Ion-beam Sputtering for the surface modification of heterogeneous nanodispersed Catalysts

Ruairi O'Donnell^{1*}, Salvatore Scaglione², Danilo Zola³, <u>Nancy Artioli</u>^{1*} ¹Queen's University Belfast, Belfast, BT9 5AG, U.K. ²ENEA CR Casaccia, Rome,00123, Italy *corresponding author: n.artioli@aub.ac.uk

Introduction

Interface science is crucial for the development of new technologically advanced materials [1]. In particular, this study shows that ion beam sputtering can be used as an effective technique for the controlled surface modification of solid heterogeneous catalysts. The surface properties of these nano materials can be tailored to enhance their catalytic performance leading to better resistance to aging and a reduction of the PGM loading [2]. The technique has been applied on catalysts of relevant interest like the ones applied in the emission control (e.g. $Pt/Ce_{0.7}Zr_{0.3}O_2$ catalyst) [3][4]. The effect of the different parameters of ion bombardment (type of ions, energy, doses) on the catalytic activity has been investigated. Modeling of the treatment has also been introduced to the describe erosion of the surface through ion sputtering and deeply understand the correlations between the parameters of the bombardment and the observed enhanced catalytic activity.

Materials and Methods

A sample of Pt (1% w/w) $Ce_{0.7}Zr_{0.3}O_2$ was prepared by impregnating commercially sourced $Ce_{0.7}Zr_{0.3}O_2$. The catalyst was then bombarded with N⁺ ion beams. One sample, Pt(1.2keV) was treated with an ion energy of 1.2keV and an ion current 10mA, receiving 4 doses. The other sample Pt(1.5keV) was treated using an ion energy of 1.5keV and an ion current of 20mA, receiving 16 doses. The incident angle of the ion beam was 28° to the catalyst surface. The treated samples were compared with an untreated sample, Pt fresh.

To investigate the effect of the ion bombardment on the catalytic activity, TPR (Temperature Programmed Reduction) experiments have been carried out in the presence of 4000ppm of H₂. The temperature was ramped from 313K to 773K at a rate of 5K/min. Catalytic testing was carried out on all samples by using a reaction mixture composed of 10% O₂, 4.5% H₂O, 2000ppm CO, 2000ppm CH₄, 2000ppm C₃H₆, and 200ppm NO with a total flow of 100ml/min. The temperature was increased from 303K to 773K at a rate of 5K/min. The outlet gases from the reactor were analysed using a Pfeiffer Vacuum quadrupole mass spectrometer.

Results and Discussion

The reducibility of the samples after bombardment has been assed in TPR experiments reported in Fig.1. The peaks of H₂ consumption for the treated samples were observed at lower temperature with respect to the fresh catalyst: at 427K and 405K for Pt(1.2keV) and Pt(1.5keV) respectively, whilst 445K corresponds to the maximum of H₂ uptake for the fresh catalyst. The total H₂ consumption observed from reduction of Pt(1.5keV) is lower than the one observed in Pt(1.2keV). This can be attributed to the higher number of ion doses used on the Pt(1.5keV) sample. The catalytic activity on bombarded catalysts was assessed in oxidation tests in the presence of gas mixture representative of the exhaust gas composition.

Figure 1. H₂ consumption as a function of temperature

determined from TPR experiments using 4000ppm H_2 , on

untreated Pt 1w/w% Ce0.7Zr0.3O2 (Ptfresh), and treated

samples: Pt(1.2keV) - 10mA/15min dose x4. Pt(1.5keV)

 C_3H_6 conversion as a function of temperature in Fig. 2. It is observed that the catalyst showed an enhanced catalytic activity after ion bombardment in the oxidation of both CO and C_3H_6 . The temperature at which 50% conversion was achieved (T_{50}) for CO oxidation were 513K and 500K for Pt(1.2keV)and Pt(1.5keV) respectively, 10 to 20K lower than the T_{50} value of the fresh sample. The T_{50} values for C_3H_6 oxidation over Pt(1.2keV) and Pt(1.5keV) were 522K and 511K respectively, which show improved catalytic activity of the treated catalysts at low temperature compared with Pt fresh (T_{50} 526K). The results are in

The results are reported in terms of CO and

line with HRTEM analysis which revealed that the samples, after ion bombardment, are characterized by an uniform distribution of nanoparticles on the catalytic surface, as well as by the formation of atom vacancies and incomplete terraces. Analogous results have been obtained from the study of alternative catalytic systems such as Pd/ $Ce_{0.7}Zr_{0.3}O_2$ treated with the same ion bombardment protocol, which provokes a remarkable change in the particle morphology.

