

9th UK Catalysis Conference, 4-6 January 2023 Loughborough, UK

Wednesday, 4 th January			
11:00	Registration desk opens at Burleigh Court Hotel		
12:30	Lunch at Holywell Park		
13.50	Welcome – Conference commence	s at Holywell Park	
		Chair – Prof. Richard Catlow	
14.00	PI (<u>)1 – Prof. Martin Schröder (Turing Lecture T</u>	heatre)
14.45		Coffee	
	Session A	Session B	Session C
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
	CatalysisHub session		
Chair/IT	Artioli/Nayan	Kondrat/ Inns	James/Wagh
15.15	K1 (Crimmin)	O6	O13
15.35		07	O14
15.55	01	O8	O15
16.15	02	O9	K2 (Carravetta)
16.35	O3	O10	
16.55	Coffee		
Chair/IT	Artioli/Pei	Simons/ De-Zanet	Mitchell/ Sabah
17.25	O4	O11	K3 (Buchard)
17.45	O5	O12	
	Chair – Prof. Charlotte Williams		
18.10	PI 02 – Prof. Unni Olsbye (Turing Lecture Theatre)		
20.00	Dinner		

Г

Thursday, 5 th January			
	Chair – Prof. Graham Hutchings		
9.00	PI 03 –	PI 03 – Prof. Javier Pérez-Ramírez (Turing Lecture Theatre)	
	Session A	Session B	Session C
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
Chair/IT	Paterson/Nayan	Lennon/ Wallbridge	Muldoon/Nagy
9.50	K4 (Johnston)	O24	O38
10.10		O25	O39
10.30	O16	O26	O40
10.50		Coffee	
Chair/IT	Paterson/Yang	Wells/ Symillidis	Weller/ Mukundan
11.20	K5 (Sunley)	O27	O41
11.40		O28	O42
12.00	017	O29	O43
12.20	O18	O30	K7 (Muldoon)
12.40	O19	O31	
13.00		Lunch	
		Chair – Prof. Chris Hardacre	
14.00	PI 04	– Prof. Emiel J.M. Hensen (<i>Turing Lecture</i>	Theatre)
14.45		Coffee	
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
Chair/IT	Manyar/Isah	Wood/Inns	Beale/Wagh
	SURFACE REACTIVITY SESSION		
15.15	K6 (Bruijnincx)	O32	O44
15.35		O33	O45
15.55	O20	O34	O46
16.15	Coffee		

	9 th UK Catalysis Conference, 4-6 January 2023 Loughborough, UK		
Chair/IT	McGregor/Pei Lin/ Asad Wass/ Sabah		
16.45	O21	O35	O47
17.05	O22	O36	O48
17.25	O23	O37	O49
17.45	Poster session		
20.00		Conference Dinner	
Friday, 6 th January			
	Session A	Session B	Session C
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)
Chair/IT	Manyar/ Wallbridge	Dingwall/Nagy	Smyth/Yang
9.00	K8 (Zhou)	O51	O58
9.20		052	O59
9.40	K9 (Duyar)	O53	O60
10.00	O54 O61		
10.20	Coffee		
Chair/IT	Garforth/ Rehman	Whiston/ Symillidis	Reza/ Mukundan
10.50	K10 (Lin)	O55	O62
11.10		O56	O63
11.30	O50	O57	O64
	Chair – Prof. Matthew Davidson		
11.55	PI 05 – Dr. Sofia Diaz-Moreno (Turing Lecture Theatre)		
12.40	Closing remarks		

9th UK Catalysis Conference, 4-6 January 2023 Loughborough, UK

UKCC 2023 Organising Committee

Dr. Haresh Manyar, Queen's University Belfast, UK Dr. Nancy Artioli, Queen's University Belfast, UK Dr. Chunfei Wu, Queen's University Belfast, UK Dr. Simon Kondrat, Loughborough University, UK Prof. Chris Hardacre, University of Manchester, UK Prof. Graham Hutchings, Cardiff University, UK Prof. Richard Catlow, Cardiff University, UK Dr. Josie Goodall, UK Catalysis Hub Dr. James Paterson, BP Dr. Keith Whiston, Invista Dr. Chris Mitchell, Sabic UK Dr. Paul Collier, Johnson Matthey

