

Exploring the Viability of Utilizing TreatedWastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)

<u>Marina Maddaloni¹</u>, Matteo Marchionni³, Alessandro Abbá¹, Michele Mascia³, Vittorio Tola³, Maria Paola Carpanese⁴, Giorgio Bertanza¹ and Nancy Artioli^{1*}

¹Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze, 43, 25123 Brescia, Italy

²Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Brescia, via Branze 38, 25123 Brescia, Italy

³Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy

⁴Department of Civil, Chemical and Environmental Engineering, University of Genova (UNIGE-DICCA), via Montallegro 1, 16145 Genoa, Italy *nancy.artioli@unibs.it

Introduction

The European Union aims to achieve carbon neutrality by 2050, prompting substantial investments in sustainable energy research, particularly in the realm of renewable sources (RESs). Italy, anticipating an energy demand of 366 TWh by 2030, is obligated by the EU to fulfill 75% to 84% of this demand through RESs¹. A promising solution to meet this requirement is the production of green hydrogen through water electrolysis, specifically employing Solid Oxide Electrolysis Cells (SOECs). SOECs offer advantages over Alkaline Electrolyzers (AEs) and Proton Exchange Membranes (PEMs) since they can utilize treated wastewaters, eliminating the necessity for pure water, which is already scarce²,³. This study centers on exploring the potential of SOECs to operate effectively in high-temperature conditions and utilize water in its gaseous form as the inlet source, commencing with treated wastewaters derived from municipal wastewater treatment plants..

Materials and Methods

Four distinct treated wastewaters, each characterized by differences in capacity, industrial load, and treatment scheme, underwent evaluation for their potential as feedstock in hydrogen production through Solid Oxide Electrolysis Cells (SOECs). The study employed Aspen Plus software to simulate the entire process. SOECs were spotlighted for their energy-efficient role in hydrogen production, leveraging thermal energy with a specific focus on water and air vaporization and heating. The research extensively outlined the setup of the electrolysis stack, placing emphasis on the segregation and utilization of different streams and the recuperation of residual heat from the cell products. The modeling approach for the SOEC stack encompassed equations addressing cell voltage, potential, and electric power consumption. Furthermore, the study delved into a thermal model that integrated energy and mass balance equations for various components, albeit utilizing a simplified modeling approach.

Results and Discussion

This study illustrates that treated municipal wastewater acquired from wastewater treatment plants (WWTPs) of diverse capacities, industrial loads, and treatment schemes can function as an optimal water source for Solid Oxide Electrolysis Cells (SOECs) to generate "clean" hydrogen. Specifically, Italy is targeting the installation of 5 GW of electrolysis capacity by 2030 in alignment with the European Union's energy transition initiative. The propositions presented in this article, leveraging wastewater from various WWTPs as renewable energy sources, have the potential to aid in achieving this goal. To elaborate further, in the Best-case Scenario (BS) where a SOEC operates for 7,500 hours with a moderate power of 2.12 V supported by wind and conventional energy, a WWTP (referred to as WWTP C) with a capacity

10th UK Catalysis Conference, 3rd-5th January 2024

of 120,500 P.E., an average flow rate of 27,500 $\rm m^3/d$, and an industrial load of 11%, can produce 0.10 Mt/y of hydrogen (equivalent to about 15% of the national target). Simultaneously, a larger WWTP (referred to as WWTP A - capacity of 620,600 P.E., average flow rate of 155,300 $\rm m^3/d$, and an industrial load of 15%) can generate 1.46 Mt/y, surpassing the national target. Even in the Worst-case Scenario (WS) with solely wind energy (resulting in reduced operating time to 2,000 hours per year), WWTP A remains a significant contributor, producing 0.39 Mt/y, while WWTP C contributes 0.03 Mt/y⁴.

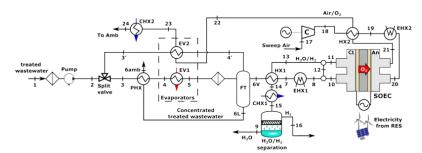


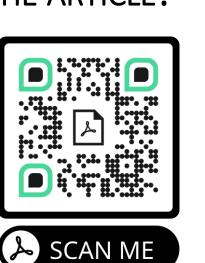
Figure 1. Layout of SOEC stack.

Converting this hydrogen production into electricity, Italy's increasing electricity demand in 2030 necessitates an annual addition of 8.6 to 10.7 GW of capacity. In the best-case scenario, WWTP A alone has the capability to fulfill 20% of the electricity demand, while in the worst-case scenario, it could cover 5.4%. For WWTP C, contributions amount to 1.3% in the best scenario and 0.4% in the worst scenario. These results underscore the considerable potential of harnessing wastewater as a sustainable and renewable energy source to address Italy's electricity requirements.

Significance

This research illustrates that processed municipal wastewater sourced from diverse wastewater treatment facilities can serve as a superb water reservoir for Solid Oxide Electrolysis Cells (SOECs) to generate environmentally friendly hydrogen. The main objective is to emphasize the practicability and energy sustainability of utilizing wastewater as a non-potable water source for producing green hydrogen within the framework of a circular economy. This approach demonstrates efficiency in energy usage, cost-effectiveness, and holds the potential to transform the landscape of clean energy production, especially in regions with limited access to drinkable water. The amalgamation of wastewater treatment and hydrogen production has the capacity to address various sustainability objectives and contribute significantly to a decarbonized future.

