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Abstract

Nowadays resonators constitute an important part of advanced technologies such as
Micro-electromechanical and Nano-electromechanical systems (MEMS, NEMS). They are
employed for instance as high precision actuators or micro-sensors, as well as in atomic
force microscopy and semiconductors. Micro- and nanoresonators exhibit loss of sensitivity
as a result of internal energy dissipation. The responsible mechanism for energy loss is
known to be of thermoelastic damping where thermal and mechanical fields are coupled.

In this type of damping, mechanical deformation causes temperature gradients happen
from compressed areas toward stretched regions of microbeam. System which is in non-
equilibrium state seeks to regain its equilibrium though exertion of heat. However it is
an irreversible process which accompanies production of entropy and ultimately leads to
dissipation of energy.

As can be seen the process of thermoelastic damping is a complex phenomenon which
involves the interplay of mechanics and irreversible thermodynamics. This complexity
is escalated when we notice that significant discrepancies have been recorded between
experimental observations and theoretical/computational predictions. A major inhibitor
for achieving higher accuracies is known to be incapability of classical continuum theories
in describing mechanical fields at tiny scales such as micro- and nanometers. More recent
theories, however, such as gradient elasticity have been emerged to fulfill such a need to
more resolved description of advanced materials behaviors.

This study aims to provide a more accurate description and understanding toward
the phenomenon of thermoelastic damping. The complexity of this phenomenon at small
scales is resolved through incorporation of gradient theories (stress and strain gradients
in particular) into the classical thermoviscoelasticity model on the ground of irreversible
thermodynamics.

Thereby in this thesis theories of irreversible thermodynamics, gradient elasticity
alongside viscoelasticity and thermoelastic damping have been studied through chapters
1 to 4. Then in chapter 5 the theory of gradient thermoviscoelasticity has been developed
based on the principles explained in previous chapters. In this chapter first the general
thermodynamic framework has been established, then constitutive models for both stress
gradient and strain gradient materials are developed. Different energy functionals for
each of the models have been postulated, each of which are functions of stress, strain
and gradients of stress and strain. Different mathematical techniques and theorems such
as Stieltjes biconvolutive integrals and Onsager’s reciprocal theory have been employed
throughout the development process. At the end constitutive relations for dissipative par-
ties in entropy production have been formulated in a matrix-vector form and a number of
illustrative examples presented. Finally in chapter 6 of this thesis conclusions along with
suggestions for future works have been presented.
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Sommario

Oggigiorno i risonatori costituiscono una parte importante delle tecnologie avanzate
come i sistemi microelettromeccanici e nanoelettromeccanici (MEMS, NEMS). Sono imp-
iegati ad esempio come attuatori o microsensori di alta precisione, cos̀ı come nella mi-
croscopia a forza atomica e nei semiconduttori. I micro e nanorisonatori mostrano una
perdita di sensibilità a causa della dissipazione interna dell’energia. È noto che il mecca-
nismo responsabile della perdita di energia è lo smorzamento termoelastico in cui i campi
termici e meccanici sono accoppiati.

In questo tipo di smorzamento, la deformazione meccanica fa s̀ı che i gradienti di
temperatura si verifichino dalle aree compresse verso le regioni tese del microbeam. Un
sistema che si trova in uno stato di non equilibrio cerca di ritrovare il suo equilibrio
attraverso la produzione di calore. Tuttavia è un processo irreversibile che accompagna la
produzione di entropia e alla fine porta alla dissipazione di energia.

Come si può vedere il processo di smorzamento termoelastico è un fenomeno complesso
che coinvolge l’interazione di meccanica e termodinamica irreversibili. Questa complessità
aumenta quando notiamo che sono state registrate discrepanze significative tra le osser-
vazioni sperimentali e le previsioni teoriche/computazionali. È noto che un importante in-
ibitore per il raggiungimento di precisioni più elevate è l’incapacità delle teorie del continuo
classico nel descrivere i campi meccanici su piccola scala come micro e nanometri. Teorie
più recenti, tuttavia, come l’elasticità a gradiente sono emerse per soddisfare l’esigenza di
descrizione più accurata dei comportamenti dei materiali avanzati.

Questo studio mira a fornire una descrizione e una comprensione più accurate del
fenomeno dello smorzamento termoelastico. La complessità di questo fenomeno su piccola
scala è risolta attraverso l’incorporazione delle teorie a gradiente (gradienti di sforzo e
deformazione in particolare) nel modello classico di termoviscoelasticità sulla base della
termodinamica irreversibile.

Pertanto, in questa tesi, le teorie della termodinamica irreversibile, dell’elasticità a
gradiente, della viscoelasticità e dello smorzamento termoelastico sono state studiate nei
capitoli da 1 a 4. Quindi nel capitolo 5 è stata sviluppata la teoria della termoviscoelasticità
a gradiente sulla base dei principi spiegati nei capitoli precedenti. In questo capitolo viene
dapprima stabilito il quadro termodinamico generale, quindi vengono sviluppati i modelli
costitutivi sia per il gradiente di sforzo che per il gradiente di deformazione. Sono stati
ricavati diversi funzionali energetici per ciascuno dei modelli, ciascuno dei quali è funzione
di sforzo, deformazione e gradienti di sforzo e deformazione. Diverse tecniche e teoremi
matematici come gli integrali biconvolutivi di Stieltjes e la teoria reciproca di Onsager sono
stati impiegati. Alla fine le relazioni costitutive per le parti dissipative nella produzione
di entropia sono state formulate in forma matriciale. Infine, nel capitolo 6 di questa tesi
sono state presentate le conclusioni insieme a suggerimenti per lavori futuri.
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Chapter 1

Irreversible Thermodynamics

1.1 Introduction

Generally by investigating a phenomenon in nature, we are more interested in the processes
rather than the states.This is while in equilibrium thermodynamics, or better to name it
thermostatics, processes are approximated only based on initial and final states of the
system, or they are viewed as a succession of equilibrium states. Unfortunately neither of
these approaches is capable to accurately capture and trace the process, as a time evolving
phenomenon. In other words, they do not consider or include the rate at which a process
is happening. An extension of thermodynamics that addresses rate of physical processes
in a non-equilibrium states is called the irreversible thermodynamics [1, 2].

Fundamentals of irreversible thermodynamics are based on pioneering works of On-
sager (1931)[3, 4] and Prigogine (1968)[5]. Onsager Reciprocity Theorem in fact provides
us a basis to locally define intensive and extensive parameters as we need them in describ-
ing irreversible processes. Theory of irreversible thermodynamics was further developed
through works of Meixner[6], de Groot and Mazur [7], and Casimir [8].

In non-equilibrium thermodynamics macroscopic quantities, through which a non-
equilibrium state is described, are in fact extrapolations of variables that are used to
describe the system which thermodynamically is in equilibrium.

Usually formulating a physical problem based on irreversible thermodynamics requires
generalization of equilibrium thermodynamics. In that sense non-equilibrium thermody-
namics offers three areas of application. First addressing and generalizing the classical
transport problems such as heat, mass and momentum equations. Secondly it can be em-
ployed in coupling thermal, mechanical, chemical and electromagnetic effects. And third
line of application would include stationary non-dissipative states in which although their
properties are time invariant but they exhibit non-homogeneous distribution of variables
along with non-vanishing values of flux [9].

Non-equilibrium thermodynamics originates from the fact that for example living bio-
logical systems should live in a state far from equilibrium. Thermodynamically this could
be possible through flow of energy and information. Real world phenomena are irreversible
through which increase in entropy is inevitable. The application of irreversible thermody-
namics to continuous media requires the calculation of the entropy balance equations and
in particular derivation of the entropy source strength in the balance equation [10].

1



CHAPTER 1. IRREVERSIBLE THERMODYNAMICS 2

1.2 Equilibrium Thermodynamics

Equilibrium thermodynamics investigates properties of systems in equilibrium state at
macro level. Equilibrium state is a time-independent state meaning that the system is
not disturbed by any flux of matter, energy, charge, momentum and so on. It could
be equipped to study reversible processes through considering a reversible process as a
continuum succession of equilibrium states.

It is worthy of mentioning that the term thermodynamics implicitly conveys the con-
cept of time; since the formalism does not encompass time it might be more proper to
use the term thermostatics for such a branch of science, but as the term thermodynamics
is being used widely regardless of time dependence or time independence we stick to the
term thermodynamics here as well [1].

As a bit of background, thermodynamics in fact stems from a broader area of science
namely Mechanics. What distinguish thermodynamics as a relatively independent branch
of science would be the notions of heat and temperature that are not present in mechan-
ics. First contribution to establishment of such a branch was made notably by efforts of
Fourier, Carnot, Kelvin, Clausius and Gibbs. A milestone work was done by James P.
Joule who recognized heat as a form of energy which can be transferred to work and vice
versa. His accomplishments led to construction of bases of the first law of thermodynam-
ics. William Thomson (also known as Lord Kelvin) viewed the mechanical action of heat
by appealing two laws that later on were named as the first and second laws of thermody-
namics. Important notions of internal energy and entropy were introduced by Clausius.
Ludwig Boltzmann developed a mechanistic approach for description of heat transport
through relating the behavior of particles at microscopic level to macroscopic properties
of the system. Another prominent scientist, namely Josiah Williard Gibbs, noticed the
missing concept of time in thermodynamics and among his works he developed the theory
of stability employing concepts of convex or concave functions and also expanding the
notions of chemical potential as well as statistical ensembles. There are other leading sci-
entists with undisputed role in development of thermodynamics whose mentioning their
contribution is far from being exhaustive here [3, 11].

1.3 Fundamental Concepts from Equilibrium Thermodynam-
ics

Roots of equilibrium thermodynamics extend to macroscopic physics whose main objective
is to explain transformation of energy in all its forms. As stated, equilibrium thermody-
namics is in fact the generalization of mechanics which introduces three main notions
including state, internal energy and entropy.

State could be viewed as the ensemble of quantities called state variables. Definiteness
of these state variables lead to identification of properties of the system. To be fully
functional, these state variables need to be independent of each other and also need to be
easily accessible through experiments.

The concept of internal energy is devised as a complement to the kinetic energy with
a pure mechanical origin where notions of heat and temperature are missing. It is how-
ever not feasible to be measured, rather considering a system (in macroscopic scale) as a
composition of individual particles, enables us to define internal energy as the mean value
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of the kinetic and interacting energies of the particles. This way it can be presumed as a
function of measurable properties of a system such as mass, volume and temperature.

Similar to internal energy, entropy can not be measured yet it is used to characterize
a system. We are however able to measure the changes in entropy. Entropy is a noncon-
served and an extensive property of a system. It is a state function which any change in
state is associated to change in entropy.

As mentioned before, the state of a system is specified by ensemble of quantities called
state variables. State variables in fact characterize the state of the system under study.
Assuming that a system undergoes a transition between two equilibrium states A and B,
it should be noted that state variables do not depend on the specific path the system
takes to traverse between A and B. Proper selection of state variables is usually a matter
of experiments and theory. Equilibrium by its own is a state which is time independent
and generally homogeneous. Equilibrium state is free of any effecting disturbance such as
fluxes of matter or energy. However in a non-equilibrium state state variables are func-
tions of time and space as we have exchange of matter and energy between the system
and environment. It should be noted that definition of equilibrium would not be com-
plete without taking into account the notion of entropy. For example in the case of an
isolated system which does not have any exchanges with its surroundings, the equilibrium
is characterized by a maximum of entropy. Also definition of equilibrium is subjective as
there exist fluctuations inherent to each equilibrium state. Plus to the fact that it is also
a function of available data as well as desired accuracy of the observations.

There exist two types of state variables namely extensive variables and intensive vari-
ables. Extensive variables such as mass, volume and energy are functions of size/mass
or extent of the system. In other words, considering a composite system, value of an
extensive variable is equal to the sum of the values of each compartment of the system.
On the other hand intensive variables, such as temperature, pressure or electrochemical
potential, share the same value all over a system. Intuitively, for example the temperature
of a portion of a system is the same as temperature of the whole system.

Classical thermodynamics goes beyond the restrictions associated to equilibrium states
through considering a class of precesses which can be explained as continuum sequence
of neighboring equilibrium states. Such processes are called quasi-static processes and
are constructed upon slight modification in state variables of an equilibrium state at each
stage. A quasi-static process can be either reversible or irreversible. A reversible pro-
cess from 1→ 2 → 3 is modeled as a continuum sequence of equilibrium states in an
infinitesimally slow manner. In a reversing transformation i.e. from equilibrium state 3 to
equilibrium state 1, state variables take the same values as in the direct transformation.
It should be noted that in the reverse direction exchange of the matter and energy with
environment would be of opposite sign. On the contrary, an irreversible process, which is
not reversible, occurs at a finite velocity and is modeled as a discrete series of equilibrium
states. In this case and during a reverse transformation, at each stage input of external
energy from surroundings needs to be reset to its initial state. As a couple of examples of
irreversible processes friction, shocks, flow of viscous fluids and chemical reactions can be
named.
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1.4 Laws of Thermodynamics

Naming the laws of thermodynamics has not happened chronologically or based on the
time of recognition. For example the zeroth law was formulated latest and the first law
was formulated second after the second law.

1.4.1 The Zeroth Law

The zeroth law states that if systems 1 and 2 are separately in thermal equilibrium with
system 3, then they are in a thermal equilibrium with each other. This law of thermody-
namics in fact defines the concept of temperature.

1.4.2 The First Law or Balance of Energy

Notions of energy and heat are introduced into thermodynamics through the first law.
Considering a system with adiabatic walls which has no interaction with outside other
than mechanical work W . This mechanical work can be exemplified through expansion
of its volume. According to the famous result of Joule’s experiments, the work can be
measured by the decrease in potential energy of a slowly falling weight which is W =mgh
where h is displacement, g acceleration of gravity andm would be the weight of the piston.
The work produced through transition from state A to state B is shown to get determined
only based on initial and final states and independent of the taken path. Accordingly W
can be defined as the difference between internal energy at initial and final states of A
and B as ∆U = U(B) −U(A) where U is a state variable which is called internal energy.
Thereby we can write

W =∆U (1.4.1)

The above relation can be used to calculate the internal energy of a system regardless of
its nature.

Now assume that the adiabatic wall is removed and the system can have exchange with
the outer world. This time generally work would not be equal to the change in internal
energy. The difference between the two is called Q which denotes the heat exchange
between the system and environment. Accordingly one can write

∆U −W = Q (1.4.2)

The above expression in fact represents the first law of thermodynamics which in a more
familiar form can be written as

∆U = Q +W (1.4.3)

stating that the change in internal energy would be equal to sum of the exchanged heat
and work done. In differential form it is written as

dU = d̄Q + d̄W (1.4.4)

where the stroke through symbol d stands for inexact differentials, meaning that they
depend on the path and not only on the initial and final states.

It is worthy of mentioning that the first law is valid for both reversible and irreversible
processes, also regardless of the status of the states A and B. It works either in equilibrium
or in non-equilibrium conditions.The outcome of the first law is that the energy is conserved
in all thermodynamic processes.
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1.4.3 The Second Law

The first law by its own still lacks a clear establishment of the direction of the processes
within a system. For example it does not consider the impossibility of the transfer of
heat from a cold body to a warm body, nor on impossibility of a complete conversion of
heat into the work. The second law in fact imposes further thermodynamical constraints
or restrictions to create a framework within which the spontaneous evolution of natural
processes in an specific direction is explained. The first formulations of the first law
were developed by Clausius and Kelvin and were stated in form of impossibility of some
processes to happen. Consequently there are two statements attributed to Clausius and
Kelvin. According to Clausius it is not possible to create a system that transfers heat
from a cold body to a warm body without exertion of any work done on the system by
the environment. Kelvin stated that: it is not possible to create a machine working a
full cycle which can take heat from a single reservoir and convert it entirely to work.
Second law benefits from introduction of a new fundamental and universal (in the case of
equilibrium systems) notion in thermodynamics state variables, namely entropy, and its
behavior throughout a process which will be discussed in the following sections.

1.4.4 The Third Law

This law relates to the study of thermodynamic quantities where the absolute temperature
approaches zero. This law was formulated by Nernst in studying chemical equilibrium.
Through his studies he concluded that the entropy change in any isothermal process
approaches zero as the temperature tends to zero,

(∆S)T→0 → 0 (1.4.5)

Though this form of the third law is sufficient for most of thermodynamical situations,
sometimes stronger Planck’s statement i.e. (S → 0 as T → 0) is preferred.

1.5 Entropy Production and Entropy Flow

Considering the system shown in figure 1.1 in which two reservoirs at temperatures T2
and T1 are connected together through a thermally insulated rod, heat flows between the
reservoirs along the rod. It is assumed that the temperatures of the reservoirs remain
constant during the process. Due to heat conduction between reservoirs system reaches
a state in which the rate of the heat flow, i.e. dQ/dt, entering the rod would be equal to
rate of the heat leaving the rod, i.e. −dQ/dt. In this case temperature along the rod varies
spatially while it remains constant in time.

Therefore the temperature of the rod would be a function of location but independent
of time. System in overall would be in a stationary or steady state situation but not in
equilibrium as it demands the temperature to be uniform throughout the system. Now
assuming that heat flows into the left-hand side of the bar as a result of an infinitesimal
difference in temperature (meaning that the process is reversible) the reservoir 2 loses
entropy at the rate

dS2
dt
= − 1

T2

dQ

dt
(1.5.1)



CHAPTER 1. IRREVERSIBLE THERMODYNAMICS 6

Figure 1.1: Heat Conduction along a bar in steady-state [12]

following the same line of reasoning the reservoir at the right hand side obtains entropy
at the rate

dS1
dt
= 1

T1

dQ

dt
(1.5.2)

The total changes of entropy for the system thus reads as

dS

dt
= dS1
dt
+ dS2
dt
= dQ
dt
[ 1
T1
− 1

T2
] = dQ

dt
[T2 − T1
T2T1

] (1.5.3)

For the system at hand T2 > T1 hence the rate of change of entropy would be positive dS
t > 0.

Considering a point at the bar with distance l from the left hand side, the value that
a thermometer shows is T . As mentioned before this reading is time independent and is
a result of reading the value at an equilibrium state of the system. So the system is in a
steady state situation and entropy of each point of the bar is invariant with time. But a
net transfer of entropy from left to right of the system is observed. This means that the
entropy is in fact flowing along the rod. The entropy of the whole system is increasing
with time which is phenomenon known as the entropy production [13].

One fundamental difference between reversible and irreversible processes is that irre-
versible processes are always accompanied with increase in entropy. Due to local equilib-
rium hypothesis, entropy is considered to be a state function in an non-equilibrium process
as well [14–16]. As a result of that entropy of the system, as well as the entropy of the
environment, increases. To put previous formulation in a new notation where e denotes
the environment and i stands for internal interactions of a system, one can write:

dS = dSe + dSi (1.5.4)

Herein dS will always be positive dS > 0 since the process we are dealing with is an
irreversible process. However dSe could be either positive or negative depending on the
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type of the boundary between the system and the environment as well as the type of the
irreversible process. For example if the boundary is diathermic, due to the irreversible
process the temperature of the system decreases and the system draws some heat (denoted
by dQ) from the environment (which is at the constant temperature T ), then:

dSe = −
dQ

T
(1.5.5)

and

dSi =
dQ

T
+ dSie (1.5.6)

In the above equation dQ
T implies the increase in the entropy of the system as a result of

the heat flow from the environment which is equal to −dSe. The second term on the other
hand implies the increase of the entropy of the system as a result of internal changes such
as temperature or number of particles. Therefore we can write:

dS = dSe + dSi = dSie (1.5.7)

Noting that dS is positive, dSie must also positive. If we assume that system expels the
heat to the environment

To summarize the points around entropy it should be stated that entropy is an exten-
sive property therefore the entropy of a system composed of several parts would be the
sum of entropies of each part. It is a function of state and would be a measure of order
or disorder of a system [17, 18].

Consider a continuum body of material (which can also be seen as a system) containing
a total mass m and and volume V and surface represented by Γ. The rate of variation
of such an extensive quantity, i.e. dS, can be written as the sum of the rate of exchange
with environment deS/dt and the rate of entropy produced internally diS/dt:

dS

dt
= d

eS

dt
+ d

iS

dt
(1.5.8)

The entropy crossing surface of the boundary per unit area and unit time is called entropy
flux and is denoted by Js. The entropy produced per unit volume and unit time within
the system is called rate of entropy production and is indicated by σs. Then we can write

deS

dt
= −∫

Γ
Js ⋅ ndΓ (1.5.9)

diS

dt
= ∫

V
σsdV (1.5.10)

where n is the unit normal pointing outward.

Once specific entropy s is defined as S = ∫ ρsdV and using the above relationships
balance of entropy reads as

∫ ρ
ds

dt
dV = −∫

Γ
Js ⋅ndΓ + ∫

V
σsdV (1.5.11)
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then through Gauss and Reynolds theorems the above relation is reshaped into the fol-
lowing as

∫ ρ
ds

dt
dV = −∫

V
∇ ⋅ JsdV + ∫

V
σsdV (1.5.12)

Assuming that above expression is valid for any volume V and the integrands are contin-
uous in terms of space then the above global equation can be converted to a local version
in form of a local balance relation as

ρ
ds

dt
= −∇ ⋅ Js + σs (1.5.13)

and by virtue of second law we have

σs ≥ 0 (1.5.14)

where the quality sign denotes the reversible processes. This is an important quantity
as the product Tσs would be a measure of dissipation of energy in a thermodynamical
system that when minimized depicts the enhanced efficiency.

1.6 Fluxes and Affinities

To establish the relationship in irreversible processes the approach would be to build a
macroscopic description of irreversible processes and to determine the balance equations
of local variables in the framework of fundamental laws of thermodynamics. Again as
mentioned before irreversible processes are accompanied by the generation and flow of
entropy that need to be considered. Additionally we are facing the flow of energy, matter or
both. Thereby in irreversible processes flow of some physical quantity would be inevitable.
This physical quantity is called flux or current and usually denoted by Ji. Subscript i here
distinguishes different types of fluxes may exist in an irreversible process. The cause or
source of the flux is defined as affinity, potential or driving force and is termed by Xi.
Getting back to the heat flow example, the heat flow would be the flux and temperature
gradient would be the corresponding affinity [18–20].

In some irreversible processes, especially coupled ones, it happens that two or more
sources or affinities contribute to an individual flux. As an example, moving charged
particles may be generated by both temperature gradient and gradient of electric potential.
Fluxes that are function of many affinities are called coupled fluxes and such a dependency
can be shown as

Ji = Ji(X1,X2,X3, ...) (1.6.1)

1.7 Linear Irreversible Processes

At equilibrium state of a thermodynamical system there is no change in entropy or free
energy. On the other hand an irreversible process is accompanied with energy dissipation
and at the same time entropy is generated continuously as described before. The rate
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at which energy is dissipated is the product of the temperature and the rate of entropy
production (i.e. Tσ) with:

Tσ = JX (1.7.1)

where J denotes a generalized flux, and X a generalized force.
The above relationship between force and flux, upon existence, suggests that flux must

naturally depend on the force. Then it may be written as as a function of the force X.
In irreversible processes that take place in systems that are not far from the equilibrium,
affinities or forces are not too large. Therefore the fluxes Ji can be expanded using the
Taylor’s expansion. Omitting higher order and nonlinear terms, and keeping only the first
order or linear terms, one can write

JX =
∞

∑
0

anX
n =

∞

∑
0

f (0)0

n!
Xn = J0 + J ′0X

1!
(1.7.2)

noting that J0 = 0 represents the equilibrium. By neglecting high order terms we can see
the linear relationship between flux and force as

JαX (1.7.3)

Assuming existence of multiple irreversible processes and consequently multiple fluxes,
one can proceed and write

Ji(X1,X2,X3, ...) = (
∂Ji
∂X1
)
0
X1 + (

∂Ji
∂X2
)
0
X2 + (

∂Ji
∂X3
)
0
X3.... (1.7.4)

Or

Ji(X1,X2,X3, ...) =
n

∑
j=1

( ∂Ji
∂Xj
)
0

Xj (1.7.5)

where ( ∂Ji∂Xj
)
0
would be the rate of change of Ji with Xj when the system tends to equi-

librium state.

Concisely the above equation can be written as

Ji =
n

∑
j=1

LijXj (1.7.6)

where

Lij = (
∂Ji
∂Xj
)
0

(1.7.7)

Relations of above type are usually called linear phenomenological relations, stemming
from an approximation through which the system is assumed to be not far from equilib-
rium, so that only the nonlinear terms in Taylor’s expansion can be neglected and in other
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words only the linear terms are influencing the thermodynamics of a system. With those
considerations the above relation can be a representative of an irreversible process [21].

Since the nonlinear terms are omitted in these equations, irreversible processes that
can be explained through these equations are usually called linear irreversible processes.
However, if the process is far from the equilibrium state, then the nonlinear terms in
the related Taylor’s expansion could not be neglected anymore. This originates from
the fact that the affinities and fluxes are large so that all terms in Taylor’s expansion are
influencing. These processes are called nonlinear irreversible processes. Onsager developed
the theory for studying the linear irreversible processes which is outlined in following
sections.

1.8 Onsager’s Reciprocal Relations

Thermodynamics of irreversible processes formulated throughout works of Onsager, Pri-
gogine, Mexiner, de Groot, Mazur and others investigates small deviations from equilib-
rium state in open system. Although the term thermodynamics is used for this branch of
science, it is also suggested to consider it as a branch of kinetics as the concept of rate is
introduced in this theory through which the rate of irreversible processes are explained.

In his pioneering works [3, 4] Onsager, based on principle of microscopic reversibility,
develops so called Reciprocal Relations which enable describing the situation of coupled
phenomena in which two or more irreversible transport processes such as heat conduction,
electric conduction or mass diffusion take place simultaneously. The challenge here is that
in such a situation fluxes interfere with each other and a specific flux would affect all
other components of the system. Before Onsager such a problem was addressed by W.
Thompson through a thermoelectric phenomenon. Consider J1 as the electric current and
J2 as the heat flow. The driving force for the current would be electromotive force which
is shown by X1. Correspondingly the driving force for the heat flow would be:

X2 = −
1

T
gradT

where T shows the temperature. So assuming that the fluxes of heat and current are
completely independent, then one can write:

X1 = R1J1

X2 = R2J2

where R1 denotes the electrical resistance and R2 stands for the heat resistance. However
this assumption is not correct as these two phenomena are coupled and interfere with each
other. In other words they are affecting each other, as a result of which each force in-
corporates contribution from both fluxes. Thereby the related phenomenological relations
read as:

X1 = R11J1 +R12J2

X2 = R21J1 +R22J2

Onsager devised a reciprocal relationship more rigorously with the assumption of mi-
croscopic reversibility along with certain theorems from fluctuation theory. He considers
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a situation in which energy dissipation is not only the result of difference in temperature
on side of a medium, but also electrical conductivity plays a role in energy dissipation.

Onsager used linear phenomenological relations to formulate coupled irreversible pro-
cesses encompassing n-fluxes and n-affinities based on phenomenological coefficients Lij
as,

J1 = L11X1 +L12X2 +L13X3 + ...L1nXn

J2 = L21X1 +L22X2 +L23X3 + ...L2nXn

J3 = L31X1 +L32X2 +L33X3 + ...L3nXn

.............................................................

.............................................................

Jn = Ln1X1 +Ln2X2 +Ln3X3 + ...LnnXn

(1.8.1)

In the above algebraic relations phenomenological coefficients Lij represent properties such
as generalized mobility or conductance.

On the other hand forces or affinities Xi which drive the fluxes can be written in terms
of fluxes as

Xi =
n

∑
j=1

RijJj , i = 1,2,3, ...n (1.8.2)

In contrary to phenomenological coefficients, coefficients of type Rij represent the prop-
erties of generalized resistance or friction. It should be pointed out that coefficients with
repeating indexes such as L11, L22, L33...Lnn also R11,R22,R33...Rnn are related to phe-
nomena of the same type of fluxes and affinities, so they are usually called straight coef-
ficients. On the other hand coefficients with different indexes such as Lij and Rij ; i ≠ j
represent interactions between fluxes and affinities of different type, hence they are called
cross coefficients. Characterizing these coefficients leads to formulate the complete descrip-
tion for fluxes and their driving forces within a thermodynamic systems with irreversible
processes.

Knowledge of either Lij or Rij would provide sufficient insight for characterizing an
irreversible process. Thereby they are related to each other. Considering a simple case of
two fluxes and two affinities as:

J1 = L11X1 +L12X2 and X1 = R11J1 +R12J2 (1.8.3)

J2 = L21X1 +L22X2 and X2 = R21J1 +R22J2 (1.8.4)

and solving above relation we obtain

L11 = R22[∣L11L22 −L12L21∣];
L22 = R11[∣L11L22 −L12L21∣]

(1.8.5)

and

L12 = −R12[∣L11L22 −L12L21∣];
L21 = −R21[∣L11L22 −L12L21∣]

(1.8.6)
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It can be seen that in the case of simple cases such as when there exist only two fluxes,
it will be resulting in four linear coefficients that need to be experimentally determined.
However in general cases thermodynamic phenomena involve large number of fluxes and
affinities, as a result of which number of coefficients that need to be determined increases
significantly.