List of Talks UKCC 2023

#	Title	Authors
PI 01	Metal-Organic Framework Materials for	Martin Schröder
	Substrate Capture and Catalysis	
PI 02	Thermo-catalytic conversion of CO_2 and H_2	Unni Olsbye
	to higher hydrocarbons	
PI 03	Catalysis Engineering for Sustainable Development	Javier Pérez-Ramírez
PI 04	Controlling metal-support interfaces for	Emiel J.M. Hensen
_	sustainable catalysis	
PI 05	X-ray spectroscopy characterisation of	Sofia Diaz-Moreno
	catalysts and chemically active systems	
	Г <u> </u>	
K 01	Fluoride Metathesis, HF Transfer, and HF	Mark Crimmin
	Shuttling: New Approaches in the Circular	
K 02	Chemistry of Fluorine	
K 02	Applications of solid-state NMR for materials	Marina Carravetta
K 03	Catalysis for More Sustainable Polymers	Antoine Buchard
K 03	Commercialisation of Gold Catalysts for	Peter Johnston
	VCM Production	
К 05	Aromatic and digital notes in zeolite	Glenn Sunley
	catalysed methanol dehydration to	
	dimethyl ether	
К 06	Catalysts, Conversion Routes and Analytics	Pieter Bruijnincx
	for Circular Chemicals and Materials	
К 07	Developing Sustainable Palladium Catalysis	Mark J. Muldoon
K 00	for Wacker-Type Oxidation Reactions	Den Zhau
K 08	In Situ and Operando Gas and Heating TEM on Catalysis Materials	Dan Zhou
К 09	Dual function materials for CO ₂ capture	Melis Duyar
	and utilisation	
К 10	Electrocatalysis for green hydrogen	Wen-Feng Lin
	production and advanced fuel cells	5
0 01	A Zr(IV) Catalysed Ring-Opening	Ryan Kerr and Charlotte Williams
	Copolymerization of Anhydrides (A),	
	Epoxides/Oxetane (B) and	
	Tetrahydrofurans (C) to yield ABB or ABC	
0.02	Poly(ester-alt-ethers)	Marko Hanzovacki
O 02	Glycyl Radical Enzymes in Anaerobes: Insights into Catalysis of Pyruvate Formate-	Marko Hanzevacki
	Lyase	
L	Lyuse	