References


- 1 European Commission, Communication from the commission to the European parliament, the council, the european economic and social committee and the committee of the regions A European strategy for data, 2020.
- 2 D. F. Di and L. Setti, 2022, 1-40.
- 3 M. A. Laguna-Bercero, J. Power Sources, 2012, 203, 4-16.
- 4 J. Arnal and M. I. Tecnalia, *H2AEOLUS-Environmental performance analysis*.

DOWNLOAD HERE THE ARTICLE!

Exploring the Viability of Utilizing TreatedWastewater as a SUSTAINABLE WATER RESOURCE FOR GREEN HYDROGEN GENERATION USING SOLID OXIDE ELECTROLYSIS CELLS (SOECS)

Marina Maddaloni^{1,2,3}, Matteo Marchionni⁴, Alessandro Abbá², Michele Mascia⁴, Vittorio Tola⁴, Maria Paola Carpanese⁵, Giorgio Bertanza² and Nancy Artioli^{1,2,*}

marina.maddaloni@unibs.it

¹ CEEP Laboratory, Department of Civil Engineering, Architecture, Territory, Environment and Mathematics, University of Brescia, via Branze 38, 25123 Brescia, Italy; ² Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze, 43, 25123 Brescia, Italy; ³ Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), University of Brescia, via Branze 38, 25123 Brescia, Italy

⁴ Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy;

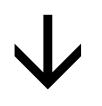
⁵ Department of Civil, Chemical and Environmental Engineering, University of Genova (UNIGE-DICCA), via Montallegro 1, 16145 Genoa, Italy;

ABSTRACT

This research addresses the European Union's pursuit of carbon neutrality by exploring the potential of water electrolysis for hydrogen production, offering a promising solution for decarbonizing existing energy systems. The Solid Oxide Electrolysis Cell (SOEC) is particularly attractive due to its capability to utilize impure water sources.

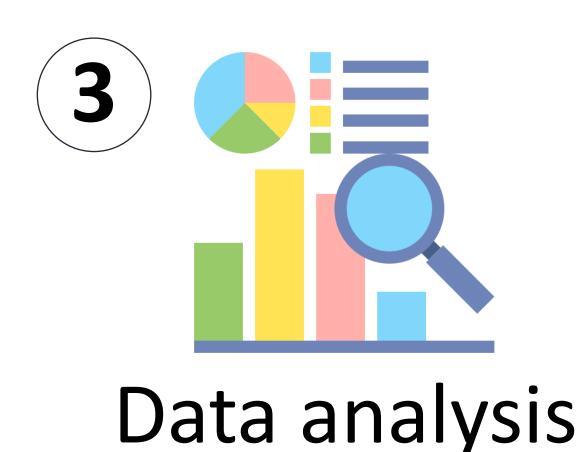
Using Aspen Plus software, this study models a **SOEC** supplied with four distinct streams of real treated municipal wastewaters of Lombardy (Italy).

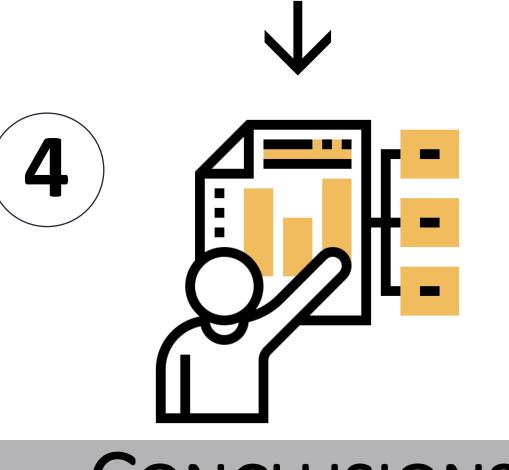
Simulation analysis reveals that two wastewater streams can be efficiently evaporated and treated within the **SOEC** avoiding the generation of waste liquids with excessive pollutant concentrations.

