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Abstract. We present a new epidemic model highlighting the roles of the

immunization time and concurrent use of different vaccines in a vaccination
campaign. To this aim, we introduce new intra-compartmental dynamics, a

procedure that can be extended to various other situations, as detailed through
specific case studies considered herein, where the dynamics within compart-

ments are present and influence the whole evolution.

1. Introduction. In this paper we propose an epidemiological compartmental
model where the efficacy time of vaccinations, i.e., the time a dosed individual
needs to become immune, plays a key role. Furthermore, we also account for the
concurrent effect of different vaccines, differing, for instance, in the time they need
to provide immunization. The role of age can also be accounted for, letting vac-
cines’ efficacy and immunization times depend on age, as well as on the choice of the
vaccine type. These features are well known to be relevant in the present Covid-19
pandemic.

Compartmental models are a formidable tool in the description of a variety of
real situations. The techniques above suggest a general framework able to introduce
a specific dynamic evolution within compartments. In these models, each individual
is considered to be of one compartment at any given time, its evolution consisting
in passing from one compartment to another one, based on the structure and on the
parameters of the model. In other words, the global dynamics consist in individuals
entering the system (e.g., newborns), others leaving the system (e.g., casualties)
and, during the evolution, passing from one compartment to another (e.g., getting
ill, being vaccinated, recovering, . . .). Intra-compartmental dynamics allows both
to group the movements among specific compartments into a smooth evolution, and
to detail the evolution within given compartments.
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In the context of epidemiological models describing the spread of infectious dis-
eases, the SIR model, named after its three compartments (Susceptible, Infected
and Recovered), is the traditional prototype. This epidemic model dates back to
1927, see [16], less than a decade after the 1918 influenza pandemic. In what is
probably its simplest form [22, § 10.2], a prototype SIR model reads

S → I → R
↓


Ṡ = −ρ I S
İ = ρ I S − (ϑ+ µ)I

Ṙ = ϑ I

(1)

where t is time, ρ and ϑ describe the transmission of the disease and the speed of
recovery. Mortality of infected individuals is measured by µ.

The popularity of (1) is due partly to its simplicity, which allows to describe
the disease behavior by estimating a small number of parameters, and partly to its
being amenable to a variety of extensions. The dynamics of the SIR epidemic model
are widely considered, here we recall for instance [1, 4, 21, 25], or [14, Chapter 6],
[22, Chapter 10], and [23, § 1.5.1].

The literature on SIR-type models, typically containing additional compart-
ments, is indeed huge. For instance, SEIR and SEIRS-type models contain also
the compartment E (Exposed) where infected individuals spend a latent/incubation
period prior to become infective, see [12, 13, 18, 19] and the references therein. Vac-
cination campaigns and effects are described in SVIR-type models which consider
individuals that get vaccinated, see [9, 17, 20] or also the different approach in [5].

Recall also, for instance, the SIHR model proposed in [6], where infected indi-
viduals are either Infective (I) or Hospitalized (H), the former ones spreading the
disease, while the latter ones being isolated, typically hospitalized or in quarantine,
thus taking into account lockdown effects.

Since 2020, with the Covid-19 pandemic, the development and use of these models
boomed. The need to explicitly introduce the immunization time of a vaccine and
the concurrent use of different vaccines lead us to introduce a dynamics within
compartments. This machinery allows to fix a priori the time an individual spends
in a compartment, as in the case of the immunization time of a vaccine, see § 2,
allowing also this time to be age dependent, as in § 3. This general framework is
sufficiently flexible to account for the simultaneous adoption of different vaccines,
as in model (4).

In other instances, it might be appropriate to smoothen the change of status
related to the change of compartment, an example being the SEIR model as modified
in § 4. Indeed, pass from (15) to (16) allows to account for a somewhat continuous
evolution from exposed to infective. In all these examples, key statistics, such as
the basic reproduction number, are naturally extended to these new frameworks
keeping their original meaning.

Worth mentioning is the recent SIDARTHE model from [11], consisting of 8
compartments. Indeed, while simplicity is a peculiarity of the SIR model, it is
also a limit. The need to describe more complex dynamics often leads to more
elaborate models. The framework we present below, at the expense of a few analytic
technicalities, also allows to regroup similar compartments together obtaining a
conceptual simplification, as in the extension to the SIDARTHE model proposed
in § 5.

