
Learning and Analytics in Intelligent Systems 39

George A. Tsihrintzis
Maria Virvou
Haris Doukas
Lakhmi C. Jain Editors

Advances in Artificial
Intelligence-Empowered
Decision Support Systems
Papers in Honour of Professor
John Psarras

George A. Tsihrintzis · Maria Virvou ·

Haris Doukas · Lakhmi C. Jain
Editors

Advances in Artificial
Intelligence-Empowered
Decision Support Systems

Papers in Honour of Professor John Psarras

Editors
George A. Tsihrintzis
Department of Informatics
University of Piraeus
Piraeus, Greece

Haris Doukas
School of Electrical and Computer
Engineering
National Technical University of Athens
Athens, Greece

Maria Virvou
Department of Informatics
University of Piraeus
Piraeus, Greece

Lakhmi C. Jain
KES International
Shoreham-by-Sea, UK

ISSN 2662-3447 ISSN 2662-3455 (electronic)
Learning and Analytics in Intelligent Systems
ISBN 978-3-031-62315-8 ISBN 978-3-031-62316-5 (eBook)
https://doi.org/10.1007/978-3-031-62316-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Chapter 14

Supporting Decision-Making in

Diagnosis of Discrete-Event Systems

by Model-Based Temporal Techniques

Gianfranco Lamperti, Stefano Trerotola, and Marina Zanella

Abstract Decision support is essential when humans are responsible for choos-

ing critical courses of action about large, complex, distributed, partially-observable,

dynamical systems. When the functioning of the system looks abnormal, a decision

is expected to be taken based on the root cause of the undesired behavior. Still, several

alternative root causes, or candidates, each consisting of a set of faults, can explain

the same observation(s). Since finding such candidates requires heavy diagnostic rea-

soning, the literature describes a vast collection of automated diagnosis tools. When

the diagnosis tool is model-based, the knowledge stored in the system model is drawn

not only from human experts but also from design and/or operation data. Up to a few

years ago, model-based diagnosis was set-oriented, a candidate being a set of faults

that accounts for the observation(s). Recently, a temporal-oriented perspective to

diagnosis of dynamical systems was proposed: a candidate has become a chronolog-

ical sequence of faults, and the set of all candidates has turned into a regular language

over the alphabet whose symbols are faults. This new perspective may help a human

operator to better understand what actually took place inside the system, thus sup-

porting the decision-making process more adequately. This chapter deals with the

decision support provided by a model-based temporal-oriented approach to diagno-

sis of partially-observable discrete-event systems. A (distributed) discrete-event sys-

tem consists of components that are modeled as communicating automatons. Three

temporal-oriented diagnosis techniques, which differ for the amount of compiled

knowledge they manage (if any), are investigated: interpreted diagnosis, compiled

G. Lamperti (B) · S. Trerotola · M. Zanella

Department of Information Engineering, Via Branze 38, University of Brescia, 25123 Brescia,

Italy

e-mail: gianfranco.lamperti@unibs.it

S. Trerotola

e-mail: stefano.trerotola@outlook.it

M. Zanella

e-mail: marina.zanella@unibs.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

G. A. Tsihrintzis et al. (eds.), Advances in Artificial Intelligence-Empowered Decision

Support Systems, Learning and Analytics in Intelligent Systems 39,

https://doi.org/10.1007/978-3-031-62316-5_14

341

342 G. Lamperti et al.

diagnosis, and hybrid diagnosis. Experimental results suggest that both interpreted

and compiled diagnoses suffer from serious complexity difficulties, while hybrid

diagnosis may be applicable in real contexts.

Keywords Decision support systems · Model-based diagnosis · Temporal

reasoning · Discrete-event systems · Active systems · Automatons · Knowledge

compilation

14.1 Introduction

The expression decision-support system (DSS) has a broad meaning as it generi-

cally represents a computerized program that can help human users come to judg-

ments or make more informed actionable decisions at a quicker pace. This definition

is independent of the specific application domain, of the goal(s) of the supported

judgments and decisions, as well as of the technology embedded in each software

program considered. A DSS typically provides and (possibly) compares alternative

solutions relevant to a given problem instance and/or predicts the consequences of

different decisions that the user can make. The range of domains where a DSS can

be adopted is increasingly wide: it may be helpful in organizations (e.g. to achieve

smart manufacturing [21]), business (e.g. to explore different policies about prod-

uct sales [12, 13]), agriculture (e.g. to predict the areas where a natural substance

that controls pests will be effective [18]), and healthcare (e.g. to choose a treatment

plan for a patient or to increase the impact of public programs [31]). Further target

areas and tasks of interest for existing DSSs are listed in the introductory section of

[24]. A whole collection of application fields that have been addressed by DSSs is

surveyed in [22], where all encompassed DSSs share the same technology, namely

multi-agent systems. Different (AI as well as non-AI) technologies incorporated in

distinct approaches are instead surveyed in [3], where all the DSSs considered share

the domain of psychiatry. Several state-of-the-art DSSs are qualified as intelligent

inasmuch they are based on AI techniques, including neural networks, genetic algo-

rithms, multi-agent systems, fuzzy models, machine learning, and hybrid systems.

As remarked in [22], an intelligent DSS is highly recommended to treat complex

problems in dynamical and distributed environments: these environments are the

focus of the current chapter.

Finding a diagnosis is a complex problem that can traditionally benefit from

DSSs, both in medical [3, 36] and industrial [30, 44] areas. The present chapter

copes with the task of finding a diagnosis, specifically, by facing the problem of pro-

viding a decision support to humans who are responsible for critical decisions about

the behavior of large, complex, distributed, partially-observable, dynamical systems,

either natural or artificial. In this context, a decision is expected to be made when the

system behavior looks abnormal, possibly coming to an abrupt stop. Finding the root

causes, namely the faults, of the undesired observed behavior requires diagnostic

reasoning, which is typically hard and may bring to several alternative explanations,

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 343

an explanation consisting in one or more faults that altogether can have produced

the observed behavior. A tool that is able to compute precisely and efficiently such

kind of explanations, possibly based on preference criteria, is undisputedly helpful

for decision making. This is why in the last decades the AI community has proposed

several techniques for carrying out the diagnosis task for either static or dynamical

systems. For most of them, model-based technology is adopted, where a behavioral

system model is processed by a domain-agnostic engine in order to infer the alter-

native explanations, each of which is a candidate. Hence, a model-based diagnosis

tool is a knowledge-based tool that computes the candidates that can explain the

given observation of a given system. The knowledge, which is possibly drawn not

only from human experts but also from design and/or operation data, is stored in the

system model. The dynamical systems considered by the approach described in this

chapter are a category of asynchronous distributed discrete-event systems (DESs)

called active systems in the literature [27].

In the past, model-based diagnosis of DESs was typically employed in processing

alarms in operations rooms, both for electricity [16, 17] and telecommunication

networks [34]. Power transmission devices and autonomous unmanned helicopters

are the focus of attention in [16, 26], respectively. A more recent challenge for model-

based diagnosis of DESs is represented by the huge realm of cyber-physical systems

[15].

Up to a few years ago, model-based diagnosis of both static and dynamical systems

was invariably set-oriented: a candidate was a set of faults that accounts for a given

observation. In 2020, the notion of a chronological sequence of faults, namely a

temporal fault, was introduced [4–7]. This notion is adopted in the present chapter,

since we believe that it can better support decision making. However, computing

temporal-oriented candidates is harder than computing set-oriented ones; hence, the

execution time performance of three distinct techniques to accomplish temporal-

oriented diagnosis of DESs have been evaluated empirically.

In the remainder of the chapter, a background about the diagnosis task in the

literature is provided in Sect. 14.2. The concept of a (distributed) DES is recalled

in Sect. 14.3. Section 14.4 presents a temporal-oriented approach to (a posteriori)

diagnosis in three variants: interpreted, compiled, and hybrid. Section 14.5 outlines

the implementation of a DSS, and shows the results of the relevant experimental

activity. Section 14.6 draws some conclusions.

14.2 Background and Motivation

A diagnosis task hypothesizes what took place inside a system or process, given

a collection of (outward) observations. Different hypotheses can be suggested for

the same given observations owing to the partial observability of the system or

process considered. For instance, in medical diagnosis, a bunch of symptoms is the

observed behavior, while the corresponding diagnostic hypotheses are the possible

causes (internal to the human body) that can account for these symptoms. In AI, the

344 G. Lamperti et al.

challenge of automating the diagnosis task was first faced by diagnostic rule-based

systems, such as MYCIN [41], which, starting from the second half of the 1980s,

were replaced by model-based diagnosis systems [19, 23, 38]. The latter find the

causes of the observed behavior of the considered (natural or artificial) system by

exploiting its (behavioral) model. The system to be diagnosed usually consists of

several components, hence its model is distributed, that is, it defines explicitly the

inner behavior of each component, whereas the behavior of the system as a whole is

implicit. In fact, at least in theory, the global system behavior is derivable from the

component models and the interconnections between components.

The alternative hypotheses relevant to a group of observations are called can-

didates, then a set of candidates is the ordinary output of the diagnosis task. Each

candidate produced by consistency-based diagnosis has no logical inconsistency with

the observed behavior, while each candidate computed by abduction-based diagno-

sis entails the observed behavior. Both forms of artificial reasoning in model-based

diagnosis can adopt strong fault models; otherwise, consistency-based diagnosis can

adopt weak fault models. When the component models are weak, they specify only

the normal behavior; hence, the diagnosis task can hypothesize which components

are not working properly, namely the faulty components. If the models are strong,

they specify a behavior that encompasses both normality and abnormality; hence, a

(possibly null) specific fault can be hypothesized for each component. It is assumed

that a component (and, therefore, a system too) can be affected by faults that belong

to a finite set. A specific misbehavior in a component or in the system as a whole is

caused by either one or several faults.

Each component model maps the input(s) to the output(s). In a static system, e.g. a

combinational circuit, this mapping is time-independent. Some input pins and some

output pins are relevant to the static system as a whole: the system input values and

the system output values altogether form the observed behavior processed by the

diagnosis task.

In a dynamical system, e.g. a sequential circuit, the mapping is time-dependent,

hence model-based diagnosis has to find out the system state also [43]. For some

purposes, a dynamical system is advantageously modeled as a discrete-event system

(DES) [11], which changes its state over (qualitative) time. According to this abstrac-

tion, the time tags of state changes are disregarded, while only their chronological

order is retained. A (possibly unobservable) input value drives each state change.

Several representation formalisms can be adopted for a DES, however: typically,

a (single) finite-state machine [29], a Petri net [1, 2, 10, 14, 20, 28, 37, 45], a

network of synchronous finite-automatons (FAs), like in [39, 40], or a network of

asynchronous FAs, like in this chapter. Each FA models the behavior of a distinct

component. These models are untimed: only the reciprocal order of state transitions

is reckoned to be interesting, while no time length is explicitly considered. Notwith-

standing a remarkable exception [35], the fault models usually adopted for DESs

are strong, as is the case with the synchronous DESs in a seminal work [39, 40],

and with active systems [27], which are considered in the present chapter. Each

state transition is either free of faults, namely normal, or affected by a specific fault,

namely it is faulty. Distinct faulty transitions may share the same fault. While a DES

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 345

is being operated, a chronological sequence of events is perceived, where each single

perception is called an observation: altogether such sequence is called a temporal

observation. A trajectory of a DES is a sequence of state transitions, then it generates

a temporal observation. The diagnosis task computes candidates that correspond to

all (and only) the trajectories that produce (i.e. entail) the given temporal observation,

which means that DES diagnosis can be regarded as a form of abductive reasoning

[32].