Figure 2. CO conversion and C₃H₆ conversion as a function of temperature. Feed composition 10% O₂, 4.5% H₂O, 2000ppm CO, 2000ppm CH₄, 2000ppm C₃H₆ and 200ppm NO.

Significance

20mA/15min dose x16.

Ion beam irradiation has been used as a post synthesis technique for the controlled surface modification of heterogeneous emission control catalysts. The study, carried out using $Pt/Ce_{0.7}Zr_{0.3}O_2$, proves that this method enhance the catalytic activity and the stability of the catalyst and opens up to the application of this method to several catalytic materials.

References

- L. Hanley and S. B. Sinnott, "The growth and modification of materials via ion surface processing," Surf. Sci., vol. 500, pp. 500–522, 2002.
- [2] N. Artioli et al., "Highly active nanocatalysts by ion beam surface modification," vol. 77, pp. 2–3, 2000.
- M. Ozawa, "Role of cerium-zirconium mixed oxides as catalysts for car pollution: 1 A short review," J. Alloys Compd., vol. 275277, pp. 886–890, 1998.
- [4] R. M. Heck and R. J. Farrauto, "Automobile exhaust catalysts," Appl. Catal. A Gen., vol. 221, no. 1–2, pp. 443– 457, 2001.

#	Title	Authors
PI01	Karen Wilson	Sustainable Catalytic Bio-refining - Challenges and opportunities for catalyst design
PI02	Louise Ollson	Catalysts for removing NOx from vehicle exhausts
PI03	Adrian Mulholland	Multiscale modelling and biomolecular simulations for biocatalysis
PI04	Moniek Tromp	Probing Active Species in Catalysis – Application of Advanced Lab and Synchrotron Techniques
К01	Selective Polymerization Catalysis: Using Metal Salen catalysts to Selectively Polymerize from Mixtures of Monomers	Tim Stoesser and Charlotte Williams
K02	Metal-oxo complexes as catalysts for reduction reactions	Jason Love, Danny Morris, Karlotta van Rees, Massimiliano Curcio, Liam Donnelly, Fernanda Duarte, Stephen Thomas, Mirza Cokoja, Markus Drees and Fritz Kuehn
K03	Dial (1st Row) M for Mechanism	Robin Bedford
K04	Homogeneous Catalytic Reaction of Organometallic Ruthenium Complexes	James Walton
K05	Catalytic polymerisation of cyclic monomers from sugars	Antoine Buchard, Matthew D. Jones and Matthew G. Davidson
K06	Enabling platinum-like catalytic functionality in earth-abundant metal oxide systems through confined, emergent nanostructures	Dragos Neagu, Evangelos I. Papaioannou, Wan K.W. Ramli, David N. Miller, Billy J. Murdoch, Hervé Ménard, Ahmed Umar, Anders J. Barlow, Peter J. Cumpson, John T.S. Irvine and Ian S. Metcalfe
K07	Commercial Technology Development in a CAN – A Step Change in Fischer-Tropsch	James Paterson
K08	Highly selective reduction of α,β-unsaturated aldehydes and ketones under ambient conditions using tetraalkylphosphonium ionic liquids	Kathryn Ralphs, Haresh Manyar, Eadaoin McCourt, Johan Jacquemin, Peter Nockemann, Christopher Ormandy and Thiago Carneiro de Souza
K09	Light-tuned selective coupling of nitro-aromatics to azo/azoxy-compounds by photocatalyst g-C3N4	Yitao Dai, Flemming Besenbacher, Nina Lock and Ren Su
K10	Low temperature selective methane oxidation to methanol utilizing molecular oxygen with gold palladium based catalysts	Nishtha Agarwal, Simon Freakley, Sultan M. Althahban, Christopher Kiely and Graham Hutchings
K11	Online Monitoring of a Photocatalytic Reaction by Real-time High resolution FlowNMR Spectroscopy	Rachael Broomfield-Tagg, Ulrich Hintermair and John Lowe
K12	Advances in multimodal tomography: Spatially and temporally resolved catalyst imaging	Stephen Price, Andrew Beale and Fred Mosselmans
K13	Operando Infrared Microspectroscopy at work: Effects of Crystal Size on Formation of the Hydrocarbon Pool in the Methanol-to- Hydrocarbons Process	Ivalina Minova, Alex Greenaway, Santhosh Matam, Juan Maria Gonzalez-Carballo, Mark Frogley, Gianfelice Cinque, Paul Wright and Russell Howe
0.01	Asymmetric Group 4 Metallocenes for Ethylene	Jessica Lamb, Jean-Charles Buffet. Zoë
001	Polymerisation	Turner and Dermot O'Hare