0.00		
O 03	The nature of methanol diffusion dynamics	Santhosh Matam, Alex O'Malley, Ian
	in H-ZSM-5 as a function of Si/Al ratio: A	Silverwood and Richard Catlow
	Quasi-elastic neutron scattering (QENS)	
	study	
O 04	Distributed FAIR digital objects, Scientific	Abraham Nieva de La Hidalga, Josephine
	Workflows: Facilitating Reproducibility of	Goodall, C. Richard A. Catlow, Corinne
	results for catalysis research.	Anyika and Brian Matthews
O 05	Heteropolyacids supported on zirconia	Luke Forster, Carmine D'Agostino,
	doped γ , θ and α alumina: A	Zhipeng Qie, Min Hu, Aristarchos
	physicochemical assessment of	Mavridis, Cameron Price, Christopher
	heterogeneous solid acid catalysts for	Parlett and Xiaolei Fan
	glycerol conversion to acrolein	
O 06	Ligand Structure Performance	Wouter Lindeboom, Arron Deacy,
0.00	Relationships in Co(III)/K(I)	Andreas Phanopoulos, Antoine Buchard
	Heterodinuclear Catalysts for Carbon	and Charlotte Williams
	Dioxide and Propylene Oxide Ring Opening	
	Co-polymerization.	
0 07	Enhancing Chemo-enzymatic Cyclohexane	Alex Stenner, Rich Lewis and Graham
007	Oxidation Cascades: Pt doping of	
	1 0	Hutchings
	AuPd/TiO ₂ Catalysts for in-situ H_2O_2	
0.00	Generation	
O 08	Metal catalyst-dependent poisoning effect	
	of sulfur impurities for the	Bert Sels
	hydroconversion of 5-	
	hydroxymethylfurfural to liquid biofuels	
O 09	The Influence of Metal Lewis Acidity in	Francesca Fiorentini, Arron Deacy and
	Co(III)M(I/II) Heterodinuclear Catalysts for	Charlotte Williams
	the Copolymerisation of Propylene Oxide	
	with CO ₂ and Anhydrides	
O 10	Bridging Homogeneous and	Xuetong Pei, Martin Smith, Sandie Dann,
	Heterogeneous Catalysis for the Guerbet	Simon Kondrat and Christopher
	Reaction	Waldron
0 11	Development of kinetic and computational	Maciej Walerowski, Stylianos Kyrimis,
	models for improved understanding and	Matthew Potter, Robert Raja and
	prediction of MeOH dehydration over	Lindsay-Marie Armstrong
	solid-acid catalysts	
0 12	Porous liquids	Stuart James
0 13	Selective Thermal and Catalytic	Olajumoke Alabi-Babalola, Carmine
	Hydrocracking of Polystyrene Wastes into	D'Agostino, Edidiong Asuquo and Arthur
	Gaseous Fuels and Ethylbenzene Liquid	Garforth
	Products	
0 14	Steam Depolymerisation of waste	Hubertus Warsahartana, Abdulrahman
	Polyethylene Terephthalate Fibers to	Bashir, Adam Keyworth, Marta
	Terephthalic Acid followed by	Falkowska, Edidiong Asuquo, Stephen
	Repolymerisation	Edmondson, Arthur Garforth, Ryan
		Davies, John Norris and Moira Mackay
		Davies, Julii Wullis allu Wulla Wackdy

0 15	Recycling Single Use Plastics to Useful Chemical Intermediates	Nasser Alqahtani, Arthur Garforth and Edidiong Asuquo
O 16	Improving the catalysts cracking of n- dodecane over a series of zeolite types: Optimising the route towards light olefin production	Hassan Alhassawi, Edidiong Asuquo, Abdullah Alhelali, Xiaolei Fan and Arthur Garforth
0 17	An Investigation of Pt Nanoparticle Design and Acidic Support Interactions, Rationalised by the Catalytic Conversion of n-Butane	Evangeline McShane, Matthew Potter, Alice Oakley, Marina Carravetta, Mark Light, Bart Vandegehuchte and Robert Raja
0 18	3D Printed Zeolites in Aromatic Transalkylation	Hisham Hussain, Abdullah Alhelali, Aleksander Tedstone, Callum Davidson, Arthur Garforth and Aidan Doyle
O 19	Zeolite Catalysis for Cyclic Monomer Synthesis	Russell Taylor
O 20	On-purpose Renewable LPG production: Project KatJa!	Keith Simons, Hendrik van Rensberg and David Brown
0 21	Structure sensitivity of Cu nanoparticle catalysts in selective hydrogenation of Levulinic Acid	Nayan Jyoti Mazumdar, Praveen Kumar, Miryam Arredondo-Arechavala and Haresh Manyar
0 22	Selective production of 5- hydroxymethylfurfural over FAU Y zeolites via fructose dehydration in a modified biphasic system	Huaizhong Xiang, Shima Zainal, Henry Jones, Xiaoxia Ou, Jesús Esteban, Carmine D'Agostino, Christopher Parlett and Xiaolei Fan
0 23	The effect of flow conditions on the aqueous phase reforming of glycerol over perovskite catalysts	Peter Nagy, Donald Inns, Simon Kondrat and Jonathan Wagner
O 24	A CDMO perspective on flow technology solutions to overcome challenging reactions, including energetic and high pressure chemistries	Megan Smyth
0 25	Continuous-flow transfer hydrogenation of benzonitrile using formate as a safe and sustainable source of hydrogen	Seán Dempsey and Jillian Thompson
O 26	Development of a Continuous Flow Oxidation Process Employing a Homogeneous Manganese Catalyst with Peracetic Acid	Ailbhe Ryan and Mark Muldoon
0 27	A multi-technique approach to the characterization of a ZSM-5 zeolite catalyst active for the methanol-to-hydrocarbon reaction	David Lennon, Stewart Parker, Russell Howe, Andrea Zachariou, Alex Hawkins, Jan Skakle, Nathan Barrow, Paul Collier, Daniel Nye, Ron Smith and Gavin Stenning
O 28	Al(III)/K(I) Heterobimetallic Complexes for the Synthesis of Low Weight Polyesters by Ring Opening Copolymerisation of Epoxides and Anhydrides	Edward Shellard, Wilfred Diment and Charlotte Williams