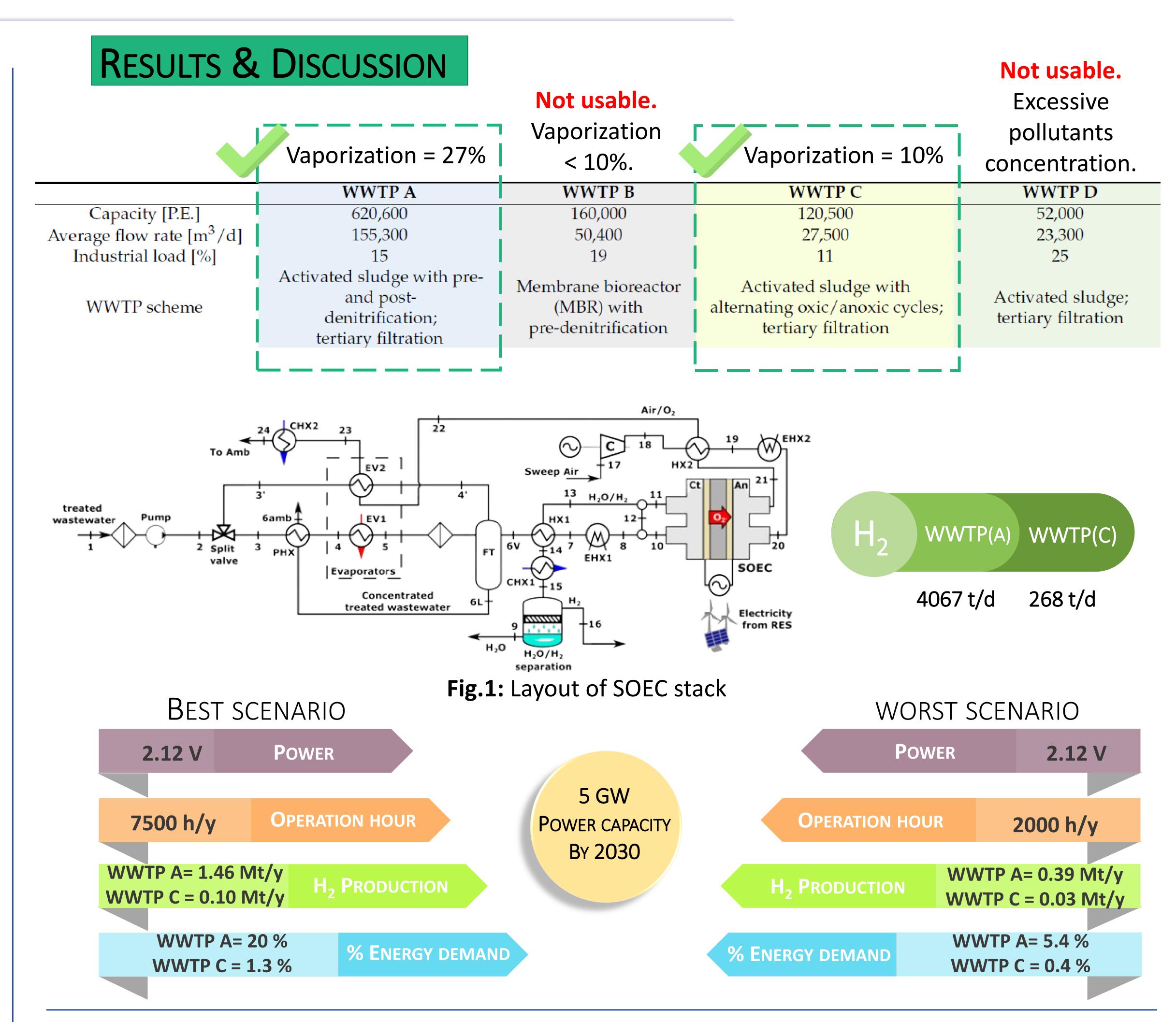

OBJECTIVE

demonstrate the possibility and energy viability of using treated municipal wastewaters obtained from real WasteWater Treatment Plants (WWTPs) of varying capacities, industrial loads and treatment schemes to produce "clean" hydrogen from **SOEC**.

METHODOLOGY


Preliminary study




SOEC simulation

CONCLUSIONS

- Two of the four wastewater streams could be effectively evaporated and treated within SOEC, without generating waste liquids containing excessive pollutant concentrations.
- By evaporating 27% of the first current and 10% of the second, it was estimated that 26.2 kg/m³ and 9.7 kg/m³ of green H₂ could be produced, respectively.
- Considering to have 5 GW of installed power capacity by 2030, this H₂ production could meet anywhere from 0.4% to 20% of Italy's projected electricity demand.

10th UK Catalysis Conference, 3-5 January 2024 Loughborough, UK

Wednesday, 3 rd January				
11:00	Registration desk opens at Burle	eigh Court Hotel		
12:30	Lunch at Holywell Park	<u> </u>		
13.50	Welcome – Conference commence	es at Holywell Park		
		Chair – Prof. Chris Hardacre		
14.00	PI	<u>01 – Prof. Richard Catlow <i>(Turing Lecture Ti</i></u>	heatre)	
14.45		Coffee		
	Session A (Turing Lecture Theatre)	Session B (Brunel/Murdoch Lecture Theatre)	Session C (Stephenson Lecture Theatre)	
	Catalysis Hub session			
Chair/IT	Beale/Centeno	Kondrat/Mazumdar	Garforth/Inrirai	
15.15	K1 (Weller)	04	011	
15.35		O5	012	
15.55	01	O6	O13	
16.15	O2	07	K2 (Matam)	
16.35	O3	O8		
16.55	Coffee			
Chair/IT	Artioli/Maddaloni	Lennon/Wilding	Wang/ Nieva De La Hidalga	
17.25	K3 (Fey)	O9	O14	
17.45		O10	O15	
18.10	Careers Question Time – (Turing Lecture Theatre)			
20.00	Dinner			

	Loughborough, O			
Thursday, 4 th January				
		Chair – Prof. Graham Hutchings		
9.00	PI (02 – Prof. Silvia Bordiga (Turing Lecture Th	eatre)	
	Session A	Session B	Session C	
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)	
Chair/IT	Mitchell/Olsen	Simons/Asad	Petkov/Collins	
	RSC INTEREST GROUP SESSION			
10.00	K4 (Zhang)	O18	O28	
10.20		O19	O29	
10.40	O16	O20	O30	
11.00		Coffee		
Chair/IT	Paterson/Ross	Matam/Mazumdar	Delarmelina/Maddaloni	
11.30	K5 (Gibson)	O21	O31	
11.50		O22	O32	
12.10	O17	O23	O33	
12.30		Lunch		
		Chair – Prof. Richard Catlow		
14.00	PI 03	<u> 3 – RSC Award Lecture – (Turing Lecture T</u>	heatre)	
14.45		Coffee		
	(Turing Lecture Theatre)	(Brunel/Murdoch Lecture Theatre)	(Stephenson Lecture Theatre)	
Chair/IT	Mulholland/Centeno	Garforth/Mohammad	Weller/Inrirai	
	RSC INTEREST GROUP SURFACE REACTIVITY SESSION & CATALYSIS			
15.15	K6 (Artioli)	O24	O34	
15.35		O25	O35	
15.55	K7 (Hermans)	O26	O36	
16.15		O27	O37	
16.35	Coffee			
17.00	Poster session			
to 19.00				
20.00	Conference Dinner			