If a given temporal observation is regarded as a monolithic input, and only one

diagnosis output is produced in order to account for it altogether, the task is dubbed

a posteriori diagnosis. This kind of diagnosis is the focus of the present chapter.

If, instead, single observations or observation chunks (a chunk consisting in some

consecutive observations) are progressively provided, so as to trail the system while

it is running, and a diagnosis output is produced for each of them, the task is called

monitoring-based diagnosis. A posteriori diagnosis hypothesizes what has happened

inside the system over the span when the temporal observation was originated. This

task is carried out, for instance, in order to uncover the causes of an (abrupt or even

catastrophic) halt in a system. The output of a posteriori diagnosis is a single set of

candidates; they can help a diagnostician make a decision, possibly involving repair

actions. In monitoring-based diagnosis, instead, the set of candidates is updated

continuously as the task is typically performed when the system is monitored, by

sampling sensor readings and periodically sending them to a control unit. The outputs

of monitoring-based diagnosis is useful to feedback the evolution of the system as

well as to perform maintenance actions.

Irrespective of the variety of models considered by distinct approaches and of the

task being executed either a posteriori or during monitoring, before 2020, model-

based diagnosis of both static and dynamical systems was invariably set-oriented.

In static systems, a candidate is a set of either faulty components or specific faults

assigned to components. Likewise, in DESs, a candidate is a set of all the faults

associated with the abnormal state transitions taking place in a trajectory of the DES

that generates the temporal observation. Every single candidate and the whole set

of candidates are finite and bounded as the domain of faults is finite. While set-

orientation looks like appropriate for static systems, it sounds odd for DESs since a

candidate is the projection of a chronologically ordered sequence of state transitions.

Faults, which are possibly causally chained and/or intermittent, occur sequentially

in the real world. Unfortunately, within a set, the pieces of information about the

chronological order of faults and their repetitions are totally lost, since a set does not

include any duplicates and its elements are unordered.

Every time a new observation chunk is processed, monitoring-based diagnosis

enables one to discover whether some new faults have occurred; however, it does

not enable one to ascertain whether there has been any repetition of a fault that has

already manifested itself. In other words, not even monitoring-based diagnosis can

help the diagnostician in acquiring awareness of the repetitions of intermittent faults.

Hence, a new temporal-oriented viewpoint on DES diagnosis was proposed [4–

7], according to which a candidate, instead of being a set of faults, is a sequence of

346 G. Lamperti et al.

faults. This sequence, called temporal fault, is relevant to a trajectory that produces

a (given) temporal observation, thus it is possibly unbounded.

A temporal fault is different from a usual candidate for three main reasons: (1) it

consists in the bag of faults that took place in the trajectory, which contains each and

every instance of the same fault, (2) it clearly shows the chronological order of the

fault occurrences, and (3) its length may be unbounded as (intermittent) faults may

occur cyclically, and each cycle may be unobservable. The temporal-oriented diag-

nosis output consists in all distinct temporal faults, which may be infinite in number.

Each distinct temporal fault is pertaining to a set of DES trajectories, each of which

produces the (finite) temporal observation; the cardinality of such set of trajectories

is possibly infinite (as a trajectory may include a cycle of normal unobservable state

transitions).

The extra pieces of information contained in temporal faults may be essential

for helping diagnosticians make decisions in critical scenarios. Our claim is that a

temporal-oriented approach provides more adequate support to decision making as

it can help an operator better understand what actually took place inside the system:

it does not merely highlight the faults that are possibly affecting the DES, like set-

oriented diagnosis does, it also places these faults within a chronologically ordered

line. Hence, on the one hand, a temporal-oriented perspective is meant to provide

a better cognitive support to a human diagnostician in charge of deciding what to

do next, by offering a more realistic view of what has happened; on the other, the

possible infinite cardinality of the set of candidates makes it difficult to display this

output to a human operator. Providentially, an (even infinite) set of candidates that

account for a temporal observation is a regular language over the alphabet whose

symbols are faults. Thus, the temporal-oriented diagnosis output of a DES becomes

a regular expression: each temporal fault is indeed a string matching this expression.

The content of a regular expression is more significant and useful than that of

a collection of sets of faults. Let us assume that the set-oriented output relevant

to a given DES diagnosis problem instance is {{u, v}, {v,w}}, while the temporal-

oriented output is v(uuu | w)v. The former informs that a pair of faults is affecting

the DES, either {u, v} or {v,w}. This implies that fault v has taken place for sure

since it is included in both candidates. A diagnostician may wonder whether fault v

was the first to occur, this case having a quite different meaning and severity. This

piece of information, which is missing in the set-oriented output, is instead provided

by the temporal-oriented diagnosis, according to which fault v occurred first; so now

the diagnostician can appreciate whether the situation is severe or not. In addition,

according to the temporal-oriented output, fault v has surely manifested itself twice,

and, between the pair of v’s, there were either three u’s or one w. The repetition of

v is possibly meaningful for an expert, e.g. for it exonerates some evolutions of the

considered system, the same as the faults in between. For instance, it may be easy to

unearth whether sequence vwv has presented itself, hence the diagnostician will look

into it, thus discarding one alternative and catching the real candidate. Identifying

the real candidate is instead more complex and time consuming when the diagnosis

output is set-oriented only.

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 347

Since the temporal-oriented diagnosis output is richer than the set-oriented diag-

nosis output, a couple of questions are in order: (1) which algorithms can compute

the former, and (2) which are the performances of these algorithms? A recent work

[25] has addressed these questions within the context of monitoring-based diagnosis

of DESs. The following sections address the same questions for a posteriori diagno-

sis of DESs. To this end, three techniques are presented to reply question (1) above,

while experimental evidence is provided to answer question (2).

14.3 Modeling of DESs

A distributed DES is a net of interconnected components, the behavior of each of

which is modeled by means of a communicating automaton [8]. The interconnections

are called links: they are channels in which events are sent. A component may

change its state by a transition; each transition is triggered by an event. An event is

external if it occurs outside of the DES, internal otherwise. An internal event comes

from another component and it is conveyed by a link. After the triggering event has

been consumed, other events are possibly generated on links, thus triggering new

component transitions in a chain reaction.

Example 1 Figure 14.1 shows a physical device, involving two components, a pro-

tection and a breaker, that is aimed at controlling a line in an electrical grid. The

device is designed in such a way that, when the line is affected by a short circuit

(e.g. caused by a lightning), which is detected by a drop in voltage, the protection

sends an open command to the breaker so as to eliminate the short circuit. When,

the short circuit has vanished and the voltage has become normal, the protection

sends a close command to the breaker in order to bring back the electrical power.

The DES modeling this device, called W (watcher), is represented on the left of the

figure: it consists of protection p and breaker b, along with a link from p to b. The

communicating automatons of the two components are displayed on the right of the

figure. Specifically, there are two states and four transitions in the model of p, and

two states and eight transitions in the model of b. As detailed in Table 14.1, a triple

Fig. 14.1 Left: DES watcher

W , which is composed of a

protection p, a breaker b,

and a link from p to b; right:

communicating automatons

of b (top) and p (bottom)

348 G. Lamperti et al.

Table 14.1 Description of the transitions of breaker b and protection p (cf. Fig. 14.1)

Transition Action

b1 = 〈closed, (op,∅), open〉 b receives an open command and opens

b2 = 〈open, (cl,∅), closed〉 b receives a close command and closes

b3 = 〈closed, (op,∅), closed〉 b receives an open command and (abnormally)

remains closed

b4 = 〈open, (cl,∅), open〉 b receives a close command and (abnormally)

remains open

b5 = 〈closed, (cl,∅), closed〉 b receives a close command and remains closed

b6 = 〈open, (op,∅), open〉 b receives an open command and remains open

b7 = 〈closed, (cl,∅), open〉 b receives a close command and (abnormally)

opens

b8 = 〈open, (op,∅), closed〉 b receives an open command and (abnormally)

closes

p1 = 〈normal, (sh, {op}), shorted〉 p reacts normally to a short circuit by

generating the open command

p2 = 〈shorted, (ok, {cl}), normal〉 p reacts normally to a short extinction by

generating the close command

p3 = 〈normal, (sh, {cl}), normal〉 p reacts abnormally to a short circuit by

generating the close command

p4 = 〈shorted, (ok, {op}), shorted〉 p reacts abnormally to a short extinction by

generating the open command

〈x, (e, E), x ′〉 denotes a component transition from a state x to a state x ′, triggered

by an input event e and generating a set of output events E .

It is assumed that only one component transition can occur at a time. The DES

moves from its initial state to a quiescent state, that is, a state where there are no

events in the links, by following a series of component transitions, called a trajectory

of the DES. The DES state changes upon each (component) transition in a trajectory.

A trajectory segment is a subsequence of contiguous (component) transitions in a

trajectory. Even if it is possibly infinite, the set of all the trajectories of the DES can

be represented as a deterministic FA (DFA), namely the space of the DES.

Definition 1 The space of a DES Y is a DFA,

Space(Y) =
(

�, X, τ, x0, Xq

)

, (14.1)

where the alphabet � is the set of component transitions, X is the set of states, where

a state is a pair (C, L), with C being the array of the states of the components and L

being the array of the (possibly empty1) events within links, τ is the transition function

mapping a state and a component transition into a new state, τ : X × � �→ X , x0 is

the initial state, and Xq is the set of quiescent states.

1 Formally, an empty link contains an empty event, denoted ε.

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 349

Fig. 14.2 Space of the watcher W (cf. Fig. 14.1)

Example 2 Figure 14.2 depicts Space(W); each space state is a triple (p̄, b̄, e), with

p̄ and b̄ being the states of p and b, respectively, while e is the event in the link.

For easy referencing, the space states are renamed 0 · · · 7. The initial state is 0 and

0, 3, 4, and 7 are the quiescent states. Due to cycles in the space, there are infinite

trajectories of W , one of them being T = [p3, b5, p1, b3, p4, b3, p2, b5].

Since we are interested in diagnosis, the model of a DES Y is extended with

information about the observability and the abnormality of the DES, which are both

specified in a mask, namely Msk(Y), which is a set of triples (t, o, f) where, for

each component transition in Y , a corresponding (possibly empty) observation o and

a (possibly empty) fault f are specified. If o �= ε, then transition t is observable, else

t is unobservable; also, if f �= ε, then t is faulty, else t is normal.

Example 3 Table 14.2 shows the mask of the DES W (cf. Example 1), where the

domain of observations is {po, bo} and the domain of faults is {a, b, c, d, g, h}. Inci-

dentally, just one observation is defined for p and b, namely po and bo, respectively.

Notice how transition p1 is normal and observable, p3 is faulty and unobservable,

while b7 is faulty and observable. The perception of an observation is insufficient

to trace the relevant transition, as such observation is possibly shared by several

transitions.

The mask allows us to associate each trajectory with a temporal observation.

Definition 2 The temporal observation of a trajectory T of a DES Y is the sequence

of the observations associated with the observable transitions in T :

350 G. Lamperti et al.

Table 14.2 Mask of W (left), and description of the relevant observations and faults (right)

t o f

p1 po ε

p2 po ε

p3 ε a

p4 ε b

b1 bo ε

b2 bo ε

b3 ε c

b4 ε d

b5 bo ε

b6 bo ε

b7 bo g

b8 bo h

o Description

po The protection performs a normal action

bo The breaker reacts (possibly abnormally) to a command

f Description

a The protection issues the cl command instead of op

b The protection issues the op command instead of cl

c The breaker persists in staying closed upon the op command

d The breaker persists in staying open upon the cl command

g The breaker opens upon the cl command

h The breaker closes upon the op command

Obs(T) = [o | t ∈ T, (t, o, f) ∈ Msk(Y), o �= ε] . (14.2)

T is said to conform with O.