O02	Towards Non-Phthalate Ziegler-Natta Catalysts for Polypropylene	George Britovsek, Atanas Tomov, Michel Clarembeau and Serge Betonville
O03	Kinetic Profiling for the Acidic Properties of Carboxylated Carbocatalysts in Acid-catalyzed Ring-opening Reaction	Bo-Lun Wang, Feng Ryan Wang and Dangsheng Su
O04	Hydrogenation of dicarboxylic acids, esters, and amides in the presence of an amine to N- heterocycles or diamines	Yiping Shi, Paul Kamer and David Cole- Hamiltion
O05	Ligand Tuning in Cp* IridiumIII Oxidation Catalysts	Emma Sackville and Ulrich Hintermair
O06	Highly Efficient ZnO-Cu@SiO2 for Vapor-phase Hydrogenation of Dimethyl Malonate to 1,3- Propanediol	Sainan Zheng and Wei Li
007	All-dry synthesis of monodisperse hollow carbon spheres for hydrogenolysis of 5- hydroxymethylfurfural	Ruoyu Xu, Liqun Kang, Ferdi Schüth and Ryan Wang
O08	The Transfer Hydrogenation of Methyl Levulinate to γ-Valerolactone over Cu-ZrO2	Mark Douthwaite, Sarwat Iqbal, Peter Miedziak, Gemma Brett, Jonathan Bartley, David Willock and Graham Hutchings
O09	Asymmetric Reduction and Hydrogen Borrowing using Iron and Ruthenium Catalysts	Martin Wills
O10	Dialing Molecules with Nickel Catalysis: Understanding Oxidative Addition to Nickel(0) Complexes Relevant to Cross-Coupling	David J. Nelson, Sonia Bajo, Ignacio Funes-Ardoiz, Alan R. Kennedy, Gillian Laidlaw, Feliu Maseras, and Stephen Sproules
O11	Watching Homogeneous Catalysis with Real-time High Resolution FlowNMR	Ulrich Hintermair, Andrew Hall and John Lowe
O12	Ni-containing Poly-Ionic Liquid Immobilized on Solid Acid Oxide: Catalyst for Crude Oil Catalytic Aquathermolysis	Tao Li, Zou Run, Xu Jun and Guo Xuhong
O13	Rational Design of Nano-Alloy Catalysts for the NH3 Decomposition Reaction	Luke Parker, Liam Bailey, James Carter, Nicholas Dummer, Alberto Roldan Martinez, Stan Golunski and Graham Hutchings
O14	One-step plasma-catalytic activation of CO2 and CH4 into value-added liquid fuels and chemicals at room temperature	Li Wang, Yaolin Wang and Xin Tu
O15	Non-Thermal Plasma (NTP) Catalysis on Open Metal Sites (OMSs) in Metal-Organic Frameworks (MOFs)	Shaojun Xu, Xiaolei Fan, Philip Martin and Christopher Hardacre
O16	Studying Single-Site Gold Acetylene Hydrochlorination Catalysts under Operating Conditions	Simon Kondrat, Grazia Malta, Simon Freakley, Catherine Davies, Li Lu, Simon Dawson, Adam Thetford, Emma Gibson, David Morgan, Wilm Jones, Peter Wells, Peter Johnston, Richard Catlow, Christopher Kiely and Graham Hutchings
017	Tailoring Platinum Bimetallic Catalyst Surface Structures to Specific Reactants	Elizabeth Raine, Paul Collier, Mark Feaviour and Edman Tsang
O18	Towards the growth of carbon nanotubes with controlled chirality	Santiago Esconjauregui, Lorenzo D'Arsie1 and John Robertson
O19	Switching from Batch Cascade to Multistep Flow for the Synthesis of Benzylacetone and 4-(4- Methoxyphenyl)butan-2-one using Micropacked Bed Reactors	Conor Waldron, Enhong Cao, Stefano Cattaneo, Gemma Brett, Peter Miedziak, Meenakshisundaram Sankar, Graham Hutchings and Asterios Gavriilidis