In § 6, the SIHR model is modified to comprehend spatial (geographic) move-
ments. The introduction of the age structure, where advisable, is in general possible,
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as shown in § 7. These two steps, namely the introduction of space and age struc-
tures, are indeed doable in all the examples discussed.

Remark that the present framework indeed provides an extension to the current
compartmental modeling habits. In fact, suitable choices of various functions or pa-
rameters allow to trivialize intra–compartmental dynamics, thus recovering known
models.

Pandemic dynamics can clearly be described through many other tools. For in-
stance, the recent work [2] proposes a multiscale approach and discusses the current
kinetic literature on the subject. Cellular automata are used for instance in [10] in
a probabilistic setting, still with a compartmental structure, see [10, Figure 1 (b)].
The literature also offers essays correlating pandemics to other human activities,
primarily to economy, see for instance [8].

In the effective application of the models discussed below, a key issue is param-
eters’ estimation. We defer for instance to [24] and to [27] for two entirely different
approaches.

From the analytic point of view, a rigorous abstract approach to these classes of
models is possible but at the cost of a quite intricate PDE based formalism, see a first
attempt in [7]. Therefore, the sequel is devoted to show that intra-compartmental
dynamics can both refine usual models, and also take into account new features,
not captured by standard compartmental models.

2. Vaccination needs time T∗ to become effective. The model presented
in [20], here slightly modified, amounts to this extension of (1):

V
↗ ↓ ↘

S → I → R
↓


Ṡ = −ρS I S − p(t, S)

V̇ = p(t, S)− ρV I V − ϑV V

İ = (ρS S + ρV V )I − (ϑI + µ)I

Ṙ = ϑI I + ϑV V .

(2)

Here, V is the number of vaccinated individuals, p(t, S) measures the speed with
which vaccinations of at most S individuals take place at time t, while µ is the
mortality rate, ρS , ρV measure infectivity, ϑI and ϑV are the recovery rates.

Before introducing the immunization time in (2), we remark that setting p(t, S) =
αS and introducing the usual mortality terms for the S, V and R populations, we
recover precisely the case considered in [20].

The effect of doses, as is well known, is not immediate. On the contrary, the
time T∗ that dosed individuals need to wait to get immunization plays a key role.
Whenever a vaccine needs two (or more) doses, T∗ measures the time from the first
dose to full immunization. Therefore, we propose the following model:

V (0)→ V (T∗)

↗ ↓ ↘
S → I → R

↓


Ṡ = −ρS I S − p(t, S)

∂tV + ∂τV = −ρV I V

İ = (ρS S +
∫ T∗
0

ρV V )I − ϑ I − µ I

Ṙ = ϑ I + V (t, T∗)
V (t, 0) = p (t, S(t)) .

(3)

Here, the number of individuals at time t that were dosed at time t−τ is V = V (t, τ),
defined for t ∈ R+ and τ ∈ [0, T∗]. In other words, τ is the time since (the first)
vaccination occurred. Note moreover that it is very reasonable to assume that ρV
is τ dependent, since ρV (τ) measures the ease with which vaccinated but not yet
immunized individuals may get infected after time τ from the (first) dose. Note
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that also in the former model (2) the term ρV I V is present and it implies that
vaccinated individuals actually can get infected, but therein independently of the
time from vaccination.

In connection with the present Covid-19 pandemic, we remark that model (3)
can be easily extended to the case of different, say m, vaccines having different
efficacy times T 1

∗ , . . . , T
m
∗ . Indeed, denote by Vℓ, for ℓ = 1, . . . ,m, the number of

individuals dosed with the ℓ–th vaccine. We have

Vℓ(0)→ Vℓ(T
ℓ
∗)

ℓ = 1, . . . ,m

↗ ↓ ↘
S → I → R

↓



Ṡ = −ρS I S −
m∑
ℓ=1

pℓ(t, S)

∂tVℓ + ∂τVℓ = −ρVℓ
I Vℓ

İ =

(
ρS S +

m∑
ℓ=1

∫ T ℓ
∗

0
ρVℓ

Vℓ

)
I − (ϑ+ µ)I

Ṙ = ϑ I +
m∑
ℓ=1

Vℓ(t, T
ℓ
∗)

Vℓ(t, 0) = pℓ (t, S(t)) .

(4)

Note that, as is to be expected, according to (4) the total number of individuals is
affected only by mortality, in the sense that

d

dt

(
S(t) +

m∑
ℓ=1

∫ T ℓ
∗

0

Vℓ(t, τ) dτ + I(t) +R(t)

)
= −µ I(t) .