0 29	The Continuous Synthesis of Amides via	Lara Nolan, Megan Smyth, Karen Fahey,
	The Ritter Reaction Utilizing a Solid- Supported Acid Catalyst	Scott Wharry, Thomas S. Moody, Jillian M. Thompson, Mark J. Muldoon and Peter C. Knipe
O 30	Understanding the structural evolution of the most active PdZn nanoparticles used for CO ₂ activation	Sofia Mediavilla Madrigal, Andrew M Beale, Naomi Lawes, Matthew Potter, Michael Bowker, Nicholas F Dummer, Graham Hutchings, Stuart H Taylor, Stephen Parry, Nitya Ramanan and Diego Gianolio
O 31	The Development of Kinetic Models for Phosgene Synthesis Over Activated Carbon Catalysts	Rory Hughes and David Lennon
O 32	TBHP Mediated Wacker-type Oxidation Reactions	Calum Maguire, Matthew Blair, Meadhbh Murray-Williams, Clare Brown, Qun Cao, Hongxin Chai, Yitong Li, Roisin O'Hagan, Peter Knipe, Bill Hawkins, Selena Williams and Mark Muldoon
0 33	An Efficient, Selective and Broadly Applicable Homogeneous Catalyst for Aerobic Alkene Epoxidation	Qun Cao, Mark Muldoon and Ulrich Hintermair
O 34	High-entropy Alloys as Oxygen Reduction Reaction Electrocatalysts for Proton Exchange Membrane Fuel Cells Application	Ho Ching Wan, Guangyu Chen, Ryan Feng Wang and Minhua Shao
O 35	Lanthanide-based ferrites for CO ₂ valorisation	Alex Martinez Martin, Shailza Saini, Kalliopi Kousi, Dragos Neagu, Wenting Hu and Ian Metcalfe
O 36	Sustainable Synthesis of Dimethyl- and Diethyl Carbonate from CO ₂ in Batch and Continuous Flow	Matthew O'Neill, Meenakshisundaram Sankar and Ulrich Hintermair
0 37	Switchable Dual Function Materials in cyclic CO ₂ capture and utilisation and proof of direct air capture	Loukia-Pantzechroula Merkouri, Tomas Ramirez Reina and Melis Duyar
O 38	Investigating the mechanism and origins of selectivity in palladium-catalysed carbene insertion cross-coupling reactions	Gavin Lennon, Christina O'Boyle, Andrew I. Carrick and Paul Dingwall*
O 39	Catalyst Speciation and Deactivation in the Ru-mediatedMeyer-SchusterRearrangementofEthynyl-β-IonolVitamin A ProductionOutputOutput	Asad Saib and Ulrich Hintermair
O 40	AcombinedHeterogeneously/HomogeneouslyCatalysedApproachHydrogenation of Captured Carbon Dioxide	Matthew Quesne, Simon Kondrat and Richard Catlow