O20	Continuous production of bio-renewable, polymer- grade lactone monomers through Sn-β catalysed Baeyer-Villiger oxidation with H2O2	Keiko Yakabi, Ceri Hammond and Antoine Buchard
O21	Microwave assisted catalytic hydrolysis of fibrous cellulose over framework catalysts	Songshan Jiang, Xiaolei Fan and Christopher Hardacre
O22	New insights into lignin hydrogenolysis to valuable chemicals	Danielle Fragoso and S. David Jackson
O23	Identification of kinetic models of HMF oxidation on Au catalyst using model-based design of experiments techniques	Arun Pankajakshan, Enhong Cao, Sankar Meenakshisundaram, Graham Hutchings, Asterios Gavriilidis and Federico Galvanin
O24	Tandem dehydration-MPV reduction of AI-SBA15 with pentoses from hemicelullose	Rafael Perez, Helen Daly, Marco Fraga and Christopher Hardacre
O25	Effect of Mass Transport on the Electro-oxidation of Alcohols over Electrodeposited and Carbon Supported Pt Catalysts	Vinod Kumar Puthiyapura, Wen Feng Lin, Dan Brett, Andrea E. Russell and Chris Hardacre
O26	In situ study of the electro-catalytic CO2 reduction over FeOOH on C	Verena Pfeifer, Manfred E Schuster, Panayiotis Tsaousis, Peter P Wells, Emma K Gibson, Juan Velasco, Diego Gianolio, Giannantonio Cibin, Michael Haevecker, Axel Knop-Gericke, Georg Held and Rosa Arrigo
027	Effect of Flue Gas Impurities on the Electroreduction of CO2 in Superbase Ionic Liquids	Adam Greer, Rebecca Taylor, Johan Jacquemin, Christopher Hardacre and Peter Robertson
O28	Catalytic Activity of Electrodeposited MoS2 Films for Hydrogen Evolution	Jo Humphrey, Michael O'Connell and Andrew Wain
O29	Electrochemically assisted CO2 hydrogenation on alkali-modified Ru/YSZ	Tan Sze Yen, Matthew West, Efstratios Stavrakakis, Danai Poulidi and Naimah Ibrahim
O30	Ag-Bi-W complex oxide: a promising photocathode for CO2 reduction	Claudia Longo, Miguel Tayar Galante, Krishnan Rajeshwar, Norma Tacconi, Jeotikanta Mohapatra, J. Ping Liu, Bob C Fitzmorris, Jin Z Zhang, Nathan Hollingsworth, Nora H. de Leeuw, S.F. Rebecca Taylor and Chris Hardacre
O31	Catalytic films on Aluminium supports generated by plasma electrolytic oxidation	Chaozhou Li, Arthur Garforth, Aneta Nemcova, Aleksey Rogov and Aleksey Yerokhin
O32	Gold-Palladium Bimetallic Catalyst Stability in Electrochemical ORR: Consequences for Hydrogen Peroxide Selectivity	Enrico Pizzutilo, Simon Freakley, Serhiy Cherevko, Sriram Venkatesan, Graham Hutchings, Christian Liebscher, Gerhard Dehm and Karl Mayrhofer
O33	Selective hydrogenation of alkynes and conjugated alcohols over Pd and Pt-based catalysts coated on the tube reactor walls	Nikolay Cherkasov, Yang Bai, Antonio Exposito and Evgeny Rebrov
O34	Selective hydrogenation of aromatic carboxylic acids over Pt-Sn catalysts	Xiaohan Chen, Helen Daly, Ziyun Wang, Haresh Manyar, Peijun Hu and Christopher Hardacre
O35	Preparation, Characterisation, and Testing of Supported Nickel Catalysts for Tetralin Hydrogenation	Ahmed Alasseel and David Jackson
O36	Insights into the low temperature activity of gold based catalysts for water gas shift using plasma	Cristina Stere, James Anderson, Sarayute Chansai, Alexandre Goguet, Bill Graham, Chris Hardacre, Xin Tu and Ziyun Wang

