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DYNAMITE: Integrating Archetypal Analysis and Process Mining for
Interpretable Disease Progression Modelling
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Abstract— DYNAMITE, an acronym for DYNamic Archetypal
analysis for MIning disease TrajEctories, is a new methodology
developed specifically to model disease progression by exploit-
ing information available in longitudinal clinical datasets. First,
archetypal analysis is applied to data organised in matrix form,
with the aim of finding extreme and representative disease states
(archetypes) linked to the original data through convex coeffi-
cients. Then, each original observation is associated with a single
archetype based on their similarity; finally, an event log is created
encoding the progression of disease states for each patient in
terms of archetype states. In the last stage of the procedure,
archetypal analysis is coupled with process mining, which allows
the event log archetypes to be visualised graphically as sequences
of disease states, allowing the clinical trajectories of patients to
be extracted and examined. As a proof of concept, we applied
the proposed method to data from a cohort of amyotrophic lateral
sclerosis patients whose progression was monitored using the 12-
item ALSFRS-R questionnaire. Without any a priori knowledge,
DYNAMITE identified six archetypes clearly describing different
types and severity of impairment and provided reliable clinical
trajectories consistent with the prognosis of amyotrophic lateral
sclerosis patients. DYNAMITE offers high interpretability at every
stage of the analysis, which makes it particularly suitable for use in
healthcare where explainability is paramount, and enables analysis
of clinical trajectories at both individual and population levels.

Index Terms— DYNAMITE, Archetypal Analysis, Clinical
Data, Disease Progression, Disesase States, Longitudinal
Dataset, Process Mining.

I. INTRODUCTION

Archetypal Analysis (AA) is a powerful mathematical technique
which can be applied to high-dimensional data space to identify a set
of representative points (i.e., archetypes), which act as prototypical
examples, encapsulating the essential characteristics of distinct sub-
groups or clusters within the dataset itself. Specifically, archetypes
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represent extreme behaviours that, when considered in combination,
describe the entire data space.

This technique has found valuable applications in a variety of
fields, including sociology (e.g., [1]), agronomy (e.g., [2]), economics
(e.g., [3]), psychology (e.g., [4]), and healthcare (e.g., [5]).

In particular, healthcare stands out as a critical domain for lever-
aging this methodology to efficiently utilise clinical information
towards the design of effective, personalised care: as healthcare
systems increasingly transition towards digitalisation bringing a larger
availability of electronic health records (EHRs) and other digital
data sources, clinical research moves towards a systematic use of
clinical data able, in principle, to accurately describe the status of
heterogeneous populations of patients. Such clinical information often
encompasses a wide range of variables, including demographic infor-
mation, physiological measurements, medical history, and treatment
outcomes. This complexity can pose a challenge when attempting to
discern meaningful patterns and subgroups. AA addresses this chal-
lenge showing promising potential in unravelling complex patterns
within clinical data by summarising the heterogeneity of patients, de-
scribed through the collected variables, into a manageable number of
archetypes, facilitating a deeper understanding of patients’/features’
profiles and offering insights into underlying mechanisms of diseases.

In [6], the authors applied AA to gene expression data from
small-cell lung cancer lines and tumours to identify phenotypic
tasks consistent with cancer traits. In [7] and [8], AA was used
to examine the distribution of molecular phenotypes, using as input
the classification scores obtained from an ensemble learning model
on a set of histological and RNAseq samples, respectively. In
[9], the authors demonstrated that, when applied to genomic data,
AA can be used to estimate genetic clusters that have a similar
structure to those obtained with standard Bayesian or likelihood-
based population clustering methods, with clear advantages in terms
of computational efficiency. In [10], AA was employed to provide
a compact representation of the current catalogue of single-base
substitution signatures extracted from 2,780 genomes. AA also has
numerous applications in the identification of visual field loss (VF)
patterns starting from VF testing data of patients with glaucoma [11],
[12], optic neuritis [13], [14] and idiopathic intracranial hypertension
[15]. In [16] AA were applied to anthropometric data to show the
efficacy of this methodology in automatically discriminating between
genders, starting from skeleton measurements only. In [17], the
authors used AA to characterise a cohort of subjects affected by a
neurodegenerative disease, starting from their clinical data collected
at diagnosis.

While all these applications make use of static information only,
such as biopsies, omics, or clinical tests, healthcare data often
includes a more detailed description of a patient’s medical condition
than just a static point, frequently consisting of multiple observations
spanning from an initial assessment, such as study entry or hospital
admission, to a specific clinical event (e.g., survival or hospital
discharge). In this case, the available information can be even more
complex, consisting not only of data that are heterogeneous from a
feature type (i.e., continuous, categorical, or ordinal) but also from a
temporal point of view. The data acquisitions can indeed vary from
subject to subject according, for instance, to the patient monitoring
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schedule or the specific variable granularity – and be asynchronous
with respect to the population. This results in a sampling grid that, in
general, may vary both along the patient-specific observation period
and from patient to patient [18]. When analysing dynamic contexts,
all these data characteristics must be taken into account.

By making use of methodologies that can adequately exploit lon-
gitudinal clinical information, the study of clinical conditions can be
extended to characterise, for example, patients in terms of progression
trajectories and similarity of prognosis. When modelling disease
trajectories, it has to be taken into account that, in general, each
individual follows a distinct path, influenced by a myriad of factors
including genetics, lifestyle, comorbidities, and treatment regimens.
Therefore, deciphering the underlying patterns within this diversity
requires advanced analytical techniques capable of accommodating
non-linearity, variability, and irregularity in the data.