Example 4 According to Msk(W) displayed in Table 14.2 and considering the tra-

jectory T = [p3, b5, p1, b3, p4, b3, p2, b5]ofW , we have Obs(T) = [bo, po, po, bo].

A diagnosis is usually the set of faults involved in a trajectory; hence, it neither

embodies any chronological order between faults nor records possible repetitions of

the same fault. Still, defining a diagnosis as a set allows the domain of diagnoses to

be finite, as it is bounded by the powerset of the domain of faults. The concept of

a temporal fault introduced below contrasts with this view. Each trajectory can be

associated with a temporal fault thanks to the mask.

Definition 3 The temporal fault of a trajectory T of a DES Y is the sequence of the

faults associated with the faulty transitions in T :

Flt(T) = [f | t ∈ T, (t, o, f) ∈ Msk(Y), f �= ε]. (14.3)

A temporal-fault segment is a contiguous subsequence of a temporal fault.

Example 5 Let T = [p3, b5, p1, b3, p4, b3, p2, b5] be a trajectory of W . Based on

Msk(W) shown in Table 14.2, the temporal fault relevant to T is Flt(T) = [a, c, b, c],

where the faulty transitions occurred are p3, b3, p4, and b3.

Being, in general, the length of a trajectory unbounded, also a temporal obser-

vation and a temporal fault have usually an unbounded length. A diagnosis task is

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 351

given a temporal observation O of a DES Y and it has to find the corresponding

temporal faults of Y , which needs computing the trajectories of Y that conform with

O. Three different methods implement the diagnosis task: (a) with no knowledge

compilation, namely interpreted diagnosis, (b) with total knowledge compilation,

namely compiled diagnosis, and (c) with partial knowledge compilation, namely

hybrid diagnosis. Technique (b) compiles offline the model of the DES into knowl-

edge structures whose purpose is to boost the speed of the online diagnosis engine.

Technique (c) produces offline an initial partial knowledge structure, which the online

diagnosis engine may extend many times.

14.4 Diagnosis Problem with Temporal Faults

We assume that the relevant DES has performed a trajectory ending in a quiescent

state. The trajectory of the DES manifests itself to an external observer as a temporal

observation O (Definition 2). Since the actual trajectory that the DES has followed is

unknown, the diagnosis task needs to infer the trajectories of the DES that conform

with O and end in a quiescent state. The set of these trajectories is possibly infinite;

hence, also the set of temporal faults corresponding to them is possibly infinite. This

set is the diagnosis output, called the candidate set of O.

Definition 4 Given a temporal observation O of a DES Y , the relevant candidate

set �(O) is the set of temporal faults associated with the trajectories that conform

with O:

�(O) = { Flt(T) | T ∈ Space(Y), Obs(T) = O }. (14.4)

Example 6 A temporal observation O = [bo, po, po, bo] of W (cf. Example 4) is

given. In order to produce �(O), the computation of the set T of trajectories T of

W such that Obs(T) = O is needed (Eq. (14.4)). T is a regular expression on the

component transitions (see Space(W) in Fig. 14.2 and Msk(W) in Table 14.2):

T = p3b5 p1b3(p4b3)
∗ p2

(

b5 | b7 (p3b4)
∗
)

whose language includes T = [p3, b5, p1, b3, p4, b3, p2, b5] (cf. Example 4). Sub-

sequently, �(O) can be inferred from T by substituting the faulty transitions with

the relevant faults in Msk(W), and then deleting the empty faults:

�(O) = aεεc (bc)∗ ε
(

ε | g (ad)∗
)

= ac (bc)∗
(

g (ad)∗
)

?

Similarly, with O′ = [bo, po], we have T
′ = p3b5 p1b3(p4b3)

∗ and �(O′) =

ac (bc)∗. Finally, with O′′ = [po, bo], we have T
′′ = p1 (b3 p4)

∗ b1 and hence

�(O′′) = (cb)∗.

The ultimate goal of the a posteriori diagnosis of a DES is to generate the candidate

set corresponding to a given temporal observation. However, the same candidate

352 G. Lamperti et al.

set may be determined by means of different techniques, based on the amount of

knowledge, compiled offline, that can be processed online by the diagnosis engine.

On the one hand, the larger the compiled knowledge the diagnosis engine can exploit

online, the more efficient the generation of the candidate set in terms of computational

time. On the other, the size of the knowledge to be compiled may be so large that the

process of knowledge compilation may become overwhelmingly impractical as far

as memory allocation and computational time are concerned.

In the next sections we introduce three a posteriori diagnosis techniques for the

computation of a candidate set. A first (interpreted) technique (Sect. 14.4.1) operates

online only; it generates the candidate set by performing low-level reasoning on the

DES structure and the models of the components, without the need of any compiled

knowledge. A second (compiled) technique (Sect. 14.4.2) relies on total knowledge

compilation: based on the DES specification, a (complete) temporal diagnoser is

constructed offline, which allows for the fast online generation of a candidate set

by the diagnosis engine. A third (hybrid) technique (Sect. 14.4.3) relies on partial

knowledge compilation: only a partial temporal diagnoser is constructed offline,

which is then exploited online. If and when it is needed, the partial temporal diagnoser

is extended on the fly by the diagnosis engine, thereby possibly converging towards

a (complete) temporal diagnoser over time.

14.4.1 Interpreted Technique

When no compiled knowledge is available, the engine for diagnosis of temporal

faults is expected to compute the candidate set based solely on the DES description

in terms of components and links. This means that no additional data structure has

been generated offline to boost the computational efficiency online, including the

space of the DES. This assumption may be regarded as an inconsistency if we look

at Eq. (14.4), where the candidate set is defined in terms of trajectories of Y , which

in turn refer to the space of Y . This problem may be overcome by considering that

the actual trajectories involved in the computation of �(O) are those conforming

with O. Therefore, it suffices to materialize (online) the so-called O space of Y , i.e.

the part of Space(Y) that conforms with O, rather than the entire space.

Definition 5 The O space of a temporal observation O of Y , Osp(Y,O), is a DFA

whose regular language is the set of the trajectories T of Y where Obs(T) = O.

Osp(Y,O) is computed by processing O = [o1, . . . , on] and the model of Y . In

Osp(Y,O), a state is a pair (x, i), x being a state of Y and i an index falling in [0..n].

The transition function is generated by accounting for the component transitions

that can be triggered in a given state, starting from the initial one (x0, 0). Whenever

a transition t can be triggered in a state (x, i) and reaches state x ′ of Y , a transi-

tion 〈(x, i), t, (x ′, (i + 1)〉 is generated in Osp(Y,O), provided that t is observable,

(t, oi+1, f) ∈ Msk(Y) and i < n. If t is unobservable, however, the index i is not

incremented. A state (x, n) is final iff x is quiescent.

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 353

Fig. 14.3 Osp(W, O), the O space of the watcher W , where O = [bo, po, po, bo]

Example 7 O = [bo, po, po, bo] is the temporal observation of W already dealt

with both in Example 4 and in Example 6. The generation of Osp(W,O) is traced

in Fig. 14.3, where the gray portion is spurious (and eventually discarded), in that

no path of transitions intersecting this part ends in a quiescent state. Therefore, the

actual Osp(W,O) is that depicted in black. A state in Osp(W,O) is qualified as a

pair (w, i), where w is a state in Space(W) (Fig. 14.2),2 while i is an index of O,

in the range [0..4]. The states of Osp(W,O) are renamed 0 . . . 8, with 0 being the

initial state, while 6 and 7 are the final states, where i = 4 and p is a quiescent state

of W . It can be easily verified that the language3 of Osp(W,O) is equal to the set

of trajectories conforming with O in Space(W).

According to Eq. (14.4) and Definition 5, a trajectory T is in Osp(Y,O) iff T is

in Space(Y) and Obs(T) = O; hence, Flt(T) ∈ �(O). In fact, �(O) is the set of

temporal faults inherent to all the trajectories in Osp(Y,O). However, considering

all the trajectories in Osp(Y,O) to obtain �(O) is impractical since the number of

such trajectories is possibly infinite. Still, a formal property of �(O) is essential

to overcome this computational difficulty. In fact, the candidate set of a temporal

observation O of a DES Y , �(O), is a regular language over the domain of faults

embodied in Msk(Y).

Example 8 Consider the O space of W in Example 7 (Fig. 14.3), where the states

are identified by 0 . . . 8. By substituting each component transition t marking an arc

in Osp(W,O) with the (possibly empty) fault relevant to t in Msk(W) (Table 14.2),

we obtain the NFA in Fig. 14.4. Hence, a temporal fault is a string belonging to

the language of this NFA. The infinite set of temporal faults identified below is the

candidate set:

2 The qualification of w by a number identifying a state of Space(W) is only a shorthand, which

does not assume, nor does it require, the materialization of Space(W). In fact, w is represented

as a triple (p̄, b̄, e), p̄ being a state of the protection, b̄ being a state of the breaker, and e being a

(possibly empty) event within the link.
3 Intuitively, given an FA, its regular language is the set of strings over its alphabet that can be

produced by following the transition function from the initial state to a final state. Hence, each string

in the language of Osp(W, O) is a trajectory of W as each symbol in the alphabet of Osp(W, O)

is a (component) transition.

354 G. Lamperti et al.

Fig. 14.4 NFA generated from Osp(W, O) in Fig. 14.3, by substituting the transitions with the

relevant faults, as specified in Msk(W) (Table 14.2)

�(O) = ac(bc)∗(g(ad)∗)?

The inspection of the NFA obtained from the O space by replacing the symbols

marking the transitions has allowed us to specify the regular expression for the

candidate set in Example 8. In general, however, a technique that can process this

NFA to automatically generate the regular expression of �(O) is needed. Algorithm

Candidates, introduced in the next section, serves this purpose.

14.4.1.1 Algorithm CANDIDATES

To automatically generate the regular expression of �(O), an algorithm [9] proposed

in the domain of the state diagrams of sequential circuits is adapted. Its input is an

NFA and its output is the regular expression of the language this NFA accepts. This is

quite helpful to implement the generation process for the regular language of �(O).