A parameter often used to describe the tendency of the pandemic is the (time
dependent) basic reproduction number Ro(t). Within (4), it is explicitly computed:

Ro(t) =

ρS S(t) +
m∑
ℓ=1

∫ T ℓ
∗

0
ρVℓ

(τ)Vℓ(t, τ) dτ

ϑ+ µ
, (5)

so that the increasing in the infected individuals at time t is equivalent to Ro(t) > 1:

d

dt
I(t) ≷ 0 ⇐⇒ Ro(t) ≷ 1 . (6)

The above equivalence holds also in the case of the parameters ρS , ρVℓ
, ϑ and µ

being time dependent.
At first sight, the numerator in the right hand side of (5) is misleading, for it

apparently implies that higher values of Vℓ lead to an increase in Ro(t). On the
contrary, increasing Vℓ causes a decrease in S and, even more important, individuals
remain in the Vℓ compartment only for a finite time T ℓ

∗ , then passing to the R
compartment and thus reducing the value of Ro. Moreover, it is reasonable to
assume that ρS ≫ ρVℓ

.
A direct comparison between (2) and (3), though suggestive, is inevitably highly

arbitrary. Clearly, V (t) in (2) has to be compared to
∫ T∗
0

V (t, τ) dτ in (3). However
the key mechanism with which V individuals enter the R population in (2) can
hardly be related to that transforming V into R in (3). In the former case, at
any time t, the prescribed portion ϑV V (t) of the V population enters R. On the
contrary, in (3), at time t all V (t, T∗) individuals after time T∗ from vaccination
enter R. Formally, this difference is evident noting that the parameter ϑV in (2) has
no counterpart in (3) while, on the other hand, the time T∗ in (3) has no analogue
in (2).

Thus, below, to investigate the role of T∗, we compare the evolutions of instances
of (3) differing only in the time necessary for vaccination to ensure immunization.
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Referring to (3), we choose the following parameters1

ρS = 5× 10−4

ϑ = 1× 10−3

µ = 1× 10−4

ρV (τ) = ρS

√
1− τ

T∗
p(t, S) = 0.5 χ

[10,+∞[
(t) χ

R+
(S)

(7)

and initial data

So = 99.9 , Vo(τ) ≡ 0 , Io = 0.1 , Ro = 0 . (8)

We consider 8 sample choices for the time required by vaccination to become effec-
tive and compute the corresponding number of deaths, the results are in Table 1.
Clearly, a shorter value of T∗ is preferable. We provide in Figure 1 diagrams of the

T∗ (days) 1 7 14 21 28 35 42 49
Deaths: 0.28 0.32 0.37 0.43 0.49 0.56 0.63 0.70

Table 1. Times necessary for the vaccination to provide immunity
and corresponding casualties according to model (3)–(7)–(8). The
initial total population is 100.

solutions corresponding to T∗ = 7, 21, 35, 49. Note first that the dynamics of the
S compartment is hardly affected by the changes in T∗, the key differences being in
the I and R populations.

The relevant differences in the diagram of the map t →
∫ T∗
0

V (t, τ) dτ heavily
depend on the different lengths of the time interval where V is integrated. Moreover,
higher values of T∗ results in more members of the V population get infected,
coherently with (3). This explains the rather horizontal plateau in the

∫
V diagram

for T∗ = 7, which is replaced by a clearly decreasing profile when T∗ = 35 and
T∗ = 49.

In Figure 1, the differences in the I diagrams are evident and clear: higher
values of T∗ enhance the spreading of the virus, causing a higher number of infected
individuals and, hence, of casualties.

The evolutions in the R populations are similar. Note however that they are
slightly translated one with respect to the other, due to the delay with which dosed
individuals are immunized and, hence, enter the R population according to (3). It
is mostly this delay that explains the differences in the casualties, as reported in
Table 1.

The flexibility introduced by dynamics internal to the dosed (V ) population
allows also to take into consideration variations in this evolution. Assume, for
instance, that vaccines are unavailable between times, say, 30 and 120, so that we
replace p in (7) with

p(t, S) = 0.5 χ
[10,30]∪[120,+∞[

(t) χ
R+

(S) . (9)

Then, the number of casualties sharply grows with respect to the number of ca-
sualties in (3)–(7)–(8), as clearly shown when comparing Table 1 with Table 2.