In this paper, we propose DYNAMITE (DYNamic Archetypal
analysis for MIning disease TrajEctories), a new method based on
an innovative use of AA for unravelling disease progression patterns
and outlining patient trajectories starting from a longitudinal clinical
dataset.

Acting on a series of consecutive clinical observations (visits),
instead of modelling patient profiles, we aim at encapsulating in
the archetypes the extreme disease states within which patients may
move as the course of their illness evolves. The combination of
these archetypes characterises the range of potential dynamic states
observed within the study population. As a result, for each subject, the
sequence of their visits can be mapped on a sequence of archetypes,
which define the evolution of disease progression through extreme
representative states. We then adopt Process Mining (PM) to represent
the sequence of disease states transitioned by the patients and to
inspect the distinct patterns of progression over the whole patient
population.

Originating in the context of business process management and
then spreading to other contexts – including, recently, healthcare [19],
[20] - PM is a relatively young analytical discipline that provides
methodologies to represent and study processes [21]. PM techniques
require as input an Event Log (EL), that is, a sequence of ordered
events (or activities) referred to a set of cases, each labelled with
their occurrence times and possibly enriched with a set of optional
attributes that characterise the case or the activity. Specifically, the
sequence of events for each case is called the trace in PM. Here,
the traces are the sequences of archetypes mapped for each patient.
PM provides different techniques and tools, mainly aimed at (i)
mining the processes that produced the input data (process discovery)
[22], (ii) assessing the conformity of an EL with regards to a
given process, or vice versa (conformance checking) [23], and (iii)
improving the efficiency of a process via diagnostic and restorative
strategies (process enhancement) [24]. In the context of dynamic
clinical data, PM can therefore be particularly valuable for tracking
patient trajectories over time in terms, for instance, of sequence of
interventions, transfers between wards, or - as in our case - transitions
between disease states.

To show a proof of concept of DYNAMITE, we present the
analysis of a longitudinal clinical dataset extracted from a register of
amyotrophic lateral sclerosis (ALS) patients. Our methodology allows
the identification of six archetypes that describe the extreme health
states experienced by the patients as the disease progresses, clinically
corresponding to the stand-alone or the combination of functional
impairments caused by ALS. By analysing the mined sequence of
archetypes, we were able to identify the most frequent patterns
of progression in terms of transitions and percentages of subjects
experiencing the sequences of clinical states, up to the occurrence of
the survival outcome.

Our approach proves useful in practice to model the history
of patients with heterogeneous progressions in an effective and
communicative manner, managing the complexity of the clinical data
and ensuring good interpretability.

II. METHOD

With the aim of modelling the evolution of the clinical condition
in a study population starting from a collection of longitudinal data,
we propose a four-step procedure:

A) organisation of the patients’ dynamically-collected data as a
longitudinal clinical dataset in a matrix form;

B) use of archetypal analysis (AA) on the longitudinal dataset to
identify the most extreme behaviours of the patient visits and
characterisation of the resulting archetypes;

C) definition of the clinical progression trajectories, by associ-
ating each patient’s observation with the most representative
archetype, representing their punctual, subsequent disease state;

D) employment of process mining (PM) techniques to represent
the clinical progression trajectories consisting of the sequence
of disease states.

In the following, we characterise these analytics steps.

A. Organisation of a longitudinal clinical dataset in a matrix
form

Longitudinal clinical datasets are collections of clinical facts re-
ferring to a specific cohort of individuals monitored consecutively at
multiple points in time.

Mathematically formalising, given a cohort of N samples sk with
k = 1, ..., N corresponding to the observed subjects, each subject
contributes with m dynamic features collected over consecutive time
points tk,jk , with jk possibly different in sampling time and number
for each subject k. Figure 1 shows (a) the tri-dimensional structure
of the data upon collection, and (b) the corresponding n×m matrix
X where the observations have been stacked consecutively.
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Fig. 1. Structure of longitudinally collected clinical data: (a) three-
dimensional representation with dimensions corresponding to patients,
time, and variables; (b) matrix form.

B. Computation of Archetypal Analysis and inspection of the
archetypes

1) Archetypes computation: As a modelling technique, we em-
ploy the AA on the longitudinal dataset X collecting the clinical
information of the study population, where the m columns correspond
to the set of variables dynamically collected and the n rows to the
patients’ observations (or visits).

In detail, given an n×m matrix X representing a multivariate
dataset, where n is the number of observations and m is the number
of variables, and provided a number k of archetypes, AA allows
determining a k×m matrix Z of archetypes such that:
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1) the data are best approximated by convex combinations of the
archetypes Z, i.e., they minimise the residual sum of squares
(RSS):

RSS = ||X − αZT ||2, αi ≥ 0,
∑

i
αi = 1 (1)

2) the archetypes are convex combinations of the data points:

Z = XT β, βi ≥ 0,
∑

i
βi = 1 (2)

where || · ||2 represents the matrix norm, α are the coefficients of the
archetypes and β are those of the dataset, respectively [25].

The AA algorithm starts from a set of k randomly chosen points
in the features’ space, and iterates between finding the best α for
given archetypes Z and finding the best archetypes Z for given α.

The learning process stops either when the residual sum of squares
(RSS) reduction is smaller than a defined threshold or when the
maximum number of iterations set is reached. The AA training
procedure, therefore, will always converge, but to minimise the
possibility of converging to a local minimum, instead of a global
one, it is recommended to restart the training multiple times.

Another aspect to keep in mind is that, as in other unsupervised
analysis techniques, there is no method for determining in advance
the optimal number of k archetypes. One possible, heuristic solution
is to test several k values in a defined range and choose the optimal
value by detecting the elbow (that is, a sharp change of direction)
in the scree plot reporting the k values on the x-axis and the RSS
values on the y-axis [25].