Friday, 5 th January			
	Session A Session B Session C (Turing Lecture Theatre) (Brunel/Murdoch Lecture Theatre) (Stephenson Lecture Theatre)		
Chair/IT	Freakley/Centeno	Zhang/Mohammad	Lin/Olsen
9.00	K8 (Nastase)	O40	O46
9.20		O41	O47
9.40	O38	O42	O48
10.00	Coffee		
Chair/IT	Dingwall/Ross Fey/Asad D'Agostino/Collins		D'Agostino/Collins
10.30	K9 (Wang)	O43	O49
10.50		O44	O50
11.10	O39	O45	O51
	Chair – Prof. Matthew Davidson		
11.35	PI 04 – Prof. Walter Leitner (Turing Lecture Theatre)		
12.20	Closing remarks		

10th UK Catalysis Conference, 3-5 January 2024 Loughborough, UK

UKCC 2024 Organising Committee

- Dr. Haresh Manyar, Queen's University Belfast, UK
- Dr. Nancy Artioli, Queen's University Belfast, UK
- Dr. Chunfei Wu, Queen's University Belfast, UK
- Dr. Simon Kondrat, Loughborough University, UK
- Prof. Chris Hardacre, University of Manchester, UK
- Prof. Graham Hutchings, Cardiff University, UK
- Prof. Richard Catlow, Cardiff University, UK
- Dr. Josie Goodall, UK Catalysis Hub
- Dr. James Paterson, BP
- Dr. Keith Whiston, Invista
- Dr. Chris Mitchell, Sabic UK
- Dr. Paul Collier, Johnson Matthey

PLENARY AND KEYNOTE SPEAKERS

UKCC 2024 will feature a number of plenary and keynote presentations from leaders across all areas of catalysis.

PLENARY SPEAKERS

Prof. Walter Leitner

Max Planck Institute for Chemical Energy Conversion, Germany

New Carbon Sources for the Energetic and Chemical Value Chain: Challenges and Opportunities for Catalysis - TEN YEARS AFTER!

Prof. Sir Richard Catlow
Cardiff Catalysis Institute, UK

Modelling of Catalytic Structures and

Modelling of Catalytic Structures and Mechanisms: Achievements and Challenges

Prof. Silvia Bordiga
University of Turin, Italy
MOFs and MOFs derivatives used as catalysts

KEYNOTE SPEAKERS

Dr. Nancy Artioli, University of Brescia, Italy and Queen's University Belfast, UK

Dr. Natalie Fey, University of Bristol, UK

Dr. Emma Gibson, University of Glasgow, UK

Prof. Ive Hermans, University of Wisconsin-Madison, USA

Dr. Santhosh Matam, Cardiff University, UK

Dr. Stefan Nastase, King Abdullah University of Science and

Technology, Saudi Arabia

Dr. James Paterson, BP, UK

Dr. Xiaodong Wang, Lancaster University, UK

Prof. Andrew Weller, University of York, UK

Dr. Xiaolei Zhang, University of Strathclyde, UK

ORGANISED BY:

List of Talks UKCC 2024

#	Title	Authors
Pl 01	Modelling of Catalytic Structures and Mechanisms: Achievements and Challenges	Richard Catlow
PI 02	MOFs and MOFs derivatives used as catalysts	Silvia Bordiga
PI 03	Innovation in Fischer-Tropsch Catalysis for an Applied Process	James Paterson
PI 04	New Carbon Sources for the Energetic and Chemical Value Chain: Challenges and Opportunities for Catalysis - TEN YEARS AFTER!	Walter Leitner
K 01	"Solid-State Molecular OrganoMetallic Catalysis: Crystalline Molecular Factories"	Andrew Weller
K 02	Electrochemical CO ₂ reduction over Cubased gas diffusing electrodes: a study by complementary spectroscopic techniques	Santhosh Matam
K 03	Towards Data-Led Prediction in Homogeneous Catalysis	Natalie Fey
K 04	Mechanistic insights into the role of bi- functional and bi-metallic catalysts during hydrodeoxygenation of converting wastes into fuels	Xiaolei Zhang
K 05	The Impact of Aging on the Structure- Activity Relationships of TWC Catalysts	Emma Gibson
K 06	Novel synthesis approaches for CO ₂ Hydrogenation catalysts using Ionic Liquids	Nancy Artioli
K 07	Understanding Surface Reactions using Modulation Excitation Spectroscopy	Ive Hermans
K 08	Methanol activation on Brønsted acid and defect sites in zeolites	Stefan Nastase
K 09	Heterogeneous catalysis mediated cofactor regeneration for biosynthesis	Xiaodong Wang
0 01	Operando X-ray photoelectron spectroscopy at the solid-liquid interface	Charalampos Drivas, Elizabeth Jones, Robert Weatherup, Mark Isaacs and Christopher Parlett
O 02	A Biocatalytic Approach Towards Alcohol Oxidation	Simon D. Anderson, Gavin J. Miller, Sebastian C. Cosgrove
0 03	Influence of Sulfation on Activity & Stability of Metal oxide Catalysts for Vapor-phase Ketonisation of Volatile Fatty Acids	Ander Centeno, Gunjan Deshmukh, Maicon Delarmelina, Helen Daly,