Onsager developed a formulation through which the number of linear coefficients were
reduced significantly. He however imposed some restrictions to construct such a frame-
work. According to his theorem, upon careful and proper selection of fluxes and affinities,
the cross coefficients show to be symmetric, meaning

L21 = L12 and R21 = R12 (1.8.7)

or in a more general representation

Lij = Lji and Rij = Rji (1.8.8)

The above relations demonstrate Onsager’s reciprocal relations of linear coefficients.
The proper selection of currents and affinities that obey the Onsager’s relations are

identified to satisfy the following relation in that the rate of generation of internal entropy
can be explained as a linear combination of fluxes and forces as:

σ =
(dS)intsys
dt

=
n

∑
i=1

JiXi (1.8.9)

Rate of generation of the internal energy follows the Gibb’s relation as:

Tds = du + pdv −∑
i

µici (1.8.10)

where µi and ci respectively denote chemical potential and concentration of the i compo-
nent. The above Gibb’s relation is valid for any system which is in equilibrium. However
Onsager employed that in the case of linear irreversible processes. Through the pertur-
bation theory it was illustrated that Gibb’s relation is still applicable to systems that
are not far away from equilibrium. It was also later shown that the criteria for being dis-
placed from the equilibrium and keeping the Gibb’s validity is more relaxed compared to a
limit within which the linearity of Taylor’s expansion is satisfied for irreversible processes.
As a result of these investigations, employment of Gibb’s relation for linear irreversible
processes was fully justified [9, 22].

After a careful selection of currents (fluxes) and driving forces (affinities), it is necessary
to experimentally determine the phenomenological coefficients, i.e. Lij or Rij . More often
at the initial steps of the process these coefficients vary in the course of time as the flux
evolves. Thereby measurements are not possible at this stage. However once the system
has reached steady state, net flux at a particular point tends to zero, meaning that as
much flux enters the point as leaves it. This state is invariant with respect to time. It
should be noted that the time invariant or steady state situation differs from equilibrium
state as in the equilibrium energy is minimum and entropy is maximum and it does not
change with time. Also as mentioned before there is no flux and affinities that disturb the
system in equilibrium conditions. On the contrary in time invariant steady state entropy
at a constant rate is generated which leads to energy dissipation. In steady state, entropy
of the system can be either minimum or maximum. In fact steady state is a generalization
of the equilibrium state [23–25].
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1.9 Matrix Representation of Coupled Linear Relations

Following the tradition of linear algebra in representing a system of equations in matrix
form, one can write force and flux relations in a compact form as:

[J1
J2
] = [L11 L12

L21 L22
] [X1

X2
] (1.9.1)

and

[X1

X2
] = [R11 R12

R21 R22
] [J1
J2
] (1.9.2)

In cases of number of fluxes and forces exceeding two, matrices and vectors can be ex-
panded as following

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1
J2
J3
J4
.
.
.
Jn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11 L12 L13 ... L1n

L11 L12 L13 ... L1n

L11 L12 L13 ... L1n

L11 L12 L13 ... L1n

. . . ... .

. . . ... .

. . . ... .
Ln1 Ln2 Ln3 ... Lnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

X4

.

.

.
Xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.9.3)

correspondingly equations can be written as

J1 = L11X1 +L12X2 +L13X3 + ...L1nXn

J2 = L21X1 +L22X2 +L23X3 + ...L2nXn

J3 = L31X1 +L32X2 +L33X3 + ...L3nXn

............................................................

............................................................

Jn = Ln1X1 +Ln2X2 +Ln3X3 + ...LnnXn

(1.9.4)

1.10 Application of Onsager’s Method to Thermoelectricity

Thermoelectricity is applied to a configuration in which two metallic wires with two dif-
ferent temperatures produce the electric potential as a result of such a difference in tem-
perature. This phenomenon was discovered at 1821 by John Seebeck where he recorded
the coupling between two potentials (affinities) i.e. electrochemical potential and temper-
ature gradient. Thereafter, Jean Peltier observed that fluxes of heat and electric current
also could be coupled. It was Lars Onsager that in 1931 formulated these coupled ther-
modynamic forces and fluxes based on principles of linear irreversible thermodynamics.
Thermoelectricity is known as a typical example for illustrating application of Onsager’s
reciprocal theory in coupled phenomena [23].

Movement of electrons within a piece of metal can be mimicked as a perfect gas but
containing charged fermions namely electrons. Based on this analogy, electrochemical
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potential µe can be viewed as partial pressure. Accordingly electrochemical potential can
be given as

µe = qV + µc (1.10.1)

where q denotes the charge carried by particle (herein electron), V would be the elec-
tric potential and as mentioned µc would be electrochemical potential. Electrochemical
potential is defined as the energy needed to embed a carrier particle (electron) into a
thermodynamic system.

Figure 1.2: Distribution of free electrons within a conductor with
temperature gradient [26]

As can be seen in Figure 1.2, density of electrons at the side with lower temperature is
more than the other side with higher temperature. Accumulation of electrons leads to the
increase in electric potential difference i.e. voltage at the sides of the conductor. Clearly
lower temperature end exhibits higher potential due to the presence of a larger number
of electrons compared to the other side. Generated electric field makes electrons move
from lower temperature end to the higher temperature. On the other hand, considering
the effect of temperature, electrons tend to move from the higher temperature end to the
lower temperature end as a result of excess energy they have. Such a movement creates a
flux of electrons on opposite direction. In steady state situations flux of electrons from right
to left as a result of electric potential is balanced by the flux due to temperature difference.
It can be observed here that temperature difference also contributes into creating electric
potential alongside the conductor. Thereby both electron flux and heat flux, as well
as both temperature difference and electrochemical potential, are coupled together.This
situation where both fluxes as well as their corresponding affinities are coupled together
provides an excellent example for observing the effect of coupled phenomena in linear
irreversible thermodynamics and to demonstrate the application of Onsager’s theorem
on describing such a phenomenon mathematically. Thermodynamical state variables in
this example include temperature T and electrochemical potential µc. The system is
non-equilibrium in steady state, however as explained before in a justification made by
Onsager and Prigogine the Gibb’s relation can be applied to such a system in steady state.
Therefore one can write

G = U − TS −Nµe (1.10.2)

or

dG = dU − TdS − SdT −Ndµe − µedN (1.10.3)
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Considering δQ and δW respectively as changes in heat and the work done by the system,
then we have

δQ = TdS and δW = µedN (1.10.4)

where U denotes the internal energy and N stands for the number of free electrons (car-
riers) in the thermodynamical system. Changes in internal energy can be represented
as

dU = δQ + δW = TdS + µedN (1.10.5)

through simple substitution we obtain

dG = −SdT −Ndµe (1.10.6)

also we have

S = −(∂G
∂T
)
µe

(1.10.7)

N = −( ∂G
∂µe
)
T

(1.10.8)

According to equation (1.10.4) and defining JN ,Js,JQ and Je respectively as particle flux,
entropy flux, heat flux and electrical flux (also known as electric current density) then on
can write

JQ = TJs and Je = qJn (1.10.9)

where q denotes the electric charge of charge carrying particles which within a metal with
a charge carrier as electrons it would be −e.

Driving forces or affinities for aforementioned fluxes respectively include electrochemi-
cal potential ∆µe, temperature difference ∆T . By considering E as the intensity of electric
field produced as a result of gradient of electrochemical potential, the force experienced
by carrier particles of charge q would be

Fe = qE (1.10.10)

Accordingly the force or affinity resulted from gradient of temperature may be expressed
as

FT = −∇T (1.10.11)

Now employing Onsager results one can express the coupled relations for particle flux and
entropy flux as

[JN
JS
] = [L11 L12

L21 L22
] [Fe
FT
] (1.10.12)

or in another form we have

⎡⎢⎢⎢⎣

Je
q
JQ
T

⎤⎥⎥⎥⎦
= [L11 L12

L21 L22
] [ qE−∇T] (1.10.13)



CHAPTER 1. IRREVERSIBLE THERMODYNAMICS 16

which can be read as

Je = q2L11E + qL12(−∇T) (1.10.14)

and

JQ = qTL21E + TL22(−∇T) (1.10.15)

In steady state particle or electric flux will be zero, thus

q2L11E = qL12(∇T) (1.10.16)

In steady state, i.e. when there is no particle or electric flux, the ratio of electric field to
the gradient of temperature E

∇T is called Seebeck coefficient and is shown by α. Then one
car write

α = ( E∇T )noparticle/electricflux =
L12

qL11
(1.10.17)

Terms such as qL12(∇T) and TL22(−∇T) are generated as a result of externally imposed
temperature differences. In absence of externally imposed temperature gradient, if an
external electrostatic potential difference or electric field is applied at the ends of the
conductor, an electric flux i.e. Je will be generated which flows through the conductor.
Under these conditions temperature difference between the ends of the conductor will be
produced which is known as Peltier effect. The ratio of the electric field to the heat flux
under the condition of (−∇T) = 0 is called Peltier coefficient which is represented by Π.

Therefore

Π = (JQ
Je
)(∇T=0) = T

L12

qL11
, (1.10.18)

and

Π = T L12

qL11
= Tα. (1.10.19)

Experimental observations can demonstrate the reliability of the formalism of linear irre-
versible processes developed by Onsager.

1.11 Extended Irreversible Thermodynamics (EIT)

Classical Irreversible Thermodynamics (CIT) is unable to describe phenomena and situ-
ations such as materials with memory, non-Newtonian fluids, or the processes that take
place far from the equilibrium or at high frequencies and short wavelengths. These are
restrictions arising inherently in the frame of local equilibrium thermodynamics. CIT
postulates that local relations between thermal and mechanical properties are the same
as those applicable to a uniform system at equilibrium. However there are lots of other
processes that happen far away from equilibrium state. As a result of that CIT and its pos-
tulations in linear regime would not be valid any more. To cope with such situations and
to go beyond the limitations associated with CIT, the field of irreversible thermodynamics
has been developed further into a new branch called Extended Irreversible Thermody-
namics (EIT) [27, 28] which can be employed in phenomena which can not accurately be
described through linear irreversible thermodynamics.
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1.12 Zwanzig’s Generalization

In irreversible thermodynamics there exists the following relation as

dαj/dt =∑
k

LjkFk(α1, α2, ..., αn) (1.12.1)

between deviation of jth state variable and thermodynamic force. Thermodynamic force
is defined as derivative of entropy with respect to α.

In Onsager’s theory it is assumed that the system responses to the applied force imme-
diately.This assumption works well in variety of situations such as Navier-Stokes equation
in fluids or Fick’s law of diffusion. However there exist situations in which a rather accu-
rate description of the system requires causality to be taken into account.As an example
memory effects in viscoelastic materials is famous.

In experiments, such as measuring the relaxation of a stretched polymer, incorporation
of all influencing phenomena is not possible. For example a rather full description of the
state includes a vast majority of molecular variables. Thereby in such practical situations
one goes for measuring only a few of these and proceeds to conclusion ignoring others as
if they did not exist. This demonstrates the significance of causal responses existing in
various engineering applications.

As stated, Onsager’s derivation relies on the assumption of instantaneous responses.
To cope with such a limitation in Onsager relations, Zwanzig developed a causal theory
in the following form:

dαj(t)/dt =∑
k
∫

t

0
dsKjk(s)Fk(α1(t − s), ..., αn(t − s)) (1.12.2)

Transport coefficients are related to memory functions Kjk(s) as

Ljk = ∫
τ

−0
dsKjk(s) (1.12.3)

Zwanzig’s theory has been implemented in the current study as a generalization to On-
sager’s theory.

1.12.1 Outline of the method

Macroscopic state variables are translated into molecular variables through phase func-
tions which represent a large number of molecules. There is a characteristic associated
to these phase functions as they vary slowly in time relatively to the rates of individual
molecular processes.

It is assumed that system under consideration is initially in thermal equilibrium. Also
it is assumed that the system is free of external time-dependent forces or boundary con-
ditions.

Firstly we need to decide on a set of variables which are supposed to describe the
macroscopic state of the system. These variables would be in fact the phase functions
A1(x),A2(x),An(x) with x denoting the position of the system in phase space.
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We consider certain macroscopic characteristics for our phase functions. They are
parametrized by position and velocities of large number of molecules with small time
derivatives relative to individual molecular quantities. Next the system is set up in a way
that is always in thermal equilibrium. This brings certain constraints so that the phase
functions A(x) keep maintaining certain values. At the next step constraints are stripped
allowing the system to relax. There after the probability distribution of the A(x) is com-
puted as a function of time.

Molecular Picture

Molecularly the state of the system is resolved through the position x. Point wisely the
system moves from its initial position x0 to xt at time t. Correspondingly the phase func-
tions change form A(x0) to A(xt).

The set containing a1, a2, ...an is denoted by a. A surface in phase space is defined
with a set of equations as A(x) = a, where x represents a point on this surface. Any point
x on the surface S(a) yields to the same set of numbers a. Initial values are defined as
a0 = A(x0).

Full statistical resolution of the outcomes of repeated experiments is addressed through
the probability distribution g(a; t) in a space. a space is a space of n dimensions . Each
point in this space is labeled through a1, a2, ..., an . Accordingly the probability at time t
reads as

g(a; t)da = g(a1, a2, ..., an; t)da1da2...dan (1.12.4)

The initial value of the a-space distribution reads as

g(a; 0) = δ(a − a0) =
n

∏
j=1

δ(aj − aj0) (1.12.5)

where a0 denotes the set of initial values as assigned. In other words, g(a; t) represents
the probability of transition from initial surface S(a0) to some arbitrary surface S(a) in
time t.

1.12.2 Derivation of kinetic equation

Phase space is a space in which all possible states of a system are resolved where each
state is related to one specific point in the phase space.

Equations describing molecular motion are written in the form of Liouville’s equation.
It is known that the probability distribution function in phase space f(x; t) satisfies the
equation

i∂f(x; t)/∂t = Lf(x; t) (1.12.6)

where L would be the Liouville operator defined in terms of Hamiltonian function H(x)
and the Poisson bracket ,P,B. as
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Lf = iH, fP.B (1.12.7)

The relation for the probability distribution in a space and in phase space would be

g(a; t) = ∫ dxδ(A(x) − a)f(x; t) (1.12.8)

where replacing the f(x; t) with Liouville operator yields the following relation for
distribution function as

g(a; t) = ∫ dxδ(A(x) − a)e−itLδ(A(x) − a0)/W (a0) (1.12.9)

where W (a) is the structure function of the surface and is defined as

W (a) = ∫ dxδ(A(x) − a) (1.12.10)

Projection operators

The subspace of functions A(x) is described through a projection operator P . The pro-
jection operator is defined as

G1(x) = PG(x) = ∫
dx′δ(A(x′) −A(x))G(x′)

2
(1.12.11)

Kinetic equation for f1

Time dependency of the projected part of a phase space distribution function is derived
by separating the distribution function into relevant and irrelevant parts through the
projection operator. The resulting equation represents a memory effect or causality which
reads as

i
∂f1(t)
∂t

= PLf1(t) − i∫
t

0
dsPLe−is(1−P )L(1 − P )Lf1(t − s) + PL−it(1−P )Lf2(0) (1.12.12)

1.12.3 An exact form for g(a; t)

The exact relation for g(a; t) includes
∂g(a; t)
∂t

+
n

∑
j=1

∂

∂aj
vj(a)g(a; t) = ∫

t

0
ds∫ d′

n

∑
j=1

n

∑
k=1

∂

∂aj
W (a)Kjk(a, a′; s) ×

∂

∂a′
g(a′; t − s)
W (a′)
(1.12.13)

where

vj(a) = ⟨dAj/dt;a⟩ (1.12.14)

and

Kjk(a, a′; s) = ⟨
dAj

dt
e−is(1−P )L(1 − P )dAk

dt
δ(A(x) − a′);a⟩ (1.12.15)

The variable vj(a) is the average rate of change of Aj on the surface S(a). Subsequently
Kjk(a, a′; s) would be the memory function which would be a correlation function in time
and in a space.
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1.12.4 An approximation to Kinetic equation

The exact equation for g(a; t) as introduced before is too complicated to be employed in
practical situations. However it is possible to derive an approximation for such a function
based on macroscopical properties of phase functions in which they vary very slowly with
time. One can keep dA/dt terms in the exact form only up to the first and second pow-
ers and ignoring the rest. Noting that the term vj(a) if of the first order in dA/dt and
exhibit no higher order contributions, it will be kept as is in the exact form. The term
Kjk(a, a′; s) is of the second order though exhibits higher order contributions in dA/dt in
implicit manner. Hence those contributions should be disposed.

Such a treatment yields a memory function which is diagonal to terms of the second
order in a space as

Kjk(a, a′; s) = δ(a − a′)Kjk(a; s) +O(Ȧ3) (1.12.16)

The coefficient Kjk(a, s) is a time-correlation function in deviation of time derivatives
from equilibrium

Kjk(a; s) = ⟨[Ȧj(s) − vj(a)][Ȧk(0) − vk(a)];a⟩ (1.12.17)

where

Ȧj(s) = eisLȦj(0) (1.12.18)

would be defined as the value of dA/dt at time s where the operator exp[−is(1 − P )L] is
no further required.
This leads to the following approximate relation

∂g(a; t)
∂t

+∑
∂

∂aj
vj(a)g(a; t)

= ∫
t

0
ds∑

j=1
∑
k=1

∂

∂aj
{Kjk(a; s)W (a)

∂

∂ak

g(a; t − s)
W (a) } +O(Ȧ

3g)

1.12.5 Derivation of transport equation

The above obtained relation for g(a; t) is too detailed and might not be useful in case of
most practical situations. Transport equations in statistical sense describe the average of
observed behavior in experiments. Observations at macroscopic level need to be repro-
ducible meaning that no fluctuations in average behavior should be observed.
The quantity αj(t) defines the ensemble average of the phase function at time t as

αj(t) = ∫ daajg(a; t) (1.12.19)

The time derivative of αj can be calculated from the above equation. Assuming a sharp
macroscopic characteristic for the a-space distribution, ensemble average of functions can
be replaced by function of ensemble averages. Thereby with the following definition for
thermodynamic force as

Fk(a) =
∂

∂ak
logW (a) (1.12.20)
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the transport equation would read as

dαj(t)
dt

= vj(α(t)) + ∫
t

0
ds∑

l

{Kjl(α(t − s); s)Fl(α(t − s)) +
∂

∂αl
Kjl(α(t − s); s)}

(1.12.21)

To obtain simple relations comparable to Onsager relations it is assumed that phase func-
tions A(x) are chosen so that vj(a) is vanished and memory functions only depend on
those coefficients that are constants of the motion. As a result of these assumption the
following final form could be obtained as

dαj(t)
dt

= ∫
t

0
ds∑

k

Kjk(s)Fk(α(t − s)) (1.12.22)

with memory functions obeying the reciprocal relations as

Kjk(a; s) =Kkj(a; s) (1.12.23)
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A A summary of principles of classical irreversible thermo-
dynamics

Due to their rare clarity, the present exposition is taken from those of Biot [18] and Eringen
[21]. Suppose we have a thermodynamic system with variable temperature T (absolute
temperature) which, in the initial state of equilibrium, is at the uniform temperature T0
of the surrounding environment. Often, from an engineering point of view, the surround-
ing environment at a fixed temperature is the atmosphere. We consider the whole of our
system plus the surrounding environment as a single isolated system. Suppose the sur-
rounding environment is large enough to maintain own temperature to the constant value
T0. Suppose that n external forces act on the system, which can be of various nature,
pi, i = 1, ..., n, where p1 = T0. Suppose the system has n degrees of freedom defined by
n state variables Qi, i = 1, ..., n where we assume Q1 ≡ S being S the entropy of the
system in question. Suppose that the state variables have been chosen so that Qi = 0 in
correspondence to the equilibrium state and are such that

δW = pidQi (A.1)

where δW is the work done on the system by the external forces pi. Therefore p1Q1 = T0S.
The total entropy variation dΣ is the sum of the entropy variation dS of the system and
the surrounding environment dS0:

dΣ = dS0 + dS (A.2)

By the second law of thermodynamics and taking into account that the system is isolated
we have

dΣ ≥ 0 (A.3)

The first law of thermodynamics tells us that

T0dS0 = −δQ = −(dU − δW ) (A.4)

where δQ is the heat variation of the system. Consider the Gibbs equation of thermostatics

TdS = dU − pRi dQi i = 2, ..., n (A.5)

where pRi are the reversible parts of the forces pi

pi = pRi +Xi i = 2, ..., n (A.6)

and Xi are the irreversible parts, also called Onsager forces. Prigogine [5] using the
methods of statistical mechanics has shown that the Gibbs equation is valid also for
systems not far from equilibrium. Taking pR1 = T and X1 = T0 − T we have

dU = pRi dQi i = 1, ..., n (A.7)

T0dΣ =XidQi i = 1, ..., n (A.8)

where U = U(Q1, ...,Qn) is an equation of state. From (2.7) and (2.8) we also obtain

pRi =
∂U

∂Qi
(A.9)
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Xi = T0
∂Σ

∂Qi
(A.10)

expressions defining the purely reversible forces pRi and the Onsager forces Xi. Turns out

T0
dΣ

dt
=XiQ̇i =XiJi (A.11)

where Ji ≡ Q̇i are called flows, while dΣ
dt

is called entropy production. The Onsager
principle of reciprocity states that the Onsager forces are linear functions of the flows with
the matrix of symmetric coefficients

Xi = bijJj (A.12)

bij = bji, bij ≥ 0 (A.13)

It is usual to use the thermodynamics densities which are defined as the thermodynamic
variables per unit mass of the system under examination. For linear systems it is also
possible to define thermodynamic variables per unit of volume:

χ = Σ

V
(A.14)

s = S
V

(A.15)

u = U
V

(A.16)

qi =
Qi
V

(A.17)

where V is the volume of the system. The principles of thermodynamics with reference to
the closed system formed by the system in question and by the external environment can
be summarized as follows

δQ

M
= du − pidqi (A.18)

χ̇ ≥ 0 (A.19)

du = pRi dqi (A.20)

Xi = T0
∂χ

∂qi
= bij q̇j = pi − pRi (A.21)

bij = bji, bij ≥ 0 (A.22)

which can be summarized as

T0σ̇ =Xiq̇i = bij q̇iq̇j = b−1ij XiXj . (A.23)



Chapter 2

Gradient Elasticity

2.1 Introduction

Gradient theories may be viewed as a subcategory of generalized continuum mechanics, de-
veloped in response to some experimental observations which can not be described through
conventional mathematical, numerical and computational tools available in the context of
classical continuum theories. With technological advancements in structural studies of
materials at micro and nano levels, phenomena are observed that look to be highly in-
fluenced by size effects stemming from the presence of elements, such as inhomogeneities,
with length-scales considerably shorter than the matrix they reside in. Incorporating such
effects with desired accuracy is not feasible through conventional methods in mechanics.

For example, it is observed that stiffness of a specimen depends on the size of the sam-
ple prepared for the testing [29]. In other words, material response exhibits dependence on
a new intrinsic length scale that can not be captured through Cauchy continuum theory.
Or in the case of nano-sized high performance structures such as nano-wires, nano-films
and nano-tubes, where the surface to volume ratio is not negligible anymore, behavior
and effects of the surface should be taken into account [30]. Such a phenomenon is called
capillary effect and according to Mindlin [31], a second gradient of strain is needed to fully
characterize its kinematics.

So the main goal of gradient theories is to capture the gradient effects and incorporate
them into the material model [32]. They have been successfully used to address micro-
/nano-structural inhomogeneities and they encompass the usage of tensors with ranks
higher than two.

Gradient methods could be divided into two theories, namely strain gradient theories
and stress gradient theories; in both of which, strain energy function depends on the strain.
They lead to boundary value problems and could be used for numerical implementations
[33] which are discussed in the following sections.

2.2 Gradient Models

Incorporating length scale effects in more recent models in elasticity or plasticity, for
example, occurs through the introduction of higher gradients of strain (or constitutive

24
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variables in general).
Historically, however, the origin of gradient theories goes back to works by Cauchy

[34, 35] in which the idea of application of higher order spatial derivatives was suggested
for enhanced estimation of the response of discrete lattice models where the size of the
elementary volume appeared as an additional constitutive parameter. Thereafter, in 1887,
molecular rotations, alongside molecular displacement, were introduced by Voigt [36, 37].
The remarkable advancement in the generalized continuum theories happened through the
work of Cosserat brothers [38]in which kinematics of particles were enriched by incorpo-
rating both translational and rotational degrees of freedom.
In 1960s, and due to increased attention in the community, a second major revival towards
development of gradient theories occurred and a number of landmark works were accom-
plished, among which studies done by Aero and Kuvshinski [39], Pal’mov [40], Kunin [41]
as well as Toupin [42, 43], Mindlin and Tiersten [44], Mindlin [31, 45, 46], Mindlin and
Eshel [47], Kroner [48, 49] and Green and Rivlin [50, 51] can be named. In particular the
work done by Germain [52] should be pointed out where method of virtual powers was
employed to address the general equilibrium equation of first strain gradient for materials
with a microstructure equipped with inherent extra degrees of freedom. The field was
further developed in modern times through the prominent work of Eringen [53] in which
he reformulated his original integral-type constitutive relations into a differential type one.

However, and as a drawback, these models were very complex as they were including
many parameters. Aifantis and co-workers [54–56] contributed to the field by developing
models in which the number of higher-order terms were significantly reduced compared
to its preceding similar works. This reduction led to reduced number of constants in
constitutive relations.

2.3 Strain Gradient Theories

There exists various formats of gradient theories encompassing microstructural and size-
effects. For example they could be viewed as mono or multi-scale supporting formulations;
or based on the origin of extra variables in the model (due to the presence of micro/nano
structures) other theories such as Cosserat-type theories, couple stress methods or mi-
cropolar theories can be considered. However herein we focus on linear elasticity gradient
models and mention landmark works in this domain.

2.3.1 Mindlin’s 1964 Theory

In Mindlin’s theory [45], micro and macro scale effects kinematically are separated and
addressed. Consequently, kinetic energy density, as well as the deformation energy density
are formulated based on parameters originating from both scales. For the kinetic energy
K one can write:

K = 1

2
ρu̇iu̇i +

1

2
ρℓ21ψ̇ijψ̇ij , (2.3.1)

and the deformation energy density can be expressed as:

U =1
2
Cijklεijεij +

1

2
Bijklγijγkl +

1

2
Aijklmnκijkκlmn

+Dijklmγijκklm + Fijklmκijkεlm +Gijklγijεkl (2.3.2)
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where ui, εij , ψij , γij and κijk are macroscopic displacement, macroscopic strain, macro-
scopic deformation, relative deformation (between micro and macro displacements) and
the gradient of the microscopic deformation, respectively. Additionally, ρ would be mass
density, and ℓ1 is a parameter representing the size of the unit cell of the microstructure.
In this regard macroscopic strain is defined as usual as:

εij =
1

2
(ui,j + uj,i),

and for the relative deformation one can write:

γij = uj,i − ψij .

Furthermore, for the gradient of the microscopic deformation we can write as following:

κijk = ψjk,i

The constitutive tensors Cijkl,Bijkl,Aijklmn,Dijklm,Gijkl represent 1765 coefficients, among
which 903 are independent coefficients. As can be seen it is quite a number of parameters
to be deal with in calculations. In the case of isotropic materials they are reduced to 18,
yet still it would be a formidable task. In this case, the relation for the deformation energy
density can be expressed as:

U =1
2
λεijεij + µεijεij +

1

2
b1γiiγjj +

1

2
b2γijγij +

1

2
b3γiiγji + g1γiiεjj

+ g2(γii + γji)εij + a1(κiik + κkjj) + a2κiikκjkj +
1

2
a3κiikκjjk

+ 1

2
a4κijjκikk + a5κijjκkik +

1

2
a8κijiκkjk +

1

2
a10κijkκijk

+ a11κijkκjki +
1

2
a13κijkκikj +

1

2
a14κijkκjik +

1

2
a15κijkκkji. (2.3.3)

where λ and µ are the Lame constants and ai, bi and gi would be constitutive parameters.
The difficulty associated with Mindlin’s formulations originates from the fact that quan-
tifying the large number of coefficients is not easy or straight forward task in practical
situations and/or experimental settings. To cope with such a problem, Mindlin devised
another version of his formulation by some simplifying assumptions, in that the deforma-
tion energy density was only expressed in terms of macroscopic displacements. This way
parameters related to multi-scale considerations are simply dropped.