Archetypes, by construction, lie on the boundary of the convex hull
of the data and thus can be easily influenced by outliers. To mitigate
the effect of possible outliers and avoid incorrect or skewed results,
we employed the archetypes R package [16], which implements
the weighted and robust archetypal analysis proposed by Eugster et
al. [26]. In this method, the original algorithm is adapted to reduce the
influence of outliers by using M-estimators instead of least squares
estimators when performing the optimisation procedure. Specifically,
instead of minimising the Euclidean norm of the residuals R = (X−
αZT ), i.e., min||R||2 where large residuals have large effects (see Eq.
1), the M-estimators try to reduce the effect of outliers by replacing
the squared residuals by another function ρ(·) less increasing than
the square.

2) Archetypes representation: Once the archetypes have been
computed, Principal Component Analysis (PCA) is used as the data
visualisation technique to graphically check their position in the data
space.

In such representation, archetypes are expected to be on (an
approximation of) the convex hull of the data, according to their
definition. To visualise how each archetype is characterised in terms
of variables, radar charts are then employed. Specifically, each
variable is reported on an axis where: for continuous variables, their
position on the axis corresponds to their value in the min-max range,
computed on the whole dataset, while for categorical and ordinal
variables distinct values on the axis correspond to the feature levels.

C. Definition of the clinical progression trajectories
1) Association of each observation with the most representa-

tive archetype: After performing AA, each observation xj corre-
sponds to a linear combination of the k archetypes zi, as reported in
Eq. 3:

xj = αj,1z1 + · · ·+ αj,kzk i = 1, . . . , k

αj,i ≥ 0,
∑

i
αj,i = 1

(3)

where a higher coefficient αj,i means a higher resemblance be-
tween the observation xj , i.e., visit, and the archetype zi.

With the aim of describing the progressing status of the patients
as a sequence of prototypical conditions, we can associate each
observation with the archetype that best represents it, according to
one of the following criteria [27]:

• crisp rules: each observation is associated with the nearest
archetype, that is, the archetype zw whose coefficient αj,w is
the biggest. Formally:

xj := zw | w = argmax
i

αj,i (4)

• fuzzy rules: each observation is associated with the archetype(s)
zw whose coefficient αj,w are bigger than a given threshold τ
set by the user. Note that a threshold τ > 0.5 is needed for
a univocal association; however, with such a threshold, some
visits may not turn out to have a valid association. Formally:

xj := zw | αj,w > τ (5)

In our method, we adopt the crisp assignment and represent each
visit with the archetype zw with the higher αj , w coefficient, i.e., the
most similar one.

After the assignment, for each subject, we obtain an ordered
sequence of matching archetypes corresponding to the evolution of
the disease states.

2) Sequence reduction to remove multiple consecutive
events: According to the archetype assignment, consecutive visits
might be associated with the same archetype. With the aim of
focusing on the progression from one disease status to another,
when the same archetype is assigned to several consecutive visits we
reduce the sequence of assigned archetypes by keeping only the first
observation with the corresponding sampling time. This maintains the
sequence of disease states, avoiding repetitions that would correspond
to confirmation that, over time, the patient is still associated with that
specific extreme behaviour, a piece of information that – for the sake
of capturing the timing of the transition from one disease state to
another – does not add knowledge to the data.

In Figure 2, we report a practical example of the procedure
described above for obtaining the reducing sequence of disease status
starting from the longitudinal observations of a generic subject sk.

D. Characterisation of the clinical trajectories through Process
Mining

As a next and final step, we use PM to characterise the clinical
trajectories obtained in terms of the succession of disease states.

Here, we employ a process discovery algorithm, namely the Care-
Flow Miner (CFM) [28], to represent and characterise the patients’
clinical trajectories. The CFM algorithm was already used in the
literature to model healthcare processes in different clinical domains,
such as diabetology [29], oncology [28], [30], and neurology [31].
With respect to the PM nomenclature introduced above, here the
traces correspond to the reduced sequence of disease states obtained
with the procedure detailed so far, and the EL is the combination of
all traces together. For each case (here subject), the events correspond
to the archetypes associated with each visit, while the timestamps are
the times of each considered observation. All traces together, that is,
the whole longitudinal dataset reduced to its corresponding archetypal
representation, constitute the EL.

Starting from an EL, the CFM algorithm returns the process
that generated the data in a graphical form in which events are
represented as nodes and transitions between events are reported as
directed arcs. Starting from a root node, each EL trace contributes to
building a branch of a tree, with the top level (i.e., the first one
after the root) representing the first event of each trace and the
subsequent levels corresponding to the next and ordered events of
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Fig. 2. Method workflow.

each trace. The process represented carries a label on each node
with the name of the associated event and some details such as the
number of cases (here, subjects) who passed through it or statistics
on the time taken to reach it from the first event in the trace.
Through this representation, clinical trajectories can be inspected
in terms of the cardinality of subjects following different paths,
probabilities or transition times between one event and the next. When
applied on different datasets, this methodology allows comparison of
trials constructed on different datasets, highlighting differences and
similarities in terms of trajectories in different cohorts.

For this part of the analyses, we employed the pMineR R package
[32], a library that offers implementations of the traditional PM
algorithms specifically enriched to address the needs of the healthcare
domain, integrating them with survival analysis and features to
explore differences among clinical pathways. This implementation
of the CFM also allows tuning some parameters of the algorithm,
such as a threshold on the minimum number of instances considered
significant by the user to visualise a transition, which allows limiting
the so-called spaghetti effect typical of this kind of representation.
This effect, determined by the possible high variability of the tra-
jectories represented in the data, corresponds to a potentially large
number of represented infrequent paths that increase the complexity
of the process without being as informative.