		Alexandre Goguet, Chris Hardacre, Richard Catlow, Haresh Manyar
O 04	Glucose isomerisation in zeolite Y: Adsorption effects on catalytic performances studied by NMR relaxation and in-situ DRIFTS	Carmine D'Agostino, Luke Forster, Mohamed M.M. Kashbor, James Railton, Sarayute Chansai, Christopher Hardacre and Marco Conte
O 05	The Origins of High Selectivity Aniline Synthesis Catalysis with Pd/Al2O3: An In Situ Infrared Spectroscopic Study	Annelouise McCullagh, Stewart Parker and David Lennon
O 06	Laser Induced Temperature-Jump Time- Resolved IR Spectroscopy of Zeolites from Nanoseconds to Seconds	Alexander P. Hawkins, Amy E. Edmeades, Christopher D.M. Hutchison, Michael Towrie, Russell F. Howe, Gregory M. Greetham and Paul M. Donaldson
O 07	2D-IR spectroscopy. Developing an ultra- fast IR laser technique as a tool for studying heterogeneous catalysts	Paul Donaldson, Alex Hawkins, Russell Howe and Greg Greetham
O 08	Operando characterisation of the products of Fischer-Tropsch synthesis within catalyst pellets using magnetic resonance	Qingyuan Zheng, Jack Williams, Mick Mantle, Andrew Sederman, G. Bezemer, Constant Guédon and Lynn Gladden
O 09	Photocatalytic ZnO Molecular Foams for the degradation of micropollutants	Zachary Warren, Thais Guaraldo, Jannis Wenk and Davide Mattia
O 10	Plastic microfibers upcycling to carbon nanomaterials to prevent water pollution from laundering.	Silvia Parrilla-Lahoz, Marielis C. Zambrano, Joel J. Pawlakb, Richard A. Venditti, Tomas Ramirez Reina and Melis Duyar
0 11	Operando DRIFTS-MS studies of switchable dual function materials for integrated CO ₂ capture and conversion	Loukia-Pantzechroula Merkouri, Juan Luis Martín Espejo, Luis F. Bobadilla, Jose Antonio Odriozola, Anna Penkova, Tomas R. Reina and Melis Duyar
O 12	Light-induced CO ₂ hydrogenation over Au/g-C ₃ N ₄ photocatalysts	Auttaphon Chachvalvutikul, Mbongiseni Dlamini, James Carter, James Hayward, Philip Davies, Stuart Taylor and Graham Hutchings
0 13	Structure-activity relationships in Ni/CeO ₂ for CO ₂ methanation	Sining Chen and Andrew Beale
O 14	Oxidation of Carbon Monoxide Over Ceria Supported Copper Catalyst	Oday Hakami, Abdullah Alhelali, Sarayute Chansai, Christopher Hardacre, Amanda Lea-Langton and Arthur Garforth
0 15	Ethane Dehydrogenation Process Performance Evaluation Of Fe, Cr And Mo Catalysts Supported Over ZSM-5	Mujtba Alnasser, Vincenzo Spallina, Arthur Garforth
O 16	Enhanced Production and Control of Liquid Alkanes in the Hydrogenolysis of Polypropylene over Shaped Ru/CeO ₂ Catalysts	Donald Inns, Ajay Tomer, Mazharul Islam, Mounib Bahri, Troy Manning, John Claridge, Nigel Browning, Richard

Catlow, Alberto Roldan, Ale Katsoulidis and Matthew Rosse	exandros
O 17 A Fundamental Approach to Deconvoluting Saloni Pun, Maria Vlachou a TWC Deactivation Kolpin	nd Amy
O 18 Isomerisation and direct amination of Isomerisation and direct amination of Isome, Carine Michel, Ka Oliveira Vigier and Marc Pera-T	rine de
O 19 The Effect of Iron-Doping of ZSM-5 in a Christos E. Ballas, Stewart F. Xylene Isomerisation Reaction Charles Kanyi, Paul Collier, Hyde, Andrew York and David L	Timothy
O 20 Mechanism of Ammonia Synthesis on Michael Higham, Richard Catlo Fe ₃ Mo ₃ N(111) Hargreaves and Cons Zeinalipour-Yazdi	w, Justin stantinos
O 21 Catalytic Hydrogenation of Biomass- derived Furfural and Vanillin into Value- added Chemicals	astava
O 22 A vapor phase route for the production of 2-methylfuran, a 2nd generation biofuel, from biomass-derived furfural Anurag Jaswal, Piyush Pratap S Tarak Mondal	ingh and
O 23 Chemoselective reduction of cinnamaldehyde to cinnamyl alcohol and hydrocinnamaldehyde over Ru@ZnO/CN catalyst	ivastava
O 24 A triple dehydration, isomerisation and metathesis cascade to convert butanol to propene in flow A triple dehydration, isomerisation and Milip Shi, Andrew Weller, Blacker and Philip Dyer	A. John
O 25 Bottom-up Synthesis of Surface-active Janus Catalyst: Application to the Aerobic Oxidation of Aromatic Alcohols in Pickering Foam Kang Wang, Shi Zhang, Marina Carravetta and Marc Pera-Titus	
O 26 The influence of preparation method on rate enhancements exhibited in bimetallic thermocatalytic alcohol oxidation. Oliver Wright, Ouardia Adkim, I Douthwaite, Samuel Pattisson and Graham H Hutchings	
O 27 On-purpose Renewable LPG production: Keith E Simons, Hendrik van R Scaling up Project KatJa! David Brown, Osman Akpolat a Karroum	O,
O 28 Exploring the Relationship Between Fernando Vega-Ramon, Chi Heterogeneous Reaction Microkinetics and Apparent Kinetic Parameters	istopher
O 29 Enabling High Throughput Kinetic Gavin Lennon and Paul Dingwal Experimentation by Using Flow as a Differential Kinetic Technique	I
O 30 Multiscale investigation of the mechanism and selectivity of CO ₂ hydrogenation over Rh(111) Shijia Sun, Michael Higham and Catlow	Richard
O 31 Ambient-pressure Alkoxycarbonylation for Linear-selective Synthesis of Esters Liu and Graham Hutchings	Huizhen