This approach led to development of three forms of this theory as following:
Form I: Micro scale gradient of deformation is defined as the second deformation

gradient at macro scale, namely:

κijk = uk,ij (2.3.4)

Form II: Micro scale gradient of deformation is expressed as the first gradient of the
strain at macro level, meaning:

κijk = εjk,i, (2.3.5)

where εjk,i is defined as:

κijk =
1

2
(uk,ij + uj,ik). (2.3.6)
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Form III: In the last form microscopic deformations are expressed as the addition of
two parts. First part would be gradient of microscopic rotation shown with χ and defined
as:

χij =
1

2
ejlmum,il (2.3.7)

where ejlm would be Levi-Civita permutation tensor.
The second term shaping the microscopic deformation would be symmetric part of the

second gradient of macroscopic displacement field which is expressed as:

κijk =
1

3
(ui,jk + uj,ik + uk,ij). (2.3.8)

Development of these forms were pursued further and were explained in terms of stress
in another work by Mindlin and Eshel [44]. Nevertheless the equation of motion of all
aforementioned three forms ends up to an identical expression.

Considering Form II, deformation energy density can be simplified a bit further as:

U =1
2
λεijεij + µεijεij + a1(κiik + κkjj) + a2κiikκjkj
+ a3κiikκjjk + a4κijjκikk + a5κijjκkik. (2.3.9)

Equations of motion can also be simplified and expressed only in terms of macro displace-
ments as:

(λ + µ)uj,ij + µui,jj

− 4a1 + 4a2 + 3a3 + 2a4 + 3a5
2

uj,ijkk

− a3 + 2a4 + a5
2

ui,jjkk + bi = ρ(üi − ℓ21) (2.3.10)

where bi are body forces. It can further be written more succinctly when we note that
distinction between ai would be irrelevant in the case of participial implications. Therefore
we will have:

(λ + µ)(1 − ℓ22
∂2

∂x2k
)ui,jj + µ(1 − ℓ23

∂2

∂x2k
)ui,jj

+ bi = ρ(1 − ℓ21
∂2

∂x2k
)üi (2.3.11)

where

ℓ2 =
√

4a1+4a2+3a+3+2a+4+3a+5
2(λ+µ) and ℓ3 =

√
a3+2a4+a+5

2µ .

This way there exist only three parameters need to be taken care of that include ℓ1, ℓ2 and ℓ3.
Looking at the equation more closely, it is revealed that these three additional parame-
ters correspond the microscopic components of the model. Besides all higher order terms
appear as the Laplacian of the related lower-order terms.
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2.3.2 Aifantis’ 1992 Theory

Aifantis’ theory of gradient elasticity stems from his previous works on plasticity [57, 58]
and nonlinear elasticity [59]. Those endeavors led the authors to enrich the constitutive
relations with the Laplacian of strain [54–56] as:

σij = Cijkl(εkl − ℓ2εkl,mm) (2.3.12)

where similar to previous model ℓ stands for length scale coefficient.
Accordingly the equilibrium equation reads as:

Cijkl(uk,jl − ℓ2uk,jlmm) + bi = 0, (2.3.13)

and assuming an isotropic material, we can express the C tensor as:

Cijkl = λδijδkl + µδilδjk. (2.3.14)

Through operator splitting method, the above equation can be solved as a set of two
uncoupled equations as:

Cijklu
c
k,jl + bi = 0 (2.3.15)

and

ugk − ℓ
2ugk,mm = u

c
k (2.3.16)

Herein two different displacement fields are introduced: uci which represents the role of
classical elasticity and ugi which allows the involvement of gradient elasticity. Some authors
have incorporated the effect of gradients through strain field rather than displacement field
[60–62], as such one can write:

εgkl − ℓ
2εgkl,mm = ε

c
kl =

1

2
(uk, lc + ucl,k) (2.3.17)

which upon multiplication with the tensor Cijkl above relation can be expressed as:

Cijkl(εgkl − ℓ
gεgkl,mm) = Cijklu

c
k,l. (2.3.18)

Herein,

εgkl =
1

2
(ugk,l + u

g
l,k). (2.3.19)

Either of the above equations can be employed along with the related equilibrium equation
in so long as field equations are not altered. However from the standpoint of boundary
conditions and their variational consistency they might result in slightly different outcomes
[62] depending on the problem at hand.
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2.4 Stress Gradient Theories

2.4.1 Eringen’s Theory

Milestone works done by Eringen inspired a new rather independent theory in general-
ized continuum theories namely stress gradient theory. In Eringen formulation, integro-
differential relations are transferred into differential forms, so that the constitutive stress-
strain relation reads as:

C ∶ ε = σ − ℓ2∆σ (2.4.1)

in which ℓ similar to strain-gradient relations would be a material constant representing
internal length scale, ∆ is Laplacian operator, and C is the elasticity tensor of rank four.
In nonlocal settings, this equation can be interpreted as a differential relationship between
nonlocal stress field and local strain field ε. In the original format the relationship between
these two fields can be described through an integral relation as:

σ(x) = ∫
Ω
α(∣x′ − x)s(x′)dv(x′) (2.4.2)

in which V is defined as the material domain and α(∣x′−x) would be the influence function
[63] which is introduced to accounting for non-locality effects. This represents the distance
between the field point x and the source po int x′.

Nonlocal stress field obeys the usual equilibrium relation as:

∇ ⋅σ + b = 0 in Ω. (2.4.3)

where b stands for body forces.

In terms of boundary conditions on ∂Ω we have:

n ⋅σ = t̄ on ∂Ωf (2.4.4)

where t̄ represents forces on free part of the boundary (i.e. no constraints are devised for
that part).

Strain field is also required to follow compatibility conditions as:

ε = ∇su in Ω (2.4.5)

and

u = ū on ∂Ωc (2.4.6)

where
∇su = ui,j + uj,i

2

would be symmetric part of the gradient operator and ∂Ωc represents the constrained part
of the boundary.

Through the Eringen model, both equilibrium and compatibility conditions are intro-
duced into the formulation through the differential form of stress-strain relation instead
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of the integral type one. It means that nonlocality effects, inherently available in integral
form, transferred into the differential form as the gradient effects of the Cauchy stress σ.

Combining the aforementioned set of equations and boundary conditions leads to an
equation based on displacement which reads as:

Lu = −b∗ in Ω (2.4.7)

where

b∗ ∶= b − ℓ2∆b (2.4.8)

Here L is an operator that represents second order partial-differential equations arising in
isotropic elasticity, which through designating usual Lamé constants we can write:

Lu ∶= µ∆u + (λ + µ)∇∇ ⋅ u (2.4.9)

The resulting equation needs to be solved in conjunction with boundary conditions con-
taining the stress field. This model has been widely used in the literature for addressing
nano-scale objects, crack propagation at microscope, dislocations and so on [64–68].

2.4.2 Forest’s Theory

Forest and Sab [69] argue that to consider a theory fully as stress gradient theory, the
role of stress field and its gradients should be distinguished from stain gradient effects
and needs to be distinctly expressed in the model. They claim that the presence of stress
gradients in Aifantis’ model merely stems from specific assumption in Mindlin’s strain
gradient theory [70] thereby it is still resides in the category of strain gradient models.

To construct a stress gradient theory, they opted for the variational methods and the
method of virtual power. Consequently they considered an homogeneous elastic medium
with clamping conditions at the boundaries. Constraints of the type of clamping means
that the displacement field vanishes at the boundaries, i.e.

u(x) = 0 on ∂Ω.

and the domain is under the body forces. Variational formulation of this boundary value
problem includes minimization of the complementary energy as:

W∗(σ) = ∫
Ω

1

2
σ ∶ S ∶ σdV (2.4.10)

where S stands for elastic compliance tensor. In addition to the stress gradient, it is
assumed that deviatoric part of the stress gradient (denoted by R)contributes to the
energy as well. Therefore two sets of conditions arise as following:

σ ⋅ ∇ + f = 0 (2.4.11)

R = (σ ⊗∇)d (2.4.12)

Now the solution is obtained through minimizing the following relation:

W∗SG(σ) = ∫
Ω
w∗(σ,R)dV, (2.4.13)
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where SG denotes stress gradient. Multiplying the equation 2.4.11 with displacement field
and after integration by parts we have:

∫
Ω
σ ∶ εdv = ∫

Ω
f ⋅ udv + ∫

∂Ω
(σ ⋅ n) ⋅ uda (2.4.14)

Based on the same approach, equation 2.4.12 is multiplied by a kinematic variable Φ and
integrated by parts over the domain, as a result of which it reads:

∫
Ω
R ∴Φ − (σ ⊗∇)d ∴Φdv = ∫

Ω
R ∴Φ − (σ ⊗∇) ∴Φdv

= 0 (2.4.15)

Integrating by parts would yield:

∫
Ω
σ ∶Φ ⋅ ∇ +R ∴Φdv = ∫

∂Ω
σ ∶Φ ⋅ nda. (2.4.16)

Then summing up equations 2.4.14 and 2.4.14 results in:

∫
Ω
(σ ∶ (ε +Φ ⋅ ∇) +R ∴Φ)dv = ∫

Ω
f ⋅ udv + ∫

∂Ω
σ ∶ (u⊗ n +Φ ⋅ n)da (2.4.17)

The resulting equation in fact provides a conjugation between measures of strain and
gradients of stress (in addition to stress itself) as following:

e ∶= ε +Φ ⋅ ∇ (2.4.18)

with a new kinematic variable, i.e. Φ which is conjugate to R. Thereby constitutive
relation for conjugated stress and strain reads as:

e = ∂w
∗(σ,R)
∂σ

(2.4.19)

and

Φ = ∂w
∗(σ,R)
∂R

(2.4.20)

Equation 2.4.17 when reformulated variationally leads to new clamping condition as fol-
lowing:

u⊗ n +Φ ⋅ n = 0 (2.4.21)

As can be seen the outcome provides a defined well posed boundary value problem.

2.4.3 Polizzotto’s Theory

In 2014 Polizzotto [71] contributed to the advancement of the stress gradient theory em-
ploying a similar approach to Forest and Sab [69] yet with fundamental differences in terms
of the virtual power principle used and the final forms of boundary conditions obtained.

Polizzotto applied the complementary form of the principle of the virtual power through
which the stress is given the chance to play the main role as the primary driving field.
This is why in the work by Forest and Sab, where the principal of virtual power is used,
kinematic variables including displacements and microdisplacments showed to have the
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main effect; and stresses and stress gradients exhibited their effects as power conjugate
variables.

Both theories exhibit the presence of higher order boundary conditions as a result of
the application of the principle of virtual power. There is a slight difference though. In
Forest and Sab, boundary conditions are expressed as:

Φ ⋅ n + 1

2
(n⊗ u + u⊗ n) assigned on∂Ω (2.4.22)

wheres Polizzotto obtianed the boundary condition in the form of:

Φ ⋅ n assigned on∂Ω. (2.4.23)

In a more recent work by Polizzotto [72] he verifies the obtained higher order boundary
condition by means of principle of virtual power as employed by Forest and Sab [69]. It
arises that the latter form of boundary condition is obtained when the same method of
virtual power is applied.

In terms of computation and numerical implementations it seems that the formulation
developed by Polizzotto to be more feasible, as it involves the ordinary displacements
and stresses, whereas in Forest and Sab formulation, three ordinary displacements, in
conjunction with 15 microdisplacments, need to be calculated.

2.5 Variational Formulations

Variational principles as a method of analysis, offer a framework within which the well-
posedness of the corresponding mathematical model can be investigated. They also serve
as a foundation for numerical methods and to obtain resultant discrete forms. Eventually
they have shown to be useful in assessing the reliability and effectiveness of the proposed
numerical method [73]. Fortunately theories based on nonlocal elasticity and some other
branches of generalized continuum theories have been shown to admit variational formula-
tions analogous to classical continuum models [74]. Herein some variational formulations
employed within the framework of gradient theories will be discussed.

2.5.1 Principle of Total Potential Energy

Assuming a material body occupying the domain V ,under the body force b̄ and surface
traction t̄ with imposed displacements ū , and also assuming all these field variables are
sufficiently smooth, according to [74] the boundary value problem in a nonlocal setting
can be formulated through the following set of equations :

divσ + b̄ = 0 (2.5.1)

σ ⋅ n = t̆ (2.5.2)

ε = ∇su (2.5.3)

u = ū (2.5.4)

σ =D ∶R(ε) (2.5.5)

where ∇s denotes the symmetric part of the gradient operator as:

∇su = ui,j + uj,i
2
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Total potential energy of a nonlocal elastic body is expressed as:

Π[u] =1
2
∫
V
∫
V
A(x,x′)∇u(x) ∶D ∶ ∇u(x′)dV ′dV

− ∫
V
b̄ ⋅ udV − ∫

St

t̄ ⋅ u (2.5.6)

where the field variable u(x) belongs to all kinematically admissible displacement fields
so that u is C1 continuous, meaning that together with its first partial derivative, they
belong to L2 space. Additionally it satisfies the compatibility boundary condition. The
following theorem then can be stated.

Theorem 1 The displacement field u ∈ K which is part of the solution (u,ε,σ) of the
nonlocal elasticity problems as defined above, minimizes the total potential energy Eq. 2.5.6
in the class K ; converesely the field u minimizing 2.5.6 in K is part of the solution of
the nonlocal elasticity problem.

2.5.2 Complementary Energy Principle

If in the above defined boundary value problem, the constitutive equation is replaced by:

σ(x) =R(s) ∶= ∫
V
A(x,x′)s(x′)dv′ (2.5.7)

where R(.) denotes a linear integral operator that maps the local field of s(x) into the
corresponding nonlocal one; and s = sij is the local stress with following relation to strain
(which is in fact the classical Hooke’s relationship):

s =D ∶ ε (2.5.8)

then the solution to the above equation could be parameterized by field variables of
(u,ε,σ, s). It would be worthy of notice that here one more field variable is included
within the solution space, i,e. local stress field s(x).

Accordingly, the complementary potential energy of the body is described by the fol-
lowing functional:

Πc[s] ∶=
1

2
∫
V
∫
V
A(x,x′)s(x) ∶D−1 ∶ s(x′)dV ′dV

− ∫
Su
∫
V
A(x,x′)n(x′) ⋅ s(x′) ⋅ ūdV ′dS (2.5.9)

where s(x) belongs to the class H of all statistically admissible (local) stress fields and
is defined as: every s is C0 continuous (i.e. belonging to L2) and the corresponding stress
(nonlocal) σ =R(s), satisfies the field equations,as well as related boundary equations as
declared in the definition of the defined boundary value problem. The following theorem
then can be proved:

Theorem 2 The local stress field s ∈ H , part of the unique solution (u,ε,σ, s) of the
nonlocal elasticity problems,minimizes the complementary potential energy in H ; con-
versely the local stress field minimizing the above functional is part of the soluton to the
same problem.
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It should be noted that the linear operator R is of type of self-adjoint operators, so that
a Green-type equality as :

∫
V

R(G) ⋅ FdV = ∫
V
G.R ⋅ Fdv (2.5.10)

holds for any pair of scalar and tensor fields.

2.5.3 Hu-Washizu Variational Principle

In this type of variational principle, the functional to be considered would be:

ΠH ∶=
1

2
∫
V
∫
V
A(x,x′)ε(x) ∶D ∶ ε(x′)dV ′dV

− ∫
V
[σ ∶ (ε −∇su) + b̄ ⋅ u]dV

− ∫
Su

t ⋅ (u ⋅ ū)dS − ∫
St

t̄ ⋅ udS (2.5.11)

where u,ε,σ, t are independent field variables. Accordingly the following theorem can be
proved:

Theorem 3 The solution (u,ε,σ) to the nonlocal elasticity problem as defined above,
together with t = σ ⋅n on the boundary of the domain, make stationary the above functional;
conversely the stationary solution to the above functional solves the nonlocal elasticity
problem.

Polizzotto advanced his method in employment of this principle in the case of strain
gradient materials [72] by introducing the functional ΩHW as following:

ΩHW ∶=∫
V
[ψ(ε(0),ε(1)) −σ(0) ∶ (ε(0) − ε) (2.5.12)

−σ(1)⋮(ε(1) −∇ε) −σ ∶ (ε −∇(s)u)]dv −Wext (2.5.13)

Herein Wext is a scalar variable and stands for external potential and is expressed as:

Wext =∫
V
b̂ ⋅ udv + ∫

Sf

(t̂ ⋅ u + m̂ ⋅ ∂nu)da

+ ∫
Sf

[t ⋅ (u − û) +m ⋅ (∂u − ĝ)]da

+ ∫
Γf

f̂ ⋅ uds + ∫
Γc

f ⋅ (u − û)ds (2.5.14)

The symbols t,m, f denote unknown tractions on boundaries.
The stationary condition for the above functional including all the variables leads to

the set of governing equations of the stress gradient boundary value problem. The first
variation for the Hu-Washizu functional reads as:
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δΩHW =∫
V
[(ψ,ε(0) −σ(0)) ∶ ε̃(0) + (ψ,ε(1) −σ(0))⋮ε̃(1)]dv

+ ∫
V
[σ(0) −∇ ⋅σ(1) −σ] ∶ ε̃dv

− ∫
V
[(ε(0) − ε) ∶ σ̃(0) + (ε(1) −∇ε)⋮σ̃(1) + (ε −∇u) ∶ σ̃]dv

− ∫
V
[∇ ⋅σ + b̂] ⋅ ũdv − ∫

Sf

[(∇̄S + κn) ⋅Σ + t̂ − n ⋅σ] ⋅ ũda

+ ∫
Sf

[n ⋅Σ − m̂] ⋅ ∂nũda + ∫
Sf

[n ⋅σ − (∇̄S + κn) ⋅Σ − t] ⋅ ũda

+ ∫
Sf

[n ⋅Σ −m] ⋅ ũda − ∫
Sc

[(u − û) ⋅ t̃ + (∂nu − ĝ)] ⋅ m̃da

+ ∫
Γf

[Π − f̂] ⋅ ũda − ∫
Γc

[Π − f] ⋅ ũds − ∫
Γc

[u ⋅ û] ⋅ f̃ds

= 0 (2.5.15)

2.5.4 Hellinger-Reissner Variational Principle

In this type of variational principle we are concerned with two field variables instead of
one. Two field variables in this case include stress and displacement fields [71, 75]. This
principle reads as:

ΠH[σ,u] ∶=∫
V
[σ ∶ ∇u −G(σ,∇σ) − b ⋅ u]dv

+ ∫
S
r ∶ σda − ∫

St

t ⋅ (u − ūda (2.5.16)

Similar to other previous variational principles, this one is also formulated as a theorem
and can be shown that if the solution to the corresponding boundary value problem
exists, it makes ΠH to be stationary; and conversely that the stationary solution solves
the boundary value problem. Worthy of mentioning that the solution will be unique.

2.6 Boundary-Value Problems (BVPs)

2.6.1 BVP for Stress Gradient Theories

Governing equations for the stress gradient elasticity, stemming form Eringen model, col-
lectively reads as [71]:

ε =C−1 ∶ (σ − ℓ2∆σ) in V (2.6.1)

∇ ⋅σ + b = 0 in V (2.6.2)

ε = ∇u in V (2.6.3)

where stress-strain relationship conveys the length scale parameter ℓ, and consequently
equilibrium equation and kinematic restrictions are applied.

Accompanying boundary conditions include:

∂nσ = 0 on S (2.6.4)

n ⋅σ = t̄ on Sf (2.6.5)

u = ū on Sc (2.6.6)
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where S denotes the boundary surface composed of two partitions as S = Sf ∪Sc , each of
which convey specified imposition of traction and displacement.

When divergence theorem is applied to the relationship between the stress and the
strain, the governing differential equation is obtained as:

L = −b∗ (2.6.7)

where b∗ is defined as:

b∗ ∶= b − ℓ2∆b (2.6.8)

Through the above governing equation the behavior of stress field in response to a prede-
termined strain field could be evaluated. According to variational principles discussed in
the previous section, it can be shown that the solution to the mentioned problem obeys a
variational form of a functional called J[σ] which is defined as:

J[σ] ∶= ∫
V
[G(σ,∇σ) − ε ∶ σ]dv (2.6.9)

Here ε is the strain field and G(σ,∇σ) would be the Gibbs function defined as:

G = 1

2
σ ∶Aσ + 1

2
ℓ2A ∶∶ [(∇σ)T ⋅ ∇σ] (2.6.10)

The problem can be restated in this way that in this model the corresponding stress field to
the given strain, minimizes the functional J , and conversely the stress field that minimizes
this functional would be the one that corresponds to the applied strain field.
Some mathematical treatments would yield the first variation of J as :

δJ = ∫
V
[A ∶ (σ − ℓ2∆σ) − ε] ∶ δσdv + ∫

S
ℓ2∂nσ ∶A ∶ δσda (2.6.11)

Assuming that the second variation of J be computed based on the solution to the stress
problem, then for any σ′ = σ + δσ we have:

J[σ′] = J[σ] + δJ[σ] + 1

2
δ2J[σ] (2.6.12)

where δ2J[σ] is defined as:

δ2J[σ] = 2∫
V
G(δσ,∇δσ) > 0 (2.6.13)

Since δ2J[σ] is greater than zero for any non trivial vanishing variation of stress, we can
obtain:

J[σ′] = J[σ] + 1

2
δ2J[σ] ≥ J[σ] (2.6.14)

The equality sign on the right holds if and only if σ′ ≡ σ showing the solution is unique.
Boundary-value formulations for stress-gradient theories can be based on Hellinger-

Reissner variational principle as well [71]. In this case the functional would be considered
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the same as the one introduced in the previous section as H. The first variation of H thus
reads as:

δH =∫
V
[∇u − (G,σ −∇ ⋅ G,(∇σ))] ∶ δσdv

− ∫
S
[n ⋅ G,(∇σ) − r] ∶ δσda − ∫

V
[∇ ⋅σ + b] ⋅ δudv

+ ∫
Sf

[n ⋅σ − t̄] ⋅ δuda + ∫
Sf

[n ⋅σ − t] ⋅ δuda − ∫
Sf

[u − ū] ⋅ δtda (2.6.15)

Assuming that the pair (σ,u) in conjunction with the strain field ε solve the aforemen-
tioned set of governing equations, all the square-bracketed terms should be vanishing and
thus H = 0 for any variations. It means that in this case H is stationary. On the other
hand if for a certain pair of (σ,u) the calculated δH be vanishing for any variations of σ
and u then all the bracketed terms should be vanishing within the corresponding domain.
It demonstrates that the fields (σ,u) along with strain field ε are the solutions to the
boundary-value problem as formulated for the gradient elasticity problem.

2.6.2 BVP for Strain Gradient Theories

Governing equations along with boundary conditions are well elaborated through recent
decades in the literature [31, 47, 52, 76] and they can be stated as:

σ =C ∶ (ε − ℓ2∆ε) (2.6.16)

τ = ℓ2∇σ (2.6.17)

∇ ⋅σ + b = 0 (2.6.18)

ε = ∇su (2.6.19)

Consequently, the boundary conditions read as:

(∇̄(s) +Hn) ⋅ (n ⋅ τ) + t̄ − n ⋅σ = 0 on Sf (2.6.20)

n ⋅ (n ⋅ τ) = n̄ on Sf (2.6.21)

u = ū, ∂nu = ḡ on Sc (2.6.22)

whereby ∇̄(s) ∶= ∇ − n∂n stands for the tangential operator over the surface at a position
with the outward unit normal as n, and H ∶= −∇̄(s) ⋅n would be twice the mean curvature.
Through combining the mentioned field equations a system of differential equations is
obtained as:

L(u − ℓ2∆u) = −b in V (2.6.23)

The obtained system of differential equations is of the order of 4 with respect to the
displacement field u for which we need a set of boundary conditions to be appended to
the body of the corresponding differential equations.

2.6.3 Comparisons

Comparing the two forms of differential equations derived for stress gradient and strain
gradient theories reveals the differences between the two. For the stress gradient theory
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the role of gradients is appeared through the body forces whereas in the case of strain
gradient theory same effects manifest themselves through the order of the correspond-
ing partial differential equation, which furthermore includes the coefficients carrying the
internal length scale parameter ℓ.

But the more prominent difference raises throughout the boundary conditions. In
strain gradient model of isotropic elastic materials, gradient effects show themselves through
the surface effects in the sense that whereas particles within the bulk of material follow
the classical Cauchy continuum, the particles near the boundary surface form a membrane
like boundary which is governed by the principles of surface mechanics [77, 78]. In fact,
the traction can be divided into two parts, i.e.

t̄ = tGM + tC (2.6.24)

in which tC = n ⋅σ would be the part which is transferred to the bulk material. However,
the other part, i.e. tGM which stands for Gurtin-Murdoch traction [78] is manifested
through the boundary layer as a surface body force.

2.7 Thermodynamics in Nonlocal Setting

2.7.1 Thermodynamic Framework

To characterize the constitutive behavior of gradient materials, traditionally and similar
to classical continuum mechanics, an internal energy function U as following is considered:

U = U(ε,q, s, ε̂[ε], q̂[q]) (2.7.1)

Again similar to local based formulations, U is a function of state variables that are
strain tensor ε, the internal variable vector field q and the entropy s. However when
the nonlocality or gradient effects come into play additional variables such as ε̂ and q̂
need also to be taken into account. These additional variables are usually called nonlocal
variables and they can be defined as a functional of the related state variable. Since it
incorporates the effects of nonlocality, the value of this functional at point x depends on
the related state variable over a neighboring zone in the domain. It should be pointed out
that logically nonlocal entropy should be considered in U , however dropping that means
processes related to thermal effects inside the medium are assumed to happen in local
fashion.
Nonlocal strain can be defined as:

ε̂[ε]∣x ∶= (∇ε(x),∇2ε(x), ...,∇nε(x)) for some n = 1,2, ... (2.7.2)

as a comparison with nonlocal models, the same functional is defined as:

ε̂[ε]∣x = F(ε)∣x ∶= ∫
V
g(∥x′ − x∥)ε(x′)dV (2.7.3)

In 2.7.3 g is called the influence function and is parametrized by r as g = g(r). It is a
function of Euclidean distance as r = ∥x′−x∥ which can also be viewed as smallest distance
between x and x′ while not intersecting with the boundary [79–81], as denoted here by
∂V . As can be seen in the gradient model the functional ε̂ is a function of a collection
of k-th order gradients of strain ∇kε = ∂p1, ∂P2...∂pkεij (k = 1,2, ..., n). Similarly, the
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functional for q̂ is expressed in terms of k-th order gradients. Having functional defined
as above, alongside the internal energy potential function, one would be able to explain
a variety of phenomena of interest within a material modeled either through gradient or
nonlocal theories.

Assuming an isothermal and quasi-static deformation for the system under study, the
first principle of thermodynamics (energy balance equation) globally can be written as:

∫
∗

V
U̇dV = ∫

∗

V
σ ∶ ε̇dV ∀V ∗ ∶ Vd ⊆ V ∗ ⊆ V (2.7.4)

where upper dot indicates the time rate, and diffusion domain is denoted as Vd. Accord-
ing to [67], diffusion domain is part of the domain V that nonlocality effects diffusion
processes.It should be pointed out that long distance energy interchanges are neglected
herein since it is assumed that they do not intersect the boundary of Vd as they completely
exhaust within this domain.

By local enforcement of the energy balance of equation (2.7.4) where energy inter-
changes are given the chance to intervene, the integral relation is transformed into a
differential form as following:

U̇ = σ ∶ ε̇ +R in V (2.7.5)

with R named as nonlocality (energy) residual. In other words it is defined as energy
density received by the material particle located at the generic point from all other particles
with the domain V as a consequence of the nonlocality effects diffusion processes.

Insulation condition can be written as:

∫
∗

V
RdV = 0 ∀V ∗ ∶ Vd ⊆ V ∗ ⊆ V (2.7.6)

which means no long distance energy is allowed to transport from the diffusion domain Vd
outward.

Using the Legendre transform as ψ = U − Ts and introducing Helmholtz free energy
potential, entropy as a state variable is replaced by the absolute temperature T > 0, as a
result of which Eq. (2.7.5) is transformed into the following form:

T ṡ = σ ∶ ε̇ − ψ̇ +R ≥ 0 (2.7.7)

which relates the rate of the production of entropy to the deformation process. Second
principle of thermodynamics (entropy production inequality)is manifested here through
the non negativity sign assuming that its point wise form holds despite the existence of
nonlocality effects. Not considering such an assumption would mean that there exists a
deformation which satisfies ∫V ṡdV = 0. Such a deformation would be reversible globally
and at the same time irreversible locally which is illogical [82, 83].
Eq. (2.7.7) is known as Clausius-Duhem inequality and it differs from its local form only
due to the presence of the nonlocality residual R. Classically [84, 85]this equation is
used to extract thermodynamic restrictions pertaining to the constitutive relation of the
material model at hand.

In the case of Helmholtz free energy, following typical forms are considered as for the
nonlocal/gradient elasticity:

ψ = ψ(ε, ε̂[ε]); (2.7.8)
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for nonlocal/gradient plasticity

ψ = ψ(ε − εp, κ, κ̂[κ]); (2.7.9)

and for nonlocal/gradient damage it reads

ψ = ψ(ε, ω, ω̂[ω]) (2.7.10)

where parameters κ and ω pertain to measurement of plastic and elastic deformations,
respectively.