III. CASE STUDY

A. Longitudinal clinical dataset
As a case study for the proposed methodology, we selected a

clinical register of Amyotrophic Lateral Sclerosis (ALS) patients,
namely the Piemonte and Valle d’Aosta Register for ALS (PARALS)
[33]. ALS is a rare neurodegenerative disease that affects motor
neurons, reducing the ability to control voluntary movements. Its
manifestations are highly heterogeneous in both symptoms and pro-
gression patterns, typically leading to death within 3-5 years from
the onset, mostly due to breathing muscles paralysis. A wide-world
recognised tool to measure disease progression is the Amyotrophic
Lateral Sclerosis Functional Rating Scale (ALSFRS) [34], especially
in the revised version (ALSFRS-R) [35]. ALSFRS-R scale is a ques-
tionnaire composed of 12 questions, regarding 5 different domains:

• questions 1-3 are linked to bulbar (BU) domain impairments;
• questions 4-5 are linked to upper limbs (UL) impairments;
• questions 6-7 are linked to trunk (TR) domain impairments;
• questions 8-9 are linked to lower limbs (LL) domain impair-

ments;
• questions 10-12 are linked to breathing (BR) impairments.
Each item is evaluated by assigning a score between 0 and 4,

where the highest value is associated with “normal” and a lower
value is attributed as the impairment progresses. ALSFRS-R total
score, indeed, ranges between 0 and 48 with 48 indicating a healthy
person.

To characterise and study the progression of ALS, it is crucial
to consider the trajectories of the disease. Patients with ALS com-
monly experience a worsening of their condition over time, with an

increasing number of domains being affected. This progression can
be observed through changes in the ALSFRS-R scores over time. By
analysing longitudinal data from multiple visits, it becomes possible
to track the evolution of the disease by examining how ALSFRS-R
scores are modified.

In this context, therefore, the first aim is to use DYNAMITE to
identify meaningful archetypes representing different disease states
and associate each patient visit with the corresponding archetype. By
studying the sequence of archetypes across visits for the considered
subjects, it becomes then possible to map and analyse the trajectories
of disease progression in ALS patients.

The employed dataset consists of 8392 visits referred to 923
ALS patients extracted from the PARALS register. The extraction,
carried out in November 2021 within the framework of the project
‘Deconstruct and rebuild phenotypes: a multimodal approach to-
wards personalised medicine in ALS’ (Research Projects of National
Significance, Italian PRIN call 2017), includes patients diagnosed
between 2007 and 2015 and consecutively enrolled in the registry.
No inclusion/exclusion criteria were adopted. The diagnosis of ALS
was assessed according to the revised El Escorial diagnostic criteria
[36] by expert neurologists. As the data we used came from a real
clinical registry rather than a clinical study, a rather long follow-up
was generally recorded for the subjects. In the study population, the
number of visits ranged from 1 to 44, with a median of 8 (IQR 4-
12). The median interval between visits is 75 days (IQR 52-105), and
the median clinical follow-up, calculated here as the time interval
between the first and last recorded ALSFRS-R assessment, is 878
days (IQR 346-1254). For each visit, the scores of the 12 items of
the ALSFRS-R scale are recorded, together with the corresponding
collection date. When available, the date of tracheostomy or death
was used to code the survival event for each subject.

The PARALS register database is anonymised and treated accord-
ing to the Italian Data Protection Code. Written informed consent
to participate in the study was obtained from all the patients or their
legal representatives. This study was approved by the ethical commit-
tees Azienda Ospedaliera Universitaria City of Health and Science of
Turin (number 004462, June 10, 2010). A waiver was obtained for
patients included in the register before 2010. The Piedmont regional
government also recognised PARALS as a ‘Registry of High Sanitary
Interest’ (Regional Law, April 11, 2012, number 4). Accordingly, the
PARALS can access databases owned by the regional administration
to obtain clinical information about ALS patients from public and
private hospitals, and general practitioners. All study protocols and
procedures were conducted in accordance with the Declaration of
Helsinki.

B. Computation of Archetypal Analysis and inspection of the
archetypes

For the archetypes computation, only the 12 columns representing
the ALSFRS-R questions were included, considering each visit as an
independent observation. To avoid the archetypes being influenced
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by outliers, which are frequent in clinical datasets, robust archetypes
were trained (“robustArchetypes” function). The training procedure
was repeated 15 times (nrep =15), as it was found to be a fair trade-off
between the soundness of the procedure and computational time. The
stopping criteria were set equal to the default values: RSS reduction
smaller than 1.490e − 08 (corresponding to the square root of the
machine epsilon for double-precision floating-point numbers) and a
maximum number of iterations equal to 100 [16]. For each iteration,
all integer numbers of archetypes k between 2 and 10 were tested
and the optimal number of archetypes was chosen by detecting the
elbow on the scree plot reporting on the x-axis the value k and on the
y-axis the RSS. To reinforce the choice of the best k, the minimum,
mean, and standard deviation of the RSS over the 15 repetitions, for
each k, were also analysed [27].

Figure 3 shows the RSS of the best model for each step on the
y-axis, and the number of archetypes k on the x-axis.

Fig. 3. Scree plot obtained in the ALS case study, reporting the number
of archetypes k on the x-axis and the RSS values on the y-axis.

Increasing k up to 6 seems convenient in order to achieve an
improvement in RSS as displayed in Figure 3.