0 32	Towards improvement of the atom	Rory Hughes and David Lennon
0.32	economy in phosgene synthesis catalysis	Rolly Hughes and David Lennon
0 33	A new mesoporous carbon carrier for fixed	M. M. Schubert, M.K. Lynch, M. Baraldi
	bed applications	,
0 34	Selective Synthesis Catalysts comprising	Zixuan Han and Simon Beaumont
	Metal Nanoparticles Encapsulated within	
	Silicalite-1 Cavities	
O 35	Intensification of C5 and C6 Sugars	Abdullahi Adamu, Kamelia Boodhoo and
	Dehydration in an Agitated Cell Reactor	Fernando Russo Abegao
0 36	Structure Sensitive Catalysis: Efficacy of Cu	Nayan Jyoti Mazumdar, Praveen Kumar,
	on Manganese Oxide Catalysts in Levulinic	Miryam Arredondo-Arechavala, Nancy
	Acid Hydrogenation	Artioli and Haresh Manyar
O 37	Chemical recycling of commercial-grade	Shibashish D. Jaydev, Antonio J. Martín,
	polyolefins over titania-supported	Marc-Eduard Usteri, Katia Chikri, Henrik
	ruthenium nanoparticles via	Eliasson, Rolf Erni, Javier Pérez Ramírez
	hydrogenolysis	
O 38	Selective Conversion of Lignocellulosic	Sneha Shetty and Ganapati Yadav
	Xylose into Xylitol using Hexagonal	
	Mesoporous Silica supported Ni/Alumina	
O 39	Hetero-Bio Catalytic Systems for Redox	T. Sudmeier, K. A. Vincent, S. J. Freakley
	Reactions	
O 40	Photooxidative Activity of Au/TiO ₂ Systems	Maicon Delarmelina, Fozia Iram and
	and Charge Separation Mechanism in	Richard Catlow
0.41	Chloride-Containing Solutions	Luka Bashusk Halan Bahi and Chris
0 41	Photocatalytic Reforming of Polyols: H ₂ Production/Energy Recovery from Waste	Luke Roebuck, Helen Daly and Chris Hardacre
	Streams	Haluacie
O 42	Publishing reproducible results supported	Abraham Nieva de La Hidalga, Leandro
0 42	by FAIR data	Liborio, Patrick Austin and Alejandra
	by 17th data	Gonzalez Beltran
O 43	Mechanistic Insights into the Pathways for	George Fulham, Xianyue Wu, Wen Liu
	Methanol Synthesis over Cu-ZnO and Cu-	and Ewa Marek
	ZrO ₂	
O 44	Theoretical studies investigating the	David Jurado, Michael Higham, Richard
	mechanism of methanol formation over	Catlow and Ingo Krossing
	Cu/ZnO based catalysts	
O 45	Significance of the formate intermediate in	Igor Kowalec, Lara Kabalan, Zhongwei
	CO ₂ hydrogenation on Pd-based alloy	Lu, Naomi Lawes, Richard Catlow and
	catalysts – an ab initio study	Andrew Logsdail
O 46	Advanced Electrochemical System based	Yucheng Wang, Kang Wang and Marc
	on Pickering Emulsions for Sustainable	Pear-Titus
	Energy Storage and Chemistry	
O 47	Room-temperature electro-hydrogenation	Yining Ma and Feng Ryan Wang
	reduction of acetylene via palladium	
	membrane reactor	

O 48	Pd/C hydrogenation from mechanisms,	Nikolay Cherkasov, William P. Hems,
	autonomous catalyst development to	Samarth P. Singh, Jonty A. M. Thornton,
	intensified process scale-up	Shusaku Asano
O 49	The Effect of Metal Ratio and Precipitation	Liam Bailey, Parag Shah, David Morgan
	Agent on Highly Active Iron-Manganese	and Stuart Taylor
	Mixed-Metal Oxide Catalysts for Propane	
	Total Oxidation	
O 50	Recoverable Highly-dispersed Ni	Zhaoyue Weng, Nikolay Kosinov and
	Supported on LaTiO₃ perovskite for Dry	Beale Andrew
	Reforming of Methane	
0 51	Synthesis and Optimisation of Single Atom	Andrea De Zanet, Simon Kondrat,
	doped Molybdenum Carbide Catalysts for	Jamieson Christie and Jonathan Wagner
	Sustainable Hydrogen Technologies	