The Toupin-Mindlin theory of polar-gradient elasticity [31, 42] still can be incorporated
into (2.7.8), but as a local model since it takes the following form for a second strain
gradient model:

ψ = ψ(ε(0),ε(1),ε(2)), (2.7.11)

where ε(0) = ε is the usual second-order strain tensor, and ε(1),ε(2) stand for third and
fourth order strain tensors, respectively assumed with the same tonsorial properties as the
strain gradients ∇ε,∇2ε.

In an analogous manner, Clausius-Duhem relation reads as

T ṡ = σ(0) ∶ ε̇(0) +σ(1)⋮ε̇(1) +σ(2) ∶∶ ε̇(2) − ψ̇ ≥ 0, (2.7.12)

with R ≡ 0 since the model is considered to be of the local type. Under such condi-
tions, gradient effects are included into the formulation at the global level through the
compatibility conditions which can be written as [31, 86]:

ε̇(0) = ∇su, ε̇(1) = ∇2u, ε̇(2) = ∇3u (2.7.13)

2.7.2 Thermodynamic Restrictions

Following functional forms are assumed for free energy potential of a material with second
gradient elasticity:

ψ = ψ(ε,∇ε,∇2ε) (2.7.14)

where ε is the classical strain tensor.
Considering the Clausius-Duhem inequality as bellowing:

T ṡ = σ ∶ ε̇ − ψ̇ +R ≥ 0 (2.7.15)

and expanding the time derivative of the mentioned functional would yield:

T ṡ = σ ∶ ε̇ −σ(0) ∶ ε̇ −σ(1)⋮∇ε̇ −σ(2) ∶∶ ∇2ε̇ +R ≥ 0 (2.7.16)

where σn are stress tensors acting as thermodynamic forces here, that is

σ(0) ∶= ∂ψ
∂ε

, σ(1) ∶= ∂ψ

∂∇ε , σ(2) ∶= ∂ψ

∂∇2ε
(2.7.17)

These stress tensors exhibit the same symmetry properties as the corresponding work
conjugate strain tensors, i.e. ε = εij ,∇ε = ∂pεij and ∇2ε = ∂p∂qεij . According to [31]
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all these tensors are symmetric with respect to the indices (i, j) and the third one is
symmetric with respect to (p, q) as well.

Upon integration of equation 2.7.16 we will have:

T ∫
V
ṡdV = ∫

V
[σ ∶ ε̇ −σ(0) ∶ ε̇ −σ(1)⋮∇ε̇ −σ(2) ∶∶ ∇2ε̇]dV ≥ 0 (2.7.18)

After the application of the divergence theorem it reads as:

∫
V
σ(1)⋮∇ε̇dV = −∫

V
∇ ⋅σ(1) ∶ ε̇dV + ∫

S
n ⋅σ(1) ∶ ε̇dS, (2.7.19)

∫
V
σ(2)⋮∇2ε̇dV = −∫

V
∇2 ⋅σ(2) ∶ ε̇dV − ∫

S
n∇ ⋅σ(2) ∶ ε̇dS + ∫

S
n ⋅σ(2)⋮∇ε̇dS (2.7.20)

Through the surface integral transformation formula, the last surface integral in the above
equation can be written as:

∫
S
n ⋅σ(2)⋮∇ε̇dS = ∫

S
G ⋅ (n ⋅σ(2)) ∶ ε̇dS + ∫

S
nn ∶ σ(2) ∶ ∂nε̇dS. (2.7.21)

Having this, substituting obtained integral into the integral form of Clausius-Duhem in-
equality we can write:

T ∫
V
ṡdV = ∫

V
(σ − s) ∶ ε̇dV − ∫

S
(P(1) ∶ ε̇ +P(2) ∶ ∂nε̇)dS ≥ 0, (2.7.22)

where s would be the total thermodynamic force related to the strain rate tensor ε̇ that
reads as:

s ∶= σ(0) −∇ ⋅σ(1) +∇2 ∶ σ(2) in V (2.7.23)

Here P (1) and P (2) are defined as second rank symmetric tensor with the following ex-
pressions:

P(1) ∶= ∫
V
n ⋅σ(1) +∇2 ∶ σ(2) in V (2.7.24)

P(2) ∶= nn ∶ σ(2) (2.7.25)

In contrast to gradient plasticity, in gradient elasticity the strain states, which are driven
by strain fields ε ∈ C4, are not integrable with respect to displacement field u in V . Hence
in the case of gradient elasticity, one should consider the strain states as being driven by
displacement which is manifested through the constraint in the form ε̇ = ∇su̇ with u ∈ C5

to be introduced into 2.7.22. Thereby, and after application of divergence theorem, we
can rewrite the equation 2.7.22 as:

T ∫
V
ṡdV = − ∫

V
∇ ⋅ (σ − s) ⋅ u̇dV + ∫

S
n ⋅ (σ − s) ⋅ u̇dS

− ∫
S
[P(1) ∶ ∇u̇ +P(2) ∶ ∂n(∇u̇)]dS ≥ 0, (2.7.26)

It should be noted that in the above relation ∇s has been replaced by ∇u̇ as a result of
symmetry properties of the microstress tensors.
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Now again through the surface integral transformation we can write:

∫
S
P(1) ∶ ∇u̇dS = ∫

S
G ⋅P(1) ⋅ u̇dS + ∫

S
n ⋅P(1) ⋅ ∂nu̇dS. (2.7.27)

Having considered the following relation as noted in [31]:

∂n(∇u̇) = ∇(∂nu̇) −∇(n ⋅ ∇)u̇
= ∇(∂nu̇) − (∇n)T ⋅ ∇u̇ (2.7.28)

= ∇(∂nu̇) − (∇̄n)T ⋅ ∇u̇. (2.7.29)

we obtain:

∫
S
P(2) ∶ ∂n(∇u)dS = ∫

S
P(2) ∶ ∇(∂nu̇)dS − ∫

S
[P(2) ⋅ (∇̄n)] ∶ ∇u̇dS

= ∫
S
G ⋅P(2) ⋅ ∂nu̇dS + ∫

S
n ⋅P(2) ⋅ ∂2nu̇dS

− ∫
S
G ⋅ [(∇̄n)T ⋅P(2)] ⋅ u̇dS − ∫

S
n ⋅ [(∇̄)T ⋅P(2)] ⋅ ∂nu̇dS. (2.7.30)

Substituting obtained relations back into equation 2.7.26 we can write:

T ∫
V
ṡdV = − ∫

V
∇ ⋅ (σ − s) ⋅ u̇dV

+ ∫
S
[n ⋅ (σ − s) − T (0)] ⋅ u̇dS − ∫

S
[T(1) ⋅ ∂nu̇ +T(2) ⋅ ∂2nu̇]dS ≥ 0, (2.7.31)

with the following relations for T (n):

T(0) ∶= [P(1) − (∇̄n) ⋅P(2)], (2.7.32)

T(1) ∶= n ⋅P(1) + G ⋅P(2), (2.7.33)

T(2) ∶= n ⋅P(2). (2.7.34)

Since u̇ along with its normal derivatives ∂nu̇ and ∂2nu̇ are free variables, inequality 2.7.31
looks to be a good choice for imposing required thermodynamic restrictions. Taking into
account that equation 2.7.31 must be satisfied in the case of any form of displacement-
based deformation, the necessary and sufficient conditions read as:

∇ ⋅ (σ − s) = 0 in V, (2.7.35)

n ⋅ (σ − s) −T(0) = 0 on S (2.7.36)

T(1) = T(2) = 0 on S (2.7.37)

with vectors T(1) and T(2) are named as nonlocality diffusion (Thermodynamic) forces.
Due to the fact that stress field σ is expressed as

σ = s + ρ (2.7.38)

where,

∇ ⋅ ρ = 0 inV (2.7.39)
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n ⋅ ρ = T(0) on S (2.7.40)

it can not be determined uniquely through the thermodynamic forces.
This uncertainty in determination of stress can be vanished through conjecturing the

existence of a surface layer containing suitable membrane stresses. ρ = 0 can be set
for all particles within the domain V , but on the surface, a condition of type 2.7.40 is
applied that needs to be satisfied. Through the membrane equilibrium equations, stresses
in membrane can be uniquely expressed in terms of surface layer traction T(0). Since T(0)

depends on the displacement u on S, a surface energy which can be considered as ψ∗(u)
can be expressed for the surface layer via the following relation:

ψ∗(u) ∶= ∫
u

0
T(0)(u) ⋅ du (2.7.41)

through which one can write:

∂ψ∗

∂u
= T(0)(u) (2.7.42)

The surface energy as defined above slightly differs from the one suggested by Mindlin [31]
for polar-gradient based elasticity models. However it would still be possible that upon
conjecturing, an initial value could be incorporated leading to the same Mindlin surface
tension.

The surface layer encompassing membrane stresses can be viewed as a result of internal
kinematic constraints imposed by the gradient model to the polar-gradient model through
the requirement of displacement-driven strain states. Based on the mentioned reasoning,
one can write the corresponding equation states as:

σ = σ(0) −∇ ⋅σ(1) +∇2 ∶ σ(2) in V (2.7.43)

and as the boundary condition:

T(1) = T(2) = T on S (2.7.44)

No nonlocal energies are allowed to exit the domain through the surface S because the
nonlocality diffusion forces, i.e. T(1),T(2) vanish on the surface. Additionally, as men-
tioned before, the surface layer traction, T(0) is absorbed by the surface layer itself (T(0) is
resisted by the membrane states). Thereby in this configuration constitutive insulation of
the domain is provided and by assuming that n ⋅ρ represents membrane states, inequality
2.7.31 is satisfied as an equality. Followed by the fact that ṡ = 0 in V , one can write the
constitutive relation for R as:

R = ψ̇ −σ ∶ ε̇ (2.7.45)



Chapter 3

Viscoelasticity

3.1 Introduction

Linear theory of viscoelasticity is employed and incorporated in development of the theory
of gradient thermoviscoelasticity. Thereby in this chapter linear viscoelasticity is studied
and integral and differential representations of constitutive relations between stress and
strain are presented. Also some required mathematical tools in development of theory of
viscoelasticity, such as the concept of pseudo-convolution, will be discussed.

Devising mathematical models capable of predicting material responses under different
conditions, requires accurate description of stress and strain states, as well as determina-
tion of environmental parameters such as temperature. Stress and strain are at interplay
with each other and their ultimate stable states define the overall state of body of material.
Stress, strain and environmental parameters are related to each other through some fun-
damental equations namely equilibrium equation, kinematics relations,compatibility equa-
tion, and constitutive relations. To incorporate the role of external constraints, boundary
conditions are also needed to be attached to aforementioned equations.

Equilibrium equations define the relationship between various components of stress
locally (i.e. at any given point ). Kinematic relations on the other hand relates the
components of the strain by means of displacement. Compatibility equation in fact is
a condition through which the continuity among strain components are granted. Con-
stitutive relations reveal the complex interaction between material characteristics, states
of stress and strain, and time. In the case of viscoelastic materials there exists a strong
entanglement between stress, strain and time which will be described in following sections.

3.2 Classification of Materials Responses

3.2.1 Elastic Materials

For a majority of materials in small strains, a linear relationship exists between stress and
stain which is defined through the Hooke’s law (equation 3.2.1) in which stress and strain
are linearly dependent to each other thorough a material constant named elastic module.

σ(t) = Eε(t) (3.2.1)

In these materials, stress and strain follow a linear relation in tension, which upon un-
loading the strain turns back to its original location on the same line. Looking at the

44
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Figure 3.1: Creep and Recovery in Viscoelastic Materials though
Stress and Strain interplays [87]

strain graph, noteworthy to mention that immediate strain upon the applied stress could
be observed.

3.2.2 Plastic Materials

There are circumstances in which continuous application of stress leads the material to
cross the elastic limit and enter the plastic zone in which stress and strain do not exhibit
linear relationship any more. In these conditions, some amount of strain will be remained
under removal of stress, which is called inelastic strain. It has been seen that in some
materials, after removal of stress, the strain continues to increase then tends to a constant
value. The remaining strain in this case would be permanent and is called the plastic
strain. Usually plastic strain is considered as a time independent behavior, though time
dependent strain response accompanying the plastic strain is also observed.

3.2.3 Viscoelastic Materials

In viscoelastic materials we observe an almost immediate elastic response by applying the
load; however thereafter the strain starts to increase at a decreasing rate. With removal
of the stress, strain is also reduced to its initial state (see Figure 3.1).

Viscoelastic materials are highly influenced by the rate at which strain or stress is
applied. They can alternatively be described as materials which exhibit characteristics of
both elastic and viscous materials. There are various materials that can be mentioned as
examples, including plastics, wood, certain neutral fibers, as well as concrete and certain
metals when exposed to high temperatures.

The influence of time in viscoelastic responses is more noticeable via the constitutive
relation, in which time appears as an additional parameter (to stress and strain). Physi-
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Figure 3.2: The effect of loading on creep behavior [87]

cally the significance of time in viscoelastic responses is observed through phenomena such
as creep and relaxation.

3.3 Viscoelastic phenomena

3.3.1 Creep

Slow and continuous deformation of a body under constant stress is defined as creep. It
encompasses three stages as illustrated in Fig. 3.2. As can be seen at the first stage, creep
occurs at a decreasing rate and is called the primary creep. Geometrical wise, the curve
is concave down in this region. In the secondary creep or second stage, deformation is
proportional to time, or in another words creep proceeds at constant rate. At the last or
tertiary stage, it proceeds at an increasing rate until finally the process ends up in fracture
or rupture of the specimen. Total strain at each time would be the sum of elastic and
creep strains.

ε = εe + εc. (3.3.1)

3.3.2 Recovery

Recovery occurs when the load is removed. Then the elastic part of strain, in companion
with a portion of creep strain, is recovered with a decreasing rate. Depending on the
material the amount of time-dependent recoverable strain might vary. For example in
metals, the contribution of creep strain is very small, while for plastics and polymers
creep strain constitutes a large compartment of the total creep.

3.3.3 Relaxation

If a constant strain is applied to a viscoelastic material, it will relax with a gradual decrease
in stress. Relaxation and recovery are depicted in Fig. 3.3.



CHAPTER 3. VISCOELASTICITY 47

Figure 3.3: Relaxation and Recovery and in Viscoelastic
Materials though interplays of Strain and Stress [87]

3.4 Viscoelastic Models

3.4.1 Fundamental Compartments

Linear viscoelastic models are composed of two main parts namely spring and dashpot.
Assuming that inertial effects are negligible, a linear spring can be represented by:

σ = Eε (3.4.1)

with E as a spring constant or Young’s modulus. Spring obeys the instantaneous elasticity
and recovery, meaning that upon exertion or removal of stress it will immediately show
elongation or recovery respectively as shown in Fig. 3.4.

E

σ

σ

t

σ

σ

t

ε

σ/E

Figure 3.4: Stress and strain response of a linear spring.

On the other hand, dashpot in viscoelastic models represents the viscous nature of a
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viscoelastic material. In a dashpot with linear properties, stress is related to the strain
rate through a material parameter called coefficient of viscosity which is shown by µ:

σ = µdε
dt
= µε̇ (3.4.2)

From a physical standpoint, dashpot shows a response in which the material deforms
continuously with a constant rate under a constant stress (Fig. 3.5).

µ

σ

σ

t

σ

σ0

t

ε

ε0

t

ε

ε(t)
= σ0

t/µ

σ

t

σ(t) = µε0δ(t)

0+

Figure 3.5: Stress and strain response of a linear dashpot [88]

As the graphs illustrate, at the immediate time of imposing a step strain, stress in
dashpot tends to infinity, and at the time t = 0 the stress will disappear. Mathematically
step behavior is modeled using the Dirac delta function δ(t) where δ(t) = 0 when t ≠ 0+
and δ(t) = ∞ for t = 0. Having this function considered, and under the application of a
step strain ε0 the relationship 3.4.2 reads as:

σ(t) = µε0δ(t) (3.4.3)

3.4.2 Maxwell Model

Maxwell model is a series combination of a spring and a dashpot as shown in Fig. 3.6.
According to the relationships 3.2.1 and 3.3.1 with imposed strains ε1 and ε2 for the

dashpot and the spring respectively we can write:

σ = Eε2 (3.4.4a)

σ = µε̇1. (3.4.4b)

Observing that the elements are connected in series, then the total strain reads as:

ε = ε1 + ε2,

consequently the strain rate would be:

ε̇ = ε̇1 + ε̇2. (3.4.5)
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Figure 3.6: Maxwell’s model for viscoelastic materials

In Equations (3.4.4) and (3.4.5) since ε1 and ε2 are considered to be as internal variables
whereas σ and ε would be external variables, to derive the overall relation between the
stress and strain one needs to eliminate internal variables. We can eliminate ε1 and ε2 by
calculating the derivative of (3.4.4a) and inserting that along with (3.4.4b) into (3.4.5),
as a result of which we obtain:

ε̇ = σ̇
E
+ σ
µ

(3.4.6)

The above differential equation describes stress and strain states in relationship with time
under different loading conditions. For example with a constant stress σ = σ0 at t = 0
equation (3.4.6) turns into a first order differential equation with respect to ε. Integrating
that and defining initial conditions as σ = σ0 at t = t0 we reach to the following relation
parameterized with time:

ε(t) = σ0
E
+ σ0
µ
t. (3.4.7)

Considering another condition in which the constant strain ε0 is applied at time t =
0 and with σ = σ0 as the initial condition, the following relation describing the stress
relaxation as a function of time in response of the applied (constant) strain is obtained:

σ(t) = σ0e−Et/µ = Eε0e−Et/µ, (3.4.8)

where derivative with respect to time, or in other words the rate of stress can be given by:

σ̇ = −(σ0E/µ)e−Et/µ (3.4.9)

Figure 3.7 graphically represents such a material response.
Accordingly the initial strain rate at t = 0+ would be expressed as σ̇ = −σ0E/µ. If a

continuous decrease of stress is considered at this initial rate, the above equation reads as:

σ = −(σ0Et/µ) + σ0, (3.4.10)

where it can be observed that at time tE = µ/E stress would tend to zero; a phenomenon
which is called the relaxation time of the Maxwell Model. Relaxation time varies for each
viscoelastic material hence it is considered as a characteristic material property.
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Figure 3.7: Stress Relaxation in Maxwell Model [88]
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Figure 3.8: Kelvin model for a Viscoelastic Material

3.4.3 Kelvin Model

Kelvin model is composed of a parallel arrangement of a spring and a dashpot as shown
in the figure 3.8.

The following relationships between stress and strain exist in this model:

σ1 = Eε, (3.4.11a)

σ2 = µε̇. (3.4.11b)

Considering that both elements are arranged in parallel, we will have the total stress as
the sum of each stress as:

σ = σ1 + σ2 (3.4.12)

Similar to what we observed for the Maxwell model, herein also there exist four unknowns
among which σ1 and σ2 need to be eliminated through some straightforward mathematical
treatments. As a result of that the following relation between stress and strain is obtained:

ε̇ + E
µ
ε = σ

µ
(3.4.13)
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When solved, the above differential equation yields the relationship for creep under a
constant stress σ0 as:

ε = σ0
E
(1 − e−Et/µ). (3.4.14)

This behavior is graphically illustrated in figure 3.9. As can be seen the strain increases
with a decreasing rate and reaches asymptotically σ0/E when t tends to infinity. Accord-
ing to this model, when a material is subjected to a stress, first the viscous part of the
model bears the response to the applied stress, then gradually transfers larger portions of
the load to the elastic part of the model. In this situation the spring element starts to
elongate more and more until the whole part of stress is handled by the spring element.
This response is called delayed elasticity.

t

σ

σ

t1

ε

t
t1

σ0/E

Figure 3.9: Creep and recovery in Kelvin model [88]

Herein under a constant stress σ0, the strain rate ε̇ in creep is obtained through
differentiating (3.4.14) as:

ε̇ = σ0
µ
e−Et/µ. (3.4.15)

It is seen that the initial strain rate at t = 0+ wound yield a finite value as ε̇(0+) = σ0/µ,
and the strain rate asymptotically approaches to ε(∞) = 0 as t tends to infinity.

Upon the increase of strain at the initial rate σ0/µ, it would cross σ0/E asymptotically
at time tc = µ/E which is called retardation time. On the other hand the accompanying
strain at time t1 can be determined through the superposition principle. In Kelvin model
the resulting strain εa from the applied stress at time t = 0 is obtained from the equation
(3.4.14) as:

εa =
σ0
E
(1 − e−Et/µ). (3.4.16)

The independent resulting strain εb from the applied stress at time t = t1 would be:

εb = −
σ0
E
(1 − e−E(t−t1)/µ). (3.4.17)
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Figure 3.10: Burgers model

For t > t1 strain during the recovery stage is obtained through application of the super-
position principle, where assuming that the stress σ0 is applied at t = 0 and removed at
t = t1 then one can write:

ε = εa + εb =
σ0
E
e−Et/µ[eEt1/µ − 1]. (3.4.18)

As can be seen in equation (3.4.18) when time tends ot infinity, the recovery approaches
zero. This behavior is also observable from figure 3.9 . Unfortunately both the Maxwell
and Kelvin models suffer from significant deficiencies in describing the behavior of most
viscoelastic materials. As for instance, time independency of strain during loading or
unloading can not be expressed through the Kelvin model. This model is also unable to
demonstrate the permanent strain after unloading.

In a similar manner, time-dependent recovery as well as decreasing strain with time-
independent (constant) stress may not resolved through the Maxwell model. Both models
yield a finite strain rate while for most materials it is very fast. So these limitations in
presenting a more thorough model of viscoelastic behaviors, have led to development of
more advanced models as discussed in the following.

3.4.4 Four-Element (Burgers) model

Burgers model is in fact a combination of a Kelvin and a Maxwell unit arranged in a
configuration as shown in Fig. 3.10.

As can be seen in this model a Kelvin and a Maxwell compartments are joined together
in series.To derive the constitutive relation for this model one should consider the strain
response under an applied constant stress as shown. The total strain in this arrangement
would be the sum of strains in three elements. Worthy to mention that the spring and
dashpot elements in the Maxwell model are considered as two elements yielding the total
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strain as:

ε = ε1 + ε2 + ε3 (3.4.19)

where ε1 is defined as:

ε1 =
σ

E1
(3.4.20)

and the strain rate with ε2 as the strain in dashpot reads as:

ε̇2 =
σ

µ1
. (3.4.21)

Here ε3 would be the strain in the Kelvin unit which yields the corresponding strain rate
as:

ε̇3 +
E2

µ2
ε3 =

σ

µ2
(3.4.22)
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Figure 3.11: Creep and recovery in Kelvin model [88]

This model encompasses five unknowns including ε, σ, ε1, ε2, ε3 where ε and σ belong
to category of external variables and ε1, ε2, ε3 would be internal variables. Thereby to
construct the constitutive relation between stress and strain, three strains from the afore-
mentioned four equations need to be eliminated. The final constitutive relation between
stress and strain would read as:

σ + (µ1
E1
+ µ1
E2
+ µ1
E2
)σ̇ + µ1µ2

E1E2
σ̈ = µ1ε̇ +

µ1µ2
E2

ε̈. (3.4.23)

One of the most recommended ways to solve the equation (3.4.23) is the Laplace trans-
form method as a simple and consistent method. By applying the Laplace transform on
equations (3.4.20)-(3.4.23) and assuming ε2 = ε3 = 0 at t = 0− we will have:



CHAPTER 3. VISCOELASTICITY 54

ε̂ = ε̂1 + ε̂2 + ε̂3, (3.4.24)

ε̂1 =
σ̂

E1
, (3.4.25)

sε̂2 =
ε̂2
µ1
, (3.4.26)

(s + E2

µ2
)ε̂3 =

σ̂

µ2
, (3.4.27)

where (̂) denotes the transformed quantity which is now parametrized by s (as a complex
variable). Substituting equations (3.4.25)-(3.4.27) into (3.4.24) leads to:

ε̂ = σ̂

E1
+ σ̂

µ1s
+ σ̂

µ2(s +E2/µ2)
. (3.4.28)

If both sides of equation (3.4.28) are multiplied by µ1µ2
E2

s(s + E2

µ2
) and rearranged, we will

have:

σ̂ + (µ1
E1
+ µ1
E2
+ µ2
E2
)sσ̂ + µ1µ2

E1E2
s2σ̂ = µ1sε̂ +

µ1µ2
E2

s2ε̂. (3.4.29)

Equation (3.4.23) when accompanied with suitable boundary conditions and solved under
constant stress σ0 could describe the creep behavior of a viscoelastic material as following:

ε = ε1 =
σ0
E1
, ε2 = ε3 = 0, t = 0 (3.4.30)

ε̇ = σ0
µ1
+ σ0
µ2
, t = 0. (3.4.31)

As a result the creep relation can be expressed as:

ε(t) = σ0
E1
+ σ0
µ1
t + σ0

E2
(1 − e−E2t/µ2). (3.4.32)

According to Burgers model, the total creep would be the sum of the creep in Maxwell
together with the kelvin unit. The first two terms on the right hand side are related to
the contribution of elastic strain and viscosity. The last term denotes delayed elasticity
within the kelvin part of the system.
Differentiating with respect to time gives the creep rate as following:

ε̇ = σ0
µ1
+ σ0
µ2
e−E2t/µ2 (3.4.33)

Accordingly creep at time t = 0+ would have a finite value as:

ε̇(0+) = ( 1
µ1
+ 1

µ2
)σ0 = tanα (3.4.34)

As the graph in Fig. 3.11 illustrates, the creep rate starts at the initial time and asymp-
totically approaches to the value:

ε̇ = σ0/µ1 = tanβ (3.4.35)
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Upon removal of stress at t1, the recovery could be modeled through the equation (3.4.32)
in conjunction with superposition principle in a way that the recovery strain ε(t), for
t > t1, would be the sum of these two independent actions as following:

ε(t) = σ0
E1
+ σ0
µ1
t + σ0

E2
(1 − e−E2t/µ2)

− [ σ0
E1
+ σ0
µ1
(t − t1) +

σ0
E2
(1 − e−E2(t−t1)/µ1)]

or

ε(t) = σ0
µ1
t1 +

σ0
E2
(eE2t1/µ2 − 1)e−E2t/µ2 (3.4.36)

In terms of recovery, an immediate elastic recovery which is followed by a creep recovery
as appearing in equation (3.4.36) are observed. The second term in this relation is a result
of contribution of the permanent strain stemming from the viscous flow of µ1. Hence
recovery also tends asymptotically to ε(∞) = (σ0/µ1)t1 as time approaches to infinity.

Equation (3.4.23) represents the relaxation behavior in the Burgers model. For a step

strain ε0 at t = 0+ we will have ε = ε0H(t), ε̇ = ˙ε0δ(t), ε̈ = ε0 dδ(t)dt , where H(t) and δ(t)
are the Heaviside and Dirac Delta functions receptively. Consequently equation (3.4.23)
is reformed as:

σ + p1σ̇ + p2σ̈ = q1ε0δ(t) + q2ε0
dδ(t)
dt

(3.4.37)

where

p1 =
µ1
E1
+ µ1
E2
+ µ2
E2
, p2 =

µ1µ2
E1E2

, q1 = µ1, q2 =
µ1µ2
E2

By applying Laplace transform we will have:

σ̂ + p1sσ̂ + p2s2σ̂ = q1ε0 + q2ε0s (3.4.38)

which when solved for σ̂ reads as:

σ̂ = ε0(q1 + q2s)
1 + p1s + p2s2

. (3.4.39)

Expanding the above equation along side a Laplace transform leads to an expression for
stress relaxation as

σ(t) = ε0
A
[(q1 − q2r1)e−r1t − (q1 − q2r2)e−r2t], (3.4.40)

where

r1 = (p1 −A)/p2, r2 = (p1 +A)/p2,A =
√
p21 − 4p2.

Maxwell and Kelvin units can be arranged in several ways within a Burgers model that
leads to five different subgroups. Each of these subgroups would represent a specific
behavior ranging from solid-like and liquid-like responses to delayed elasticity response
with retardation times.

