11, considering that,
among the 147 images of the test sub-dataset, a total of 190 boxes of class “bee” and 610 boxes
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of class “occluded_bee” were present (unbalanced class problem). There were no instances of
the “background” class (corresponding to a “no class” or a TN). Data presented in the cells of
the matrix have been normalized over the total number of occurrences in the dataset, while
TPR, FNR, PPV, and FDR have been obtained as the row-wise and column-wise summary
of instances, normalized per class. The TPR for both the “bee” and “occluded_bee” classes
exceeds 90%, highlighting the model’s strong ability to accurately distinguish these classes
without confusion. However, a significant issue arises with the model’s tendency to misclassify
these instances as “background”, resulting in a 100% FNR and FDR for this category. Notably,
the PPV is highest for the “bee” class, whereas the “occluded_bee” class experiences more
misclassifications, with a 10.2% FDR, primarily due to confusion with the “background” class.
Despite these challenges, the model demonstrates remarkable robustness in detecting bees,
even in the presence of a metallic grid.

Figure 11. Confusion matrix of the “Bottom detector” model computed on resulted data of test
sub-dataset. Row-wise and column-wise statistics are shown on the right and at the bottom of the
confusion matrix. Values inside the confusion matrix are normalized over the total observations in
the test sub-dataset.

Table 2. Performance metrics of the “Bottom detector” model.

Data Class Precision Recall mAP-50 mAP-50-95

Training
all 97% 99% 99% 82%
bee 97% 99% 98% 87%

occluded_bee 97% 98% 99% 78%

Validation
all 96% 96% 97% 76%
bee 97% 98% 98% 84%

occluded_bee 95% 94% 96% 67%

Test
all 94% 96% 96% 75%
bee 96% 98% 98% 85%

occluded_bee 92% 94% 94% 66%
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4.3. Varroa Destructor

It is worth noting that inside the “Frame” dataset, a few examples of potential
Varroa destructor mites were spotted (see Figure 12). This finding allows us to conclude
two things:

• The “Frame” inspection point has the potential to help beekeepers identify an ongoing
infection and plan their treatments in time.

• Since in this set-up, we adopted a low-cost camera (as described in Section 2.1), it is
evident that its specifications are sufficient for detecting Varroa destructor mites with
sufficient accuracy. In fact, considering the camera’s specifications (sensor size SSX

and SSY obtained from the datasheet, resolution RX = RY = 640 px obtained after
resizing the original image) and an average distance of the infected bees from the
camera of D = 15 mm, we can apply the following formula to find how many pixels
correspond to the parasite size:

ΦX =
φX · f · RX

D · SSX
(1)

ΦY =
φY · f · RY

D · SSY
(2)

for which φX and φY are the original width and height of the mite in millimeters (equal
to 2 mm for both on average), and f is the effective focal length set at 2.6. We obtain
that the Varroa destructor mite has a diameter ΦX and ΦY equal to 58 px (magnification
of 5.7). This value is enough to detect the mite even without the aid of intelligent
algorithms. It is worth noting that, since the distance D actually changes according to
the bees’ movements, the resulting size in pixels may vary. We verified this result by
measuring the size in pixels of the spotted mites in the images of Figure 12.

(a) (b) (c) (d)
Figure 12. (a–d) Examples of potential Varroa destructor mites taken from the “Frame” dataset
highlighted with a red circle on top of the original image.

5. Discussion

Despite the encouraging results, the presented beehive design and data analysis
methodology have some limitations that should be discussed.

First, the data obtained from the “Frame” Camera are mostly blurred due to the
movement of the bees and the limited response time of the liquid lenses. A potential
solution to this issue is to equip newer lenses and perform a calibration experiment, in
which the ideal actuation voltage range is identified according to the bees’ movements.
Another idea is to actuate the red illumination to simulate pulsed light, a workaround often
used in industrial vision to “freeze” objects in the images despite their fast movements.
However, pulsed light could produce undesired stress on the colony which should be
properly addressed in a dedicated experiment. Nonetheless, by improving the amount of
in-focus images acquired, we can optimize disk space usage and energy consumption of
the embedded device. Moreover, the methodology based on the focus measure operators
described in Section 3.1 should be modified accordingly (e.g., parameters should be re-
tuned to find a new optimal threshold). On a brighter note, it is worth noting that, during
the experimentation period, the colony did not attack the camera, leaving it intact, as it was



Sensors 2024, 24, 5270 17 of 20

brand new. This suggests that this inspection point bears great potential and should be
thoroughly studied in the future to optimize its performance, especially for the detection of
Varroa destructor mites.