List of Posters UKCC 2024

#	Title	Authors
P01	Chemical CO ₂ recycling via RWGS using nickel phosphide catalysts: Fine-tunning the Ni/P ratio for an optimal performance	Ali Goksu, Gul Hameed, Loukia Pantzechroula Merkouri, Tomas Ramirez Reina, Sergio Carrasco Ruiz and Melis Seher Duyar
P02	Date seed oil for biodiesel production using green solid catalyst derived from calcined waste fish bones	Raiedhah Alsaiari
P03	Bioethanol Upgrading Catalysed by Multifunctional Zeolites	Jessica Bedward and Russell Taylor
P04	Fischer-Tropsch Synthesis Rediscovered for Sustainable Fuel and Valuable Oxygenates	Habib Suleymanov, Alma B Santibanez Mendieta and James McGregor
P05	An investigation into the adsorption mechanism of n-butanol by ZIF-8: a combined experimental and ab initio molecular dynamics approach	Samuel Wallbridge, Stuart Archer, Jonathan Wagner, Jamieson Christie and Sandra Dann
P06	Designing Catalytic Pyrolysis of Biomass for Green Hydrogen Production	Sara Golenarges, Khalid Aziz, Johan Jacquemin, Christopher Hardacre and Marta Falkowska
P07	Hierarchically grown CeO ₂ /GO on nylon filter with enhanced hydrophilicity and permeation flux for oil-water separation	Naseer Ahmad, Dr. Dilshad Hussain and Muhammad Ikram Nabeel
P08	Catalytic fast pyrolysis of levoglucosan, furfural and furan over HZSM-5: An experimental and theoretical investigation	Amin Osatiashtiani, Jiajun Zhang, Stylianos Stefanidis, Anthony Bridgwater and Xiaolei Zhang
P09	The Continuous Flow Synthesis of Jasminaldehyde	Ander Centeno-Pedrazo, Harry Patterson, Meabh McAtamney, Nayan Mazumdar, Dipti Wagh, Nancy Artioli, Haresh Manyar
P10	Insights into Mechanochemical Synthesis of Copper on Manganese Oxide Catalysts for Levulinic acid Hydrogenation	Nayan Jyoti Mazumdar, Praveen Kumar, Miryam Arredondo-Arechavala, Nancy Artioli, Haresh Manyar
P11	Direct Capture and Conversion of CO ₂ to Glycerol Carbonate using CaO-CeO ₂ Dual Function Materials in Continuous Flow	Patcharaporn Inrirai, Dipti Wagh, Gunjan Deshmukh, Nancy Artioli, Haresh Manyar
P12	"Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation	Marina Maddaloni, Matteo Marchionni, Alessandro Abbá, Michele Mascia, Vittorio Tola, Maria Paola Carpanese, Giorgio Bertanza and Nancy Artioli
P13	The application of molecular spectroscopy and neutron scattering to investigate biocatalytic transamination intermediates	Ramandeep Singh Dosanjh, David Lennon and Stewart Parker