O 41	Lithium Directed Transformation of	Jonathan Ruiz Esquius, David Morgan,
	Amorphous Iridium (oxy)hydroxides to Produce Active Water Oxidation Catalysts.	Gerardo Algara Siller, Diego Gianolio, Matteo Aramini, Leopold Lahn, Olga Kasian, Simon Kondrat, Robert Schlögl, Graham Hutchings, Rosa Arrigo and Simon Freakley
0 42	Hyperpolarisation of Light Hydrocarbon Substrates through Solid-State Molecular Organometallic (SMOM) Catalysis	Matthew Gyton, Cameron Royle, Simon Beaumont, Simon Duckett and Andrew Weller
O 43	Detection of Hydrogen Radicals During Catalytic (De)Hydrogenation Reactions: Observation of C-H Activation in Solvent Molecules	Hannah Rogers, Timothy Woodman, Andrea Folli and Simon Freakley
O 44	Solid-state NMR Investigations of Supported Metal Nanoparticles	Khaled Mohammed, Reza Vakili, Apostolos Kordatos, Chris Skylaris, Emma Gibson, Haresh Manyar, Alexandre Goguet, Peter Wells and Marina Carravetta
O 45	The Impact of Aging on the Structure- Activity Relationship of TWC Catalysts	Lucy Costley-Wood, Emma Gibson, Timothy Hyde, Amy Kolpin and Dave Thompsett
O 46	Understanding the specific structure- activity relationship of supported PdO nanoparticles during catalytic oxidation using operando studies	Lisa Allen, Andrew Beale, Ines Lezcano Gonzalez, Andrew Smith, Husn Islam, Nicoleta Muresan, Loredana Mantarosie, David Thompsett and Jillian Collier
O 47	A computational investigation into a new class of catalytic promoter molecules in zeolites	Joe Crossley-Lewis, Joshua Dunn, Adrian J Mulholland and Neil L Allan
O 48	A DFT study of acetylene hydrogenation on supported carbidic Pd Nanoparticles	Apostolos Kordatos, Khaled Mohammed, Reza Vakili, Alexandre Goguet, Haresh Manyar, Emma Gibson, Marina Carravetta, Peter Wells and Chris Skylaris
O 49	Theoretical studies investigating the mechanism of methanol formation over Cu/ZnO based catalysts	David A. Jurado A., Michael Higham, Richard Catlow and Ingo Krossing
O 50	Development of liquid and electrochemical cells for operando NAP-XPS/NEXAFS investigation of surfaces and interfaces	Santosh Kumar, James Counter and Georg Held
0 51	Theoretical Understanding of the Support Promoted CH ₄ Reforming on the Ni-based Oxygen Carriers for Chemical-looping Combustion	Xin Xia
0 52	Is Ce ³⁺ /Ce ⁴⁺ redox necessary: Extreme high CO conversion at non-reducible CeO ₂ surface	Yifei Ren