Algorithm 1 (lines 1–24) lists the pseudocode of the adapted algorithm, called

Candidates. Its input is an O space of a DES Y and its output is a regular expression

R whose alphabet is the set of faults of Y and whose language is �(O). First,

each component transition is replaced with the corresponding (possibly empty) fault

defined in the mask Msk(Y) (lines 1–2). Then, in lines 3–8, a new initial state α0

and a new (single) final state αq are possibly inserted along with an ε-transition from

α0 to the original initial state β0 and an ε-transition from each original final state

to αq. This way, an NFA N having n0 and nq as initial and final state, respectively,

is obtained (line 9). The algorithm has now to transform N into a new NFA that

consists just in states n0 and nq and the transition 〈n0, r, nq〉, where r is a regular

expression identifying �(O). The key idea in [9] is to progressively eliminate states

and transitions in N while preserving the regular language that is accepted by the

NFA. For this purpose, the alphabet of the NFA, which is initially the set of faults, is

changed into a set of regular expressions on such faults. Three simplification rules

are coded within the loop in lines 10–23. The first rule is embodied in lines 11–12:

it replaces a sequence of transitions, with intermediate states that are neither entered

nor exited by other transitions, with a single transition whose regular expression is the

concatenation of the regular expressions marking the original transitions. The second

rule (lines 13–14) substitutes some (parallel) transitions with a single transition whose

regular expression is the alternative of the regular expressions relevant to the original

transitions. The last rule (lines 16–23) removes both an internal node n of N and

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 355

Algorithm 1: Candidates

input : C, the O space of Y , namely Osp(Y, O)

output: R, a regular expression identifying the language of the candidate set �(O)

1 foreach transition 〈β, t, β ′〉 in C do

2 Substitute f for t , where (t, o, f) ∈ Msk(Y)

3 if there is a transition entering the initial state β0 of C then

4 Add both a new initial state α0 and a new ε-transition 〈α0, ε, β0〉

5 if there exist several final states or there is a transition exiting the (unique) final state then

6 Add a new final state αq

7 foreach original final state βq of C do

8 Add a new ε-transition 〈βq, ε, αq〉

9 Let N be the NFA so obtained from C, with initial state n0 and final state nq

10 while N includes more than one transition do

11 if there is a sequence Q = [〈n, r1, n1〉, 〈n1, r2, n2〉, . . . , 〈nk−1, rk , n′〉] of transitions,

k ≥ 2, where each state ni ,i ∈ [1..(k − 1)], has no further entering or exiting transitions

then

12 Replace Q with the transition 〈n, (r1r2 · · · rk), n′〉

13 else if there is a set S = {〈n, r1, n′〉, 〈n, r2, n′〉, . . . , 〈n, rk , n′〉} of transitions from n to n′

then

14 Replace S with the transition 〈n, (r1|r2| · · · |rk), n′〉

15 else

16 Let n be an internal (neither initial nor final) state of N

17 foreach transition 〈n′, r ′, n〉 entering n, where n′ �= n do

18 foreach transition 〈n, r ′′, n′′〉 exiting n, where n′′ �= n do

19 if there is a loop transition 〈n, r, n〉 for n then

20 Add a new transition 〈n′, (r ′(r)∗r ′′), n′′〉

21 else

22 Add a new transition 〈n′, (r ′r ′′), n′′〉

23 Remove n and all its entering / exiting transitions

24 R ← r , where 〈n0, r, nq〉 is the unique transition remained in N .

its entering / exiting transition, and adds a set of equivalent transitions. In case there

exists a loop transition 〈n, r, n〉 for n, a new transition 〈n′, (r ′(r∗)r ′′), n′′〉 is created

for each transition 〈n′, r ′, n〉 entering n and for each transition 〈n, r ′′, n′′〉 exiting

n. If there is no loop transition 〈n, r, n〉, then the new transition that is added is

〈n′, (r ′r ′′), n′′〉 instead. Eventually, n and all the transitions that enter or exit it are

removed. The while loop terminates when there is just one transition 〈n0, r, nq〉,

where r identifies in fact the regular language of �(O) (line 24).

Example 9 Consider the O space of W in Fig. 14.3. Traced in Fig. 14.5 is the

transformation of Osp(W,O) carried out by the Candidates algorithm in order to

generate a regular expression identifying �(O). The first row of Fig. 14.5 accom-

modates the NFA N obtained by Candidates in line 9, the newly-inserted final

state being 9. Then, the loop in lines 10–23 is entered, where the three simplification

rules are applied. Since the condition in line 11 holds, the sequence of transitions

356 G. Lamperti et al.

Fig. 14.5 Tracing of the Candidates Algorithm applied to Osp(W, O) (cf. Figs. 14.3 and 14.4)

[〈0, a, 1〉, 〈1, ε, 2〉, 〈2, ε, 3〉] (highlighted in Fig. 14.5) is replaced by the single tran-

sition 〈0, a, 3〉, thereby leading to the NFA in the second row. Next, the sequence

[〈5, ε, 6〉, 〈6, ε, 9〉] is replaced by 〈5, ε, 9〉. Subsequently, the second simplification

rule applies several times, which eliminates in succession states 3, 4, 5, 8, and 7,

thereby leading to the NFA on the right of the fifth row. Eventually, the second rule

comes into play (NFA on the bottom of the figure), by replacing the pair of parallel

transitions from 0 to 9 with the single transition marked with the regular expression

r = ac(bc)∗ | ac(bc)∗g(ad)∗ = ac(bc)∗(g(ad)∗)?

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 357

which is in fact the regular expression R identifying language �(O) (line 24). As

expected, R is the same regular expression computed in Example 6 based on Defi-

nition 4.4

Proposition 1 Algorithm Candidates is sound and complete.

Proof According to Definition 5, the language of C = Osp(Y,O) consists in the set

of trajectories T in Space(Y) where Obs(T) = O. After the substitutions performed

in lines 1–2, the language of the NFA is the set of temporal faults Flt(T) where

Obs(T) = O, in other words, it is �(O) (cf. Definition 4). When line 9 is reached,

the language of N is still �(O), although a new initial state and a new final state

have possibly been added. Also the reduction of N to a single transition 〈n0, r, nq〉

in lines 10–23 maintains the language of N within r , hence the latter identifies

�(O). �

Two alternative methods that, differently from the interpreted technique, exploit

knowledge compilation for diagnosis of temporal faults are presented in Sects. 14.4.2

and 14.4.3, respectively.

14.4.2 Compiled Technique

The interpreted technique for generating �(O) does not perform any (offline) pre-

processing. Consequently, the algorithm Candidates first generates (online) the O

space, which is hardly desirable under tight time constraints. The compiled tech-

nique, instead, speeds up the diagnosis task by generating offline a temporal diag-

noser (Definition 7) to be exploited online. Intuitively, the temporal diagnoser of a

DES Y , Tdg(Y), is an NFA that a preprocessor draws from the specification of Y

based on the mask of Y . A set of triples (o,L, f) is the alphabet of Tdg(Y): o is an

observation of Y , L is a regular language whose symbols are the faults of Y , and f

is a (possibly empty) fault. Each state of Tdg(Y), called a local space, contains some

local diagnosis information specified as regular expressions on faults. Remarkably,

Tdg(Y) enables one to generate �(O) efficiently.

Definition 6 Given a DES Y whose set of faults is F, the local space of a state x̄ of

Y , Lsp(x̄), is an NFA:

Lsp(x̄) = (�, X, τ, x0, Xe, Xq) (14.5)

where � = F ∪ {ε} is the alphabet, X is the set of the states in Space(Y) that can be

reached from x̄ via (possibly empty) sequences of unobservable transitions, x0 = x̄

4 What matters here is not the exact equality of the two regular expressions, however. Generally

speaking, it is their equivalence that counts, inasmuch they denote the same language and, therefore,

the same set of temporal faults.

358 G. Lamperti et al.

Fig. 14.6 Construction of Lsp(1) in conformance with Definition 6, where 1 is a state of Space(W)

(cf. Fig. 14.2)

is the initial state, Xe ⊆ X is the set of the exit states, where xe ∈ Xe iff 〈xe, t, x ′〉

is a transition in Space(Y) and t is observable, Xq ⊆ X is the set of states in X that

are quiescent in Space(Y), and τ : X × � �→ 2X is the transition function, where

〈x1, f, x2〉 is an arc in τ iff 〈x1, t, x2〉 is a transition in Space(Y) and (t, ε, f) ∈

Msk(Y).

Every state x ∈ Xe ∪ Xq is a labeled state, being marked with a regular expres-

sion whose language is the set of temporal-fault segments relevant to the trajectory

segments in Space(Y) from x̄ to x , denoted L(x). The diagnosis language of Lsp(x̄),

namely L (Lsp(x̄)), is a regular language over F, the set of faults of Y:

L (Lsp(x̄)) =







∅ if Xq = ∅

L(x) if Xq = {x}

L(x1) | . . . | L(xn) if Xq = {x1, . . . , xn}, n ≥ 2.

(14.6)

In other words, a local space rooted in a state x̄ of a DES Y comprehends the

subgraph of Space(Y) that contains transitions that are all unobservable, where each

state x in Space(Y) that either has an exiting observable transition or is quiescent

is decorated with a regular expression whose language is the set of temporal-fault

segments relevant to the sequences of transitions traversing the local space from x̄

to x .

Example 10 Figure 14.6, on the left, shows the unobservable subspace of Space(W)

whose root is state 1 = (shorted, closed, op) (cf. Fig. 14.2). As described in the

center of the figure, component transitions p4 and b3 are substituted with the faults

associated with them in Msk(W) (Table 14.2). Since 1 is an exit state and 4 is a

quiescent state, both of them are marked with a regular expression involving faults c

and b, representing the temporal-fault segments from 1 to either 1 or 4, thus generating

the local space Lsp(1) on the right of Fig. 14.6. Eventually, the local space defines

the diagnosis language L(Lsp(1)) = L(4) = c(bc)∗.

The internal states of a local space cannot be marked with regular expressions

by applying the algorithm Candidates as the marking process addresses several

states (namely, the labeled states Xe ∪ Xq), each of which has, in general, its own

different regular expression. However, once the corresponding faults have replaced

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 359

Algorithm 2: Local Space

input : x̄ , a state in Space(Y)

output: Lsp(x̄), the local space of x̄

1 Set Lsp(x̄) to the unobservable subspace of Space(Y) whose root is x̄ , with

X̄ = {x̄1, . . . , x̄n} being the set of states where each x̄i , i ∈ [1..n], either has an exiting

observable transition or is quiescent in Space(Y)

2 Substitute each transition 〈x, t, x ′〉 in Lsp(x̄) with 〈x, f, x ′〉, where (t, ε, f) ∈ Msk(X)

3 N ← Lsp(x̄)

4 Add in N a new initial state α0 and an ε-transition 〈α0, ε, x̄〉

5 foreach state x̄i ∈ X̄ of N , i ∈ [1..n] do

6 Add a final state αq i
and an ε-transition 〈x̄i , ε, αq i

〉

7 while there is a state in N distinct from both the initial state α0 any final state αq i
,

i ∈ [1..n], or there are several transitions from α0 to the same αq i
, i ∈ [1..n] do

8 if there is a sequence Q = [〈x, r1, x1〉, 〈x1, r2, x2〉, . . ., 〈xk−1, rk , x ′〉] of transitions,

k ≥ 2, where each xi , i ∈ [1..(k − 1)], has no further entering or exiting transitions then

9 Replace Q with the transition 〈x, (r1r2 · · · rk), x ′〉

10 else if there is a set S = {〈x, r1, x ′〉, 〈x, r2, x ′〉, . . . , 〈x, rk , x ′〉} of transitions from x to

x ′, k ≥ 2 then

11 Substitute the transition 〈x, (r1| · · · |rk), x ′〉 for S

12 else

13 Let x be a state of N where x �= α0 and x �= αq i
, i ∈ [1..n]

14 foreach transition 〈x ′, r ′, x〉 entering x, where x ′ �= x do

15 foreach transition 〈x, r ′′, x ′′〉 exiting x, where x ′′ �= x do

16 if there is a loop transition 〈x, r, x〉 for x then

17 Add a transition 〈x ′, (r ′(r)∗r ′′), x ′′〉 in N

18 else

19 Add a transition 〈x ′, (r ′r ′′), x ′′〉 in N

20 Remove x and all its entering/exiting transitions

21 foreach transition 〈α0, ri , αq i
〉 in N , i ∈ [1..n] do

22 Mark the state x̄i ∈ X̄ of Lsp(x̄) with the regular expression ri .

the component transitions, the algorithm Local Space substantially performs on

the NFA N the same actions as Candidates.