Second, the “Bottom” Camera has a limited view due to the presence of the grid and
the distance from the internal frames, reducing its potential as an observation point for the
colony’s health. To address this issue, the design of the “Bottom” set-up should be modified
to allow the camera to be closer to the frames, either with different optics (e.g., focal length
of 12 mm or more to obtain a closer view) or by changing the camera to a smaller one so
that it could be placed on top of the grid instead of below it. The potential drawback, in
this case, is the cost of the new optics and the availability of the new smaller camera, which
will probably have higher signal-to-ratio noise and produce images with optical defects
at the corners, both issues due to its sensor size. As a result, the new hardware should be
properly tested to find the best solution considering the cost, product availability on the
market, power consumption, and acquired data quality. This will be another key point
addressed in our future developments.

Concerning the Varroa destructor analysis, our work is only a first step in addressing this
issue based on the limited data observed. The theoretical findings expressed in Section 4.3
should be validated with a proper experiment in the future involving an infected colony to
properly verify if our instrumented beehive can detect the mites on the bees’ bodies with
suitable accuracy and robustness. Moreover, extensive tests should be conducted spanning
a whole year to validate our approach in a long-term monitoring period.

Finally, it is worth noting that a potential third inspection point can be placed inside
the honey super, on top of the upper section of the beehive. This could be useful to study the
bees’ movements in between frames or when they reach food provided by the beekeeper
through the cover. To allow the camera to see inside the beehive, it is necessary to substitute
the top with a transparent frame (darkness is guaranteed by the top cover). However,
due to the distance of the camera from the red LED strips mounted inside, the obtained
images are too dark, thus requiring extra illumination around the optics of the camera and
a system to avoid light reflections on the transparent surface. This configuration is still in
development; however, a preliminary set-up can be seen in Figure 13.

Figure 13. Top view of the set-up depicting the inside of the honey super, where the third camera and
electronic components are placed. This configuration is still in development.

6. Conclusions

The presented work focused on the novel design of an instrumented beehive involving
two color cameras, namely, “Frame” (inside the beehive), and “Bottom” (at the bottom
of it), an approach that was never tested before in real-world scenarios with success. We
experimentally found that the “Frame detector”, despite achieving poor results due to
the presence of mostly blurred bees (precision, recall, and mAP-50 around 50% and mAP-
50-95 of 46% for class “bee”, over 80% and mAP-50-95 of 67% for class “occluded_bee”,
results referring to the test sub-dataset), has great potential for the early detection of the
presence of Varroa destructor mites since they can be spotted on the in-focus bees quite
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clearly. On the other hand, the second observation point located at the bottom of the
beehive was limited by the presence of the metallic grid separating the two boxes of the
beehive. However, contrary to our expectations, the detector properly learned to locate and
identify bees, achieving outstanding results despite the challenges (precision, recall, and
mAP-50 over 90% for both class “bee” and “occluded_bee”, and an mAP-50-95 of 85% and
66% respectively, results referring to the test sub-dataset).

To conclude, our proposal is a first step toward a new frontier of beehive monitoring
that perfectly fits the Agrifood 4.0 paradigm. Further developments will be aimed at
improving the presented design, including the third observation point at the top. Moreover,
the collected data will be used to develop intelligent algorithms for the colony’s health
status monitoring purposes in combination with other sensors, for example, following the
breakthroughs of ref. [38], in which a color-based segmentation pipeline was developed.
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25. Cousin, P.; Căuia, E.; Siceanu, A.; de Cledat, J. The Development of an Efficient System to Monitor the Honeybee Colonies
Depopulations. In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–5. [CrossRef]

26. Fuentes-Fernández, J.; Cuevas, S.; Álvarez Nuñez, L.; Watson, A. Tests and evaluation of a variable focus liquid lens for curvature
wavefront sensors in astronomy. Appl. Opt. 2013, 52, 7256–7264. [CrossRef] [PubMed]

27. Kam, J.H.; Brod, C.; Gourde, A.; Brod, M.; Jeffery, G. From the Lab to the Field: Translating Applications of Near-Infrared Light
from Laboratory to the Field to Improve Honeybee Mitochondrial Function and Hive Health. Photobiomodulation Photomed. Laser

Surg. 2022, 40, 604–612. [CrossRef] [PubMed]
28. Pertuz, S.; Puig, D.; Garcia, M.A. Analysis of focus measure operators for shape-from-focus. Pattern Recognit. 2013, 46, 1415–1432.