The mean, minimum, and standard deviation of the RSS over all
repetitions were also evaluated to identify the k value that allows a
good trade-off between complexity and performance. Table I reports
the RSS for each repetition (in the columns) and for each k (by rows).
This analysis confirmed k = 6 as the optimal value of archetypes for
the case-study dataset.

The α coefficients, which characterise the 6 archetypes in the 12
ALSFRS-R questions were derived for the repetition that had the
lowest RSS. Figure 4 represents the six derived archetypes in six
radar plots, useful for observing the differences between them. In all
these plots, each axis corresponds to an ALSFRS-R item: the inner
level of the plot represents a value of 0 for that score, indicating an
impaired state, while the outer circle corresponds to the maximum
score of 4, representing a fully functional state. The blue shape on
the graph characterises the archetypes, showing for each of the 12
ALSFRS-R items the value of the corresponding position on the axis.

Notably, even though AA is an unsupervised method, the analysis
resulted in finding archetypes that trace the domains of the ALSFRS-
R. Indeed, the identified archetypes show consistency with the five
domains investigated with the score, so that the scores for the different
items related to each domain concordantly indicate an impaired or a
preserved domain. For clarity, each archetype was renamed according
to the eventually impaired domains. A domain, as defined in section
III-A, was considered impaired if and only if the mean of the scores of

the question that constitute the domain itself was ≤ 2. The archetype
labelled as “none” is characterised by high scores in all 12 questions,
thus representing subjects who, although diagnosed with ALS, have
no significant impairments. Conversely, the archetype “all” has low
scores in every question and thus represents subjects who are highly
impaired in every assessed domain. The other identified archetypes
represent disease states between these two. Specifically:

• The archetype “BU” presents a well-conserved breathing domain
and an evident impairment on the bulbar domain. It also displays
moderate scores in items 4 to 9, related to limb impairments.

• The archetype “BR” is characterised as having high scores in
all the questions, except for the breathing domain.

• The archetype “LL” displays high scores for items 1 to 5 and
10 to 12, a moderate impairment for the trunk domain, and a
relevant impairment on lower limbs.

• The archetype “UL TR LL” has the bulbar and the breathing
domains well preserved, but the low scores of questions 4 to
9 highlight impairments in the upper limbs, trunk, and lower
limbs domains.

We also characterised each archetype in the original space of
features by computing their ALSFRS-R total score (see Table II).
Interestingly, different archetypes correspond to the same or similar
ALSFRS-R total scores: the fact that different archetypes, char-
acterised by different (sets of) impairments, map onto the same
total scores suggests that this representation is more effective in
distinguishing between different disease states than the direct use
of the total score.

Another descriptive representation of the archetypes is obtained
by applying the PCA and it is reported in Figure 5. PCA allows
obtaining a 2D representation of the original 12-dimensional space.
In the plot, it is possible to observe the distribution of the visits (light
blue dots) and of the archetypes (blue diamonds). It should be noted
that the archetype “none”, on the left, is opposite to the archetype
“all”, which is on the right, as expected. Similarly, the archetype
with the bulbar domain impaired (“BU” ) is on the top part of the
graph, while the one associated with impairment in the lower limbs
(“LL” ) is on the lower part. This configuration is consistent with
what is known about ALS in the literature, where bulbar and spinal
impairments are highly distinctive and characteristic conditions right
from the onset [37].

C. Definition of clinical progression trajectories

1) Association of each observation with the most represen-
tative archetype: As described in section II-C, the association of
each visit with the most representative archetype was based on the
α coefficients and followed the nearest prototype assignment rule.
More in detail, the procedure consists of 4 steps as follows:

1) The α coefficients, that describe each visit in the archetypes’
space, were derived: doing so, a 8392×12 dataset was obtained.

2) For each row, the highest coefficient was selected as a mean to
identify the nearest archetype (crisp rules).

3) A new dataset was created, with a row for each visit and three
columns. As required to build an EL, the first column reported
the patients’ id, the second column reported the visit date, and
the last column reported the name of the nearest archetype (one
among “none”, “all”, “BU”, “LL”, “BR”, and “UL TR LL”).

4) Lastly, for each subject, a row was added to specify whether
he or she was dead. If, for a given patient, a death date was
reported, the second column was filled with the death date and
the third column with the string “Dead”. Otherwise, if a subject
was not reported to be dead, the censoring time was set to the
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Fig. 4. Radar plot of the archetypes obtained in the ALS case study.

Fig. 5. PCA of ALS data and derived archetypes.
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Rep1 Rep2 Rep3 Rep4 Rep5 Rep6 Rep7 Rep8 Rep9 Rep10 Rep11 Rep12 Rep13 Rep14 Rep15 Mean Min SD
k=2 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0
k=3 0.014 0.014 0.013 0.014 0.014 0.013 0.014 0.013 0.014 0.014 0.013 0.014 0.014 0.013 0.014 0.014 0.013 0
k=4 0.013 0.010 0.010 0.010 0.010 0.010 0.010 0.01 0.010 0.010 0.010 0.014 0.013 0.010 0.013 0.011 0.010 0.001
k=5 0.011 0.010 0.008 0.013 0.012 0.010 0.010 0.008 0.009 0.010 0.009 0.009 0.009 0.009 0.009 0.010 0.008 0.001
k=6 0.008 0.010 0.006 0.010 0.006 0.006 0.008 0.009 0.008 0.007 0.009 0.010 0.010 0.008 0.010 0.009 0.006 0.002
k=7 0.010 0.006 0.008 0.010 0.006 0.006 0.012 0.010 0.006 0.006 0.005 0.009 0.006 0.007 0.006 0.007 0.005 0.002
k=8 0.006 0.010 0.007 0.010 0.009 0.008 0.008 0.010 0.005 0.007 0.006 0.008 0.008 0.010 0.012 0.008 0.005 0.002
k=9 0.006 0.011 0.006 0.005 0.005 0.007 0.011 0.007 0.005 0.009 0.006 0.006 0.010 0.006 0.011 0.007 0.005 0.002
k=10 0.005 0.005 0.005 0.013 0.005 0.010 0.005 0.015 0.005 0.005 0.005 0.011 0.012 0.005 0.006 0.007 0.005 0.004