Despite the apparent diversity of proposed models, these models are unable to accu-
rately predict the behavior of most viscoelastic materials. Additionally some materials,
such as concrete and some polymers, undergo the aging phenomenon which results in
structural and compositional changes in relation to time and in the course of creep. These
structural changes lead to alteration of material constants in the course of time. To cope
with such a situation various complex models have been proposed in the form of General-
ized Maxwell and Kelvin Models.
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3.4.5 Generalized Maxwell and Kelvin models

If a number of Maxwell models are connected together in series, as shown in the figure
3.12, the related constitutive equation reads as:

µ

E

µ

E

µ

E

≡

E = (
N

∑
i=1

1

Ei
)
−1

µ = (
N

∑
i=1

1

µi
)
−1

Figure 3.12: Generalized Maxwell Models in Series

ε̇ = σ̇
N

∑
i=1

1

Ei
+ σ

N

∑
i=1

1

µi
(3.4.41)

The above equation is identical to its counterpart namely equation (3.4.6) which represents
the same mechanical response. Arranging a series of such elements each of which contains
a spring and a dashpot would result in an identical model to the Maxwell model as can
be seen in Fig. 3.12.
On the other hand, if a number of Kelvin models are arranged in a parallel form, they would
show the same response as a Kelvin model, as in Figure 3.13. The related constitutive
equation reads as:

≡ E =
N

∑
i=1

Ei µ =
N

∑
i=1

µi

Figure 3.13: Generalized Kelvin Model in Parallel

σ = ε
N

∑
i=1

Ei + ε̇
N

∑
i=1

µi (3.4.42)



CHAPTER 3. VISCOELASTICITY 57

µ

E

µ

E

µ

E

µ

E

Figure 3.14: Generalized Maxwell Models in parallel

When several Maxwell models are connected together in parallel, the model will be able
to exhibit instantaneous elasticity with retardation times, stress relaxation with different
relaxation times as well as viscous flow. In this case, when Maxwell models are connected
in parallel, describing the stress associated with applied variation in strain (Figure 3.14)
would be a rather feasible task where the same prescribed strain is assigned to each element
and the overall output stress is the sum of contributions from each individual element.
The contribution of the first element reads as:

Dε =
Dσ1
E1
+ σ1
µ1

(3.4.43)

where D is the differential operator with respect to time, D = d
dt , based on which for stress

one can write:

σi =
D

D
Ei
+ 1
µ1

ε (3.4.44)

Summing up the stress would give us:

σ =
a

∑
i=1

= (
a

∑
i=1

D
D
Ei
+ 1
µ1

)ε. (3.4.45)

Multiplying both sides by Π( DEi
+ 1
µi
), where Π indicates the product of a terms, the

differential operator could be eliminated from the denominator of the relation as:

[( D
E1
+ 1

µ1
)...]σ = [( D

E1
+ 1

µ1
)( D
E2
+ 1

µ2
)...][ D

D
E1
+ 1
µ1

+ D
D
E2
+ 1
µ2

+ ...] (3.4.46)

There exists another generalized model in which several numbers of Kelvin models are
connected together in series as shown in Figure 3.15.

In this model strain contribution of the first element expressed as:

ε1 =
1

Dµ1 +E1
σ (3.4.47)

The sum of the strain contribution of a-elements is described as:

ε =
a

∑
i=1

εi = (
a

∑
i=1

1

Dµi +Ei
)σ (3.4.48)
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E µ

E µ

E µ

Figure 3.15: Kelvin models arranged in series

As before, if both sides are multiplied by Πai=1(Dµi +Ei) then we will have:

[(Dµ1 +E1)(Dµ2 +E2)(Dµ3 +E3)...]ε]
= [(Dµ2 +E2)(Dµ3 +E3)... + (Dµ1 +E1)(Dµ3 +E3)... + ...]σ

(3.4.49)

It has been seen that the generalized Kelvin model is more suitable in cases with prescribed
stress history, however when we have prescribed strain history, generalized Maxwell model
is preferred overt the Kelvin model. Due to the rich explanation of relaxation times both
these models offer, they can describe behavior of viscoelastic materials in a more realistic
manner and specially in a wider time spans, compared to simpler models were discussed
before.

3.5 Differential and Integral Representations

3.5.1 Differential Form of Constitutive Relations

The constitutive relation of a viscoelastic material in the case of simple loading conditions
can be described through a linear function of stress and strain fields as well as their time
derivatives as

f(σ, σ̇, σ̈, ...; ε, ε̇, ε̈, ...) = 0, (3.5.1)

where stress and strain are functions parametrized with time as σ = σ(t) and ε = ε(t),
respectively. Dots indicate the derivatives with respect to time. Employing differential
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operators, the above equation can be written as:

Pσ = Qε (3.5.2)

where P and Q as linear differential operators are defined as:

P =
a

∑
r=0

pr
∂r

∂tr
,Q =

b

∑
r=0

qr
∂r

∂tr
. (3.5.3)

When these equations are combined, a differential form of constitutive relation can be
written as:

Pσ = p0σ + p1σ̇ + p2σ̈ + ... + pa
∂a

σ
∂ta

= q0ε + q1ε̇ + q2ε̈ + ... + qb
∂bσ

∂tb
= Qε

(3.5.4)

Herein again the dots represent differential with respect to time and p0, p1, ... as well as
q0, q1, q2, ... represent material constants. After application of a Laplace transform with
zero initial conditions we obtain:

P̂ (s)σ̂(s) = (p0 + p1s + p2s2 + ... + pasa)σ̂(s)
= Q̂(s)ε̂(s) = (q0 + q1s + q2s + ... + qbsb)ε̂(s)

(3.5.5)

Here s indicates the transform variable originating from Laplace transform.
From the above relation it can be deduced that:

Q̂(s)
P̂ (s)

= σ̂
ε̂

(3.5.6)

In the case of linear processes pr and qr would not depend on stress and strain, however
they might depend on time.
In equation (3.5.4) terms can be arranged and combined in a way to represent different
idealized viscoelastic processes. Differential forms can be employed fairly conveniently
in connection with corresponding models composed basically of spring and dashpot. For
example by choosing

p0 = 1, p1 =
µ

E
, q1 = µ (3.5.7)

and setting other coefficients to zero, equation (3.5.4) would represent the Maxwell model.
Upon choosing the coefficient as

p0 = 1, q0 = E, q1 = µ (3.5.8)

and setting the remaining coefficients to zero, the same equation leads to a mathematical
representation of the Kelvin model. However, if only three coefficients either p0, p1, p2 or
p0, q0, q1 are defined, the output constitutive relation would not reconstruct either Maxwell
or Kelvin models accurately. For instance, in that case, Kelvin model would not be
able to exhibit instantaneous deformation and transient creep under constant loading.
Additionally, fixing those parameters would only result in a specific group of Burgers
models.

It should be noted that if large number of parameters are needed to express the mate-
rials behavior, determining the corresponding coefficients would not be practical; in such
cases other approaches need to be employed.
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3.5.2 Integral form of Constitutive Relations

Differential forms are not the only available approach for describing stress-strain relation-
ships. There exists another method for presenting the relationships mathematically which
is based on the notion of integral. Integral representation of constitutive relations offer
flexibility in introducing viscoelastic properties, and describing the aging process, as well
as incorporating the influence of temperature. In this method Boltzmann superposition
principle is employed to derive the constitutive relations between creep and relaxation
modules.

Assuming a linear behavior for a material under study (e.g. creep test), a
step constant stress is imposed and the output strain as a function of time is measured

accordingly through:

ε(t) = J(t)σ0, (3.5.9)

or

J(t) = ε(t)/σ0 (3.5.10)

where J would be the creep compliance and is defined as the creep per unit of imposed
stress. As an example for a material response obeying a Maxwell model we have:

J(t) = ( 1
E
+ 1

µ
t). (3.5.11)

On the other hand throughout a relaxation test, a step of constant strain as defined as
ε = ε0H(t) is applied and the resulting stress is recorded. Assuming that the material
responses linearly, one can write:

σ(t) = E(t)ε0 (3.5.12)

E(t) = σ(t)/ε0 (3.5.13)

where E(t) is the relaxation function and as can be seen is a function of time. It is
expressed as the stress per unit of applied strain and is of the material property meaning
that it differs for each material. For a Maxwell model we have:

E(t) = Ee(−Et/µ) (3.5.14)

3.5.3 Boltzmann’s Superposition Principle

The integral representation of viscoelastic solids is based on Boltzmann’s superposition
principle. Assuming that a constant stress σ1 is applied at t = τ1, then σ(t) = σ1H(t − τ1)
and the corresponding strain as a result of introduced creep would read as:

ε(t) = σ1J(t − τ1)H(t − τ1) (3.5.15)

where σ0 and σ1 would be imposed stresses at initial time t = 0 and time t = τ1 respectively.
The overall strain as a result of imposed stress at any given time after t = τ1 would be the
sum of strains at previous times. This is known as the Boltzmann superposition principle
and illustrated in figure 3.16.
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Figure 3.16: Boltzmann Superposition Principle [88]

Assuming an arbitrary behavior for input stress σ(t) (opposed to previous constant
value) it can be approximated by sum of constant stresses as depicted in Figure 3.17.

The varying stress in this case as a function of time can be described as:

σ(t) =
r

∑
i=1

∆σiH(t − τi). (3.5.16)

Under these conditions and again bearing the Boltzmann principle one can express the
strain as following:

ε(t) =
r

∑
i=1

(t − τi) =
r

∑
i=1

∆σiJ(t − τi)H(t − τi) (3.5.17)

As the number of steps approaches to infinity, the total created strain in the material can
be described as:

ε(t) = ∫
t

0
J(t − τ)H(t − τ)d[σ(τ)] (3.5.18)

The above relation should be seen in the form of Stieltjes integral; noting that stress
history is differentiable and τ , as a dummy variable is always less than or equal to t. The
Heaviside function H(t− τ) remains always unity. Therefore the integral relation (3.5.18)
cab be reduced to :

ε(t) = ∫
t

0
J(t − τ)∂σ(τ)

∂τ
dτ, (3.5.19)
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Figure 3.17: Varying input stress as approximated based on
Boltzmann superposition principle [88]

which expresses the creep under an arbitrary stress history given that the creep compliance
which is a material constant is a determined parameter.

An alternate form for (3.5.19) is devised by means of integration by parts and defining

u = J(t − τ) and dv = ∂σ(τ)
∂τ leading to:

ε(t) = σ(t)J(0) − ∫
t

0
J ′(t − τ)σ(τ)dτ (3.5.20)

where J ′(t − τ) = ∂J(t−τ)
∂τ .

Creep compliance can be expressed as a combination of two components, one an elastic
compliance J0 which is independent of time and the other, creep function φ(t) which is a
function of time. In that case the equation (3.5.20) is converted into:

ε(t) = J0σ(t) + ∫
t

0
φ(t − ε)∂σ(τ)

∂τ
dτ (3.5.21)

Equation 3.5.19 can be employed to calculate the stress based on the prescribed strain.
However, we need to solve an integral equation. The same scenario holds when the stress
needs to be acquired for example in the case where step strains are imposed and resul-
tant stress needs to be calculated. In these situations Boltzmann superposition principle
would be helpful. Using this principle, equations (3.5.19)-(3.5.21) can be reformulated by
substituting stress and strain. As a result the following relation can be obtained:

σ(t) = ∫
t

0
E(t − τ)∂ε(τ)

∂τ
dτ (3.5.22)

Again dividing the modulus of relaxation into an elastic modulus E0 (which is time-
independent), and stress relaxation ψ(t) as a time dependent function would yield:

σ(t) = E0ε(t) − ∫
t

0
ψ(t − τ)∂ε(τ)

∂τ
dτ (3.5.23)
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It can be seen that upon a known strain history, equation (3.5.22) is simpler to calculate
the stress relaxation compared to its counterpart equation i.e. equation (3.5.19), as it
offers the possibility of a direct integration. However E(t) still needs to be determined
from relaxation experiments.

3.6 Staverman-Schwarzl-Mandel-Brun Functional

Herein the expressions for free energy, free enthalpy and the dissipated power as suggested
by Staverman & Schwarzl and Mandel & Brun (SSMB Theory) for isothermal linear
viscoelasticity are recapitulated. The free energy in our formulation stands for Helmholtz
free energy which is denoted by ψ and free enthalpy represents the thermodynamic density
which is known as the Gibbs free energy and is shown by G.

Constitutive equations for viscoelasticity in linear regime when expressed in form of
Stieltjes integrals or Stieltjes convolution read as following:

ψ(t) = ∫
t

0−
E(t − v) ∶ dϵ(v) (3.6.1)

G(t) = ∫
t

0−
J(t − v) ∶ dσ(v) (3.6.2)

where the kernels E(t) and J(t) respectively stand for relaxation and creep functions
which mathematically are tensorial objects of rank fourth. Accordingly the free energy
density per unit volume reads as:

ρψ(t) = 1

2
∫

t

0−
∫

t

0−
E(2t − τ − η) ∶ dϵ(τ) ∶ dϵ(η)

= 1

2
(∫

t

0−
−∫

2t

t
)∫

2t−τ

0−
E(2t − τ − η) ∶ dε(τ) ∶ dε(η)

= 1

2
(∫

t

0−
−∫

2t

t
)σ(2t − τ) ∶ dε(η)

= 1

2
∫

t

0−
[σ(2t − τ) ∶ dε(u) + σ(τ) ∶ dε(2t − τ)]

= σ(t) ∶ ε(t) − 1

2
∫

t

0−
∫

t

0−
f(2t − τ − η) ∶ dσ(τ) ∶ dσ(η)

(3.6.3)

and free enthalpy density per unit volume would be

ργ(t) = ρϕ(t) − σ(t) ∶ ε(t) = −1
2
(∫

t

0−
−∫

2t

t
)∫

2t−τ

0−
f(2t − τ − η) ∶ dσ(η) ∶ dσ(τ)

= −1
2
(∫

t

0−
−∫

2t

t
) ε(2t − τ) ∶ dσ(τ)

= −1
2
∫

t

0−
[ε(2t − τ) ∶ dσ(τ) + ε(τ) ∶ dσ(2t − τ)]

(3.6.4)
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and dissipated power density would be

Λ(t) = −∫
t

0−
∫

t

0−
Ė(2t − τ − η) ∶ dε(η) ∶ dε(τ)

= −(∫
t

0−
−∫

2t

t
)∫

2t−τ

0−
Ė(2t − τ − η) ∶ dε(η) ∶ dε(τ)

= −(∫
t

0−
−∫

2t

t
) σ̇(2t − τ) ∶ dε(τ)

= −∫
t

0−
[σ̇(2t − τ) ∶ dε(τ) + σ̇..dε(2t − τ)]

= +∫
t

0−
[ϵ̇(2t − τ) ∶ dσ(τ) + ε̇ ∶ dσ(2t − τ)]

= +(∫
t

0−
−∫

2t

t
) ε̇(2t − τ) ∶ dσ(τ)

= +(∫
t

0−
−∫

2t

t
)∫

2t−τ

0−
ḟ(2t − τ − η) ∶ dσ(η) ∶ dσ(τ)

= ∫
t

0−
−∫

t

0−
ḟ(2t − τ − η) ∶ dσ(η) ∶ dσ(τ) ≥ 0

(3.6.5)

The above equations were derived by Mandel and Brun through two different methods.
Thereafter were generalized by Staverman and Schwarzl [89].

3.7 Concept of pseudo-convolution

As can be seen classical variational principles are derived through the concept of convo-
lution and in particular Stieltjes convolutions and Stieltjes biconvolutions. So they are
described here as following. Stieltjes convolution of two symmetric second rank tensors
a(t) and b(t) are defined as

ca(b; t) = a ∗ b = ∫
t

0−
a(t − τ) ∶ db(τ) = ∫

t

0−
b(t − τ) ∶ da(u) = b ∗ a (3.7.1)

3.7.1 Stieltjes biconvolution

Stieltjes biconvolution is defined as

a(t) = g ∗ e = ∫
t

0−
g(t − η) ∶ de(η)⇒

2ce(e, b; t) = ∫
t

0−
∫
(t−τ)

0−
g(t − τ − η) ∶ de(η) ∶ db(τ)

= g ∗ e ∗ b[gijkl ∗ ekl ∗ bij] = g ∗ b ∗ e

(3.7.2)

with symmetry conditions as

gijkl(t) = gklij(t) = gjikl(t) = gijlk(t), ∀t. (3.7.3)

Pseudo-convolution of two symmetric second rank tensor a(t) and b(t) would be

2Ca(b, t) = a ◻ b = (∫
t

0−
−∫

2t

t
)a(2t − τ) ∶ db(τ) (3.7.4)
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Pseudo-convolution form as denoted by a◻b is observed in the above relationships written
for the free energy and free enthalpy densities.
In this regard, pseudo-biconvolution Bg(e, b, t) can be defined as the composition g ∗ e◻ b
of a pseudo-convolution a ◻ b through the classical Stieltjes convolution in which a is
expressed as g ∗ e. For example bilinear pseudo-biconvolution can be written as

ag(e; 2t − τ) = g ∗ e = ∫
2t−τ

0−
g(2t − τ − η) ∶ de(η)⇒ (3.7.5)

2Bg(e, b; t) = g ∗ e ◻ b = (∫
t

0−
−∫

2t

t
) g(2t − τ − η) ∶ de(η) ∶ db(τ) (3.7.6)

ag(e; 2t − τ) = g ∗ e = ∫
2t−τ

0−
g(2t − τ − η) ∶ de(η)⇒

2Bg(e, b; t) = g ∗ e ◻ b = (∫
t

0−
−∫

2t

t
)∫

2t−τ

0−
g(2t − τ − η) ∶ de(η) ∶ db(τ)

= ∫
t

0−
∫

t

0−
g(2t − τ − η) ∶ de(η) ∶ db(τ) ≠ g ∗ b ◻ e = 2Bg(b, e; t)

(3.7.7)

For quadratic pseudo-biconvolution we have

2Qg(b; t) = g ∗ b ◻ b

= (∫
t

0−
−∫

2t

t
)∫

2t−τ

0−
g(2t − τ − η) ∶ db(η) ∶ db(τ)

= ∫
t

0−
∫

t

0−
g(2t − τ − η) ∶ db(η) ∶ db(τ) ≠ g ∗ b ◻ e = 2Bg(b, b; t)

(3.7.8)



Chapter 4

Thermoelastic Damping

4.1 Introduction

Nowadays resonators constitute an important part of advanced technologies such as Mi-
croelectromechanical and Nanoelectromechanical systems (MEMS, NEMS). They are em-
ployed for instance as high precision actuators, micro-sensors, as well as in atomic force
microscopy and semiconductors [90–93].

Theses structures are usually integrated into electronic systems encompassing semi-
conductors and other components which are designed based on the principle of minimized
consumption of power. In these systems, efficiency is in direct relationship with the loss of
energy. Dissipated energy within a structure could be controlled in design step of such a
resonator. One of the main phenomena that is recognized to the source of such an energy
loss would be thermoelastic damping [94–96].

Thermoelastic damping is a form of energy dissipation in thermoelastic solids. Consid-
ering a flexural vibration for a beam, generation of inhomogeneous stress field is observed.
The part of the beam which undergoes tension, is expanded and is cooled down. On
the other hand, the side that is undergoing compression, is heated up. In thermoelastic
bodies, strain gradients are coupled to the temperature gradients; as a result of which an
oscillating temperature gradient is created within the beam. To return to the equilibrium
state, structure tries to reestablish the thermal equilibrium through the heat flow. This
would be an irreversible process causing entropy generation and consequently dissipation
of energy in the form of thermoelastic damping [97, 98]. The metric used for measuring
thermoelastic damping is a parameter called the loss factor, which is in fact a dimensionless
number used. In inverse form, sometimes it is called quality factor as well.

The theory of thermoelastic damping was first introduced through the studies of Zener
in 1937-1938 [99, 100]. He endeavored to find out a relationship for loss factor though 1D
modeling of flexural vibration of a beam. Zener’s theory was developed to 3D by Alblas
[101, 102] and Chadwick [103].

Since then many other studies have been conducted to extend the theory in various
directions. Some researches were focused to study thermoelastic damping in composite
and/or laminated structures as pioneered by Bishop and Kinra [104, 105] and pursued by
others [106–108] until recently. Yi et al also examined different geometries and modes of
vibration [109, 110].

Aside from classical theories in elasticity, non-classical and size dependent theories have
also been utilized in deriving relationships for expressing quality factor in thermoelastic

66
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solids. Kumar and Mukhopadhyay in a series of studies investigated size-dependent effects
in thermoelastic damping in resonators [111–114]. Yang et al [115, 116] and more recently
Wang et al [117] developed models based on stress couple theories. Gu et al [118, 119] in-
vestigated thermoelastic damping in microbeam resonators taking into account the effect
of thermal relaxation dual-phase-lag in the framework of nonlocal strain gradient theory.
Utilizing the same theory Ge et al [120] also Borjalilou and Asghari [121, 122] studied
thermoelastic damping in micro-/nano-plates.

4.2 Zener’s Theory

Traveling of an acoustic wave inside an infinitely large elastic body, or vibration of an
elastic resonator with finite geometry, are accompanied with damping as a result of non-
linear interactions with phonons (or thermally-excited modes). The complex interactions
between acoustic waves and thermal phonons are captured through a material property
called thermal expansion coefficient, expressed as:

α = 1

L

∂L

∂T
(4.2.1)

It is through this coefficient that the changes in length are coupled to changes in temper-
ature.

The motion of an elastic body involves changes in kinetic and potential energies. While
in a perfectly linear elastic material under isothermal conditions nonequilibrium condition
will take forever, in a thermoelastic material due to existing coupling between the strain
field and temperature field an energy dissipation will occur. As mentioned, pursuing
the relaxation or equilibrium state would be achievable through irreversible heat flow
stemming from temperature gradients. This process, i.e. thermoelastic damping, via the
expansion coefficient imposes an upper limit to the quality factor of a resonator in spite
of a perfect design.

The model Zener presented for approximating thermoelastic damping relies on the
extension of Hooke’s law where the stress and strain fields as well as their time derivatives
are involved as following:

σ + τϵσ̇ =MR(ϵ + τσ ϵ̇) (4.2.2)

According to above relation, when the strain is constant, τσ would be the time through
which stress is relaxed exponentially. In a similar fashion, when the stress is kept constant,
strain will be relaxed with τσ as the stress relaxation time. Herein, MR would be the
relevant elastic modulus when all the relaxation has gone through. On the other hand
MU would be unrelaxed value of the elastic modulus which is defined as:

MU =MR(τσ/τϵ) (4.2.3)

In periodic dynamical conditions amplitudes of stress and strain are in accordance with
complex elastic modulus as:

σ(t) = σ0eiωt (4.2.4)

ϵ(t) = ϵ0eiωt (4.2.5)
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Dissipation in a material which is also known as internal friction is represented as Q−1

and would be the fraction of ene rgy lost per radian of vibration. In case of small values
of radiation of vibration, the dissipation would become the ratio of the imaginary and real
parts of the complex modulus as:

Q−1 =∆M
ωτ

1 + (ωτ)2 (4.2.6)

with τ =√τστϵ and

∆M =
MU −MR√
MRMU

(4.2.7)

where ∆M is called relaxation strength and is dimensionless parameter.
In the case that the vibration frequency is much smaller than the effective relaxation

rate, the system will hold its equilibrium, meaning that the amount of dissipation would
be negligible. Even if it were much larger, then there would remain on time for the system
to relax and again very limited dissipation will occur. However when these values are
comparable, the body will experience energy dissipation.

For thermoelastic solids the relaxation strength would read as:

∆E =
Eed −E
E

= Eα
2T0
Cp

(4.2.8)

where Ead would be the adiabatic or unrelaxed Young’s modulus and E would be isother-
mal or relaxed value. Cp would be heat capacity at constant pressure or stress.
Zener considered τZ as the relaxation time for a rectangular thin beam under flexure as:

τZ =
b2

π2χ
(4.2.9)

where b would be width of the beam and χ is the thermal diffusivity. Under these condi-
tions Q−1 with a negligible error would be described as:

Q−1Z =
EαT0
Cp

ωτZ
1 + (ωτZ)2

(4.2.10)

Zener’s theory explains thermoelastic damping with negligible error, nevertheless Lifshitz
and Roukes [123] later on developed an exact expression for beams with simple geometry
which would be discussed in following sections.

4.3 Thermoelastic Damping in Thin Beams

Consider a beam with length L and a cross section with dimensions b × c undergoing
bending oscillations along x. It is also assumed that the material is homogeneous and
isotropic where no initial stress is applied. Herein normal stress and strain are related
through the Hooke’s law [124, 125] as:

εxx =
1

E
(σxx − ν(σyy + σzz)) + αθ

εyy =
1

E
(σyy − ν(σxx + σzz)) + αθ

εzz =
1

E
(σzz − ν(σxx + σyy)) + αθ

(4.3.1)
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Figure 4.1: Irreversible heat flow within a beam undergoing bending [124]

Here θ would read as excess temperature as

θ(x, y, z, t) = T (x, y, z, t) − T0

In equilibrium the temperature of the beam which is homogeneously distributed within the
beam would be T0. With external stimulus, which here would be flexural displacement,
the temperature departs from the equilibrium as represented through T = T0 + θ.

The change of temperature with time obeys the coupled relation of heat conduction
as:

C
∂θ

∂t
= κ∇2θ − EαT

(1 − 2ν)
∂

∂t
(εxx + εyy + εzz) (4.3.2)

where C would be the specific heat per unit volume, and k would be the thermal conductiv-
ity coefficient. It is common however to consider a linearized version of the above relation
through replacing T with T0 in the source term. Accordingly the linearized relation is
read as:

C
∂θ

∂t
= κ∇2θ − EαT0

(1 − 2ν)
∂

∂t
(εxx + εyy + εzz) (4.3.3)

Under the above conditions, where the beam on its surface does not experience any
stresses, all but the σxx component of the stress tensor is vanished leaving the strain and
stress fields relations as:

εxx =
1

E
σxx + αθ (4.3.4)

εyy = εzz = −
ν

E
σxx + αθ (4.3.5)

εxy = εyz = εzx = 0 (4.3.6)
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where E would be the Young’s modulus, ν is the Poisson’s ratio and α reads as the
coefficient of thermal expansion.

The beam curvature can be replaced with −∂2U
∂x2

where U would be the potential energy
of the system (a function of position). Thereby, strain components can be simplified as:

εxx = −y
∂2U

∂x2
, (4.3.7)

εyy = εzz = νy
∂2U

∂x2
+ (1 + ν)αθ (4.3.8)

which leads to the following equation of motion for the beam:

ρA
∂2U

∂t2
+ ∂2

∂x2
(EI ∂

2U

∂x2
+EαIT ) = 0 (4.3.9)

where ρ is the density and A is the cross section area. I and IT are defined as mechanical
and thermal contribution to moment of inertia and defined as integrals over the cross
section of the beam which are given by:

I = ∫
A
y2dydz (4.3.10)

IT = ∫
A
yθdydz (4.3.11)

Heat conduction equation under the thermoelastic coupling is given as:

∂θ

∂t
= κ∇2θ − EαT

(1 − 2ν)Cv
∂

∂t
∑
j

εjj (4.3.12)

The linearized heat equation in which θ ≪ T0 and temperature variation is considered
to be along the y direction, reads as:

∂θ

∂t
= κ∂

2θ

∂y2
+ y∆E

α

∂

∂t
(∂

2U

∂x2
) (4.3.13)

Now substituting the strain field would lead to the final form as:

(1 + 2∆E
1 + ν
1 − 2ν )

∂θ

∂t
= κ∂

2θ

∂t
+ y∆E

α

∂

∂t

∂2U

∂x2
(4.3.14)

Obtained thermoelastically coupled equation are solved for the case of simple harmonic
vibrations by setting
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U(x, t) = U0(x)eiωt, θ(x, y, t) = θ0(x, y)eiωt (4.3.15)

Temperature profile along the beam is calculated using the heat equation, accordingly
substituted into the equation of motion leading to an expression for the normal modes
of vibration and corresponding frequencies. The real part of frequencies provides eigen-
frequencies under thermoelastic coupling condition and the imaginary part describes the
attenuation of the vibration. Thermoelastic damping then alternatively could be given by

Q−1 = 2∣Im(ω)
Re(ω) ∣ (4.3.16)

where ω would be complex-valued eigenfrequency. This fraction is in fact the fraction of
energy which is lost in relationship to the radian of vibration of the beam.
By substituting equation 4.3.15 into the heat equation we have:

∂2θ0
∂y2

= iω
κ
(θ0 −

∆E

α

∂2U0

∂x2
y) , (4.3.17)

The solution of the above equation would be:

θ0 −
∆E

α

∂2U0

∂x2
y = Asin(ζy) +Bcos(ζy), (4.3.18)

with

ζ =
√
i
ω

κ
= (1 + i)

√
ω

2κ
(4.3.19)

Through suitable boundary conditions the coefficients of A and B could be determined.
The profile of the temperature across the beam then would read as

θ0(x, y) =
∆E

α

∂2U0(x)
∂x2

⎛
⎜
⎝
y − sin(ζy)

ζcos ( bζ2 )

⎞
⎟
⎠

(4.3.20)

Implementing the temperature profile into IT integral as the thermal contribution to
the moment of inertia one can obtain the following equation for the beam as:

ω2U0 =
EI

ρA
{1 +∆E[1 + f(ω)]}

∂4U0

∂x4
(4.3.21)

Herein the complex function f(ω) is expressed as

f(ω) = f(ζ(ω)) = 24

b3ζ3
[bζ
2
− tan(bζ

2
)] . (4.3.22)

It should be noted that in the case of an isothermal beam with thermoelastic coupling,
the Young’s modulus is a function of frequency. That would be the only difference between
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the beam with no thermoelastic coupling where the Young’s modulus does not have any
dependency on the frequency. Thereby in the presence of thermoelastic coupling the
frequency dependent Young’s modulus reads as

Eω = E {1 +∆E[1 + f(ω)]} (4.3.23)

When ω becomes very large, f(ω) tends to zero. As a result of that, Young’s modulus
becomes inclined toward its adiabatic state. In the case of small values for ω, f(ω) tends
to −1 and Young’s modulus returns to its isothermal value.