037	New Insights into the Activation and Deactivation of Au/CeZrO4 in the Low-Temperature Water-Gas Shift Reaction	James Carter, Xi Liu, Qian He, Sultan Althahban, Ewa Nowicka, Simon Freakley, Liwei Niu, David Morgan, Yongwang Li, Hans Niemantsverdriet, Stanislaw Golunski, Christopher Kiely and Graham Hutchings
O38	Time-resolved 3D XRD-CT of low-temperature water-gas shift catalysts during activation; effects of catalyst and gas composition on crystalline phase and possible deactivation processes.	Daniela Farmer, David Waller, Gopinathan Sankar and Andrew Beale
O39	Photo-switchability of Au-Co Alloy Nanoparticles in Green Chemical Syntheses	Erandi Prangige, Zhu Huaiyong and Sarina Sarina
O40	Ceria supported Copper Single Site Catalyst for CO Oxidation	Liqun Kang, Ruoyu Xu, Qiming Wang and Ryan Wang
O41	CO2 conversion to dimethyl ether and methanol using PdZn/ZSM-5 catalysts	Hasliza Bahruji, Michael Bowker and Jonathan Ruiz Esquius
O42	Towards Understanding the Nature of the Hydrocarbon Pool formed during Primary Olefin formation from Methanol and Dimethyl Ether: influence of CO and H2	Toyin Omojola, Nikolay Cherkasov, Dmitry Lukyanov, Evgeny Rebrov and Andre van Veen
O43	Colloidal Cu/ZnO nanocatalysts for the hydrogenation of CO2 to methanol: The influence of the synthetic route	Alice Leung, Andres Garcia-Trenco, Sebastian D. Pike, Edward R. White, Milo S. P. Shaffer, Charlotte K. Williams and Jonathan Weiner
O44	Spatiotemporal Investigation into the role of the Oxygen Storage Component in Three Way Catalysts	Alexandre Goguet and Ciaran Coney
O45	Ion-beam Sputtering for the surface modification of heterogeneous nanodispersed Catalysts	Ruairi O'donnell, Salvatore Scaglione, Danilo Zola and Nancy Artioli
O46	Investigating the effect of reduction conditions on CO oxidation over Pt-based NSR catalyst	Sarayute Chansai, Robbie Burch and Chris Hardacre
O47	Following the Evolution of Supported PdO Nanoparticles using a Combined XAFS/DRIFTS method	Ellie Dann, Emma Gibson, Richard Catlow, Paul Collier, Tugce Eralp, Diego Gianolio, Christopher Hardacre, Anna Kroner, Agnes Raj, Alexandre Goguet and Peter Wells
O48	Photocatalytic organic synthesis: from fundamental to applications	Ren Su, Yitao Dai, Chao Li, Nina Lock, Hans Niemantsverdriet, Yongwang Li and Flemming Besenbacher
O49	Cinnamyl alcohol oxidation: an investigation of the autoxidation and catalytic pathways with the use of bimetallic Au-Pd supported nanoparticles.	Emilia Rucinska
O50	Identification of active species in graphitic oxide for the initiator and metal free epoxidation of dec-1- ene.	Samuel Pattison, Liam Thomas, David Willock and Graham Hutchings
O51	Graphitic oxide supported Iron catalysts for the solvent and initiator free aerobic epoxidation of dec-1-ene	Joseph Macginley, Samuel Pattisson, Robert Jenkins, Jennifer Edwards and Graham Hutchings
O52	Selective Oxidation of Polycyclic Aromatic Hydrocarbons	Naomi Markham, Ricci Underhill, Ewa Nowicka and Stuart Taylor
O53	The low temperature solvent-free oxidation of cyclohexene to cyclohexanediol using molecular oxygen as oxidant	Owen Rogers, Sam Pattisson, Joseph Macginley, Keith Whiston, Graham Hutchings and Stuart Taylor

O54	Combined Neutron Scattering and NMR Spectroscopy Studies Examining Benzene Hydrogenation in Porous Media	Terri-Louise Hughes, Chris Hardacre, Marta Falkowska, Markus Leutzsch, Andy Sederman, Mick Mantle, Tristan Youngs and Daniel Bowron
O55	Combined QENS and MD studies of the dynamics of cyclic C6 hydrocarbons confined in MCM-41	Daniel Dervin, Chris Hardacre and Richard Catlow
O56	Reagents confined in catalyst support pores - structural studies by total neutron scattering	Marta Falkowska, Daniel T. Bowron, Haresh Manyar, Tristan G. A. Youngs and Chris Hardacre
O57	Using Modulated Excitation Spectroscopy to gain new insights in to Cu-SSZ-13 for deNOx	Alex Greenaway, Ines Lezcano-Gonzalez, Andrew M Beale, Davide Ferri and Paul Wright
O58	Methanol diffusion in zeolite ZSM-5: A key step in methanol to gasoline process	Santhosh Matam, Suwardiyanto, Russell F. Howe, Alexander J. O'malley, Ian P. Silverwood, Andrea Zachariou, Alex Hawkins, Paul Collier, Stewart F. Parker, David Lennon and C. Richard A. Catlow
O59	Computational QM/MM studies of the Methanol to Hydrocarbons process on zeolites H-Y and H- ZSM-5	Stefan Nastase, Alexander O'Malley, Andrew Logsdail and Richard Catlow
O60	Reactivity of SO2 on Pt (001), (011) and (111) surfaces	Marietjie J. Ungerer, David Santos- Carballal, Abdelaziz Cadi-Essadek, Cornie G.C.E. van Sittert and Nora H. de Leeuw
O61	Microscopic and spectroscopic insights into the role of carbon supports on the deposition of gold	Phil Davies, Bethany Bowden, Matthew Davies, David Morgan, David Willock and Daniel Wotton