TABLE I
VALUES OF THE RSS OBTAINED IN THE ALS CASE STUDY FOR EACH REPETITION (IN THE COLUMNS) AND EACH NUMBER OF ARCHETYPES k (IN

THE ROWS), ALONG WITH THEIR MEAN, MINIMUM, AND STANDARD DEVIATION FOR EACH k. IN BOLD, THE SELECTED k.

Identified archetype Total ALSFRS-R score
none 47
LL 38
BR 38
BU 28

UL TR LL 26
all 4

TABLE II
ARCHETYPES IDENTIFIED IN THE ALS CASE STUDY AND THEIR

CORRESPONDING TOTAL ALSFRS-R SCORE.

Event (archetype or survival) N occurrences % on the total
none 2234 26.62
all 1216 14.49
BU 982 11.70
BR 513 6.12
LL 1635 19.48

UL TR LL 1812 21.59
Dead 732 79.31

Censored 191 20.69

TABLE III
OCCURRENCES OF EVENTS IN THE FINAL EL OF THE ALS CASE

STUDY: THE TOP SECTION REPORTS THE VISIT FREQUENCIES AND

PERCENTAGES FOR THE SIX ARCHETYPES, WHEREAS THE BOTTOM

SECTION OUTLINES THE FREQUENCIES AND PERCENTAGES OF DEATH

AND CENSORING IN RELATION TO THE TOTAL SUBJECT COUNT.

day after the last recorded visit and reported in the second
column, and the third column was filled with “Censored”.

Note that the visit dates and the death/censoring dates were not used
to derive the archetypes, but were available in the original datasets
and are useful for the following PM analysis.

2) Sequence reduction to remove multiple consecutive
events: To avoid redundancy and focus on transitions between
different disease states, sequence reduction was applied to the event
log as described in Section II-C.2. The top section of Table III shows
the frequency and percentages of visits for the six archetypes, while
the bottom section displays the frequency of censoring and death
along with their percentages relative to the total number of subjects.

D. Characterisation of the clinical trajectories through Process
Mining

Figure 6 represents the graph obtained with the CFM algorithm on
the EL considered. All traces start from the conventional root node
and are represented as descending collections of nodes connected by
arcs. On each arc, the percentage of subjects transitioning between
the two nodes is reported, computed based on the total number of
subjects in the node and the total number of subjects in the dataset.

The first step, i.e., the first disease state that a patient can be
attributed to, appears to be any archetype except the one with

all domains impaired. From the graph, it is quite evident that the
shorter traces belong to those subjects who, in the first available
assessment, present a bulbar or breathing impairment (archetypes
“BR” or “BU”, respectively), or those with three domains impaired
(archetype “UL TR LL”). A shorter trace can be interpreted as the
occurrence of fewer distinct intermediate disease states before the
survival event.

Subjects who, at the first assessment, have a lower limb impairment
(archetype “LL”) display differentiated prognosis steps, with the
majority moving to the archetype with impairment in the lower
limbs, trunk and upper limbs (archetype “UL TR LL”). Lastly, most
of the subjects in our data at the first assessment had no relevant
impairments and therefore were assigned to the “none” archetype as
the first disease state. Then this group shows a highly differentiated
prognosis, with a minor percentage of subjects having death, censor-
ing, or breathing impairment as the subsequent status. The remaining
subjects are equally distributed among those who have only bulbar
impairment, only lower limb impairment, or combinations of lower
limb, trunk, and upper limb impairments.

While analysing the graph, it is crucial to keep in mind that
thresholds have been set to avoid a spaghetti plot, which prevents
the representation of less frequent traces. Specifically, we acted on
the setting of the two parameters max depth and minimum number
of subjects of the CFM visualisation function, set equal to 6 and 10,
respectively. A clear sign of the use of such thresholds is that the
sum of the percentages displayed does not reach 100%.

IV. DISCUSSION AND CONCLUSION

In this work, we presented DYNAMITE, an innovative method-
ology that combines AA and PM to identify representative disease
states and mine disease progression trajectories from longitudinal
clinical data. The proposed method is particularly suitable for clinical
applications in which the same features, such as questionnaires
or clinical tests, are assessed over multiple visits to monitor the
progression of the disease. As a proof-of-concept, we demonstrated
the applicability and usefulness of DYNAMITE on a longitudinal
clinical dataset of ALS patients. The method is based on a four-
step procedure, which involves the data preprocessing needed to
organise the dynamically collected data in matrix form (Section II-
A), the employment of AA to identify extreme disease states and
to characterise them (Section II-B), the creation of an EL through
the association of each observation of the patient with the closest
archetype (Section II-C), and lastly the analysis of the patients’
trajectories among the archetypes with PM techniques (Section II-
D).

It should be noted that the proposed methodology guaran-
tees straightforward interpretability at every step. The identified
archetypes can indeed be characterised in the original space of
features in three different ways:
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Fig. 6. CFM graph of the ALS case study: each node reports the total count of patients passing through it (round brackets), while the edges show
the percentage of patients that continue to the next node in relation to both the preceding node (top) and the overall population (bottom). Survival
events are highlighted with yellow (dead) and pink (censored). The graph is filtered to display only those pathways that have been followed by at
least 10 subjects, with a maximum depth of 6.