The diagrams in Figure 2 also confirm the negative effect in a suspension of the
vaccination campaign.

1χ
A

is the characteristic function of the set A: χ
A
(x) = 1 ⇐⇒ x ∈ A and χ

A
(x) = 0 ⇐⇒

x ̸∈ A.
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Figure 1. Solutions to (3)–(7)–(8) in the 4 cases T∗ = 7, 21, 35, 49.

T∗ 1 7 14 21 28 35 42 49
Deaths: 1.11 1.18 1.25 1.32 1.38 1.43 1.48 1.53

Table 2. Times necessary for the vaccination to provide immunity
and corresponding casualties, according to model (3)–(7)–(8), in
the case vaccinations are suspended as detailed in (9). The initial
total population is 100.

As a further example, we consider the problem of choosing between two different
vaccines. We integrate (4) with m = 2 and supplement the data and parameters
in (7)–(8)

T 1
∗ =7 ρV1(τ)= ρS

√
1− τ

T 1
∗

p1(t, S)=ω χ
[20,+∞[

(t) χ
R+

(S)

T 2
∗ =35 ρV2(τ)= 0.2 ρS

√
1− τ

T 2
∗

p2(t, S)= (0.5− ω)χ
[20,+∞[

(t) χ
R+

(S) ,
(10)

with the parameter ω ∈ [0, 0.5] determining the amount of vaccines of the two types
dosed at each time. These choices correspond to the situation where two different
vaccines are available. The first one is effective after only T 1

∗ = 7 days, while the
latter needs T 2

∗ = 35 days to provide full immunization. On the other hand, the
second vaccine provides a far better protection immediately after the first shot, as
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Figure 2. Diagrams of the solutions to (3)–(7)–(8) with a suspen-
sion in the vaccination campaign as detailed in (9) in the 4 cases
T∗ = 7, 21, 35, 49.

it follows from ρV1 = 5 ρV2 in (10). The resulting integrations in Figure 3 show

Figure 3. Diagrams of the solutions to (4)–(7)–(8)–(10). On the
left with ω = 0.1 and, on the right, with ω = 0.4.

that the two rather different strategies resulting from ω = 0.1 and ω = 0.4 actually
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lead to similar results for what concerns the number of casualties. In the two cases,
however, the global costs of the two campaigns might be significantly different, due
to the different costs of the vaccines and of their distribution.

3. Intra–compartmental dynamics with age structure. The insertion of an
intra–compartmental dynamics is not limited to ODE models. As it is well known,
age differences often have a role in the spreading of diseases. Therefore, we introduce
the following extension of (3):

∂tS + ∂aS = −
∫
R+

ρ(t, a, α) I(t, α) dα S − p(t, a, S)

∂tV + ∂aV + ∂τV = −ρV I V

∂tI + ∂aI =

∫
R+

ρ(t, a, α) I(t, α) dαS

+

∫
R+

∫ T∗

0

ρV (t, a, τ, α)V (t, α, τ) dα dτ I − ϑ I − µ I

∂tR+ ∂aR = ϑ I + V (t, a, T∗) ,

(11)

Vaccination entering also as boundary datum in the evolution of the V population:

V (t, a, 0) = p (t, a, S(t, a)) . (12)

In (11)–(12), we use the same symbols as in (3), allowing the various parameters
to depend also on age. For instance ρ = ρ(t, a, α) describes the ease with which
I individuals of age α infect members of the S population of age a at time t, and
similarly for ρV .

System (11) needs to be supplied with initial and boundary data, such as
S(0, a) = So(a)

V (0, a, τ) = Vo(a, τ)
I(0, a) = Io(a)
R(0, a) = Ro(a)


S(t, 0) = Sb(t)

V (t, 0, τ) = 0
I(t, 0) = 0
R(t, 0) = 0

(13)

where, as it is realistic, we set to 0 the birth rate of vaccinated, infected and recov-
ered individuals.

Note that setting all data and parameters in (11)–(12)–(13) constant in a, we
essentially reobtain the previous model (3), essentially meaning that S, V, I, R in (3)
have to be replaced by their integrals over a ∈ R+.

Extending the analogous property valid for system (3), note that the total number
of individuals varies not only due to mortality but also due to the natality Sb(t),
indeed

d

dt

∫
R+

(
S(t, a) +

∫ T∗

0

V (t, a, τ) dτ + I(t, a) +R(t, a)

)
da = −

∫
R+

µ(t, a) I(t, a) da+ Sb(t) .