14.4.2.1 Algorithm LOCAL SPACE

The input of Local Space (lines 1–22) is a state x̄ in Space(Y) while its output

is the local space Lsp(x̄). This local space is initially the unobservable subspace

of Space(Y) whose root is x̄ , X̄ being the set of labeled states of Lsp(x̄). Once

the corresponding (possibly empty) faults have replaced the component transitions

(line 2), the NFA N is assigned a copy of the current instance of Lsp(x̄). Subsequently,

a new initial state α0 and an ε-transition 〈α0, ε, x̄〉 are inserted into N (line 4). Also,

for each labeled state x̄i , i ∈ [1..n], a new final state αqi
and an ε-transition 〈x̄i , ε, αqi

〉

360 G. Lamperti et al.

Fig. 14.7 Generation of Lsp(1) (cf. Fig. 14.6) by the Local Space algorithm

are created in N (lines 5–6). Lines 7–20, which resemble almost entirely lines 10–23

of the algorithm Candidates, perform the transformation of N ; while there exists

a state in N that is neither initial nor final, the processing goes on (line 7). Once the

loop has ended, all transitions in N exit the initial state and enter a final state, namely

〈α0, ri , αqi
〉, i ∈ [1..n], where ri is the regular expression that marks the labeled state

x̄i in Lsp(x̄).

Example 11 Figure 14.7 traces the generation of Lsp(1) (cf. Fig. 14.6). The left of

the figure displays the NFA N generated in line 3. The center of the figure shows the

NFA after the (two step) removal of states 1 and 4. Now, the pair of transitions from

α0 to αq1
are merged into one marked with (cb)∗, this being equivalent to c(bc)∗b | ε.

Once the main loop has come to an end, lines 21–22 mark the states 1 and 4 of Lsp(1)

with the regular expressions relevant to the transitions in the final configuration of

N , that is, (cb)∗ and c(bc)∗, respectively. Notice how the final automaton, depicted

in Fig. 14.7 (right), equals the local space Lsp(1) in Fig. 14.6.

A local space is a node of a temporal diagnoser, a structure containing knowledge

that supports the efficient generation of candidate sets.

Definition 7 Let Y be a DES, Space(Y) = (�, X, τ, x0, Xq) its space, O the domain

of its observations, and F the domain of its faults. Let L be the set of regular languages

whose alphabet of symbols is F. The temporal diagnoser of Y , namely Tdg(Y), is

an NFA:

Tdg(Y) = (�′, X ′, τ ′, x ′
0, X ′

q) (14.7)

where �′ ⊆ O × L × (F ∪ {ε}) is the alphabet, X ′ is the set of states, each state being

the local space of a particular state in Space(Y), x ′
0 = Lsp(x0) is the initial state, X ′

q is

the set of quiescent states, namely the local spaces containing some quiescent state(s)

in Space(Y), and τ ′ is the transition function, τ ′ : (X ′ × X) × �′ �→ 2(X ′×X), where

〈(x ′
1, x1), (o,L(x1), f), (x ′

2, x2)〉 is an edge in τ ′ iff x1 is a state in the local space

x ′
1, 〈x1, t, x2〉 ∈ τ , (t, o, f) ∈ Msk(Y) with o �= ε, and x ′

2 = Lsp(x2).

Intuitively, Tdg(Y) is defined starting from the initial state x ′
0 = Lsp(x0), where

x0 is the initial state of Y . Given a state x ′
1 of Tdg(Y), there exists an arc from each

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 361

Fig. 14.8 Tdg(W), the temporal diagnoser of DES W

exiting state x1 in x ′
1 to the initial state x2 of another (not necessarily different) local

space x ′
2 = Lsp(x2) iff there exists an observable transition 〈x1, t, x2〉 in Space(Y).

This arc is marked with a triple (o,L(x1), f), where (t, o, f) ∈ Msk(Y) and L(x1)

is the regular expression on temporal faults marking the state x1 within x ′
1. Notice

how Tdg(Y) is in general an NFA, since several arcs may exit the same local space,

which are marked with the same triple and, specifically, the same observation.

Example 12 Shown in Fig. 14.8 is Tdg(W) (cf. Space(W) in Fig. 14.2), which

contains eight states, namely 0 . . . 7. By chance, there is one state Lsp(p) for

each state p in Space(W). The initial state 0 = Lsp(0) is exited by three edges:

〈(0, 0), (po, ε, ε), (1, 1)〉, 〈(0, 2), (bo, a, ε), (0, 0)〉, and 〈(0, 2), (bo, a, g), (7, 7)〉.

To avoid confusion, transitions between states of Tdg(W) are represented as thick

gray arrows, while transitions between states in local spaces appear as thin black

arrows.

Once the temporal diagnoser of Y has been built offline, it is exploitable online

by the algorithm Fast Candidates to generate the candidate sets of temporal

observations of Y . Fast Candidates is more efficient than Candidates (cf. Sect.

14.4.1.1), since it avoids low-level model-based reasoning and it can directly access

diagnosis information within local spaces and arcs.

362 G. Lamperti et al.

14.4.2.2 Algorithm FAST CANDIDATES

The total knowledge assumption made by the Fast Candidates algorithm is that

the temporal diagnoser is available in its entirety. This, however, is realistic only for

DESs having few components, as the number of states is exponentially increasing.

Intuitively, to generate the candidate set �(O), the regular expressions relevant to

the transitions in the temporal diagnoser Tdg(Y) are concatenated based on the order

of the observations in O. Once the transition corresponding to the last observation

in O has been traversed and a quiescent state (local space) xq has been reached,

the obtained regular expression is eventually appended to the (offline precomputed)

diagnosis language L(xq). Several paths in Tdg(Y) can produce the same tempo-

ral observation O, as Tdg(Y) is an NFA; hence, in general the resulting regular

expression consists in the alternative of several subexpressions.

The inputs of the Fast Candidates algorithm (lines 1–16) are a temporal diag-

noser Tdg(Y) and a temporal observation O of Y; its output is a regular expression

R defining language �(O). A set of contexts, denoted C, is used, where each context

is a pair (x, r), x being a state (local space) of Tdg(Y) and r a regular expression

whose symbols are faults of Y . In line 1, C contains just the context (x0, ε) inherent

to x0, the initial state of Tdg(Y). The ensuing loop (lines 2–11) scans, one by one,

the observations in O in the given order; the current instance of C is processed to

produce a new set of contexts Cnew at each iteration. More precisely, for the current

observation o, the nested loop (lines 4–10) takes into account each context (x ′, r ′) in

Algorithm 3: Fast Candidates

input : Tdg(Y) =
(

�, X, τ, x0, Xq

)

, the temporal diagnoser of a DES Y

O, a temporal observation of Y

output: R, a regular expression defining language �(O)

1 C ← {(x0, ε)}

2 foreach observation o ∈ O do

3 Cnew ← ∅

4 foreach (x ′, r ′) ∈ C do

5 foreach arc 〈(x ′, x), (o, r, f), (x ′
2, x2)〉 in τ do

6 r2 ← r ′r f

7 if (x ′
2, r ′

2) ∈ Cnew then

8 Substitute (x ′
2, (r

′
2|r2)) for (x ′

2, r ′
2) in Cnew

9 else

10 Insert (x ′
2, r2) into Cnew

11 C ← Cnew

12 Remove from C every context (x, r) where x /∈ Xq

13 if C = {(x, r)} then

14 R ← rL(x), where L(x) is the diagnosis language of the local space x

15 else if C = {(x1, r1), . . . , (xk , rk)}, where k > 1 then

16 R ← (r1 (L (x1))) | . . . | (rk (L (xk))).

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 363

C, and its inner loop (lines 5–10) browses each arc of Tdg(Y) that exits from x ′ and

is marked with a triple (o, r, f). In the body of the innermost loop (line 6), for the

considered observation, context and arch, a regular expression r2 = r ′r f is drawn,

where r ′ encompasses the faults up to x ′, r encompasses the faults up to the state x

inside x ′, and, as explained above, f is the (possibly empty) fault associated with the

observable transition (generating o and) exiting x ′. Cnew is updated in lines 7–10, in a

way that depends on whether Cnew includes a context relevant to the reached state x ′
2

or not. If Cnew includes a context (x ′
2, r ′

2), then the regular expression r ′
2 of the latter

is extended with the alternative r2, thus obtaining the updated context (x ′
2, (r

′
2|r2))

(line 8). Otherwise, the context (x ′
2, r2) is created and added to Cnew (line 10). Before

ending the iteration of the outermost loop, Cnew is assigned to C (line 11). Once the

execution of the outermost loop has ended, every context (x, r) such that x /∈ Xq is

removed from C (line 12), as there does not exist any trajectory that reaches a quies-

cent state of x . Lines 13–16 determine the regular expression R. If C contains only

one context (x, r) (lines 13–14), R becomes the concatenation of r and the diagnosis

language of x , that is, R = rL(x). The reason for it is that r encompasses the faults

up to the initial state of x , while L(x) encompasses the faults up to any quiescent

state of Y within x . If, instead, C contains several contexts (lines 15–16), the above

operation is performed for each context (xi , ri), i ∈ [1..k]; thus, the yielded regular

expression R consists in all the alternatives ri (L(xi)), i ∈ [1..k].

Example 13 Considering Example 9, where the candidate set relevant to the tem-

poral observation O = [bo, po, po, bo] of W is generated by the Candidates

algorithm, we now compute �(O) by means of Fast Candidates. Traced in

Table 14.3 is the computation of the set of contexts, namely C, for each observation

oi ∈ O, i ∈ [0..4]. Starting from the singleton {(0, ε)} (first row in Table 14.3),

the next instance of C, which corresponds to the first observation bo, is deter-

mined by focusing on the transitions of Tdg(W) (cf. Fig. 14.8) that are marked

with a triple involving the observation bo, namely 〈(0, 2), (bo, a, ε), (0, 0)〉 and

〈(0, 2), (bo, a, g), (7, 7)〉. According to lines 6–10 of Fast Candidates, the new

set of contexts is Cnew = {(0, a), (7, ag)} (second row in Table 14.3). Eventually,

after the last observation bo (last row in Table 14.3), since both states 0 and 7 are in

Xq, no context is removed from C = {(0, ac(bc)∗), (7, ac(bc)∗g)}. Hence, based on

line 16:

R = ac(bc)∗ ε
︸︷︷︸

L(0)

| ac(bc)∗g (ad)∗
︸ ︷︷ ︸

L(7)

= ac(bc)∗(g(ad)∗)?

Notably, R equals the regular expression generated by Candidates in Example 9.

More generally, the correctness of Fast Candidates is proven in Proposition 2.

Proposition 2 Algorithm Fast Candidates is sound and complete.

Proof The completeness of Fast Candidates is proven if we can show that this

algorithm computes a language R that equals the candidate set �(O) defined in

Eq. (14.4), where O = [o1, . . . , on]. Notice that, by unfolding the local spaces in

364 G. Lamperti et al.

Table 14.3 Tracing of the Fast Candidates algorithm based on O = [bo, po, po, bo]

i oi Oi C

0 [] {(0, ε)}

1 bo [bo] {(0, a), (7, ag)}

2 po [bo, po] {(1, a), (6, ag(ad)∗)}

3 po [bo, po, po] {(2, ac(bc)∗)}

4 bo [bo, po, po, bo] {(0, ac(bc)∗), (7, ac(bc)∗g)}

the temporal diagnoser Tdg(Y), we obtain a graph that resembles Space(Y), where

each identifier t of a component transition in Space(Y) is replaced with either a

(possibly empty) fault, within a state of Tdg(Y), or with a triple (o, r, f), between

states of Tdg(Y).5 Each component transition in a state (local space) of Tdg(Y) is

unobservable. The regular expression r labeling each state x within a local space

x ′ denotes all the strings of faults inherent to the trajectory segments of Y from the

initial state of x ′ to x . According to Eq. (14.4), if F is a temporal fault in �(O), then

a trajectory T in Space(Y) is such that F = Flt(T) and Obs(T) = O. In Tdg(Y), the

trajectory T is traced by a path ℘ from the initial state of the local space representing

the initial state of Tdg(Y) to a quiescent state xq of a (quiescent) state x ′
q of Tdg(Y).