Following expression describes the normal modes of vibration for a beam in isothermal
state as

U0(x) = Asin(qx) +Bcos(qx) +Csinh(qx) +Dcosh(qx) (4.3.24)

Herein again the boundary conditions determine the coefficients A through D as well as
suitable values for q.

The dispersion relation between ω and qn for a thermoelastic beam is defined as

ω =
√

EωI

ρA
q2n = ω0

√
1 +∆E[1 + f(ω)] (4.3.25)

with ω0 as the isothermal eigenfrequency.
If corrections of order ∆2

E are ignored, f(ω) could be replaced by f(ω0), therefore the
dispersion relation becomes

ω = ω0 [1 +
∆E

2
[1 + f(ω0)]] (4.3.26)

Accordingly real and imaginary parts would read as

Re(ω) = ω0 [1 +
∆E

2
(1 − 6

ξ3
sinhξ − sinξ
coshξ + cosξ )] (4.3.27)

Im(ω) = ω0
∆E

2
( 6
ξ3
sinhξ + sinξ
coshξ + cosξ −

6

ξ2
) (4.3.28)

where

ξ = b
√
ω0

2κ
(4.3.29)

The normalized frequency shift and normalized attenuation as function of ξ is depicted in
4.2. Finally and based on relation 4.3.16 the following relation for thermoelastic damping
in a thin beam given by

Q−1 = Eα
2T0
C

( 6
ξ2
− 6

ξ3
sinhξ + sinξ
coshξ + cosξ ) (4.3.30)
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Figure 4.2: Frequency shift and attenuation as functions of ξ for
small flexural vibrations [123]

4.4 Second-law analysis approach

4.4.1 Problem Formulation

The main mechanism responsible for thermoelastic damping is establishment of thermal
currents within the material. And that is in fact a benefit compared to other types of
damping in materials which are usually accompanied by lowering other desirable engineer-
ing properties such as stiffness and strength. Additionally, thermoelastic damping can be
modified with respect to inhomogeneity properties in multiphase materials such as alloys
and composites. This is while Zener’s theory is more concerned with isotropic, homoge-
neous materials; thereby it is not well suited for description of thermoelastic damping in
inhomogeneous materials. To cope with such a problem, Kinra and Milligan [98] extended
the Zener’s theory, choosing an approach based on second-law of thermodynamics.

The theory starts with field equations of classical thermoelasticity including the first
law of thermodynamics:

ρ
∂u

∂t
= σij

∂ϵij

∂t
− qi,j (4.4.1)

Newton’s law:

σji,j = ρ
∂2ui
∂t2

(4.4.2)

Kinematics relation:

εij =
1

2
(ui,j + uj,i) (4.4.3)

Thermoelastic Hooke’s law:

σij =
E

1 + ν (εij +
ν

1 − 2ν εkkδij) −
E

1 − 2ν αδij(T − T0) (4.4.4)
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and Fourier law for conduction of heat which reads as:

qi = −kT,i (4.4.5)

where σij is stress tensor, εij is strain tensor, ui would be displacement vector, ν is the
Poisson’s ratio, E is the Young’s modulus, T is the absolute temperature, qi is heat flux,
u is the internal energy, δij is the Kronecker delta function, and the indices i, j, k span the
range of 1, 2, 3.

As mentioned before, thermoelastic damping includes the irreversible flow of heat
which generates entropy. Entropy production obeys the second law of thermodynamics as
[126, 127],

∂Sp

∂t
= k

ρT 2
T,iT,i (4.4.6)

where Sp denotes the entropy produced per unit of mass. Upon generation of entropy,
energy in its mechanical form is converted to the heat. This transformation is described
through the Gouy-Stodola Theorem as

∆W = ρT0Sp (4.4.7)

Elastic energy stored in material per unit volume reads as

W = 1

2
σijεij (4.4.8)

Assuming a time-harmonic deformation for the thermoelastic body, the term ∆W in fact
would represent dissipation of mechanical energy in a single cycle, and W could be con-
sidered as maximum elastic energy stored in a cycle. Based on that a local thermoelastic
damping is defined as

Q−1L =
∆W

W
(4.4.9)

A volume averaged quantity for damping of a structure with finite geometry reads as

Q−1TED =
∫V ∆WdV

∫V WdV
= ∫V

Q−1L WdV

∫V WdV
(4.4.10)

As a result, the two-way coupled heat flow relationship reads as

T,ii =
ρc

k

∂T

∂t
+ Eα

k(1 − 2ν)T
∂εkk
∂t

(4.4.11)

Usually for this class of problems, the temperature variations are considered very small,
hence we can replace T with T0 in the above formulation, resulting in a one-way coupled
relation as

T,ii =
ρc

k

∂T

∂t
+ Eα

k(1 − 2ν)T0
∂εkk
∂t

(4.4.12)

Through the above set of equations a boundary value problem in thermoelastic damping
can be solved.
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Figure 4.3: Thermoelastic interface at the junction of two pieces
of materials, undergoing uniaxial stress [98]

4.4.2 Thermoelastic Interface

Let us consider inhomogeneous cases where two pieces of different metals (with different
material properties)each of which with a semi-infinite dimension, are welded together.
And the resulting structure is undergoing uniaxial stress σxx = σ0eiωt (Figure 4.3).

In this situation the effect of arising three dimensional stress field near the interface
would be very small and could be neglected. As a result, we may write

εxx = σ0eiωt/E (4.4.13)

and

εyy = εzz = −νεxx (4.4.14)

thereby εkk reads as

εkk = (1 − 2ν)σ0eiωt/E (4.4.15)

which results in a reduced form of a one-way coupled heat equation as

∂2T

∂x2
− ρc
k

∂T

∂t
= iωαT0

k
eiωt (4.4.16)

As for the interface conditions, temperature field at interface is continuous:

T (0−, t) = T (0+, t). (4.4.17)

The flux of heat is also continuous across the interface

k1
∂T

∂x
(0−, t) = k2

∂T

∂x
(0+, t). (4.4.18)

Additionally, as x→ −∞

T (x, t)→ T0 −
α1

ρ1c1
T0σ0e

iωt (4.4.19)

and as x→ +∞

T (x, t)→ T0 −
α2

ρ2c2
T0σ0e

iωt (4.4.20)
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Now we need to introduce normalized temperature as

V̂ ∗ = V ∗/∆T (4.4.21)

where V ∗ would be an unknown spatial variation of temperature and V̂ ∗ would be
normalized temperature. Then one can write

V̂ ∗1 = V ∗1 /(−σ0T0α1/ρ1c1) x < 0 (4.4.22)

V̂ ∗2 = V ∗2 /(−σ0T0α2/ρ2c2) x > 0, (4.4.23)

with Z = α/ρc and K = (ρck)1/2 as the coefficient of heat penetration. Geometrically, the
defined problem does not introduce any characteristic length. In physics, characteristic
length is an important dimension that defines the scale of of physical system. Since we do
not have such a parameter, we introduce a diffusion length as l = (2k/ωρc)1/2. Utilizing
that we can define two normalized coordinates as ξ1 = x/l1 for x < 0 and ξ2 = x/l2 for x > 0.
Then the equation 4.4.12 can be reduced to

d2V̂ ∗1
dξ21

− 2iV̂ ∗1 = −2i ξ1 < 0 (4.4.24)

d2V̂ ∗2
dξ22

− 2iV̂ ∗2 = −2i ξ2 < 0 (4.4.25)

and consequently the interface conditions become

Z1V̂
∗

1 = Z2V̂
∗

2 (4.4.26)

Z1K1
dV̂ ∗1
dξ1
= Z2K2

dV̂ ∗1
dξ2

(4.4.27)

The solution to the arisen ordinary differential equation would be

V̂ ∗1 (ξ1) = 1 − (1 −
Z2

Z1

K2

K1 +K2
e(1+i)ξ1) (4.4.28)

V̂ ∗2 (ξ2) = 1 − (1 −
Z1

Z2

K1

K1 +K2
e−(1+i)ξ2) (4.4.29)

Having all the above formulation obtained, the thermoelastic damping can be written
as

Q−1TED/L1 =∆E1 [
K2

K1 +K2
(1 − Z2

Z1
) eξ1]

2

(4.4.30)

Q−1TED/L2 =∆E2 [
K1

K1 +K2
(1 − Z1

Z2
) e−ξ2]

2

(4.4.31)

where subscripts denote the materials 1 and 2.
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4.4.3 Numerical Results

The numerical results of the above formulation have been depicted in Figures 4.4, 4.5, 4.6.
In 4.4, profiles of V and ϕ with respect to x/l1 for thermoelastically similar joined materials,
namely Mg/Al with ZAl/ZMg = 0.64, are shown. As was expected, when x → −∞, V → 1

and ϕ→ 0. At the interface V̂ ∗(0−) = V̂ ∗(0+) = (Z1K1 +Z2K2)/(K1 +K2), noting as well
that ϕ is zero here at the interface. It means that the temperature is always at the same
phase with the stress. In next figure, i.e. Fig. 5 the profile of the same variables are
plotted for thermoelastically dissimilar materials namely Mg/Tic with ZT iC/ZMg = 0.12.
It is worthy of noting that temperature field exhibits discontinuity across the interface.
This originates from the necessity of continuity of heat flux q = −k∂T /∂x.

Figure 4.4: Magnitude and phase of fluctuating temperature as a
function of space for a thermoelastically similar interface [98]

The influence of damping at the interface can be better understood by examining the
specific damping capacity profile against position, as shown in Figure 6. When dealing
with thermoelastically similar materials, such as ZMg = 15.12 and ZAl = 9.71, the damping
at the interface is not significantly pronounced since the values are relatively close to
each other. However, in cases where the materials are thermoelastically different (e.g.,
Mg/TiC), the ratio ZMg/ZT iC = 15.1/1.85 ≈ 10, and the disparity in Z values becomes
substantial. This difference in Z values and the ratio explain the high interface damping
observed when joining materials that exhibit significant thermoelastic distinctions.

4.5 Laminated Structures

4.5.1 Problem Formulation

Bishop and Kinra [104, 105] investigated the thermoelastic damping in layered structures
and developed a framework which was used in other works for studying specific types of
layered structures [94, 95].
A typical cross-section for a three-layered Euler-Bernoulli is shown in Figure 4.7. Time
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Figure 4.5: Magnitude and phase of fluctuating temperature as a
function of space for a thermoelastically different interface [98]

Figure 4.6: Specific damping capacity at the vicinity of interface [98]

constants for each layer are defined as

τ1 =
C1

k1
a2 τ2 =

C2

k2
(b − a)2 (4.5.1)

Accordingly the related normalized frequencies will be defined as

Ω1 = ωτ1 Ω2 = ωτ2 (4.5.2)
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Figure 4.7: Cross-section of an Euler-Bernoulli beam with three layers [95]

Herein the subscripts 1 and 2 denote the central and outer layers. Next procedures are
almost the same as before which include thermoelastic damping, dissipated energy and
produced entropy alongside the coupled heat conduction equation that need to be defined.
Thermoelastic damping for beams can be expressed as

QZ
−1 =∆E

∑∞n=1
Ω1γ

2
n

Ω2
1+γ

4
n
Qn

1
3 [

a3

b3
+ E2

E1
(1 − a3

b3
)]

(4.5.3)

where

γn = βn
√
τ1 ηn = βn

b

b − a
√
τ2 (4.5.4)

and βn would represent eigenvalues resulted as the solution of the following equation

tan(βn
√
τ1)tan(βn

√
τ2) =K =

√
k1C1

k2C2
. (4.5.5)

In the above equation Qn is expressed as

Qn =
[a2
b2
Ii + E2α2

E1α1
Iii]

2

a
b Iiii +

C2

C1
Iiv

(4.5.6)

where

Ii =
1

γ2n
sinγn −

1

γn
cosγn (4.5.7)

Iii =
1

ηn

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

An [
1

ηn
(cosηn − cos

ηna

b
) + sinηn −

a

b
sin

ηna

b
]

+Bn [
1

ηn
(sinηn − sin

ηna

b
) − cosηn +

a

b
cos

ηna

b
]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(4.5.8)

Iiii =
1

2
− 1

4γn
sin(2γn), (4.5.9)

Iiv =
1

2
(1 − a

b
)(A2

n −B2
n)

+ 1

4ηn
(A2

n −B2
n) [sin(2ηn) − sin(2ηna/b)]

− 1

2ηn
AnBn [cos(2ηn) − cos(2ηna/b), ]

(4.5.10)
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An = −
Kcosγncosηn

sin (ηn (ab − 1))
Bn = −

Kcosγnsinηn

sin (ηn (ab − 1))
(4.5.11)

Above equations are able to model thermoelastic damping in symmetric, three-layered
beams.

4.5.2 Numerical Results

Several types of structures can be designed to represent dependency of thermoelastic damp-
ing on the frequency. For instance compounds such as Al/Si/Al, Cu/Si/Cu, Ag/Si/Ag,
Au/Si/Au, Al/SiC/Al, Cu/SiC/Cu, Ag/SiC/Ag, Au/SiC/Au and SiC/Si/SiC can be
named.

Figure 4.8 shows the influence of the number of terms in the relation 4.5.3 on conver-
gence behavior of thermoelastic damping as graphed for SiC/Si/SiC against the frequency.
As can be seen with increase in the number of terms in series from 1 to 4, the peak damp-
ing values converges swiftly and after n ≥ 2 it in fact remaines unchanged. Nevertheles
at least four terms need to be included to achieve convergence for the high-frequency
damping response.

Figure 4.8: Thermoelastic damping as a function of frequency for
different series expansions

The role of metallization on damping properties has been compared for different Si
based beams in figure 4.9. It can be seen that metallization remarkably enhances the
damping properties across a wide spectrum of frequency. In spite of that, no abrupt
change in critical damping frequency is observed.

Similar comparisons have been performed for the case of SiC made structures investi-
gating the damping against the frequency with modifications in metallization for four cases
including Cu/SiC/Cu, Al/SiC/Al, Ag/SiC/Ag and Au/SiC/Au. As before, damping is
enhanced in direct accordance with metallization over the wide range of frequencies. Val-
ues obtained for peak damping show the same trend as for the case of silicon-silver. Also
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Figure 4.9: Comparison of thermoelastic damping in different
metalized silicon carbides beams [95]

apparently Al and Cu show to have more pronounced effects on damping in comparison
with gold.

Figure 4.10: Comparison of thermoelastic damping in different
metalized silicon beams [95]

The effect of volume fraction is revealed through increasing the volume fraction of
silicon carbide in SiC/Si/SiC beams. Damping increased with increase in volume fraction.
Also a downward shift was observed for critical damping frequency. Surprisingly, however,
it was observed that damping in some of the cases become even less than that of the bare
silicon.
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Figure 4.11: Variation of thermoelastic damping with respect to
volume fractions in SiC/Si/Sic [95]

4.6 TED and non-classical Theories

As mentioned, nowadays micro- and nano- resonators have found plenty of applications
in micro-/ nano-electromechanical systems. And as a point of concern, developers of such
systems always seek the reduced energy consumption in these technologies. Thermoelastic
damping is one of the main intrinsic sources of energy dissipation in such systems, which
needs to be minimized for higher levels of performance.

Quality factor is a well known criterion for assessing the performance which is defined
as the ratio of stored energy to dissipated energy in the system.

Experimental results on behavior of materials at micro- nano-scales however show
discrepancy with predictions made by classical elasticity theories. Contrarily, non-classical
and generalized field theories such as couple stress, strain gradient and nonlocal elasticity
show more capability in modeling size-dependent effects.

Non-classical theories have been recently utilized in developing relations for thermoe-
lastic damping in micro- and nano-beams. Obtained results show considerable improve-
ments compared to predictions made through classical elasticity theories. For example
Kong et al. [128]compared the natural frequencies of microbeam as obtained by modi-
fied strain gradient theory (MSGT) to that resulted from modified couple stress theory
(MCST) and classical elasticity theory (CT). It was observed that values given by MSGT
were significantly bigger than those through MCST and CT.

4.6.1 Strain Gradient Elastic Bending Theory

Lam et al [129] developed a MSGT theory in which the strain energy density function for
isotropic linear elastic bodies in small strain regime was developed as

U = ∫
V
ūdV = 1

2
∫
V
(σijεij + piγi + τ (1)ijk η

(1)
ijk +m

s
ijχ

s
ij)dV (4.6.1)
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where σij represents components of the stress tensor, εjj are components of the classical
strain tensor, γ would be the dilation gradient vector, the deviatoric part of stretch gra-
dient tensor is shown by η(1), χs would be the symmetric part of the rotation gradient
tensor, and θ is the infinitesimal rotation vector. These terms for small deformations are
defined as

εjj =
1

2
(ui,j + uj,i), (4.6.2)

γi = εmm,i, (4.6.3)

η
(1)
ijk =

1

3
(εjk,i + εki,j + εij,k) −

1

15
δij(εmm,k + 2εmk,m)

− 1

15
[δjk(εmm,i + 2εmi,m) + δki(εmm,j + 2εmj,m)] ,

(4.6.4)

χij =
1

2
(θi,j + θj,i) (4.6.5)

θi =
1

2
(curl(u))i =

1

2
eijkuk,j , (4.6.6)

Herein ui represent the components of infinitesimal displacement vector and the comma
sign (,) denotes the partial derivatives with respect to spatial coordinates. Accordingly,
components of the classical stress tensor σ can be defined in terms of the above kinematic
parameters ε, γ, η(1) and χs through following constitutive relations [129] as

σij = λtr(ε) + 2µεij , (4.6.7)

pi = 2µl20γi, (4.6.8)

τ
(1)
ijk = 2µl

2
1ηijk, (4.6.9)

ms
ij = 2µl22χsij . (4.6.10)

where λ and µ would be Lame constants which parametrized by Young’s modulus and
Poisson’s ratio read as following:

λ = νE

(1 + ν)(1 − 2ν) , µ = E

2(1 + ν) (4.6.11)

Moreover, l0, l1 and l2 are material length scale parameters that could be determined
through typical size effect experiments such as nanoindentation and nanoscratching tests.

In the case of thermoelastic damping, when thermal effects come into play, the stress-
strain relation read as

σij = λekkδij + 2µeij , (4.6.12)
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where eij as the the total strain field can be described as

σij = εij + ε(T )ij (4.6.13)

where εij and ε
(T )
ij respectively represent mechanical and thermal strains. In the case of

homogeneous, isotropic materials in linear regimes, the thermal strain is expressed as

ε
(T )
ij = αθδij (4.6.14)

with α as the thermal expansion coefficient and θ as temperature changes from the ambient
temperature (T0) ∶ θ = T − T0.

4.6.2 Non-Fourier Heat Conduction

Based on the strain gradient theory developed by Lam et al [129], Bostani and Karami
Mohammadi [130] formulated a size dependent quality factor for thermoelastic damping.
They implemented a non-Fourier heat conduction theory developed by Lord and Shul-
man [131] to develop a generalized thermoelasticity theory in which the effect of thermal
relaxation time on the quality factor on thermoelastic damping in microbeams can be
introduced and analyzed.
The non-Fourier heat flow relationship for a microbeam can be defined as:

k
∂2θ

∂xi∂xi
= ρcv

∂θ

∂t
+EαT0

∂2ui
∂t∂xi

+ τ0ρcv
∂2θ

∂t2
+ τ0EαT0

∂3ui
∂t2∂xi

(4.6.15)

where thermal relaxation time τ0 is expressed in terms of measurable parameters by
Chester [132]as

τ0 =
3k

cvν2
(4.6.16)

where ν is the phonon velocity which can be approximated by the elastic wave velocity
[133].

Accordingly, the couple thermoelastic relationship based on non-Fourier heat conduc-
tion theory for microbeams can be expressed as

χ(∂
2θ

∂z2
) = (1 + Γ) + (∂θ

∂t
+ τ0

∂2θ

∂t2
) − ∆E

α
z ( ∂3ω

∂t∂x2
− τ0

∂4

∂t2∂x2
) , (4.6.17)

in which Γ is of order of 10−4 and defined as following but can be neglected for sim-
plicity:

Γ = 2∆E
1 + ν
1 − 2ν (4.6.18)

4.6.3 Quality Factor for thermoelastic damping

Two approaches can be implemented for deriving the quality factor: complex frequency
approach and entropy generation approach.
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In complex frequency approach thermal moments are defined as

MT =
EI∆E

(1 + Γ)
d2w0

dx2
[1 + f(ω)], (4.6.19)

QT =
EI∆E

1 + Γ
dw0

dx2
g(ω), (4.6.20)

where

f(ω) = 24

(γh)3 [
γh

2
− tan(γh

2
)] , g(ω) = 24

(γh)3 [
γh

2
− tan(γh

2
)] (4.6.21)

As before in complex frequency approach the quality factor for thermoelastic damping
is defined as

Q−1 = 2∣Im(ω)
Re(ω) ∣ (4.6.22)

in which ω is replaced by ωn as

ωn =
1

L2

√
β6n(S1 +H1) + β4n(S2 +H2)

ρA
(4.6.23)

Herein H1 and H2 are expressed as

H1 = 3EI∆E(1 − 2ν)2l20[1 + f(ω)]/(1 + Γ)(1 + ν) (4.6.24)

H2 =
EI∆E

(1 + Γ)[1 + f(ω) + 3l
2
0g(ω)(1 − 2ν)/(1 + ν)] (4.6.25)

Quality factor of TED as approximated by Zener was defined already in equation 4.2.10.
The differential equation explaining the relation between the heat flux and temperature
gradient is however defined based on Lord-Shulmann theory [131] as

qi + τ0q̇l = −kT,i (4.6.26)

which through implementation of second law of thermodynamics would be transformed as

τ0s̈(1 + τ0
2Ṫ

T0
− τ0

Ṫ,i

T,i
) = k(T,i)

2

T 2
0

. (4.6.27)

Having calculated the total lost work as well as stored energy of the microbeam per time
cycle of each vibration, quality factor for thermoelastic damping for classical formulations
as well as strain gradient and stress couple theories reads as

Q−1CT =
6∆E

ξ2(1 + τ20ω2)2 (4.6.28)
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Q−1CT =
BE∆Eh

3

4ξ2(1 + τ20ω2)W + {[1 +
1 + cos(ξη)cosh(ξ/η)
(cos(ξη) + cosh(ξ/η))2

− 3η

ξ(η4 + 1)
η2sin(ξη) + sinh(ξ/η)
cos(ξη) + cosh(ξ/η) ]

2

+ [− sin(ξη)sinh(ξ/η)
(cos(ξη) + cosh(ξ/η))2

+ 3η

ξ(η4 + 1)
η2sinh(ξ/η) − sin(ξ/η)
cos(ξη) + cosh(ξ/η) ]

2⎫⎪⎪⎬⎪⎪⎭
.

(4.6.29)

Q−1MCST =
6∆E

λξ2(1 + τ20Ω2)

⎧⎪⎪⎨⎪⎪⎩
[1 + 1 + cos(ξη)cosh(ξ/η)

(cos(ξη) + cosh(ξ/η))2 −
3η

ξ(η4 + 1)
η2sin(ξη) + sinh(ξ/η)
cos(ξη) + cosh(ξ/η) ]

2

[− sin(ξη)sinh(ξ/η)
(cos(ξη) + cosh(ξ/η))2 +

3η

ξ(η4 + 1)
η2sinh(ξ/η) − sin(ξ/η)
cos(ξη) + cosh(ξ/η) ]

2⎫⎪⎪⎬⎪⎪⎭

1/2

(4.6.30)

4.6.4 Numerical Results

Fig. 4.12 shows the TED profile against the ambient temperature as analyzed through
classical (CT), modified couple stress (MCST) and modified strain gradient (MSGT) the-
ories. It can be seen that the inverse of quality factor is enhanced with increases in
the ambient temperature. Also thermoelastic damping obtained through MCST exhibit
smaller values compared to those obtained by MSGT.

Analysis on the effect of thickness on TED is depicted in Fig. 4.13. As the thickness of
microbeam tends to the critical value associated to the peak damping, the output shows
considerable divergence between the three elasticity theories (CT, MCST and MSGT) and
the two thermoelasticity theories (CT and GTE).
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Figure 4.12: Variation of thermoelastic damping against the ambient
temperature as studied in a silicon microbeam in cases a)
clamped-clamped ends and b) cantilever microbeam [130].

(CT: Classical Elasticity Theory; MCST: Modified Couple Stress
Theory; MSGT: Modified Strain Gradient Theory; GTE: Generalized

Theromelasticity Theory)
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Figure 4.13: Profile of thermoelastic damping against the
thickness as in a) Clamped–clamped situation, and b) cantilever
microbeam [130] . (CT: Classical Elasticity Theory; MCST:
Modified Couple Stress Theory; MSGT: Modified Strain

Gradient Theory; GTE: Generalized Theromelasticity Theory)
.



Chapter 5

Gradient Thermoviscoelasticity

5.1 Introduction

As explained in previous chapters, micro- and nano- resonators as implemented in MEMS
and NEMS technologies exhibit loss of sensitivity as a result of internal energy dissipation.
The mechanism involved for the dissipation of energy within these structures is known to
be of thermoelastic damping type. This kind of damping involves coupling of thermal
and mechanical fields. Deformation causes imposition of temperature gradients from the
compressed areas toward dilated regions. Thermodynamically the system goes out of the
equilibrium conditions and enters the nonequilibrium state. In seeking of its equilibrium,
system undergoes the irreversible heat flux. The process of exerting the heat accompa-
nies the production of entropy which ultimately leads to dissipation of energy within the
thermodynamical system. This phenomenon is usually called the thermoelastic damping.
The process of thermoelastic damping was first realized by Zener [99,100] as a result of
internal friction in solids. Later on it was developed by others toward three dimensional
models for expressing the quality factor.

One of the major inhibitors for achieving a good agreement between experimental
measurements and theoretical predictions of energy loss within micro-resonators has been
the incapability of classical elasticity theories for describing the arisen stress and strain
fields of such structures at fine scales such as micro- or nano-meters. More recent theories
dealing with nonlocality concepts as well as gradient based theories have shown to be very
useful in reducing the distance between laboratory observations and theoretical models.
As two of the most developed of such theories, one can mention stress and strain gradient
theories, that have been implemented in this study.

As can be seen the problem of damping in microresonators resides at the interface of
irreversible thermodynamics, thermoelastic damping, viscoelasticity and gradient theories.
That is thereby the aim of this study that through employing and merging different theories
builds up a new more comprehensive theory which is able to take into account various
physical phenomena, notably internal friction in solids, and at the same time links it
to observed behavior at micro and nano scales toward a better understanding of the
mechanisms involved in energy loss in micro- and nanoresonators.

89
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5.2 Linear viscoelasticity: Formulation & Variational Prin-
ciples

The first remarkable variational formulation for viscoelastic materials might be ascribed
to Gurtin [134] where he proposed a generalization to classical elasticity toward linear
viscoelasticity through convolutive bilinear form. The significance of choosing a right bi-
linear form was elaborated by Tonti [135] where he demonstrated that the proper selection
of a convolutive type bilinear form would yield a variational formulation for initial value
problems which could bypass the necessity of their transformation into a totally boundary
condition problem. Works of Gurtin and Tonti were further elaborated and developed
by many others [136–139]. It was extended by Carini et al [140] toward the method of
boundary integral equations and development of variational based formulations for lin-
ear viscoelastic problems [141, 142] . Later works were oriented toward development of
extremum formulations [143–146] as well as minimum principles for incompressible vis-
coelastic solids [147].

Christensen [148, 149] employed free energy as a state function in development of
extremum based variational formulation and imposed restriction on derived formulations.
Using pseudo-convolutive and pseudo-biconvolutive bilinear forms, Huet [150] developed
principles of total potential energy and complementary energy in relationship with linear
elasticity.

Herein the model for linear viscoelastic problem is defined and a constitutive model is
presented.