The present model realistically allows infection to be propagated across different
ages. Therefore, we can only have an index Ro(t) averaged over all ages. Indeed,
defining

Ro(t) =

∫
R+

∫
R+

(
ρ(t, α, a)S(t, α) +

∫ T∗

0

ρV (t, a, τ, α)V (t, α, τ) dτ

)
dα I(t, a) da∫

R+

(ϑ(t, a) + µ(t, a)) I(t, a) da
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we have the following extension of (6):

d

dt

∫
R+

I(t, a) da ≷ 0 ⇐⇒ Ro(t) ≷ 1 . (14)

Remark that also model (11) can easily be extended to the case of different
vaccines having different full efficacy times through the introduction of different
vaccinated populations V1, . . . , VM , now with Vℓ = Vℓ(t, a, τ), for ℓ = 1, . . . ,m.
The corresponding extensions of the above formulæ for the variation of the total
population and for the definition of Ro(t) are straightforward.

The use of model (11)–(12)–(13) allows to tackle the key issue of optimizing the
use of the available vaccines on the basis of their different efficacy on different age
classes.

4. Exposed are not immediately infective. The description provided by (1) is
often too approximate. For instance, it might be necessary to distinguish between
exposed (E) and infective (I) individuals, extending (1) to

S → E → I → R
↓ ↓


Ṡ = −ρ I S
Ė = ρ I S − (ϑE + µE + κ)E

İ = κE − (ϑI + µI)I

Ṙ = ϑE E + ϑI I ,

(15)

where we introduced the term κE representing the speed at which exposed indi-
viduals become infective. Refer for instance to [12, 13, 18] for various results about
developments of SEIR models.

Assume now that individuals infected at time t typically become infective at a
later time. It is then natural, see also [15, 16], to introduce the number I(t, τ) of
individuals at time t that were infected at time t− τ , so that (1) becomes

S → I(0)→ I(τ)→ → R

↓


Ṡ = −

∫
R+

ρ(τ) I(t, τ) dτ S

∂tI + ∂τI = −ϑ(τ) I − µ(τ) I

Ṙ =
∫
ϑ(τ) I(t, τ) dτ

I(t, 0) =
∫
R+

ρ(τ) I(t, τ) dτ S(t).

(16)

Observe that the last line above is in fact a boundary condition, prescribing how
many individuals get infected at time t.

Remark that the dependence of ρ, ϑ and µ on τ allows to account for different
infectivity, recovery and mortality rate at different stages of the infection. For
instance, if an individual infected at time t becomes infective at time t + ti, then
we set ρ(τ) = 0 for τ ∈ [0, ti].

Observe that, as is to be expected, the variation in the total number of individuals
resulting from (16) is due exclusively to mortality. Indeed

d

dt

(
S(t) +

∫
R+

I(t, τ) dτ +R(t)

)
= −

∫
R+

µ(τ) I(t, τ) dτ . (17)

Within the framework of (16), an explicit expression for the basic reproduction
number Ro(t) at time t is available:

Ro(t) =

∫
R+

ρ(τ) I(t, τ) dτ S(t)∫
R+

(ϑ(τ) + µ(τ)) I(t, τ) dτ
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and it is immediate to see that its exceeding unity is equivalent to the increase of
the total number of infected individuals:

d

dt

(∫
R+

I(t, τ) dτ

)
≷ 0 ⇐⇒ Ro(t) ≷ 1 . (18)

It goes without saying that suitable choices of initial data and parameters in (16)
allow to recover within (16) the solutions of (1). Here we only provide a quick
example of a comparison among solutions to (1), (15) and (16), with data and
parameters in (1) being an average of those in (15), while the choices in (16) are an
interpolation of those in (15), as detailed in (19).

(1) (15) (16)
ρ = 0.1 ρ = 0.1 ρ(τ) = 0.1 (1− e−0.2 τ )

ϑ = 3 (ϑE , ϑI) = (7, 1) ϑ(τ) =

{
7 τ < 2

1 τ ≥ 2

µ = 0.5 (µE , µI) = (0.1, 0.9) µ(τ) = 0.9− 0.8 e−2τ

κ = 5
So = 10 So = 10 So = 10

Io = 6. (Eo, Io) = (1, 5) Io(τ) =

{
0.5 τ ∈ [0, 2[

2.5 τ ∈ [2, 4]

Ro = 0 Ro = 0 Ro = 0 .