• through coefficients, which represent them within the original
dataset as additional states constituting the extreme states of
disease;

• through radar plots, to highlight and capture their peculiarities
and to facilitate comparisons among them;

• through PCA, enabling the representation of both the original
data points and the archetypes in a reduced space (e.g., 2D or
3D).

To ensure that the computation of archetypes was not excessively
impacted by possible clinical outliers, we employed a robust imple-
mentation of AA that provides unbiased results based on the majority
of data points [26].

By combining the AA with a graphical technique like PM, DY-
NAMITE makes it possible to effectively analyse the sequences of
archetypes associated with the consecutive visits of a subject or
population, after organising them in the form of an EL. The inspection
of the obtained traces through the CFM not only allows the analysis
of the progression trajectory of a single subject but also highlights
the prevalent trajectories within the population.

Regarding the arrangement of archetype sequences as traces, it
should be noted that by default, our approach condenses the EL
data to eliminate successive identical events. Although effective in
terms of mining and visualisation, this aggregation step results in a
loss of part of the temporal information in the data. Specifically,
one loses the confirmation that, in the case of successive visits
attributed to the same archetype, the subject was traced as remaining
in the same disease state consecutively. It must be acknowledged,
however, that quantifying the permanence of the same disease status
is not straightforward. Although the methodology chosen for the
representation of trajectories, i.e., PM, provides tools for analysing,
at the individual or population level, the transition times between
one state and the next, the limitation of this analysis lies in the
very nature of the data. The evolution of a clinical condition is,
in fact, a continuum of states, sampled only at the time of visits.
Despite the continuous nature of the condition, this sampling takes
place on a discrete and non-uniform grid. This implies that it is
not possible to reconstruct the exact moment of the switch from
one state to the next from the data, being limited to the clinician’s
recording of a different symptomatology or characterisation of the
subject. However, in other contexts where sampling may be more
regular or dense, it may be worthwhile to choose whether or not
to aggregate identical and consecutive archetypes. For this reason,

we have released an implementation of DYNAMITE that allows the
user to choose whether or not to aggregate identical and consecutive
archetypes through an option that removes or retains autoloops in the
CFM graph.

A further observation on the temporal aspects of the original
real-world data and their effect on trajectories concerns the actual
availability of dynamic data, for which borderline situations may
exist. In particular, there may be subjects for whom only one visit
is available, or subjects with several visits but all associated with
the same archetype. This situation also occurred in our case study,
where subjects with only one ALSFRS-R assessment or with all
visits mapped to the same archetype gave rise to traces composed
of only two events, of the type: archetype associated with visit(s) -
death/censure event. While it is true that traces of this type do not
provide information on the progression of the subject in the strict
sense, they do contribute to characterising the population under study
in the initial phase of the trajectories. Furthermore, since all traces
include a survival event, they allow survival analyses to be carried out
on the entire sample or on sub-cohorts with specific characteristics
(e.g. based on the static characteristics of the subjects, or on the first
archetype(s) characterising progression).

As a comparison with other possible implementation choices,
we evaluated the use of AA in our methodology against other
techniques capable of summarising representative behaviour of the
data. Specifically, we replaced in our method what was the step
of calculating the archetypes and assigning each visit to one of
them with clustering k-means with multiple random restarts and a
number of clusters equal to the number of identified archetypes, i.e.,
6. We then used centroids to represent and characterise disease states,
instead of archetypes, and modelled patients’ trajectories through
them. Figure 7 displays the radar plots of the centroids obtained:
compared with the archetypes reported in Figure 4, we can observe
that the shapes of the centroids resemble those of the archetypes
but appear more moderate, i.e., less prone to assume values tending
towards the minimum or maximum of the range of ALSFRS-R items.
That is, the disease states represented by the archetypes are more
extreme than those defined by the centroids, which instead reflect
more average conditions.

This was somewhat expected, since, by construction, the archetypes
lie on the convex hull of the data while the centroids are positioned in
the centre of each cluster, correctly resulting in the archetypes being
extreme observations and centroids being median representations of
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Fig. 7. Radar plot of the centroids obtained in the ALS case study.

the cluster’s points. This leads to values more markedly towards
the extremes of the ranges in the original variable space for the
archetypes than for the centroids. Moving on with the analysis
in an attempt to characterise the disease states represented by the
archetypes or centroids respectively, it is fairly straightforward to
associate each archetype with the corresponding impaired domain(s)
by observing the radar plots. For the centroids, although the shape
on the radar plot is on the whole preserved, the fact that the edges
are more moderate makes identifying and interpreting a precise
disease state less clear. By comparing the way the sequence of
visits for each subject is mapped onto the disease states obtained as
archetypes or centroids, different scenarios can be observed, with the
transitions between the states encoded with the centroids being either
corresponding, earlier, or later than those between the archetypes.
This is expected, as they are essentially complementary descriptions
of how the pathology evolves in subjects, namely sequences of
extreme states (with archetypes) or median states (with centroids).
Figure 8 reports the PCA plot of the observed visits, including
archetypes and centroids. This plot aligns with previous observations,
showing archetypes positioned farther outward than the centroids, and
showing a correspondence between some archetypes and centroids
(e.g., archetype “none” and centroid “C4”, or archetype “LL” and
centroid “C5”), with centroids consistently placed in more central
positions relative to their corresponding archetypes.

Fig. 8. PCA of ALS data, derived archetypes and centroids.