Let us assume a linear viscoelastic material occupying the domain Ω ⊂ R3. This
body can be heterogeneous and anisotropic.An orthogonal Cartesian reference system
with coordinates x is considered. The time parameter is shown by t and the interval
is considered between [0,2t]. Let u, ε and σ be displacement, strain and stress fields
respectively. The stress field with σ = 0 for t < 0 satisfies the equilibrium equations as:

∇ ⋅σ(x, t) + b(x, t) = 0 in Ω × [0,2t] (5.2.1)

with boundary condition

σ(x, t) ⋅ n = t̄(x, t) on ∂Ωt × [0,2t] (5.2.2)

where b(x, t) denotes the body forces, t(x, t) the surface forces applied on ∂Ωt. The initial
values for displacement field would be u(x, t) = 0 and for strain field is ε(x, t) = 0 for t < 0.
Accordingly the compatibility relationships read as:

ε(x, t) = 1

2
[∇u + (∇u)T ] (5.2.3)

with boundary conditions as:

u = ū on ∂Ωu × [0,2t] (5.2.4)

where ū is the displacement field on ∂Ωu.
Herein we consider only non-aging materials, meaning that the hereditary viscoelastic-

ity would be the case, for which the relationship between stress and strain field is explained
in the form of Boltzmann relations, which reads as:

σ = ∫
t

0−
E(x, t − τ)dε(x, τ) (5.2.5)
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The above relation should stem from the Stieltjes integral and E would be the relaxation
kernel which mathematically would be a fourth rank tensor. It is assumed that for t < 0,
E = 0. The components of this tensor which are functions of time and space are defined for
a unit-step strain history. The above integral expression is obtained from the Boltzmann
superposition principle which yields the stress field as a function of space at each instant
of time as a result of increments in strain dε for τ ∈ [0, t].

Assuming that the relaxation function exhibits symmetry properties as explained in
index notation as:

Eijhk(x, t) = Ejihk(x, t) = Eijkh(x, t) = Ehkij(x, t) ∀x ∈ Ω,∀t ∈ [0,2t] (5.2.6)

also the following inequalities

E0
ijhk(x)γijγhk > 0, E∞ijhk(x)γijγhk > 0 (5.2.7)

are valid for x ∈ Ω. In this regard E0
ijhk(x) and E∞ijhk(x) for all non-vanishing symmetric

tensors of rank two (γij)are defined as

E0
ijhk(x, t) ∶= lim

t→0
Eijhk(x, t), E∞ijhk(x, t) ∶= lim

t→+∞
Eijhk(x, t) (5.2.8)

Through integration by parts the expression for constitutive relation (5.2.6) can be rephrased
in the Volterra form [141] as:

σij(x) = Eijhk(x,0)εhk(x, t) + ∫
t

0
Ėijhk(x, τ)εhk(x, t − τ)dτ (5.2.9)

where

Ėijhk(x, t) ∶=
∂Eijhk(x, t)

∂t
(5.2.10)

would be locally integrated ∀x ∈ Ω as a result of which it can be deduced that Eijhk(x, t)
would be continuous and bounded. Therefore we can have R0

ijhk(x) = Eijhk(x,0).

Using equation (5.2.9) one can see that once x is fixed, the stress field σijbecomes a
function of strain εij at time t, as well as the history of strain εtij(x, τ) = ε(x, t − τ) for
τ ∈ [0, t]. Having εtij(x, τ) relationship (5.2.9)the stress field σij along with its history

σtij(x, t) = σij(x, t − τ) can be obtained for τ ∈ [0, t].
To be able to calculate the strain field from the stress field as

εij(x, t) = Jijhk(x,0)σhk(x, t) + ∫
t

0
J̇ijhk(x, τ)σhk(x, t − τ)dτ (5.2.11)

the invertibility of the relation (5.2.9) needs to be assessed. In this regard let denote
Dε as the space of the strain histories and Dσ as the space the stress histories. Now we
need to determine the conditions under which the strain field can be described in terms of
stress field as in (5.2.11). In this relation Jijhk(x, t) represents the creep kernel. Certainly
establishment of such a relationship largely depends on the chosen space for Dε as well as
the properties of Ėijhk(x, t). Assuming that

Dε = {εtij(x, τ); εtij(x, τ) ∈ L2(0,2t)} ;
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and
Ėijhk(x, t) ∈ L1(0,2t)

and conditions (5.2.7) and (5.2.8) hold, together with sine Fourier transform of Ėijhk(x, t)
which is

ˆ̇Eijhk(x, ω) ∶= ∫
∞

0
Ėijhk(x, t)sin(Ωt)dt

is defined such that
ˆ̇Eijhk(x, ω)γijγhk < 0 Ω > 0; (5.2.12)

(the above relation is called Graffi’s inequality [151] and again γij represents a symmetric
second ranked tensor), then

Dσ = {σtij(x, τ);σtij(x, τ) ∈ L2(0,2t)}

and the inverse constitutive relation exist in the mentioned form.

5.2.1 Reformulation of Constitutive Relation

If the time interval [0,2t] is split into two equal subintervals as [0, t] and [t,2t] then the
stress and strain field can be expressed as:

εij(x, t) =
⎧⎪⎪⎨⎪⎪⎩

ε1ij(x, t) for t ∈ [0, t]
ε2ij(x, t) for t ∈ [t,2t]

(5.2.13)

σij(x, t) =
⎧⎪⎪⎨⎪⎪⎩

σ1ij(x, t) for t ∈ [0, t]
σ2ij(x, t) for t ∈ [t,2t]

(5.2.14)

where superscripts 1 refers to the first time interval i.e. [0, t] and the superscript 2 refers
the second time interval namely [t,2t].
Direct constitutive law in compact form would yield

σij(x, t) =L εij(x, t)

where L (⋅) ∶= ∫ t0− Eijhk(t − τ)d(⋅).Then having (5.2.13) and (5.2.14) considered, and by
virtue of the principle of Boltzmann superposition, (5.2.6) could be reshaped into

σ1ij(x, t) = ∫
t

0−
Eijhk(t − τ)dε1hk(τ) for t ∈ [0, t] (5.2.15)

σ2ij(x, t) = ∫
t

0−
Eijhkdε1hk(τ)

+ ∫
2t

t
Eijhk(t − τ)dε2hk(τ) for t ∈ [t,2t]

(5.2.16)

Setting
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L ∶=
⎡⎢⎢⎢⎢⎢⎣

A B

C 0

⎤⎥⎥⎥⎥⎥⎦

∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
t

0−
Eijhk(t − τ)d(.) ∫

2t

t
Eijhk(t − τ)d(.)

∫
t

0−
Eijhk(t − τ)d(.) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for t ∈ [t,2t]

for t ∈ [0, t]

(5.2.17)

ε ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε1ij(x, t)

ε2ij(x, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.2.18)

σ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ2ij(x, t)

σ1ij(x, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.2.19)

the operational formulation reads as
Lε = σ (5.2.20)

which proves to be equivalent to the relations (5.2.15) and (5.2.16).

Now having the material point of the body fixed and for T > 0 the following convolutive
bilinear form can be observed which is of the type of Stieltjes formulation and reads as:

⟨σ′ij , ε′′ij⟩c ∶= σ′ij(2t) ∗ ε′′ij(2t) ∶= ∫
2t

0−
σ′ij(2t − t)dε′′ij(t) (5.2.21)

where ∗ denotes the time convolution product in Stieltjes integral over the time interval
of [0,2t], σ′ij(t) ∶=L ε′ij(t) and ε′ij and ε′′ij would be symmetric tensors whose histories lie
in the space Dε.

Using decompositions (5.2.13) and (5.2.14) along with relationships (5.2.17) and (5.2.18)
leads to

⟨L ε′ij , ε
′′

ij⟩c = ⟨Aε′1ij , ε
′′

1ij ⟩c + ⟨Bε
′

2ij , ε
′′

1ij ⟩c + ⟨Cε
′

1ij , ε
′′

2ij ⟩c
= ⟨Lε′,ε′′⟩c

(5.2.22)

Symmetry of the operator L in terms of bilinear form (5.2.21) leads to the symmetry of
the operator L. In this regard it is worthy to mention that the operator A is symmetric
meaning

⟨Aε′1ij , ε
′′

1ij ⟩c = ∫
t

0−
∫

t

0−
Eijhk(2t − t − τ)dε′1hk(τ)dε

′′

1ij(t)

= ⟨Aε′′1ij , ε
′

1ij ⟩c
(5.2.23)
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and the adjoint operator of C which is shown as B would be

⟨Bε′2ij , ε
′′

1ij ⟩c = ∫
t

0−
∫

t

0−
Eijhk(2t − t − τ)dε′1hk(τ)dε

′′

1ij(t)

= ∫
2t

t
∫

2t−t

0−
Eijhk(2t − t − τ)dε′′1hk(τ)dε

′

2ij(t)

= ⟨Cε′′1ij , ε
′

2ij ⟩c

(5.2.24)

To make it more adopted to thermodynamical context, it would be useful to illustrate its
relation to the Helmholtz free energy (ψ). Several integral forms for the free energy have
been suggested within the linear viscoelastic regime. Mainly and in a simplified case it is
represented through a double-integral expression as

ψ(ε′1ij) =
1

2
∫

t

0−
∫

t

0−
Eijhk(2t − t − τ)dε′1hk(τ)dε

′

1ij(t) (5.2.25)

Accordingly a similar form for the power dissipated density reads

ϕ(ε′1ij) = −∫
t

0−
∫

t

0−
Ėijhk(2t − t − τ)dε′1hk(τ)dε

′

1ij(t) (5.2.26)

where ε′1ij denotes a generic tensor representing strain history over the time interval [0, t].
Comparing with the bilinear form (5.2.23) yields the following form for Helmholtz free
energy as:

ψ(ε′1ij) =
1

2
⟨Aε′1ij , ε

′

1ij ⟩c (5.2.27)

Coleman [127] introduced the fee energy as a fundamental concept and adopted the second
law of thermodynamics in the form of Clausius-Duhem inequality as the starting point.
Assuming isothermal conditions when Clausius-Duhem inequality is combined with the
local balance energy, we have

ϕ = −ψ̇ + σij(t)ε̇ij(t) ≥ 0 (5.2.28)

The above relation indicates that the rate of dissipation energy ϕ should be non-negative.
Integrated dissipation inequality is easily obtained through integrating (5.2.28) as:

∫
t1

t0
σij(τ) ˙εij(τ)dτ ≥ ψ(t1) − ψ(t0) (5.2.29)

Restrictions imposed by the second law of thermodynamics imply that the integrated
dissipation inequality (5.2.29) must hold [127].

5.2.2 Inverse Constitutive Law

Keeping the assumptions made in regard to the relaxation kernel Eijhk and the strain
histories it turns out the direct constitutive law would be invertible. Hence by virtue of
relations (5.2.13) and (5.2.14) and utilizing the Boltzmann superposition one can write:

ε1ij(t) = ∫
t

0−
Jijhk(t − τ)dσ1hk(τ)dσ1hk(τ) for t ∈ [0, t] (5.2.30)
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ε2ij(t) = ∫
t

0−
Jijhk(t − τ)dσ1hk(τ)

+ ∫
2t

t
Jijhk(t − τ)dσ2hk(τ) for t ∈ [t,2t]

(5.2.31)

which in compact form reads as
L−1σ = ε (5.2.32)

where the operator L−1 is expressed as following:

L−1 ∶=
⎡⎢⎢⎢⎢⎢⎣

0 B̃

B A

⎤⎥⎥⎥⎥⎥⎦

∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∫
t

0−
Jijhk(t − τ)d(.)

∫
2t

t
Jijhk(t − τ)d(.) ∫

t

0−
Jijhk(t − τ)d(.)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for t ∈ [0, t]

for t ∈ [t,2t]

(5.2.33)

New operators A and B have the following relationships with already introduced operators
A and B as following:

B = B−1

A = −B−1AB̃−1
(5.2.34)

Positive definiteness of the operator A in terms of bilinear form (5.2.21) implies that the
operator A is symmetric and negative definite.

5.2.3 Reformulation of the Linear Viscoelastic Formulation

Assume that E and C denote equilibrium and kinematic operators respectively, meaning
that E represents the divergence operator and C would be the symmetric part of the
gradient operator. Hence, through the decompositions (5.2.13) and (5.2.14) the problem
consisting of equilibrium equation, compatibility equation, along with strain-displacement
relations and the constitutive law, can be reformed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −E

0 0 0 0 −E 0

0 0 A B 0 −1

0 0 B̃ 0 −1 0

0 C 0 −1 0 0

C 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1i

u2i

ε1ij

ε2ij

σ1ij

σ2ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b2i

b1i

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in Ω × [t,2t]

in Ω × [0, t]

in Ω × [t,2t]

in Ω × [0, t]

in Ω × [t,2t]

in Ω × [0, t]

(5.2.35)
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Correspondingly, the related boundary conditions read as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 nj

0 0 0 0 nj 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −nj 0 −1 0 0

−nj 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1i

u2i

ε1ij

ε2ij

σ1ij

σ2ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2i

p1i

0

0

−n02i
−nju01i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

on ∂Ωp × [t,2t]

on ∂Ωp × [0, t]

on ∂Ωu × [t,2t]

on ∂Ωu × [0, t]

(5.2.36)

which in compact form can be written as

MIzI = bI in Ω × [0,2t]
TIzI = gI on ∂Ω × [0,2t]

(5.2.37)

If the inverse constitutive law (5.2.32) is considered, a four-fields formulation will be
obtained in a similar fashion as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 E

0 0 E 0

0 −C A B

−C 0 B 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1i

u2i

σ1ij

σ2ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b2i
−b1i
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in Ω × [t,2t]

in Ω × [0, t]

in Ω × [t,2t]

in Ω × [0, t]

(5.2.38)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −nj
0 0 −nj 0

0 −nj 0 0

−nj 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1i

u2i

σ1ij

σ2ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−p2i
−p1i
−nju02i
−nju01i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

on ∂Ωp × [t,2t]

on ∂Ωp × [0, t]

on ∂Ωu × [t,2t]

on ∂Ωp × [0, t]

(5.2.39)

or, in a compact from we have:

MIIzII = bII in Ω × [0,2t]
TIIzII = gII on ∂Ω × [0,2t]

(5.2.40)

The two problems (5.2.37) and (5.2.40) can be condensed as

Mizi = bi in Ω × [0,2t]
TiZi = gi on ∂Ω × [0,2t]

(5.2.41)

which in compact form reads as
Nizi = fi (5.2.42)

where i = I, II.
Considering the following bilinear form:

⟨⟨Niz
′

i,z
′′

i ⟩⟩c = ∫
Ω
Miz

′

i(2t) ∗ z′′i (2t)dΩ + ∫
∂Ω

Tiz
′

i(2t) ∗ z′′i (2t) ∗ z′′i (2t)dΓ (5.2.43)
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where z′i and z′′i denote arbitrary vectors residing in the domain of the operator Ni,
i = I, II, III. The symmetry of the operator Ni with respect to (5.2.43) can be proved.
Then the equivalency compact form (5.2.42) can be shown to be equivalent to the following
variational formulation:

Fi(zi) = stat
z′i

Fci (z′i) (5.2.44)

where

Fi(z′i) =
1

2
⟨⟨Niz

′

i,z
′

i⟩⟩c − ⟨⟨fi,z′i⟩⟩c

=1
2
∫
Ω
Miz

′

i(2t) ∗ z′i(2t)dΩ +
1

2
∫
∂Ω

Tiz
′

i(2t) ∗ z′i(2t)dΓ

− ∫
Ω
bi(2t) ∗ z′i(2t)dΩ − ∫

∂Ω
gi(2t) ∗ z′i(2t)dΓ

(5.2.45)

with z′i denoting any admissible vector in the domain of Ni and zi being the solution of
the problem. Particularly, choosing i = I an Hu-Washizu type of variational formulation is
obtained, while for i = II we obtain a variational formulation of type Hellinger-Reissner.
And finally in the case of i = III a new variational formulation is obtained.
Now incorporating strain-displacement relations into the Hu-Washizu formulation, leads
to the following functional form of the Total Potential Energy as

TPE(u′1i , u
′

2i) =
1

2
∫
Ω
(ACu′1i(2t) ∗Cu′1i(2t) + 2B̃Cu′1i(2t) ∗Cu′2i(2t))dΩ

− ∫
Ω
(b2i(2t) ∗ u′1i(2t) + b1i(2t) ∗ u

′

2i(2t))dΩ

− ∫
∂Ωp

(p2i(2t) ∗ u′1i(2t) + p1i(2t) ∗ u
′

2i(2t))dΓ

(5.2.46)

If we choose to introduce the equilibrium equations into Hellinger-Reissner functional,
then we can have the following functional of the Total Complementary Energy type as

TCE(σ′iij , σ
′

2ij) =
1

2
∫
Ω
(Aσ′1ij(2t) ∗ σ

′

1ij(2t) + 2B̃σ
′

1ij(2t) ∗ σ
′

2ij(2t))dΓ

− ∫
∂Ωu

(nju02i(2t) ∗ σ
′

1ij(2t) + nju
0
1i(2t) ∗ σ

′

2ij(2t))dΓ
(5.2.47)

Both the above functionals are of the saddle-point type and respectively fulfill the following
variational principles:

TPE(u1i , u2i) =min
u′1i

stat
u′2i

TPE(u′1i , u
′

2i) (5.2.48)

where u′1i and u
′

2i
denote compatible displacement fields, and

TCE(σ1ij , σ2ij) =min
σ′1i

stat
σ′2i

TCE(σ′1ij , σ
′

2ij) (5.2.49)

where σ′1ij and σ′2ij being the equilibrated stress fields. The TPE functional is minimum

with respect to u′1i and the TCE functional is minimum with respect to σ′1ij because of
the positive definiteness of the operator A.
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5.3 The Linear Transient Heat Conduction: Formulation &
Variational Principle

We consider a body Ω ⊂ R3 and assume that it is thermally isotropic. In a Cartesian
coordinates system it means that when a spatial point x = (xi)i=1,2,3 ∈ Ω is heated, the
heat spreads equally in all directions. In addition the material might be thermally inho-
mogeneous which implies the conditions of conduction change from point to point within
the material.

The aim in this section is to provide a spatial description of temperature field θ(x, t)
as a result of external actions for every point x ∈ Ω at each instant of time t in the interval
[0,2t] with t > 0. For t < 0 the body is undisturbed and is in steady state of conduction,
meaning that the temperature difference is constant and the spatial distribution of the
temperature within the region does not change with time, with θ(x, t) = θ0(x) for all x ∈ Ω
and for t < 0.

For t ∈ [0,2t] the heat conduction problem is governed by following set of relations as:

ρc
∂θ(x, t)
∂t

+ ∂qi(x, t)
∂xi

= b(x, t) in Ω × [0,2t] (5.3.1)

pi(x, t) = −
∂θ(x, t)
∂xi

in Ω × [0,2t] (5.3.2)

qi(x, t) = k(x, t)pi(x, t) in Ω × [0,2t] (5.3.3)

where c denotes the specific heat in JK−1kg−1 , ρ is the density of the constituent material
in kgm−3, the function b(x, t) is the rate of heat production per unit of volume in Jm−3s−1

and k(x, θ) represents the thermal conductivity in Jm−1s−1K−1 which is parametrized in
terms of the position within the body and the temperature. In situations where the range
of temperature is limited, as in the present case, the dependence upon θ(x, t) can be
neglected and thereby k(x) is considered constant. The balance equation (5.3.1) which
represents the principle of conservation of energy is applied to a differential control volume
through which the energy is transferred exclusively by conduction.

The compatibility equation (5.3.2) asserts that the vector pi(x, t) is in the opposite
direction to the gradient of the temperature. Lastly, the constitutive law (5.3.3) relates the
heat flux qi(x, t) with the temperature gradient. Combining relations (5.3.2) and (5.3.3)
yields the following well-known equation

qi(x, t) = −k
∂θ(x, t)
∂xi

in Ω × [0,2t] (5.3.4)

derived by Fourier observing that heat transfer is in the direction of decreasing tempera-
ture.

The combination of Fourier’s law with the balance equation (5.3.1) leads to the so called
heat equation which is known as prototypical example of a parabolic partial differential
equation:

ρc
∂θ(x, t)
∂t

− ∂

∂xi
(k(x)∂θ(x, t)

∂xi
) = b(x, t) in Ω × [0,2t] (5.3.5)
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Equations (5.3.1), (5.3.2) and (5.3.3) are equipped with boundary conditions as below. On
the portion ∂Ωθ of the boundary ∂Ω(∂Ω = ∂Ωθ∪∂Ωq), ∂Ωq and ∂Ωθ being complementary
parts of ∂Ω(∂Ωθ ∩ ∂Ωq = ∅)), the surface temperature θ̄(x, t), that may be constant or a
function of time or position or both, is imposed as

θ(x, t) = θ̄(x, t) on ∂Ωθ × [0,2t] Dirichlet boundary condition (5.3.6)

whereas on ∂Ωq the flux of heat q(x, t) across the surface is assigned as:

q(x, t) = qi(x, t)ni(x) = q̄(x, t) on ∂Ωq × [0,2t] Neumann boundary condition
(5.3.7)

For simplicity, linear radiation boundary condition for which the flux across the surface
is proportional to the temperature difference between the surface and the surrounding
medium is not considered. Also, non-linear boundary conditions such as block-body radi-
ation where the fourth power of the temperature field is imposed on the boundary or the
natural convention regarding powers of the temperature field are neglected.

Ultimately, the initial conditions read as

θ(x, t) = θ0(x) in Ω, t = 0 (5.3.8)

Having all the required components of a boundary value problem defined as above, one
can reformulate the heat conduction problem in a three-field form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρc
∂(⋅)
∂t 0

∂(⋅)
∂xi

0 k −I

−∂(⋅)∂xi
−I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

pi

qi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

in Ω × [0, t] (5.3.9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −ni
0 0 0

ni 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

pi

qi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q̄

0

niθ̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

on ∂Ωq × [0,2t]

on ∂Ωθ × [0,2t]

(5.3.10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρc 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ

pi

qi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρcθ0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

in Ω, t = 0 (5.3.11)

where I denotes the identity operator. The above relations can be written in compact
form as

MIzI = bI in Ω × [0,2t] (5.3.12)

BIzI = gI on ∂Ω × [0,2t] (5.3.13)

TIzI = hI on Ω, t = 0 (5.3.14)

which in condensed form would be:
NIzI = fI (5.3.15)
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Through elimination of the pi(t) the following two-field relation in operator form can be
written as:

⎡⎢⎢⎢⎢⎢⎣

−ρc∂(⋅)∂t
∂(⋅)
∂xi

∂(⋅)
∂xi

1
k

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

θ

qi

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−b

0

⎤⎥⎥⎥⎥⎥⎦
in Ω × [0,2t] (5.3.16)

⎡⎢⎢⎢⎢⎢⎣

0 ni

−ni 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

θ

qi

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

q̄

−niθ̄

⎤⎥⎥⎥⎥⎥⎦

on ∂Ωq × [0,2t]

on ∂Ωθ × [0,2t]
(5.3.17)

⎡⎢⎢⎢⎢⎢⎣

−ρc 0

0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

θ

qi

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−ρcθ

0

⎤⎥⎥⎥⎥⎥⎦
in Ω, t = 0 (5.3.18)

which in compact form reads as

MIIzII = bII in Ω × [0,2t] (5.3.19)

BIIzII = gII on ∂Ω × [0,2t] (5.3.20)

TIIzII = hII in Ω, t = 0 (5.3.21)

which could be condensed as
NIIzII = fII (5.3.22)

Finally, the following one-field operator can be formulated as:

ρc
∂θ

∂t
− ∂

∂xi
(k ∂θ
∂xi
) = b in Ω × [0,2t] (5.3.23)

−k ∂θ
∂xi

ni = q̄ on ∂Ωq × [0,2t] (5.3.24)

θ = θ0 in Ω, t = 0 (5.3.25)

where the temperature field satisfies a priori the boundary condition on ∂Ωθ i.e.

θ = θ̄ on ∂Ωθ × [0,2t] (5.3.26)

One-field problem in a compact form reads:

MIIIzIII = bIII in ∂Ω × [0,2t] (5.3.27)

BIIIzIII = gIII in ∂Ω × [0,2t] (5.3.28)

TIIIzIII = hIII in Ω, t = 0 (5.3.29)

or, in a condensed form:
NIIIzIII = fIII (5.3.30)

5.3.1 Variational Model for Heat Transport

It can be shown that the operator Ni,i = I, II, III is symmetric in correlation to the
following non-degenerate convolutive bilinear form:

⟨z′i,Niz
′′

i ⟩c = ∫
Ω
z′i ∗Miz

′′

i dω + ∫
∂Ω
z′i ∗Biz

′′

i dΓ + ∫
∂Ω
z′i(0)Tiz

′′

i (2t)dΩ (5.3.31)
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where z′i and z′′i represent arbitrary vectors in the domain Ni,i, and the symbol ∗ denotes
the convolution product with respect to time. Henceforth it follows that the compact form
as

Nizi = fi (5.3.32)

is equivalent to the following variational formulation as:

Fci (zi) = stat
z′i
Fci (z′i) (5.3.33)

with

Fci (z′i) =
1

2
⟨z′i,Niz

′

i⟩c − ⟨z′i, fi⟩c

= 1

2
∫
Ω
z′i ∗Miz

′

idΩ +
1

2
∫
∂Ω
z′i ∗Biz

′

idΓ +
1

2
∫
Ω
z′i(0)Tiz

′

i(2t)dΩ

− ∫
Ω
ai ∗ z′idΩ − ∫

∂Ω
gi ∗ z′idΓ − ∫

Ω
hiz
′i(2t)dΩ

(5.3.34)

where z′i denotes a vector in Ni domain and zi would be the solution of the problem.
Also it can be shown that the operator Ni is symmetric with respect to the following
non-degenerate biconvolutive bilinear form:

f(xi, t) ∗ y ∗ g(xi, t) = ∫
t

0
∫

t−τ

0
r(t − τ − η)g(xi, η)f(xi, τ)dτdt (5.3.35)

where y(t) represents a relaxation function.
In a similar fashion,the compact form shows to be equivalent to the following variational
formulation:

Fcci (zi) = stat
z′i

Fcci (z′i) (5.3.36)

where

Fcci (z′i) =
1

2
⟨z′i,Niz

′

i⟩cc − ⟨z′i, fi⟩cc

= 1

2
∫
Ω
z′i ∗ y ∗Miz

′

idΩ +
1

2
∫
∂Ω

z′i ∗ y ∗Biz
′

idΓ +
1

2
∫
Ω
z′i(0)Tiz

′

i(2t)dΓ

− ∫
Ω
ai ∗ y ∗ z′idΩ − ∫

∂Ω
gi ∗ y ∗ z′idΓ − ∫

Ω
hiz
′

i(2t)dΩ

(5.3.37)

where z′i is a vector that belongs to Ni domain and zi represents the solution vector.

Gurtin’s Formulation

In the spirit of the convolution bilinear form, the Gurtin’s functional (as a function of
temperature) of type of the Total Potential Energy reads as

FGcc(θ′) =
1

2
∫
Ω
θ′ ∗ ρc∂θ

′

∂t
dΩ + 1

2
∫
Ω
k
∂θ′

∂xi
∗ ∂θ

′

∂xi
dΩ + 1

2
∫
Ω
ρcθ′ ⋅ θ′(0)dΩ

− ∫
Ω
θ′ ∗ adΩ + ∫

∂Ωp

θ′ ∗ q̄dΓ − ∫
Ω
θ′ ⋅ ∂Ωρθ0dΩ

(5.3.38)
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In a similar fashion and in the spirit of biconvolutive bilinear form, Gurtin’s functional
reads as

FGcc(θ′) =
1

2
∫
Ω
θ′ ∗ y ∗ ρc∂θ

′

∂t
dΩ + 1

2
∫
Ω
k
∂θ′

∂xi
∗ y ∗ ∂θ

′

∂xi
dΩ + 1

2
∫
Ω
(ρcθ′ ∗ y) ⋅ θ′(0)dΩ

− ∫
Ω
θ′ ∗ y ∗ adΩ + ∫

∂Ωp

θ′ ∗ y ∗ q̄dΓ − ∫
Ω
(θ′ ∗ y) ⋅ ρcθ0dΩ

= 1

2
∫
Ω
ρcθ′ ∗ (y(0)θ′ + ẏ ∗ θ′)dΩ + 1

2
∫
Ω
k
∂θ′

∂xi
∗ y ∗ ∂θ

′

∂xi
dΩ

− ∫
Ω
θ′ ∗ y ∗ adΩ + ∫

∂Ωp

θ′ ∗ y ∗ q̄dΓ − ∫
Ω
(θ′ ∗ y) ⋅ ρcθ0dΩ

(5.3.39)

where θ̄ represent boundary values on ∂Ωθ.

5.3.2 Reformulation of the model

Through decomposition of time domain into two equal subintervals as explained before, a
min-max variational formulation using the convolutive bilinear form is obtained.

Time domain decomposition

Carini and Mattei [141] developed five forms of variational formulations for modeling
viscoelastic problems. The concept of time decomposition employed there is incorporated
here in a similar manner. Accordingly the time interval [0,2t] is decomposed into two
sub-intervals as [0, t] and [t,2t]. Field variables of the problem consequently decompose
as

θ(t) =
⎧⎪⎪⎨⎪⎪⎩

θ1(T ) for t ∈ [0, t]
θ2(T ) for t ∈ [t,2t]

(5.3.40)

pi(t) =
⎧⎪⎪⎨⎪⎪⎩

p1i(t) for t ∈ [0, t]
p2i(t) for t ∈ [t,2t]

(5.3.41)

qi(t) =
⎧⎪⎪⎨⎪⎪⎩

q1i(t) for t ∈ [0, t]
q2i(t) for t ∈ [t,2t]

(5.3.42)

where subscript 1 refers to subinterval [0, t] while subscript 2 denotes subinterval [t,2t].