(19)

Figure 4 shows sample integrations of (1), (15) and (16). In the situation considered,
according to mortality, the mixed ODE–PDE system (16) can be seen in some senses
in the middle between the other two classical purely ODE based compartmental
models (1) and (15). Intra-compartmental dynamics can thus recover the dynamics
described through standard compartmental models.

On the other hand, other scenarios can hardly be recovered through the use of
only standard compartments. Indeed, for instance, it can be reasonable to assume
that infected individuals are most infective in given time intervals after infection
where, in general, these intervals depend on the specific disease under consideration.
Such a situation, within Model (16), is easily described and we consider, for instance,
the following choices:

ρ(τ) = ρ̄ t e−α(t−T̄ )2 with ρ = 0.1 and
Case (i) α=1.0 , T̄ =10.0 ,
Case (ii) α=1.0 , T̄ =4.0 ,
Case (iii) α=0.25 , T̄ =4.0 .

(20)

The sample choices (20) differ in the time T̄ at which I individual are most infective
and in the coefficient α ruling the width of the infective time interval.

The results are summarized in Figure 5. The differences in the evolutions pre-
scribed by (16) corresponding to the choices (20) are very intuitive, Case (ii) being
the reference situation. In Case (i), infected individuals mostly either die or recover
before being infective. In Case (iii), the wider distribution of ρ helps the spreading
of the infection.

5. Intra-compartmental dynamics in the SIDARTHE model. We now con-
sider the SIDARTHE model introduced in [11]. It consists of 8 populations, which
we briefly recall in Table 3, leaving the detailed explanation to [11].
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Figure 4. Above, the integrations of (1) and (15), below on the
left that of (16) (19). The rightmost diagram on the second line
displays the total number of living individuals in the three cases,
showing that, with respect to mortality, the ODE–PDE model (16)
can be seen in some senses in the middle between the ODE mod-
els (1) and (15).

S Susceptible healthy can be infected
I Infected asymptomatic infective undetected
D Diagnosed asymptomatic infective detected
A Ailing symptomatic infective undetected
R Recognized symptomatic infective detected
T Threatened acutely symptomatic infected detected
H Healed healthy immune
E Extinct

Table 3. Populations in model (21) from [11].
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Figure 5. Above, from left to right, the integrations of Case (i),
Case (ii) and Case (iii) in (20) with parameters and data as pre-
scribed in (19). Below, the corresponding choices of the ρ function
as detailed in (20). The differences in the displayed evolutions are
due to the intra–compartmental dynamics in the I population.
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Its block diagram and the corresponding system of ordinary differential equations
read:

S → I → D

↙ ↓ ↓ ↘
H ← A → R ↘
↑ ↘ ↓ ↘ ↓
↑ E ← T → ↓
↑ ↓
← ← ← ← ← ← ←



Ṡ = −α I S − γ AS − β D S − δ RS

İ = α I S + γ AS + β D S + δ RS − (ε + ζ + λ)I

Ḋ = ε I − (η + ρ)D

Ȧ = ζ I − (ϑ + µ + κ)A

Ṙ = η D + ϑA− (ν + ξ)R

Ṫ = µA + ν R− (σ + τ)T

Ḣ = λ I + ρD + κA + ξ R + σ T

Ė = τ T .

(21)

We refer to [11] for the specific meaning of each constant and for the motivations
of this model.

Here, we note that both the evolutions I → A and D → R → T are due to the
development and worsening of the symptoms. It is therefore natural to single out
these parts, namely

D

I → → → ↓
S → ↓ R → E

A ↘ ↙ ↓
H T

(22)

Introduce now the populations I = I(t, s) and R = R(t, s). The former compre-
hends I and A, while the latter consists of D, R and T , as it stems comparing the
scheme (22) above with (23) below. The evolution of the symptoms is then de-
scribed through the dependence on the s variable, in completely independent ways
in the two different compartments.