A component transition in T that produces an observation o in O corresponds to

a transition marked with (o, r, f) in Tdg(Y). Fast Candidates outputs a regular

expression R that certainly accounts for the path ℘, as it is the observations in O

that drive the construction of C. In other words, there is an alternative in R that is a

regular expression r℘ constructed based on ℘ by concatenating the regular expres-

sions ri associated with the observations oi , i ∈ [1..n], within the triples (oi , ri , fi)

marking the transitions of Tdg(Y), and appending this concatenation with L(x ′
q),

the diagnosis language of the quiescent state x ′
q of Tdg(Y). The temporal fault F

is necessarily included in the language of r℘ since each ri encompasses the (seg-

ments of) temporal faults from a state to the next one. This concludes the proof of

completeness. Soundness is proven by showing that assuming that F is a string in

the language of R implies that F is a temporal fault in �(O). F is generated by

following of a path ℘ that traverses the unfolded Tdg(Y), from the initial state of the

initial state of Tdg(Y) to a quiescent state of a quiescent state of Tdg(Y), fulfilling

the constraint that the subsequence of (external) transitions of Tdg(Y) in ℘ produces

the sequence of observations in O. Path ℘ corresponds to a trajectory T in Space(Y),

where Obs(T) = O and Flt(T) = F ; hence, based on Eq. (14.4), F ∈ �(O). �

As already remarked, this section has dealt with a diagnosis technique that is

dubbed compiled as the whole temporal diagnoser is assumed to be available. How-

ever, this assumption is not realistic in most cases owing to the complexity of the

construction of the temporal diagnoser. Hence, the next section will present a method,

5 This does not mean that the unfolding of Tdg(Y) is isomorphic to Space(Y), as a state in Space(Y)

may appear several times in different states (local spaces) of Tdg(Y). Rather, what is preserved are

the trajectories of Y .

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 365

Fig. 14.9 Pdg(W), a partial temporal diagnoser of W (cf. Fig. 14.8)

dubbed hybrid, that does not rely on a complete knowledge compilation, instead it

adopts only a partial one. An (even small) portion of the temporal diagnoser is gen-

erated offline and then extended online, if an when needed to compute a specific

candidate set.

14.4.3 Hybrid Technique

The generation of a complete temporal diagnoser is impractical for real size DESs,

owing to the exponential growth of the number of its states. Therefore, the proposed

hybrid technique generates a partial temporal diagnoser in advance; this structure

may later be expanded either offline, based on meaningful behavioral scenarios, as

illustrated in [25], or online. The construction of Space(Y) is infeasible for the same

reasons. Therefore, hereafter, when dealing with Space(Y), a notation like 〈x, t, x ′〉

does not involve that Space(Y) is materialized: this is just a formal assertion that

transition t can be triggered when the state of Y is x , thus moving Y to state x ′.

Definition 8 A partial temporal diagnoser of a DES Y , denoted Pdg(Y), is a con-

nected subgraph of the temporal diagnoser Tdg(Y) that contains the initial state of

Tdg(Y).

Example 14 Given the DES W that we have considered as a case study, Fig. 14.8

displays its temporal diagnoser while Fig. 14.9 shows a partial temporal diag-

noser, which contains three states, i.e. 0, 1, and 7, and three transitions, i.e.

〈(0, 0), (po, ε, ε), (1, 1)〉, 〈(0, 2), (bo, a, ε), (0, 0)〉, and 〈(0, 2), (bo, a, g), (7, 7)〉.

Algorithm Fast Candidates specified in Sect. 14.4.2.2 has been revisited in

order to cope with a partial temporal diagnoser. Specifically, each state x ′ in Pdg(Y)

needs to have a complete transition function as far as the observation o is concerned

before running the loop in line 5 of Fast Candidates.

14.4.3.1 Algorithm HYBRID CANDIDATES

The algorithm Hybrid Candidates (lines 1–21) is different from Fast Candi-

dates mainly for a couple of reasons. First, its input parameter is a partial temporal

366 G. Lamperti et al.

Algorithm 4: Hybrid Candidates

input : Pdg(Y) =
(

�, X, τ, x
p
0 , Xq

)

, a partial temporal diagnoser of a DES Y

O, a temporal observation of Y

output:R, a regular expression defining the candidate set �(O)

As a side effect, Pdg(Y) is upgraded based on O

1 C ← {(x
p
0 , ε)}

2 foreach observation o ∈ O do

3 Cnew ← ∅

4 foreach (x p, r p) ∈ C do

5 if there is no arc 〈(x p, x), (o, r, f), (x
p
2 , x2)〉 in τ then

6 foreach x ∈ x p, 〈x, t, x2〉 is a transition in Space(Y), (t, o, f) ∈ Msk(Y) do

7 if Lsp(x2) is not a state in Pdg(Y) then

8 Create the state x
p
2 = Lsp(x2) in Pdg(Y)

9 Insert the transition 〈(x p, x), (o, L(x), f), (x
p
2 , x2)〉 into Pdg(Y)

10 foreach arc 〈(x p, x), (o, r, f), (x
p
2 , x2)〉 in τ do

11 r2 ← r pr f

12 if (x
p
2 , r

p
2) ∈ Cnew then

13 Substitute
(

x
p
2 ,

(

r
p
2 |r2

))

for
(

x
p
2 , r

p
2

)

in Cnew

14 else

15 Insert (x
p
2 , r2) into Cnew

16 C ← Cnew

17 Remove from C every context (x p, r p) where x p does not include any quiescent state

18 if C = {(x p, r p)} then

19 R ← r pL (x p)

20 else if C =
{(

x
p
1 , r

p
1

)

, . . . ,
(

x
p
k , r

p
k

)}

where k > 1 then

21 R ←
(

r
p
1

(

L
(

x
p
1

)))

| . . . |
(

r
p
k

(

L
(

x
p
k

)))

.

diagnoser Pdg(Y) instead of Tdg(Y). Second, and more to the point, some new

lines of its pseudocode (lines 5–9) are meant to upgrade Pdg(Y) in order to add the

possibly missing transitions inherent to the observation o. Lines 10–21 in Hybrid

Candidates are the same as lines 5–16 in Fast Candidates. At the end of the

execution, Pdg(Y) has possibly been extended based on the temporal observation

O.

Example 15 Consider the partial temporal diagnoser Pdg(W) displayed on top of

Fig. 14.10. Outlined in Table 14.4 is the execution of the Hybrid Candidates algo-

rithm applied on the temporal observation O = [po, bo, po]. Specifically, for each

observation in O, the set C of contexts and the possibly created states in Pdg(W) are

indicated. At the beginning, C is the singleton {(0, ε)}. With the first observation po,

since there is an arc 〈(0, (po, ε, ε), 1〉 in Pdg(W) already, the computation continues

at line 10, thereby assigning Cnew with the singleton {(1, ε)}, as shown in the second

row of Table 14.4. With the second observation, namely bo (third row in Table 14.4),

since the state 1 has no exiting arc marked with a triple involving the observation

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 367

Fig. 14.10 Extension of the partial temporal diagnoser of DES W (states 0, 1, 2, 6 and 7) with the

new states 3 and 5 and the inherent transitions, by the Hybrid Candidates algorithm, based on

the temporal observation O = [po, bo, po]

bo (line 5), the new state 3 is generated as the local space Lsp(3), along with a

new transition 〈(1, 1)), (bo, (cb)∗, ε), (3, 3)〉. Then, based on lines 10–15, the set C

becomes the singleton {(3, (cb)∗)}. Next, with the last observation po (last row in

Table 14.4), since the state 3 has no exiting transitions marked with a triple involving

the observation po, a new state 5 = Lsp(5) is created along with a new transition

〈(3, 3)), (po, ε, ε), (5, 5)〉, with C being instantiated with {(5, (cb)∗)}. Eventually

(lines 17–21), since the local space 5 includes the quiescent state 6 of W , the (only)

context (5, (cb)∗) is preserved in C. Hence, based on line 19, the regular expression

specifying the candidate set �(O) will be

R = (cb)∗ d (ad)∗
︸ ︷︷ ︸

L(5)

.

The new portion of the resulting (upgraded) partial temporal diagnoser Pdg(W)

is pictorially displayed on the bottom of Fig. 14.10, which comprehends states

3 and 5, along with two transitions, namely 〈(1, 1), (bo, (cb)∗, ε), (3, 3)〉 and

〈(3, 3), (po, ε, ε), (5, 5)〉.

368 G. Lamperti et al.

Table 14.4 Tracing of the Hybrid Candidates algorithm based on O = [po, bo, po] and the

partial temporal diagnoser Pdg(W) depicted on top of Fig. 14.10

i oi Oi States created C

0 [] {(0, ε)}

1 po [po] {(1, ε)}

2 bo [po, bo] {3} {(3, (cb)∗)}

3 po [po, bo, po] {5} {(5, (cb)∗)}

14.5 Implementation of the Diagnosis Engines

The diagnosis engines were coded in the C programming language, which was chosen

for it is highly flexible and, by means of pointers, it enables an explicit dynamic space

allocation, reallocation, and deallocation of the RAM. Thanks to these properties,

which are not exhibited by higher-level languages, such as Java, the programmer

can directly manage the memory consumption so as the data structures can be built

and handled more efficiently. Given the purposes of the research described in this

chapter, data structures were designed very carefully, since they have a substantial

impact on the expenditure of computational resources.

In addition, the developed engines can generate several graphic representations,

such as that of a DES, a space, an O space, and a temporal diagnoser (including a

partial one). These visualizations are rendered by the Graphviz package6 along with

the dot layout engine.

14.5.1 Processing of Regular Expressions

The output of the temporal-oriented diagnosis of a DES is a regular expression, which

can more easily be grasped by the user the simpler and shorter it is. In order to reduce

the redundancy in the regular expression, which is bound to obscure the interpretation

of the diagnosis results, some simplification rules were defined and applied.7 A

regular expression is basically a character string; however, this structure was endowed

with some attributes to facilitate the simplification of the regular expression resulting

from the composition of some regular expressions. Examples of simplifications rules

are listed below (where characters r , p, and q denote regular expressions).

1. If r = p, then the alternative of r and p is simplified to r , namely r | p � r .

2. When regular expressions are concatenated, possible simplifications are:

6 Graphviz is the abbreviation for the open source Graph Visualization Software, which can be

found at graphviz.org.
7 To our knowledge, no standardized technique for simplifying regular expressions is offered in the

literature.

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 369

rr∗
� r+ r+r∗

� r+ r+r+
� r+ r∗r∗

� r∗

3. When the alternative of regular expressions comes into play, attention is paid

in order to avoid including the same regular expression twice. Some relevant

simplifications in this direction are:

r? | r � r? r∗ | r � r∗ r+ | r � r+

Furthermore, parentheses are inserted only when an element is not parenthesized

already. For instance, if p is parenthesized, then we can write p | (r) rather than

(p) | (r), or p? | (r) rather than (p)? | (r).

4. For regular expressions relevant to the transformation involved in algorithms

like Candidates or Fault Space, where a state is eliminated along with

its entering/exiting transitions, the simplification rules are numerous and similar

to those introduced above, such as avoiding unnecessary parentheses or, when

identical regular expressions are involved, rewriting the regular expressions as:

r(r)∗ p � (r)+ p r(p?)∗q � r p∗q r(r∗)∗ p � r+ p

To improve both efficiency and parallelism, no external buffers are used in the

manipulation of regular expressions, which, whenever possible, are built in already

allocated blocks of memory, thus decreasing the number of memory allocation

requests and of copying operations as well.

Parallel code was adopted for several functionalities, even for those that are per-

formed offline, such as the generation of the temporal diagnosers, which includes

the regular expression construction. This is the reason for no external buffer is used

in handling regular expressions. Also the rendering carried out by Graphviz benefits

from parallel code execution.