[CrossRef]
29. Pertuz, S. Focus Measure. 2024. Available online: https://www.mathworks.com/matlabcentral/fileexchange/27314-focus-

measure (accessed on 8 May 2024).
30. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods,

and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [CrossRef]
31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.

deeplearningbook.org (accessed on 13 January 2022).
32. van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
33. Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed

on 8 May 2024).
34. Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive

Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64. [CrossRef]
35. Granqvist, S.; Hammarberg, B. The correlogram: A visual display of periodicity. J. Acoust. Soc. Am. 2003, 114, 2934–2945.

[CrossRef]
36. Padilla, R.; Netto, S.L.; da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the

2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242.
[CrossRef]

http://dx.doi.org/10.1109/CSCITA55725.2023.10104935
http://dx.doi.org/10.1109/MetroAgriFor58484.2023.10424387
http://dx.doi.org/10.1109/MetroAgriFor58484.2023.10424240
http://dx.doi.org/10.1109/MetroAgriFor.2019.8909252
http://dx.doi.org/10.1109/SusTech53338.2022.9794223
http://dx.doi.org/10.3390/s20072012
http://dx.doi.org/10.1109/AQTR.2018.8402704
http://dx.doi.org/10.1109/MetroAgriFor55389.2022.9965130
http://dx.doi.org/10.1109/IPTA50016.2020.9286673
http://dx.doi.org/10.1109/ICECCME55909.2022.9988275
http://dx.doi.org/10.1109/SEEDA-CECNSM53056.2021.9566210
http://dx.doi.org/10.1109/MetroAgriFor55389.2022.9964541
http://dx.doi.org/10.1109/GIOTS.2019.8766435
http://dx.doi.org/10.1364/AO.52.007256
http://www.ncbi.nlm.nih.gov/pubmed/24216579
http://dx.doi.org/10.1089/photob.2022.0025
http://www.ncbi.nlm.nih.gov/pubmed/36040390
http://dx.doi.org/10.1016/j.patcog.2012.11.011
https://www.mathworks.com/matlabcentral/fileexchange/27314-focus-measure
https://www.mathworks.com/matlabcentral/fileexchange/27314-focus-measure
http://dx.doi.org/10.4018/978-1-60566-766-9.ch011
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/ultralytics/ultralytics
http://dx.doi.org/10.1007/978-1-4842-4470-8_7
http://dx.doi.org/10.1121/1.1590972
http://dx.doi.org/10.1109/IWSSIP48289.2020.9145130


Sensors 2024, 24, 5270 20 of 20

37. Kulkarni, A.; Chong, D.; Batarseh, F.A. 5—Foundations of data imbalance and solutions for a data democracy. In Data Democracy;
Batarseh, F.A., Yang, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 83–106. [CrossRef]

38. Pasinetti, S.; Nuzzi, C.; Botturi, D.; Coffetti, G.; Mangili, S.; Collina, M. How water affects growing plants: An experimental
set-up based on 2D vision and on-the-edge sensing. In Proceedings of the 2022 IEEE Workshop on Metrology for Agriculture and
Forestry (MetroAgriFor), Perugia, Italy, 3–5 November 2022; pp. 362–367. [CrossRef]

39. Massimiliano, M.; Nuzzi, C.; Papa, G.; Negri, I.; Lancini, M.; Pasinetti, S. BEEHIVE: A Public Dataset of Apis Mellifera Images to
Empower Honeybee Monitoring Research. Mendeley Data. 2024. Available online: https://data.mendeley.com/preview/5yz7
8xxpmy?a=facb447f-c43a-4c63-ae9a-ded76d1617be (accessed on 5 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/B978-0-12-818366-3.00005-8
http://dx.doi.org/10.1109/MetroAgriFor55389.2022.9965003
https://data.mendeley.com/preview/5yz78xxpmy?a=facb447f-c43a-4c63-ae9a-ded76d1617be
https://data.mendeley.com/preview/5yz78xxpmy?a=facb447f-c43a-4c63-ae9a-ded76d1617be

	Introduction
	Materials
	Developed Set-Up
	Data Acquisition Software
	Acquired Data

	Methods
	In-Focus Images Automatic Selection
	Bees Detection
	“Frame Detector'' Dataset
	“Bottom Detector'' Dataset
	Detection Metrics


	Results
	“Frame Detector'' Model Results
	“Bottom Detector'' Model Results
	Varroa Destructor

	Discussion
	Conclusions
	References