O 53	Samarium doped Ceria as an active catalyst	Oisin Hamill, Alex Goguet, Nicola Collis,
	for emission control	Paul Millington, Jillian Collier and Loredana Mantarosie, Nancy Artioli
O 54	Scanning the effect of the Oxygen Storage Capacity Material with SPACI-MS over a Pd/Rh-based Three-Way Catalyst	A. Lanza, S. Raphy, D. Bounechada, A. Kolpin, A.P.E. York
O 55	Operando spectroscopy explores the synergy between Pd and In ₂ O ₃ for active CO ₂ reduction catalysts	Matthew Potter, Sofia Mediavilla Madrigal, Nicola Schiaroli, Giuseppe Fornasari, Patricia Benito and Andrew Beale
O 56	The Adsorption of Nitrobenzene Over P/Al ₂ O ₃ : An Infrared Spectroscopic Study	Annelouise McCullagh, Stewart Parker, Emma Gibson and David Lennon
0 57	Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR	Jordan Ward-Williams, Vivian Karsten, Constant Guedon, Tim Baart, Peter Munnik, Andrew Sederman, Mick Mantle, Qingyuan Zheng and Lynn Gladden
O 58	Shielding effect of mesoporous catalysts for plasma-enhanced catalytic synthesis of ammonia under ambient conditions	Yaolin Wang, Wenjie Yang, Shanshan Xu, Shufang Zhao, Guoxing Chen, Anke Weidenkaff, Christopher Hardacre, Xiaolei Fan, Jun Huang and Xin Tu
O 59	Localised thermal levering events to drive spontaneous kinetic oscillations in catalysis	Donato Decarolis
O 60	An iron ore-based catalyst to produce hydrogen and metallurgical carbon via catalytic methane pyrolysis for decarbonization of the steel industry	Mickella Dawkins, Sandra Dann, James Reynolds and David Saal
O61	Controlling the chemoselectivity of 3- nitrostyrene hydrogenation by modification of the interface of Pt/TiO ₂ catalysts	Conway, Sarah Haigh and
062	Computational Investigation of The Structures and Energies of Microporous Materials	Edward Stacey, Matthew Quesne and Richard Catlow
063	Ketonisation of Organic Acids over ZrO ₂ - based catalysts for Biomass Valorisation: The Role of Surface Acid-Base Sites	Maicon Delarmelina, Gunjan Deshmukh, Haresh Manyar and Richard Catlow
O64	Deciphering the role of ethylene glycol in an assisted incipient wetness impregnation to produce small Ru metal nanoparticles for catalysis	Antonio Torres Lopez, Chris Parlett and Arthur Garforth

Samarium doped Ceria as an active catalyst for emission control

Oisin Hamill¹, Alex Goguet¹, Nicola Collis², Paul Millington², Jillian Collier² and Loredana Mantarosie², Nancy Artioli¹ ¹Queen's University Belfast, BT9 5AG, 028 9097 5418 (United Kingdom) ²Johnson Matthey Technology Centre, RG4 9NH, 0118 924 2000 (United Kingdom) *n.artioli@qub.ac.uk

Introduction

The introduction of the Euro 7 standards for tailpipe emissions of light-duty vehicles (cars and vans) presents the need for further optimisation of the existing after-treatment technologies. New rules propose a 35% reduction for NOx emissions from these vehicle types compared to Euro 6 standards [1]. Lean NOx Trap (LNT) catalysts are a commonly used for NOx emission control in lean-burn engines, however, their function during cold-start engine operation is a target area for improvement. They consist of PGM(s) supported on ceria or other mixed oxides. Ceria's redox property allows it to store NOx at low temperatures (<300°C), independently from exhaust gas conditions. The NOx storage and reduction properties of ceria can be further enhanced using dopants. [2] Rare earth (RE) elements such as Samarium are commonly used in these systems to their reported increase in oxygen vacancies and defect densities as well an altered Pt reducibility and Pt-ceria interaction. These in turn allow for higher NOx storage capacity during lean operation as well as enhanced activation during rich purge. Sm doped catalysts (10 wt.%) were synthesised on a range of ceria and alumina-based catalysts with increasing loadings of Pt (0-1 wt.%). The objective of this study was to investigate the effect that doping had on the catalyst structure and how this in turn affected the performance of the catalyst in realistic conditions. Morphological changes were observed, using many characterisation techniques (H2-TPR, XPS, EELS & Raman Spectroscopy), and oxidation and storage activities were measured in cold-start conditions (150-300°C).

Materials and Methods

NOx Storage Capacity (NSC) experiments were performed in the range 150 to 300°C in a fixed bed reactor using 40 mg of catalyst. Lean, dry conditions consisted of 5% O₂, 400 ppm NO and an Ar balance to 200 Ncc/min. On-line measurements were taken using an Bruker Matrix MG5 FTIR gas analyser. The initial activation and cleaning cycle ran from RT to 450°C, with a 10 minute dwell at 450°C, in 0.4% H₂/Ar. XPS data was acquired using a Kratos Axis SUPRA using monochromated Al ka (1486.69 eV) X-rays at 15 mA emission and 12 kV HT (180W) and a spot size/analysis area of 700 x 300 μ m.