S → I(0)→ I(s)→ → R(0)→ R(s)→ → E

↘ ↙
−→ H ←−

(23)



Ṡ = −
∫
α(s) I(t, s) ds S −

∫
δ(s)R(t, s) ds S

∂tI + ∂sI =
∫
α(s) I(t, s) ds S +

∫
δ(s)R(t, s) ds S

−
∫
ε(s) I(t, s) ds−

∫
ϑ(s) I(t, s) ds

∂tR+ ∂sR =
∫
ϑ(s) I(t, s)s−

∫
η(s)R(t, s) ds

Ḣ =
∫
ε(s) I ds

Ė =
∫
η(s)R(t, s) ds ,

(24)

All integrals being computed over R+. Careful piecewise constant choices of the
various functions α, δ, ε, ϑ and η allow to recover [11, Formulæ (1)–(8)]. However,
system (24) is far more flexible, although it actually consists of only 3 differential
equations, since H and E are easily found once S, I and R are available.

Note also that in model (24) the explicit expression of the basic reproduction
number is immediately at hand. Indeed, defining

Ro(t) =

∫
(α(s) I(t, s) + δ(s)R(t, s)) ds S(t)∫

(ε(s) + ϑ(s)) I(t, s) ds

the key property (18) still holds.
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6. Movements as intra–compartmental dynamics. As a further example of
intra-compartmental dynamics we consider movements. Indeed, as a prototype for
the description of the role of quarantine in the spreading of a pandemic, consider
the model [6, Formula (9)]

S → I ↘
↓ R

H ↗


∂tS + µS S=−ρ I S
∂tI + µI I = ρ I S − κ I − ϑ I

∂tH + µH H =κ I − η H
∂tR+ µR R=ϑ I + η H ,

(25)

where we used the standard notation for the S, I and R populations, while H
stands for the individuals that are infected but are hospitalized, or in quarantine.
Here, ρ describes, as usual, infectivity; κ the hospitalization rate; η, respectively ϑ,
the recovery rate of hospitalized, respectively infected, individuals. The mortality
terms µS S and µR R might as well be neglected on short time intervals.

In this connection, it can be relevant to take into consideration events that pro-
voked relevant gatherings of crowds, a well known example being the Atalanta
vs. Valencia football match played in Milan (Italy) on February 19th, 2020, see [26].
To this aim, following [6], we introduce a geographical movement as follows

S(x) ⟲ → I(x) ⟲ ↘
↓ R(x) ⟲

H ↗


∂tS + div (vS S) + µS S=−ρ I S
∂tI + div (vI I) + µI I = ρ I S − κ I − ϑ I

∂tH + µH H =κ I − η H
∂tR+ div (vR R) + µR R=ϑ I + η H .

(26)
Above, all populations are also space dependent, so that, for instance, S = S(t, x),
x being the geographical coordinate in R2. The various movements are described
by the 2d vectors vS , vI and vR, while H individuals are not assumed to be moving.
We defer to [6, Section 6] for further details and for a sample integration of (26),
while its well posedness is proven in [7].

7. An age dependent SIS model with immunization time. Introducing age
structure in the SIS model [15], see also [3, Formula 10.1], we get

S ←→ I

{
∂tS + ∂aS=−ρ I S + γ I
∂tI + ∂aI = ρ I S − γ I .

(27)

In this model, when infected individuals recover, they get back to being susceptible
at a rate governed by the, possibly age dependent, parameter γ. However, it might
be reasonable to assume that, after infection, immunization lasts for a, possibly
age dependent, time interval. Therefore, we are lead to introduce an R population
of individuals that recovered and are immune, but only for a predetermined age
dependent time T∗ = T∗(a):

S −→ −→ I
↖ ↙

R(0)→ R(T∗)


∂tS + ∂aS=−ρ I S +R (t, a, T∗(a))
∂tI + ∂aI = ρ I S − γ I

∂tR+ ∂aR+ ∂τR=0
R(t, a, 0)= γ I(t, a) .

(28)

Note however that the very simple nature of the third equation allows to rewrite (28)
as a system of 2 PDEs with “delay” in both the t and a variables:{

∂tS + ∂aS=−ρ I S + γ I (t− T∗(a), a− T∗(a))
∂tI + ∂aI = ρ I S − γ I(t, a) .

(29)
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The form (28) is more prone to extensions than (29), since it allows to specify
various evolutions of the R population. Indeed, from the modeling point of view,
systems (28) can easily be extended to comprise other factors, such as a τ–dependent
rate of re-infection of the R individuals, for instance.

From the analytic point of view, we remark that (28) provides a first minimal
example of a “junction” in 2 space dimensions. Indeed, the line τ = T∗(a) splits
the plane of the “space” variables (a, τ).
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