P14 Towards Avoidance of a Hydrogenolysis Step in the Liquid Phase Heterogeneously Catalysed Hydrogenation of Benzaldehyde P15 Catalytic Upcycling of Low-Density Polyethylene (LDPE) using Nickel Tungstated Zirconia Catalyst Hassan Alhassawi, Wenxi Zheng, Hubertus Warsahartana, Dave Scapens, Christopher Parlett and Arthur Garforth Additives P16 Tuning Zeolite Catalysts using Organic Additives On hydrogen generation from lead-acid batteries, when operated as a combined battery and electrolyser. P18 Surface modification of TiO2 with gold and copper nanoparticles for enhancing the photocatalytic H2 production Edwards P19 N-Alkylation of Aliphatic Alcohols with Amines over Hydrous Zirconia P20 Influence of Stabilizers on Catalytic Performance of Au/TiO2 for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO: Reduction to Methanol with H2 on an Iron(II)-scorpionate Catalyst for sustainable carbon conversions P29 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective Hydrogenation of biobased citronellal to citronellol over Ru supported			T
P15 Catalytic Upcycling of Low-Density Polyethylene (LDPE) using Nickel Tungstated Zirconia Catalyst Wenxi Zheng, Hubertus Warsahartana, Dave Scapens, Christopher Parlett and Arthur Garforth Additives P16 Tuning Zeolite Catalysts using Organic Additives P17 Evaluation of the catalytic effect of metal additives on hydrogen generation from lead-acid batteries, when operated as a combined battery and electrolyser. P18 Surface modification of TiO ₂ with gold and copper nanoparticles for enhancing the photocatalytic H ₂ production P19 N-Alkylation of Aliphatic Alcohols with Amines over Hydrous Zirconia P20 Influence of Stabilizers on Catalytic Performance of Au/TiO ₂ for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)-scorpionate Catalysti Structure-Activity Relationship catalysis. P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)-scorpionate Catalysti On the Order of (Moc/2/Sc1/3)/2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D. Yadav	P14	Step in the Liquid Phase Heterogeneously	1
Polyethylene (LDPE) using Nickel Tungstated Zirconia Catalyst Hubertus Warsahartana, Dave Scapens, Christopher Parlett and Arthur Garforth Matt Robinson and Andrew Logsdail Additives P17 Evaluation of the catalytic effect of metal additives on hydrogen generation from lead-acid batteries, when operated as a combined battery and electrolyser. P18 Surface modification of TiO2 with gold and copper nanoparticles for enhancing the photocatalytic H2 production P19 N-Alkylation of Aliphatic Alcohols with Amines over Hydrous Zirconia P20 Influence of Stabilizers on Catalytic Performance of Au/TiO2 for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)-scorpionate Catalyst P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biobased Shalaka S. Mohire and Ganapati D. Yadav Genetics of Stablay S. Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D. Yadav		Catalysed Hydrogenation of Benzaldehyde	
P16 Tuning Zeolite Catalysts using Organic Additives P17 Evaluation of the catalytic effect of metal additives on hydrogen generation from lead-acid batteries, when operated as a combined battery and electrolyser. P18 Surface modification of TiO2 with gold and copper nanoparticles for enhancing the photocatalytic H2 production P19 N-Alkylation of Aliphatic Alcohols with Amines over Hydrous Zirconia P20 Influence of Stabilizers on Catalytic Performance of Au/TiO2 for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO2 Reduction to Methanol with H2 on an Iron(III)- scorpionate Catalyst Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biobased Shalaka S. Mohire and Ganapati D. Yadav	P15	Polyethylene (LDPE) using Nickel	Hassan Alhassawi, Wenxi Zheng, Hubertus Warsahartana, Dave Scapens,
additives on hydrogen generation from lead-acid batteries, when operated as a combined battery and electrolyser. P18 Surface modification of TiO ₂ with gold and copper nanoparticles for enhancing the photocatalytic H ₂ production P19 N-Alkylation of Aliphatic Alcohols with Amines over Hydrous Zirconia P20 Influence of Stabilizers on Catalytic Performance of Au/TiO ₂ for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D. Yadav	P16		•
copper nanoparticles for enhancing the photocatalytic H2 production P19 N-Alkylation of Aliphatic Alcohols with Amines over Hydrous Zirconia P20 Influence of Stabilizers on Catalytic Performance of AU/TiO2 for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)-scorpionate Catalyst P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P17	additives on hydrogen generation from lead-acid batteries, when operated as a	Jonathan Wilson, Matthew Brenton,
Amines over Hydrous Zirconia P20 Influence of Stabilizers on Catalytic Performance of Au/TiO2 for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO2 Reduction to Methanol with H2 on an Iron(II)- scorpionate Catalyst P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P18	copper nanoparticles for enhancing the	Gordillo, Sandra Rodil and Jennifer
Performance of Au/TiO ₂ for CO Oxidation P21 Selective and solvent-free oxidation of ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P19	i ·	Zhuoli Wu and Marc Pera-Titus
ethylbenzene to acetophenone P22 Continuous flow enzymatic processes – controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst With H ₂ on an Iron(II)- scorpionate Catalyst Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P20	,	_
controlling mass transfer with the external agitation P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst P. de Visser P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P21		Bahhaj Alshammari and Marco Conte
P23 Using Accelerated Deactivation to Bridge the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case Study in Methanol Synthesis P24 Effect of synthesis temperature on photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P22	controlling mass transfer with the external	
photocatalytic degradation of Congo red dye by graphitic nitrogen carbide P25 High throughput experiment on silver: Structure-Activity Relationship catalysis. P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst P. de Visser P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P23	the Time Gap Between Lab Testing and Long-Term Industrial Operation: A Case	,
Structure-Activity Relationship catalysis. P26 Mechanism of CO ₂ Reduction to Methanol with H ₂ on an Iron(II)- scorpionate Catalyst P. de Visser P27 On the Order of (Mo2/3Sc1/3)2C i-MXene Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P24	photocatalytic degradation of Congo red	Jiaye Shao
with H ₂ on an Iron(II)- scorpionate Catalyst P. de Visser P. de Visser P. de Visser P. de Visser Xiangchao Meng, Ryan Wang Monolayer: An Ab Initio Study P. de Visser Xiangchao Meng, Ryan Wang Alexander O'Malley Microporous catalysts for sustainable carbon conversions P. de Visser Xiangchao Meng, Ryan Wang Alexander O'Malley Vinayak Kadam and Ganapati D. Yadav derived Furfural using Bimetallic Metal organic framework catalysts P. de Visser Xiangchao Meng, Ryan Wang Vinayak Kadam and Ganapati D. Yadav Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P25		Yifan Tang and King Kuok Hii
Monolayer: An Ab Initio Study P28 Understanding molecular behaviour in microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P26		_
microporous catalysts for sustainable carbon conversions P29 Selective Hydrogenation of biomass derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P27	, , , ,	Xiangchao Meng, Ryan Wang
derived Furfural using Bimetallic Metal organic framework catalysts P30 Selective hydrogenation of biobased Shalaka S. Mohire and Ganapati D.	P28	microporous catalysts for sustainable carbon conversions	Alexander O'Malley
, 3	P29	derived Furfural using Bimetallic Metal	Vinayak Kadam and Ganapati D. Yadav
	P30	, 3	·

	Ni phyllosilicate modified MCF as a novel	
	nanocatalyst	
P31	Stabilization of the aqueous phase fraction	G. Bagnato, M. Signoretto, E. Ghedini, F.
	of pine wood bio-oil by hydrogenation	Menegazzo, H.J. Heeres, A. Sanna
	reaction	