In summary, this comparison of archetypes and clustering tech-
niques to define disease states indicates that archetypes are effectively
able to provide more extreme representations of the condition of
subjects, compared to traditional clustering methods, such as k-
means, which provide average and less definite descriptions of the
disease states. In certain contexts, such as that of the case study
presented in this work, the use of AA as proposed in DYNAMITE

may be preferable to describe the course of pathologies due to its
enhanced interpretability. In other cases, it might be of interest to
implement both analyses, given their complementarity. Furthermore,
both approaches can be considered alternative and complementary to
methods using PM directly in clinically obtained descriptive states,
such as proposed in [31] where the more compact Milano-Torino
Staging System (MiToS) [38] was used to describe the progression
of ALS as a cumulative sequence of functional impairments.

It is worth noting that while the presented case study focuses
on a disease of a progressively degenerative nature and uses an
established clinical scale to quantify the increase in disability, the
proposed methodology could be used in general for applications with
any pattern of variability. Starting from a description of the patient’s
condition over time, with the use of scales (as in our case study)
or any other clinically useful descriptor (such as haematochemical
parameters), the use of AA can help define, according to their
definition, extreme states representative of the clinical condition in
the population. In the case of conditions that are not necessarily
characterised by progressive worsening over time, such states may,
for instance, correspond to phases of improvement or worsening,
or represent extreme intermediate phases. In the latter case, such
states may be more complex to map in clinical evidence than in our
case study, where it was quite straightforward to map them to the
functional domains affected by ALS. Continuing in the application
of our methodology, in the subsequent definition of trajectories by
PM, what is expected in the case of clinical conditions characterised
by a wider irregularity is that the identified patterns may be greater
in number (if the condition presents great heterogeneity in the
population) or that oscillations between states may be observed
(where the condition presents alternating phases of improvement or
worsening).

In studying clinical conditions where the population of interest in-
cludes both rapid and slow progressors (as in the presented ALS case
study), moreover, one must also take into account that the proposed
methodology encapsulates these two varying patterns collectively. In
these cases, it is appropriate to make some specific considerations.
For slow progressors, it is necessary to evaluate whether the data
characteristics (especially in terms of follow-up length relative to the
expected prognosis) allow for the observation of significant changes
in disease states, or if there is a risk that subjects might be censored
without ever changing state during their consecutive visits. To ad-
dress this, it may be useful to conduct additional analyses for this
population, such as examining the duration within the same disease
state, or to extend the clinical observation period if possible. With
reference to fast progressors, the risk lies in not having sufficiently
frequent sampling to accurately track all state changes. Although it
is true that this would result in the loss of interim archetypes in our
methodology, this primarily reflects what could happen in clinical
practice, where clinicians may miss some steps of disease progression
if they do not have the opportunity to visit subjects within adequate
time intervals. In our case study, we believe that the sampling was
sufficiently frequent and the follow-up period was adequately long
(also thanks to the fact that we used real-world data rather than
clinical trial data) to assume that we have accurately described both
subpopulations.

A limitation of the proposed methodology is that, in its current
implementation, only numeric variables are used as input. However,
longitudinal clinical datasets often contain mixed-type variables,
which may require conversion to dummy variables for use within
DYNAMITE. Although this preprocessing step is feasible, it may be
suboptimal since AA was designed to work with continuous features.
Another aspect concerns the fact that in the present version of our
work, DYNAMITE exclusively employs dynamic data, overlooking
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the potential contributions of static features (e.g. demographics)
in characterising disease states and patient trajectories. However,
additional analyses may complement the proposed methodology to
fully exploit available information. For example, one could explore
the integration of these features in the analysis by appending the static
variables to each patient’s visit, or, alternatively, by including them
a posteriori for stratifying and examining trajectories for different
groups of patients.

Kaplan-Meier curves can be used to inspect differences in progres-
sion rates among different subgroups. As an example, in our case
study, we extracted from the whole population the subjects whose
first visit was associated through our methodology with a state of low
disability (corresponding to the “none” archetype) and for whom the
“Dead” event was later recorded. This resulted in the selection of 407
subjects. On this sub-population, we separated subjects presenting a
bulbar impairment as the first impacted domain (i.e., the subjects with
their following disease status corresponding to the “BU” archetype)
from those presenting motor symptoms (i.e., the subjects with their
following disease status corresponding to the “LL” or “UL TR LL”
archetypes). We then computed the Kaplan-Meier curves (reported in
Figure 9) to estimate and compare the survival functions of the two
populations.

Fig. 9. Kaplan-Meier survival curves of the population of subjects
entering the study in a state of low disability and for whom the death
event is registered, stratified according to their second identified disease
status: subjects associated with a bulbar domain impairment (in red)
versus subjects associated with an impairment in the motor domain (in
blue).

This analysis effectively highlighted slow versus rapid progressors:
the group with early bulbar impairment has a median time to death
of 656 days (IQR 420-746), which increases to 829 days (IQR 449-
1350) for those with early motor impairments. This is consistent
with the medical literature, where subjects with bulbar onset are
consistently reported to have a worse outcome [39].

Future directions include extending DYNAMITE by investigating
alternative rules for associating each observation with an archetype
in a fuzzy manner. This exploration could be particularly valuable
for instances where a visit is located in the center of the space
defined by the archetypes, resulting in an observation that is similar
to multiple archetypes. Additionally, we intend to integrate static
and mixed-type features to further extend and automate the analysis
capacity, enhancing the characterisation of disease states in patients
with clinical conditions and accurately depicting their progression
paths.
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The code implementing the method proposed in this manuscript is
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this link.
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