14.5.2 Diagnosis Engines Compared

The performances of the three different engines for a posteriori diagnosis of temporal

faults, namely interpreted, compiled, and hybrid, were empirically compared. A

personal computer equipped with an Intel Xeon Gold 6140 (1–7 cores) CPU and

a 128 GB RAM was engaged for running the experiments, whose aim was to find

out how the processing time taken online by each engine to generate the temporal-

oriented diagnosis grows with the length of the temporal observation in input. Hence,

15 test cases (i.e. instances of the a posteriori diagnosis problem) were created, where

the DES, say D, is the same in all the test cases, whereas the temporal observation

has a length that is increased by one for each new test case, starting from a length

value equal to 1.

DES D consists of 4 components and 8 links; its number of states per component

is 2–3 while its number of transitions per component is 3–6. Only one transition

370 G. Lamperti et al.

Table 14.5 Processing time (in sec.) relevant to the three techniques for diagnosis of temporal

faults, namely, interpreted, compiled, and hybrid

Interpreted Compiled Hybrid

0.014088 0.000099 14.541712

0.05389 0.00165 12.193578

0.355806 0.008831 0.008479

1.464485 0.010589 0.010056

3.470084 0.010537 0.009637

3.788433 0.009988 0.009503

6.457794 0.010587 0.009937

10.117073 0.010089 0.009808

5.522604 0.009827 0.009802

5.178329 0.010063 0.009727

9.834129 0.009604 0.01

10.11738 0.009577 0.01

29.515572 0.009471 0.009919

28.923592 0.009413 0.009768

25.36454 0.009358 0.010134

in D is observable. The resulting DES space has a huge number of states and few

observable transitions; therefore, the diagnosis task has to cope with the criticality

of a temporal diagnoser that includes many large states. The offline generation of the

temporal diagnoser of D, which is needed by the compiled diagnosis engine, took

38.63 s. Notice that, since D has just one observable label, the temporal observation

of length i ∈ [1 . . . 15] consists in i repetitions of this label.

Each of the 15 instances was processed by each of the three diagnosis engines.

Numerical results are shown in Table 14.5, where the i-th row is relevant to the

instance whose temporal observation has length i . Each row i , excluding i = 1, does

not report the total time taken to process the relevant instance; instead, it reports the

increment of the total time taken to process such instance with respect to the total

time needed to process the instance relevant to row (i − 1). In other words, each row

records how much more time is taken by each engine in order to process one more

observable label in the temporal observation.

A bar-graph representation of the data listed in Table 14.5 is displayed in

Fig. 14.11, where a logarithmic scale is used for the CPU time.

The best online performance is provided by compiled diagnosis, thereby, based

on a complete temporal diagnoser. The time grows only initially, then it becomes

substantially constant, which denotes a linear growth of the total CPU time with the

length of the temporal observation. This online performance is grounded, however,

on a total (offline) knowledge compilation. Based on a series of experiments (not

reported in this chapter), the computational complexity of the generation of the

temporal diagnoser is exponentially increasing with the number of components.

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 371

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Observation index

10-5

10-4

10-3

10-2

10-1

100

101

102
P

ro
c
e
s
s
in

g
 (

C
P

U
)

ti
m

e
 (

s
)

Interpreted

Compiled

Hybrid

Fig. 14.11 Outline of the processing times of the three diagnosis techniques listed in Table 14.5

Hence, materializing the whole temporal diagnoser is impractical for real DESs. It

suffices to consider that the software system developed was unable to generate the

complete temporal diagnoser for DESs containing 15 small components.

With hybrid diagnosis, the temporal diagnoser includes initially one state only,

without transitions. Consequently, the CPU time necessary to process the first observ-

able labels in the temporal observation is considerably high. On the other hand, with

DES D, the hybrid technique succeeds in completing the construction of the temporal

diagnoser by processing two observations; afterwards, it basically exhibits the same

performance as the compiled technique. In particular, the first observation allows

for the creation of 42 states and 1123 transitions, while, after the second observa-

tion, the number of states and transitions become 49 and 1395, respectively, thereby

completing the generation of the temporal diagnoser. We conjecture that this modus

operandi of the hybrid technique can be generalized to DESs larger than the DES

D: the time for processing each additional observation progressively decreases to a

point in which it remains almost constant, where the actual number of observations

in the transient depends on the size of the DES.

The performance of the interpreted technique, which is initially good because

of the simplicity of its implementation, invariably declines in a few observations,

indicating that interpreted diagnosis may be adopted when the temporal observation

is short. Even worse, computing the O spaces of a DES with low observability may

become impractical, which makes interpreted diagnosis ineffective.

372 G. Lamperti et al.

14.6 Conclusion

This chapter deals with the decision support provided by a model-based approach to

diagnosis of partially-observable dynamical systems represented as DESs. A (dis-

tributed) DES consists of several components, each endowed with an internal behav-

ior that is represented explicitly as a communicating automaton, while no global

behavioral model of the DES is built: component models can be processed upfront

to compile knowledge structures that can speed up the diagnostic reasoning. The

diagnosis task is performed a posteriori, once a chronological sequence of observ-

able events relevant to the system being operated has been recorded. This temporal

observation is the input of the diagnosis task, while the output amounts to a regular

language cumulatively representing all the alternative sequences of faults that can

have produced it. Each sequence of faults, or temporal fault, is temporally ordered.

This temporal-oriented diagnosis output, which differs from the classical set-oriented

diagnosis output of most approaches in the literature, may be helpful for supporting

decision-making when the system comes to an abrupt halt and is no longer being

operated. In fact, a human operator can analyze the computed regular language,

which concisely represents all the alternative hypotheses about what has possibly

occurred in the system, and therefore decide what to do next.

This scenario raises several concerns, the first being the performance of the

approach that computes the diagnosis results, as the number of states belonging to

the DES behavioral space blows up exponentially. This computational issue is faced

in the present chapter, where three different techniques to compute the temporal-

oriented diagnosis output are investigated, namely interpreted, compiled, and hybrid

diagnosis. Empirical evidence (cf. Sect. 14.5.2) confirms that both interpreted and

compiled diagnosis are adequate for DESs including few components only. The

hybridization of the interpreted and compiled diagnosis approaches can instead pro-

vide some complexity mitigation.

A second concern is about the comprehensibility of the regular language that is

produced as an output by the diagnosis task. Although the redundancy in the resulting

regular expression has been reduced by means of a variety of simplification rules (cf.

Sect. 14.5.1), one may object that such an expression is not easy to understand for

a diagnostician who has no background in computer science. The cognitive under-

standing of regular expressions by users with no background knowledge, after the

topic has been shortly introduced, could be studied in order to reply to this argument.

Multiple representations of regular expressions could be envisaged, thus making the

study comparative. Some suggestions about how to present the diagnosis output to

human users could be drawn from the literature about explainable AI, a branch of

research that, as illustrated in [33], is situated in the human-agent interaction area.

However, these investigations are beyond the scope of the present chapter.

A third concern is inherent to the cognitive load that may affect the human oper-

ator in case the regular language output by the diagnosis engine encompasses a high

or even unbounded number of alternative temporal faults. The number of computed

alternatives could be reduced if some preference criteria and/or some feasibility

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 373

constraints were used as a filter. This filter could be applied while postprocessing

the diagnosis result, in other words, the domain-agnostic approach described in this

chapter could be coupled with a domain-specific postprocessor. Another way to

decrease the number of alternative sequences of faults in the diagnosis result could

be by empowering the approach described in this chapter so as it can natively man-

age some additional knowledge about the preference criteria and/or the feasibility

constraints. This way, the approach could produce all and only the preferred candi-

dates that comply with the given feasibility constraints. For instance, a preference

criterion could be interested just in sequences including three fault occurrences at

most. A feasibility constraint, for instance, could be relevant to the time taken by

the trajectories (belonging to the global DES behavioral model) that produce the

given temporal observation: a trajectory is feasible only under the condition that it

takes a time compatible with the timespan in which the temporal observation was

collected. This filter would rule out possible trajectories that produce the given tem-

poral observation but that include more than three fault occurrences and/or take a time

length that is not compliant with the known time length of the observation interval. A

tighter constraint could impose every feasible trajectory to produce each observable

event in the temporal observation exactly at the time instant when it was recorded.

Accounting for the mentioned feasibility constraints, however, would require know-

ing the time taken by each transition in the DES behavioral space. So far, only quite

abstract untimed models of the DES components have been adopted in the approach

described. Hence, there is much room for future investigation about preferences and

feasibility constraints.

Another concern is relevant to the possible enhancement of the support provided

by the DSS described in the previous sections. The DSS produces as output a regular

language where each symbol is a fault. The output could possibly be more helpful

if the DSS would automatically draw the faults that have occurred for sure since

they are present in all the strings of the regular language. This improvement can

be attained quite easily by a postprocessor. Further help could possibly be provided

by computing the health state [42] of the DES, that is, the posterior probability of

each component to be affected by each specific fault, under the assumption that the

prior probabilities of individual faults are known. Although this assumption has not

been made for the DESs considered in this chapter, conceptually, the models of DES

components can embed prior fault probabilities. In [42], set-oriented candidates are

exploited, in an adaptive number, to estimate the health state. Drawing the health

state of a DES from (an adaptive number of) temporal faults is a subject for future

research. Temporal faults could support the estimation of the likelihood that a certain

fault pattern and/or some intermittent faults have occurred. Another research could

focus on automatically assessing the criticality (e.g. from the safety point of view) of

the diagnosis result. The knowledge about the (domain-dependent) criticality could

be embedded in some (possibly annotated) behavioral scenarios (cf. Sect. 14.4.3) to

be exploited by a (domain-independent) postprocessor.

The DSS described in this chapter produces as output some results that have to

be analyzed by a human expert in order to take a decision. A final concern about the

DSS is whether it could be extended to offer some assistance to the human operator

374 G. Lamperti et al.

in choosing what to do next. For instance, based on the DES component models, the

DSS could suggest probing the real system in order to gather a new observable event,

or performing a maintenance/repair action that is an observable event encompassed

by the DES component models. In either case, the a posteriori diagnosis engine can

be run anew in order to take as input the former temporal observation extended with

the new observable event. In suggesting the most appropriate observable event to be

taken, the DSS should be guided by a predefined (possibly multiple) goal, such as,

minimizing the number or cost or time of the additional observations that are needed

to clarify what has happened in the system. An alternative suggestion that could be

given by the DSS is limiting the considered system in its operation from now on. For

instance, if a fault is certain, instead of repairing it, it may be convenient to drive the

system so as its operation does not involve the faulty component (or its faulty part)

any longer.

Acknowledgements This work was supported by the EU NEXTGENERATIONEU program

within the PNRR Future Artificial Intelligence - FAIR project (PE0000013, CUP

H23C22000860006), Objective 10: Abstract Argumentation for Knowledge Representation and

Reasoning, specifically by the project Argumentation for Informed Decisions with Applications to

Energy Consumption in Computing—AIDECC (CUP D53C24000530001).

References

1. F. Basile, Overview of fault diagnosis methods based on Petri net models, in Proceedings of

the 2014 European Control Conference, ECC 2014 (2014), pp. 2636–2642. https://doi.org/10.