Results and Discussion

NOx Storage Capacity (NSC) experiments were performed to assess the storage capabilities of the catalysts to adsorb NOx between 150-300°C. NSC was measured as the cumulative NO stored during a one hour isothermal hold in oxidising conditions. The results are reported as Figure 1. It was observed that upon Sm addition, the NSC of the catalysts with the highest Pt loading (1 wt.%) increases by circa 100 μ mol NO_x/g catalyst at all temperatures. This is a NSC increase of 52% at the lowest temperature (150°C). The highest NSC is observed on the doped sample at the highest metal loading. This observation, therefore, was indicative of significant chemistry changes due to doping. To better understand the storage changes observed, as well as potential differences in catalytic and redox activity, of the doped catalysts, XPS was carried out on the same sample set. In particular, the Pt and Ce oxidation states were measured and are reported in Table 1. The increase in oxidised Pt and Ce, evidenced in Table 1, was observed to be in line with the increased NOx storage capacity of the doped samples. The higher

9th UK Catalysis Conference, 4-6th January 2023

surface oxygen content can potentially be related to the increase in the rate of NO oxidation to NO₂, as well as to the formation mechanisms of the nitrate and nitrite species, proposed by Filtschew et al. [3]. This increased oxygen content was confirmed, as the Ce^{4+}/Ce^{3+} and Pt^{4+}/Pt^{2+} ratios both increased when Sm was present on the support (at all Pt loadings). XPS also indicated that this increase to higher oxidation states changes the relative percentage of surface to lattice oxygen; to favour surface oxides. According to literature [4], a greater oxygen content on the surface of the catalyst promotes oxygen donation, therefore potentially increasing the rate of the NOx storage mechanisms [3]. Further characterisations such as H₂-TPR show changes in both, overall reducibility, and contributions from spillover mechanisms due to changing Pt-Ce interactions. Raman spectroscopy illustrated increases in defect densities on Sm doped catalysts. Further, cyclic performance testing, designed to test catalyst efficiency in lean and rich conditions, also indicated an increase in lean phase NOx storage as well as greater HC oxidation.

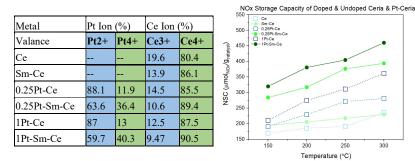


 Table 1. Cerium and Platinum cations, relative percentage differences in oxidation state.

Figure 1. NOx storage capacity experiments. *(Ce = Ceria)

As the NOx storage capabilities of the catalyst improve with doping in both static dry conditions, and in lean/rich cyclic conditions containing CO_2 and H_2O (data not presented), this linked effect was confirmed. It was also crucial to note that the relative selectivity to by-products (N₂O and NH₃) was not adversely affected in the presence of the dopant, even with higher levels of NOx being stored on the surface.

Significance

Performance testing shows that the presence of Samarium, on Ceria and Pt-Ceria increases the NOx storage capacity of the catalyst at low temperatures (150-300°C) and subsequently decreases the temperature needed for NOx reduction. This is important for the application of these catalysts to reduce NOx emissions during cold start operation. Changes in catalyst structure and morphology caused by Sm addition have been examined using a multitude of characterisations. Changes in oxygen content, defect structure and metal-support interactions have all been observed and related to performance changes. This work can help improve catalyst development for emission control solutions in a wide range of chemical engineering disciplines.

References

- 1. Euro 7 standards: new rules for vehicle emissions, Euro 7 factsheet, doi:10.2873/99010
- 2. Chansai, S. et al. J. Catal. 2011, 281, 98.
- 3. A. Filtschew and C. Hess, Appl. Catal. B Environ., 2018, 237, no. 2, pp. 1066–1081.
- 4. A. Filtschew et al., Phys. Chem. Chem. Phys., 2013, 15, 9066-9069.