1109/ECC.2014.6862631

2. A. Benveniste, E. Fabre, S. Haar, C. Jard, Diagnosis of asynchronous discrete-event systems:

A net unfolding approach. IEEE Trans. Autom. Control 48, 714–727 (2003)

3. M. Bertl, P. Ross, D. Draheim, A survey on AI and decision support systems in psychiatry -

uncovering a dilemma. Expert Syst. Appl. 202, 117464 (2022)

4. N. Bertoglio, G. Lamperti, M. Zanella, X. Zhao, Diagnosis of temporal faults in discrete-event

systems, in 24th European Conference on Artificial Intelligence (ECAI 2020), Frontiers in

Artificial Intelligence and Applications, ed, by G.D. Giacomo, A. Catala, B. Dilkina, M. Milano,

S. Barro, A. Bugarín, J. Lang, vol. 325, pp. 632–639 (IOS Press, Amsterdam, 2020). https://

doi.org/10.3233/FAIA200148

5. N. Bertoglio, G. Lamperti, M. Zanella, X. Zhao, Explanatory diagnosis of discrete-event sys-

tems with temporal information and smart knowledge-compilation, in Proceedings of the 17th

International Conference on Principles of Knowledge Representation and Reasoning (KR

2020), ed. by D. Calvanese, E. Erdem, M. Thielsher (IJCAI Organization, 2020), pp. 130–

140. https://doi.org/10.24963/kr.2020/14

6. N. Bertoglio, G. Lamperti, M. Zanella, X. Zhao, Explanatory monitoring of discrete-event sys-

tems, in Intelligent Decision Technologies 2020, Smart Innovation, Systems and Technologies,

ed. by I. Czarnowski, R. Howlett, L. Jain, vol. 193 (Springer, Singapore, 2020), pp. 63–77.

https://doi.org/10.1007/978-981-15-5925-9_6

7. N. Bertoglio, G. Lamperti, M. Zanella, X. Zhao, Temporal-fault diagnosis for critical-decision

making in discrete-event systems, in Knowledge-Based and Intelligent Information and Engi-

neering Systems: Proceedings of the 24th International Conference KES2020, Procedia Com-

puter Science, ed. by M. Cristani, C. Toro, C. Zanni-Merk, R. Howlett, L. Jain, vol. 176

(Elsevier, 2020), pp. 521–530.https://doi.org/10.1016/j.procs.2020.08.054

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 375

8. D. Brand, P. Zafiropulo, On communicating finite-state machines. J. ACM 30(2), 323–342

(1983). https://doi.org/10.1145/322374.322380
9. J. Brzozowski, E. McCluskey, Signal flow graph techniques for sequential circuit state dia-

grams. IEEE Trans. Electron. Comput. EC-12(2), 67–76 (1963)
10. M.P. Cabasino, A. Giua, C. Seatzu, Fault detection for discrete event systems using Petri nets

with unobservable transitions. Automatica 46, 1531–1539 (2010)
11. C. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, 2nd edn. (Springer, New

York, 2008)
12. C. Ching-Chin, A.I. Ka Ieng, W. Ling-Ling, K. Ling-Chieh, Designing a decision-support

system for new product sales forecasting. Expert Syst. Appl. 37(2), 1654–1665 (2010). https://

doi.org/10.1016/j.eswa.2009.06.087.
13. J.M. Choffray, G.L. Lilien, A decision-support system for evaluating sales prospects and launch

strategies for new products. Ind. Mark. Manage. 15(1), 75–85 (1986). https://doi.org/10.1016/

0019-8501(86)90046-5
14. X. Cong, M. Fanti, A. Mangini, Z. Li, Decentralized diagnosis by Petri nets and integer linear

programming. IEEE Trans. Syst., Man, Cybern.: Syst. 48(10), 1689–1700 (2018)
15. B. Dowdeswell, R. Sinha, S. MacDonell, Finding faults: a scoping study of fault diagnostics for

industrial cyber-physical systems. J. Syst. Softw. 168, 1–16 (2020). https://doi.org/10.1016/j.

jss.2020.110638
16. A. Grastien, P. Haslum, Diagnosis as planning: two case studies, in Scheduling and Planning

Applications Workshop (SPARK 2011) (Freiburg, Germany, 2011), pp.37–44
17. A. Grastien, P. Haslum, S. Thiébaux, Conflict-based diagnosis of discrete event systems: theory

and practice, in Thirteenth International Conference on Knowledge Representation and Rea-

soning (KR 2012) (Association for the Advancement of Artificial Intelligence, Rome, 2012),

pp. 489–499
18. R.A. Guimapi, S.A. Mohamed, L. Biber-Freudenberger, W. Mwangi, S. Ekesi, C. Borgemeister,

H.E.Z. Tonnang, Decision support system for fitting and mapping nonlinear functions with

application to insect pest management in the biological control context. Algorithms 13(4)

(2020). https://doi.org/10.3390/a13040104. https://www.mdpi.com/1999-4893/13/4/104
19. W. Hamscher, L. Console, J. de Kleer (eds.), Readings in Model-Based Diagnosis (Morgan

Kaufmann, San Mateo, 1992)
20. G. Jiroveanu, R. Boel, B. Bordbar, On-line monitoring of large Petri net models under partial

observation. J. Discrete Event Dyn. Syst. 18, 323–354 (2008)
21. M. Khakifirooz, M. Fathi, P.M. Pardalos, D.J. Power, Decision support for smart manufactur-

ing, in Encyclopedia of Organizational Knowledge, Administration, and Technology, ed. by

M. Khosrow-Pour (IGI Global, 2021), pp. 2352–2364. https://doi.org/10.4018/978-1-7998-

3473-1.ch162
22. F. Khemakhem, H. Ellouzi, H. Ltifi, M.B. Ayed, Agent-based intelligent decision support

systems: a systematic review. IEEE Trans. Cognit. Develop. Syst. 14(1), 20–34 (2022). https://

doi.org/10.1109/TCDS.2020.3030571
23. J. de Kleer, B. Williams, Diagnosing multiple faults. Artif. Intell. 32(1), 97–130 (1987)
24. E. Koukoutsis, C. Papaodysseus, G. Tsavdaridis, N.V. Karadimas, A. Ballis, E. Mamatsi, A.R.

Mamatsis, Design limitations, errors and hazards in creating decision support platforms with

large- and very large-scale data and program cores. Algorithms 13(12) (2020). https://doi.org/

10.3390/a13120341. https://www.mdpi.com/1999-4893/13/12/341
25. G. Lamperti, S. Trerotola, M. Zanella, X. Zhao, Sequence-oriented diagnosis of discrete-event

systems. J. Artif. Intell. Res. 78, 69–141 (2023). https://doi.org/10.1613/jair.1.14630
26. G. Lamperti, M. Zanella, Monitoring of active systems with stratified uncertain observations.

IEEE Trans. Syst., Man, Cybern. - Part A: Syst. Humans 41(2), 356–369 (2011). https://doi.

org/10.1109/TSMCA.2010.2069096
27. G. Lamperti, M. Zanella, X. Zhao, Introduction to Diagnosis of Active Systems (Springer.

Cham (2018). https://doi.org/10.1007/978-3-319-92733-6
28. B. Li, M. Khlif-Bouassida, A. Toguyéni, Reduction rules for diagnosability analysis of complex

systems modeled by labeled Petri nets. IEEE Trans. Autom. Sci. Engin. (2019). https://doi.

org/10.1109/TASE.2019.2933230

376 G. Lamperti et al.

29. J. Lunze, Diagnosis of quantized systems based on a timed discrete-event model. IEEE Trans.

Syst., Man, Cybern. - Part A: Syst. Humans 30(3), 322–335 (2000)

30. C. Lv, Research on intelligent decision support system for automobile fault diagnosis based on

SWOT analysis, in 2021 2nd International Conference on Artificial Intelligence and Informa-

tion Systems, ICAIIS 2021 (Association for Computing Machinery, New York, 2021). https://

doi.org/10.1145/3469213.3471312. https://doi.org/10.1145/3469213.3471312

31. López-Martínez, F., Núñez-Valdez, E.R., García-Díaz, V., Bursac, Z.: A case study for a big

data and machine learning platform to improve medical decision support in population health

management. Algorithms 13(4) (2020https://doi.org/10.3390/a13040102. https://www.mdpi.

com/1999-4893/13/4/102

32. S. McIlraith, Explanatory diagnosis: conjecturing actions to explain observations, in Sixth

International Conference on Principles of Knowledge Representation and Reasoning (KR 1998)

(Morgan Kaufmann, S. Francisco, CA, Trento, I, 1998), pp. 167–177

33. T. Miller, Explanation in artificial intelligence: insights from the social sciences. Artif. Intell.

267, 1–38 (2019)

34. Y. Pencolé, M. Cordier, A formal framework for the decentralized diagnosis of large scale

discrete event systems and its application to telecommunication networks. Artif. Intell. 164(1–

2), 121–170 (2005)

35. Y. Pencolé, G. Steinbauer, C. Mühlbacher, L. Travé-Massuyès, Diagnosing discrete event sys-

tems using nominal models only, in 28th International Workshop on Principles of Diagnosis

(DX’17), ed. by M. Zanella, I. Pill, A. Cimatti, vol. 4 (Kalpa Publications in Computing, 2018),

pp. 169–183. https://doi.org/10.29007/1d2x

36. F. Rajaei, S. Cheng, C.A. Williamson, E. Wittrup, K. Najarian, AI-based decision support

system for traumatic brain injury: a survey. Diagnostics 13(9) (2023). https://doi.org/10.3390/

diagnostics13091640. https://www.mdpi.com/2075-4418/13/9/1640

37. N. Ran, H. Su, A. Giua, C. Seatzu, Codiagnosability analysis of bounded Petri nets. IEEE

Trans. Autom. Control 63(4), 1192–1199 (2018)

38. R. Reiter, A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

39. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Diagnosability of

discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)

40. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis, Failure diagnosis

using discrete-event models. IEEE Trans. Control Syst. Technol. 4(2), 105–124 (1996)

41. E. Shortliffe, Computer-Based Medical Consultations: MYCIN (American Elsevier, New York,

1976)

42. R. Stern, M. Kalech, S. Rogov, A. Feldman, How many diagnoses do we need? Artif. Intell.

248, 26–45 (2017)

43. P. Struss, Fundamentals of model-based diagnosis of dynamic systems, in Fifteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI 1997) (Nagoya, Japan, 1997), pp.

480–485

44. V. Uraikul, C.W. Chan, P. Tontiwachwuthikul, Artificial intelligence for monitoring and super-

visory control of process systems. Eng. Appl. Artif. Intell. 20(2), 115–131 (2007). https://doi.

org/10.1016/j.engappai.2006.07.002

45. X. Yin, S. Lafortune, On the decidability and complexity of diagnosability for labeled Petri

nets. IEEE Trans. Autom. Control 62(11), 5931–5938 (2017)

14 Supporting Decision-Making in Diagnosis of Discrete-Event Systems … 377

Author Biographies

Gianfranco Lamperti received the Doctoral degree in Electronics Engi-

neering (Computer Science) from Politecnico di Milano, Italy, in 1986. After

working in the private sector in several research and development projects, he

joined the University of Brescia, Italy, in 1995 as an Assistant Professor. He

is currently an Associate Professor of Computer Science with the Department

of Information Engineering, University of Brescia. His current research inter-

ests include engineering issues in diagnosis of discrete-event systems, uncer-

tainty, and processing of finite automatons.

Stefano Trerotola a distinguished graduate in Computer Science and Engi-

neering in 2022 at the University of Brescia, Italy, has long been interested

into computer science, technology, and logic. Currently employed as a back-

end developer at a forefront Field Service Management company, he works

on daily challenges to ensure the effective functioning of the systems he

develops.

Marina Zanella received the Doctoral degree in Electronics Engineer-

ing (Computer Science) from Politecnico di Milano, Italy, in 1986.

She is currently an Associate Professor of Computer Science with the

Department of Information Engineering, University of Brescia, Italy.

Her research interests include knowledge-based systems, diagnosability

analysis, model-based reasoning for monitoring and diagnosis of static

systems and discrete-event systems.