Min-Max variational Formulation of Tonti’s type

In order to propose a functional form for Fi with i = I, II, III as defined by (5.3.34)
we first consider the case in which i = I. Starting with ∫Ω z′I ∗MIz

′

IdΩ, and its time
decomposition one can write

∫
Ω
z′I ∗MIz

′

IdΩ = ρc∫
Ω

∂θ′

∂t
∗ θ′dΩ + ∫

Ω

∂q′i
∂xi
∗ θ′dΩ + ∫

Ω
p′i ∗ kp′idΩ

− 2∫
Ω
p′i ∗ q′idΩ − ∫

Ω

∂θ′

∂xi
∗ q′idΩ

(5.3.43)
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The integrand containing the derivative with respect to time when decomposed could get
various forms. Two of them can be written as

ρc∫
Ω

∂θ′

∂t
∗ θ′dΩ = 2ρc∫

Ω
∫

t

0

∂θ′(t)
∂t

θ′(2t)dtdΩ −D (5.3.44a)

ρc∫
Ω

∂θ′

∂t
∗ θ′dΩ = 2ρc∫

Ω
∫

2t

t

∂θ′(t)
∂t

θ′(2t)dtdΩ +D (5.3.44b)

with D defined as

D = ρc∫
Ω
∫

t

0

∂θ′(t)
∂t

θ′(2t)dtdΩ − ρc∫
Ω
∫

2t

t

∂θ′(t)
∂t

θ′(2t)dtdΩ (5.3.45)

Integration by parts transform the latter term into

D = ρc∫
Ω
θ′2(T ) − ρc∫

Ω
θ′(2t)θ′(0)dΩ (5.3.46)

Therefore the decomposition forms as introduced in (5.3.44a) and (5.3.44b) respectively
turn into

ρc∫
Ω

∂θ′

∂t
∗ θ′dΩ = 2ρc∫

Ω
∫

t

0

∂θ′1(t)
∂t

θ′2(2t)dtdΩ − ρc∫
Ω
θ′21 (T )dΩ

+ ρc∫
Ω
θ′1(2t)θ′1(0)dΩ (5.3.47a)

ρc∫
Ω

∂θ′

∂t
∗ θ′dΩ = 2ρc∫

Ω
∫

2t

t

∂θ′2(t)
∂t

θ′1(2t)dtdΩ + ρc∫
Ω
θ′22 (T )dΩ

− ρc∫
Ω
θ′1(2t)θ′1(0)dΩ (5.3.47b)

The advantage of the introduced forms (5.3.47a) and (5.3.47b) resides in the fact that they
lead to negative quadratic form for θ1 and positive quadratic form for θ2 which inherently
motivate application of maximum and minimum principles for variational formulations,
respectively.

Looking back to the remaining terms in (5.3.43) those not involving time differentiation
can easily be decomposed through splitting the time integrals. For example the second
term could be converted into

∫
Ω

∂q′i
∂xi
∗ θ′dΩ = ∫

Ω
∫

t

0

∂q′1i
∂xi

θ′2(2t)dΩ + ∫
Ω
∫

2t

t

∂q′2i(t)
∂xi

θ′1(2t)dΩ (5.3.48)

As a result, one can write the two following variational formulations:

FaI (θ1, θ2, p1i , p2i , qi1 , q2i) =max
θ′1

stat
θ′2,p

′

1i
,p′2i

,q′i1
,q′i2

FaI (θ′1, θ′2, p′1i , p
′

2i , q
′

i1 , q
′

i2) (5.3.49)

FbI (θ1, θ2, p1i , p2i , qi1 , q2i) =max
θ′2

stat
θ′1,p

′

1i
,p′2i

,q′1i
,q′2i

FbI (θ′1, θ′2, p′1i , p
′

2i , q
′

1i , q
′

2i) (5.3.50)

where superscripts a and b respectively refer to decompositions (5.3.47a) and (5.3.47b).
Following the same procedure for functional FII one can write

FaII(θ1, θ2, q1i , q2i) =min
θ′1

stat
θ′2,q

′

1i
,q′2i

FaII(θ′1, θ′2, q′1, q′2i) (5.3.51)

FbII(θ1, θ2, q1i , q2i) =max
θ′2

stat
θ′1,q

′

1i
,q′2i

FbII(θ′1, θ′2, q′1, q′2i) (5.3.52)
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And lastly for FIII following forms of variational principles hold:

FaIII(θ1, θ2) =max
θ′1

stat
θ′2
FIII(θ′1, θ′2) (5.3.53)

FbIII(θ1, θ2) =min
θ′2

stat
θ′1
FIII(θ′1, θ′2) (5.3.54)

where

FaIII(θ′1, θ′2) =ρc∫
Ω

∂θ′1
∂t
○ θ′2dΩ +

1

2
∫
Ω

∂θ′1
∂xi
○ k∂θ

′

1

∂xi
○ k∂θ

′

2

∂xi
dΩ + 1

2
∫
Ω

∂θ′2
∂xi
○ k∂θ

′

1

∂xi
dΩ

− ∫
Ω
θ′1 ○ a2dΩ − ∫

Ω
a1 ○ θ′2dΩ + ∫

∂Ωq

θ′1 ○ q̄dΓ

+ ∫
∂Ωp

q̄ ○ θ′2dΓ − ρc∫
Ω
θ0θ
′

2(2t)dΩ + ρc∫
Ω
θ′1(0)θ′2(2t)dΩ

− 1

2
ρc∫

Ω
(θ′1(T ))2dΩ

(5.3.55)

and

FbIII(θ′1, θ′2) =ρc∫
Ω
θ′1 ○

∂θ′2
∂t

dΩ + 1

2
∫
Ω

∂θ′1
∂xi
○ k∂θ

′

2

∂xi
dΩ + 1

2
∫
Ω

∂θ′1
∂xi
○ k∂θ

′

1

∂xi
dΩ

− ∫
Ω
θ′1 ○ b2dΩ − ∫

Ω
b1 ○ θ′2dΩ + ∫

∂Ωp

θ′1 ○ q̄2dΓ

+ ∫
∂Ωp

q̄1 ○ θ′2dΓ − ρc∫
Ω
θ0θ
′

2(2t)dΩ +
1

2
ρc∫

Ω
(θ′2(T ))2dΩ

(5.3.56)

Herein θ′1 and θ′2 represent two admissible fields that satisfy prescribed boundary condi-
tions, and the symbol ○ denotes the convolution product operator; for instance:

θ′1 ○ a2 = ∫
t

0
θ′1(t)a2(2t)dt = ∫

2t

t
θ′1(2t)a2(t)dt (5.3.57)

Interestingly, stationarity of Fai with i = I, II, III with respect to θ′1 leads to the continuity
condition as following:

θ1(T ) = θ2(T ). (5.3.58)

The same can be achieved for Fbi after imposing the stationarity this time with respect to
θ′2.

Considering the sum of the functionals FaIII and FbIII and following the same sort of
procedures one can obtain a min-max variational principle. In fact,

FcIII = FaIII +FbIII = ρc∫
Ω

∂θ′1
∂t
○ θ′2dΩ + ρc∫

Ω
θ′1 ○

∂θ′2
∂t

dΩ + 2∫
Ω

∂θ′1
∂xi
○ k∂θ

′

2

∂xi
dΩ

− 2∫
Ω
θ′1 ○ a2dΩ − 2∫

Ω
a1 ○ θ′2dΩ + 2∫

∂Ωp

θ′1 ○ q̄2inidΓ

+ 2∫
∂Ωq

q̄1ini ○ θ′2dΓ − 2ρc∫
Ω
θ0θ
′

2(2t)dΩ + ρc∫
Ω
θ′1(0)θ′2(2t)dΩ

− 1

2
ρc∫

Ω
(θ′1(T ))2dΩ +

1

2
ρc∫

Ω
(θ′2(T ))2dΩ

(5.3.59)
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comply with the following variational principle:

FcIII(θ1, θ2) =min
θ′2

max
θ′1

FcIII(θ′1, θ′2) (5.3.60)

The stationary of the functional (5.3.60)with respect to θ′1 and θ′2 respectively reads as

δθ′1F
c
III = 0⇒

⎧⎪⎪⎨⎪⎪⎩

ρc
∂θ′2
∂t −

∂
∂xi
(k ∂θ

′

2

∂xi
) = a2 in Ω × [t,2t]

−k ∂θ
′

2

∂xi
ni = q̄2 on ∂Ωq × [t,2t]

(5.3.61)

δθ′2F
c
III = 0⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρc
∂θ′1
∂t −

∂
∂xi
(k ∂θ

′

1

∂xi
) = a1 in Ω × [0,2t]

−k ∂θ
′

1

∂xi
ni = q̄1 on ∂Ωq × [0, t]

θ′1(0) = θ0 on ∂Ω

θ′1(T ) = θ′2(T ) in Ω

(5.3.62)

5.4 Linear Thermoviscoelasticity

In this section thermodynamical derivation of constitutive law for thermoviscoelastic mate-
rials under isothermal conditions are presented. Different approaches for such a derivation
have been employed such as those by Biot [18],Eringen [21], Hunter [152], Schapery [136].
The method presented by Christensen [149] as opted here is based on two fundamental
thermodynamical postulates namely the balance of energy and the entropy production
inequality.
The balance of energy in local form reads as

ρr − ρ[ψ̇ + Ṫ s + T ṡ] +σ∶ ε̇ −∇ ⋅ q = 0 (5.4.1)

where ρ denotes the mass density, r would be the heat supply per unit mass, ψ represents
the Helmholtz free energy per unit mass, T is the absolute temperature, s denotes the
entropy per unit mass and qi represent Cartesian components of the heat flux which is
defined per unit area and per unit time. The function r offer the possibility of adding or
removing exerted heat through external sources.

The balance of energy can be written either in terms of internal energy or the free
energy. These two however can be interrelated through Legendre transformation as

ρu = ρψ + Tρs (5.4.2)

where u denotes the internal energy per unit mass. From that standpoint, the entropy
production inequality in local form reads as

ρT ṡ − ρr +∇ ⋅ q − q∇T
T0
≥ 0 (5.4.3)

which as already mentioned is referred as Clausius-Duhem inequality.
We consider εij(t) and T (t) as continuous functions on the interval −∞ < t < ∞ and

εij(T ) tend to zero and T (t)→ T0 as t→ −∞. According to Stone-Weierstrass theorem, a
real continuous scalar functional of εij(τ) and T (τ), −∞ < τ ≤ t can be approximated by
a polynomial in a set of continuous and linear functional of εij(τ) and T (τ). Employing
the Riesz representation theorem these linear functional can be formulated in terms of
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Stieltjes integrals as explained in previous chapter. Henceforth introducing θ(t) as the
excess temperature from T0 and assuming that εij(τ) and θ(τ)/T0 are infinitesimals of
O(ε), the polynomial expansion of ρψ based on these linear functionals reads in the
following form as

ρψ = ρψ0 + ∫
t

−∞

Dij(t − τ)
∂εij(τ)
∂τ

dτ − ∫
t

−∞

β(t − τ)∂T (τ)
∂τ

dτ

+ 1

2
∫

t

−∞
∫

t

−∞

Eijkl(t − τ, t − η)
∂εij(τ)
∂τ

∂εkl(η)
∂η

dτdη

− ∫
t

−∞
∫

t

−∞

ϕij(t − τ, t − η)
∂εij(τ)
∂τ

∂T (η)
∂η

dτdτ

− 1

2
∫

t

−∞
∫

t

−∞

m(t − τ, t − τ)∂θ(τ)
∂τ

∂θ(η)
∂η

dτdη +O(ε3)

(5.4.4)

where ψ0 denotes the mean free energy, and the integrands are assumed to be continuous
for τi ≥ 0 and to vanish for τi ≤ 0 meaning

β(τ1) = 0, Dij(τ1) = 0, Eijkl(τ1, τ2) = 0
ϕij(τ1, τ2) = 0, m(τ1, τ2) = 0, for τ1 < 0, τ2 < 0. (5.4.5)

Herein the terms ofO(ε3) in (5.4.4) are neglected and integrands in (5.4.4) are independent
of strain and temperature.
Heat source function r can be removed between (5.4.1) and (5.4.3) as a result of which
the following relation is obtained as

−ρsθ̇ − ρψ̇ +σ∶ ε̇ − q∇θ
T0
≥ 0 (5.4.6)

where T = T0 + θ is opted and only terms of O(ε) have been kept in T,i/T .
If ρψ from (5.4.4) is substituted into (5.4.6) and if the indicated time differentiation is
carried out, after applying the Leibnitz’s rule we have

{−Dij(0) − ∫
t

−∞

Eijkl(t − τ,0)
∂εkl(τ)
∂τ

+ ∫
t

−∞

ϕij(0, t − τ)
∂θ(τ)
∂τ

dτ + σij} ˙εij(t)

+{β(0) + ∫
t

−∞

m(t − τ,0)∂θ(τ)
∂τ

dτ

+ ∫
t

−∞

ϕij(t − τ,0)
∂εij(τ)
∂τ

dτ − ρS} θ̇(t)

+{−∫
t

−∞

∂

∂t
Dij(t − τ)

∂εij(τ)
∂τ

dτ + ∫
t

−∞

∂

∂t
β(t − τ)∂θ(τ)

∂τ
dτ

+ Λ − qi
θ,i

T0
≥ 0}

(5.4.7)
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where

Λ = − 1

2
∫

t

−∞
∫

t

−∞

∂

∂t
Eijkl(t − τ, t − η)

∂εijτ

∂τ

∂εkl(η
∂τ

dτdη

+ ∫
t

−∞
∫

t

−∞

∂

∂t
ϕij(t − τ, t − η)

∂εij(τ)
∂τ

∂θ(η)
∂η

dτdη

+ 1

2
∫

t

−∞
∫

t

−∞

∂

∂t
m(t − τ, t − η)∂θ(τ)

∂τ

∂θ(η)
∂η

dτdη

(5.4.8)

where following symmetrical properties applied:

Eijkl(t − τ, t − τ) = Eklij(t − η, t − τ)
m(t − τ, t − η) =m(t − τ, t − η)

(5.4.9)

The inequality (5.4.7) must be valid for all ε̇ij(t) and θ̄(t). As a result it demands the
coefficients of ε̇ij(t) and θ̇(t) in (5.4.7) to vanish. Therefore,

σij =Dij(0) + ∫
t

−∞

Eijkl(t − τ,0)
∂εklτ

∂τ
− ∫

t

−∞

ϕij(0, t − τ)
∂θ(τ)
∂τ

(5.4.10)

and

ρs = β(0) + ∫
t

−∞

ϕij(t − τ,0)
∂εij(τ)
∂τ

∂εijτ

∂τ
dτ + ∫

t

−∞

m(t − τ,0)∂θ(τ)
∂τ

dτ (5.4.11)

leading inequality (5.4.7) to be read as

− ∫
t

−∞

∂

∂t
Dij(t − τ)

∂εij(τ)
∂τ

+ ∫
t

−∞

∂

∂t
β(t − τ)∂θ(τ)

∂τ
dτ

+Λ − qi
θ,i

T0
≥ 0.

(5.4.12)

Expressions (5.4.10) and (5.4.11) respectively represent the constitutive relations for stress
and entropy. It can be deduced that Dij(0) would be the initial stress and β(0) would
denote the initial entropy ρS0. The integrands including Eijkl(t−τ,0), ϕij(0, t−τ), ϕij(t−
τ,0) and m(t− τ,0) represent relaxation functions forms of the mechanical properties. In
this regard and from the thermodynamical point of view, if Eijkl(τ, η) is considered as
a surface in τ and η space, then the relaxation functions in (5.4.10) and (5.4.11) can be
imagined as curves on these surfaces. Additionally, the relaxation function Eijkl(t,0) in
the current development could be a representation to the relaxation function Eijkl(t) in
isothermal theory.
The first two terms in (5.4.12) are of first order while the last two are of the second order.
The proposed inequality to be satisfied for all processes it is required that

∂Dij(t)
∂t

= 0, ∂β(t)
∂t

= 0 (5.4.13)

also it demands
Λ − qi(θ,i/T0) ≥ 0. (5.4.14)

In specific processes where for example θ,i = 0 and the temperature field is uniform then
fulfillment of (5.4.14) implies

Λ ≥ 0. (5.4.15)
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Above expression is usually called the dissipation inequality where Λ yields the rate of
dissipation of energy. Relation (5.4.15) results in

qi(θ,i/T0) ≤ 0. (5.4.16)

As a next step in the development of the theory, we need to postulate a constitutive
expression for the heat flux qi. It can be defined as

qi = −∫
t

−∞

kij(t − τ)
∂θ,j(τ)
∂τ

dτ (5.4.17)

where qi is a linear function of the history of the temperature gradient θ,j .
Substituting (5.4.17) in (5.4.16) one can write

θ,i∫
t

−∞

kij(t − τ)
∂θ,j(τ)
∂τ

dτ ≥ 0. (5.4.18)

For a given t and θ,ionly if kij is positive definite and be constant with respect to time
then the expression (5.4.17) is reduced in the following form as

qi = −kijθ.j (5.4.19)

where the entries of kij are constant and the tensor is symmetric with respect to i and j.
Now using the relations (5.4.4),(5.4.10),(5.4.11),(5.4.13) and (5.4.19) the original balance
of energy expression can be rewritten as

ρr +Λ − T0
∂

∂t
[∫

t

−∞

ϕij(t − τ,0)
εij(τ)
∂τ

dτ

+∫
t

−∞

m(t − τ,0)∂θ(τ)
∂τ

dτ] + (kijθ,j),i = 0
(5.4.20)

where Λ is defined as in (5.4.8). It is a term of the second order and therefore must be elim-
inated from (5.4.20) for the sake of keeping consistency with the first order development
theory. Henceforth, the equation (5.4.20) can be rewritten as

ρr − T0
∂

∂t
[∫

t

−∞

ϕij(t − τ,0)
εij(τ)
∂τ

dτ

+∫
t

−∞

m(t − τ,0)∂θ(τ)
∂τ

dτ] + (kijθ,j),i = 0
(5.4.21)

In (5.4.21) the term involving the strain history serves as a coupling term between me-
chanical and thermal effects. Neglecting this term, equation (5.4.21) is reduced to the
heat conduction problem.
In isotropic theory ϕij must be defined as

ϕij(τ, η) = δijϕ(τ, η). (5.4.22)

Similarly, Eijkl would be defined as

Eijkl(t) =
1

3
[E2(t) −E1(t)]δijδkl

1

2
[E1(t)](δikδjl + δil + δjk) (5.4.23)
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where E1(t) and E2(t) would represent independent relaxation functions and δij would
be the Kronecker delta function. Defining deviatoric components of stress sij and strain
eij respectively as

sij = ∫
t

−∞

E1(t − τ)
deij(τ)
dτ

dτ (5.4.24)

and

σkk = ∫
t

−∞

E2(t − τ)
dεkk(τ)
dτ

(5.4.25)

where

sij = σij −
1

3
δijσkk, sii = 0 (5.4.26)

eij = εij −
1

3
δijεkk, eii = 0. (5.4.27)

Thereby the free energy for isotropic bodies can be formulated as

ρψ =1
2
∫

t

−∞
∫

t

−∞

E1(t − τ, t − τ)
∂eij(τ)
∂τ

∂eij(η)
∂η

dτdη

+ 1

6
∫

t

−∞
∫

t

−∞

E2(t − τ, t − τ)
∂εkk(τ)
∂τ

∂εij(η)
∂η

dτdη

− ∫
t

−∞
∫

t

−∞

ϕ(t − τ, t − τ)∂εkk(τ)
∂τ

∂θij(η)
∂η

dτdη

− 1

2
∫

t

−∞
∫

t

−∞

m(t − τ, t − η)∂θ(τ)
∂τ

∂θ(η)
∂η

dτdη

(5.4.28)

where by comparison with (5.4.4) we notice that the initial stress and initial entropy have
been neglected.
Consequently, the constitutive relations in the case of isotropic bodies read as

sij = ∫
t

−∞

E1(t − τ,0)
∂eij(τ)
∂τ

dτ (5.4.29)

and

σkk = ∫
t

−∞

E2(t − τ,0)
∂εkk(τ)
∂τ

dτ − 3∫
t

−∞

ϕ(0, t − τ)∂θ(τ)
∂τ

dτ. (5.4.30)

The constitutive relation for entropy in the case of isotropic material would be the same
as the one introduced in (5.4.11) except the fact that ϕij and εij are respectively replaced
by ϕ and εkk .
The rate of dissipation of energy then reads as

Λ = − 1

2
∫

t

−∞
∫

t

−∞

∂

∂t
E1(t − τ, t − η)

∂eij(τ)
∂τ

∂eij(η)
∂η

dτdη

− 1

6
∫

t

−∞
∫

t

−∞

∂

∂t
E2(t − τ, t − η)

∂εkk(τ)
∂τ

∂εij(η)
∂η

dτdη

− 1

6
∫

t

−∞
∫

t

−∞

∂

∂t
ϕ(t − τ, t − η)εkk(τ)

∂τ

∂θ(η)
∂η

dτdη

+ 1

2
∫

t

−∞
∫

t

−∞

∂

∂t
m(t − τ, t − η)∂θ(τ)

∂η

∂θ(η)
∂η

dτdη

(5.4.31)
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Ultimately, the coupled heat conduction relation reads as

ρr + kθ,ii − T0
θ

∂t
[∫

t

−∞

ϕ(t − τ,0)∂εkk(τ)
∂τ

dτ

+ ∫
t

−∞

m(t − τ,0)∂θ(τ)
∂τ

dτ] = 0.
(5.4.32)

Obtaining the heat conduction relation as done above completes the development of con-
stitutive formulation for the linear thermoviscoelasticity theory.

5.5 Gradient Thermoviscoelasticity: Constitutive Modeling

Notation

In this study a compact from of notation is used where necessary. Accordingly vectors
and tensors (of any order) are shown through bold face letters and the subscripts denote
components with respect to an orthogonal Cartesian co-ordinate system. The scalar prod-
uct between vectors or tensors are represented with as many dots as the contracted index
pairs. For example u = ui, σ = σij , τ = τijk and E = Eijkh respectively denote first, sec-
ond, third and fourth rank tensors. Consequently the following scalar products between
vectors and tensors can be expected as u ⋅ v = uivi, σ∶ε = σijεij , A∶ε = Aijhkεkh and
A∴τ = Aijhkτjkh. The summation rule applies for repeated indexes. Finally convolution
product of two functions is represented through the ∗ sign. Other symbols will be defined
in the text upon their first appearance.

5.5.1 Thermodynamic Premises

Let us consider a viscoelastic body Ω ⊂ R3, with gradient elasticity, and boundary ∂Ω.
The material might be visco-elastically and thermally inhomogeneous.

We also assume that for t ≥ 0 the body is in the temperature T0 and be in an unde-
formed state. Due to the heat sources and heating of the surface of the body, the medium
undergoes deformation and change in temperature for t ≥ 0.

We denote by u the displacement vector of a point x of the body; θ = T − T0 the
temperature change; T the absolute temperature; ϵ the strain tensor and σ represents the
stress tensor.

Herein the aim is to adjust small displacements linear regimes (in the case of vis-
coelastic materials turns to be linear viscoelasticity), thereby small values for θ and ϵ are
considered.

In the case of stress gradient materials, the mechanical and thermal states of the
medium is, at a given instant, completely described by the distribution of stress σ and
temperature change θ. Where the process evolution remains isothermal, thermodynam-
ically is considered as a reversible process. However processes which involve the change
in the temperature, two interrelated phenomena namely reversible elastic processes and
irreversible thermal processes are observed.

Herein we denote u as the internal energy density and s as the entropy density with r
as the specific heat supply. Following Polizzotto [71], we define the stress gradient material
as the material in which the usual strain power W = ϵ ∶ σ̇ it is substitute by the more
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general one as:
W = e ∶ σ̇ + η∴∇σ̇ (5.5.1)

where the strain tensors e and η are strains power-conjugate to σ̇ and ∇σ̇, respectively.
In the following we will consider material for which the expression (5.5.1) of the strain
power holds. Then according to the first law of thermodynamics the local internal energy
balance equation reads as:

u̇ = σ∶ ė +∇σ∴η̇ + r −∇ ⋅ q (5.5.2)

The Clausius-Duhem inequality (second law of thermodynamics) reads as:

ṡpr = ṡ +∇ ⋅ ( q
T
) − r

T
≥ 0 (5.5.3)

or
T ṡpr = T ṡ +∇ ⋅ q − q

T
⋅ ∇T − r ≥ 0 (5.5.4)

where ṡpr denotes the internal entropy production and − q
T ⋅ ∇T represents the thermal

dissipation by conduction.
Gibbs function per unit volume is considered as a function of the stress, its first gradient

and of the temperature field, G = G(σ,∇σ, T, t)

G = u −σ ∶ e −∇σ ∶ η − Ts (5.5.5)

Then the local internal energy balance can be written as:

σ̇ ∶ e +∇σ̇ ∶ η + Ṫ s + T ṡ + Ġ = r −∇ ⋅ q (5.5.6)

Substituting the last equation into the Clausius-Duhem inequality, we obtain

T ṡpr = −σ̇ ∶ e −∇σ̇ ∶ η − Ṫ s − Ġ − q ⋅ ∇T
T
≥ 0 (5.5.7)

Within the framework of solid mechanics, the Helmholtz free energy ψ(ε, T ) is frequently
used in place of u, to which it is related through the Legendre Transform.

In the case of strain gradient material, the mechanical and thermal state of the medium
is, at a given instant, completely described by the distribution of the strain ϵ and the
temperature change θ.
In this case, the local internal energy balance equation is

u̇ = σ ∶ ε̇ + r −∇ ⋅ q +R (5.5.8)

where the additional thermodynamic variable R is the so-called nonlocality residual.
Introducing Helmholtz free energy as a function of strain tensor, gradient of strain

tensor, temperature and time,
ψ = ψ(ε,∇ε, T, t) (5.5.9)

by means of the Legendre transformation we have

ψ = u − Ts, (5.5.10)

and the local internal energy balance equation (5.5.8) can be written

u̇ = ψ̇ + Ṫ s + T ṡ = σ ∶ ε̇ + r −∇ ⋅ q +R (5.5.11)
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Substituting this equation into the Clausius-Duhem inequality (5.5.3), we obtain

T ṡpr = σ ∶ ε̇ − Ṫ s − ψ̇ − q ⋅ ∇T
T
+R ≥ 0 (5.5.12)

In the case of linear viscoelastic solids in isothermal conditions, as shown by Staverman
and Schwarzl (1952a,b), the specific Gibbs function G, and the specific Helmholtz free
energy ψ take, respectively, the following form:

G = −1
2
∫

t

0−
∫

t

0−
J(2t − τ − η) ∶∶ dσ(τ)dσ(η) (5.5.13)

ψ = 1

2
∫

t

0−
∫

t

0−
E(2t − τ − η) ∶∶ dε(τ)dε(η) (5.5.14)

where J and E are the creep and the relaxation tensors generalization of the usual com-
pliance and stiffness elastic tensors, respectively, where the integrals are used in Stieltjes
way. If the derivatives σ̇ or ϵ̇ exist (no jumps), the Stieltjes integral can be transformed
to the usual Riemann integral by setting dσ = σ̇ dt or dϵ = ϵ̇dt. The minus label at the
lower limit of the integration must be just before t=0, which is necessary when the loading
starts at time t = 0 with a jump.

Under hypotheses of small strains and small variations of the temperature with respect
to the given reference configuration, we assume the existence of a specific Gibbs energy
density depending upon stress, gradient of stress and temperature difference histories in
a quadratic manner, generalizing the simple viscoelastic case (5.5.13):

G(σ,∇σ, θ, t) = − 1

2
∫

t

0−
∫

t

0−
J(0)(2t − τ − η) ∶∶ dσ(τ)dσ(η)

− 1

2
ℓ2∫

t

0−
∫

t

0−
J(1)(2t − τ − η) ∶∶ [d∇σT(τ) ⋅ d∇σ(η)]

− 1

2
∫

t

0−
∫

t

0−
c(2t − τ − η)dθ(τ)dθ(η)

− ∫
t

0−
∫

t

0−
α(2t − τ − η) ∶ dσ(τ)dθ(η) (5.5.15)

and the existence of a specific Helmholtz free energy depending upon strain, gradient
strain and temperature difference histories in a quadratic manner, generalizing the simple
viscoelastic case (5.5.14)

ψ(ϵ,∇ϵ, θ, t) =1
2
∫

t

0−
∫

t

0−
E(0)(2t − τ − η) ∶∶ dϵ(τ)dϵ(η)

+ 1

2
l2∫

t

0−
∫

t

0−
E(1)(2t − τ − η) ∶∶ [d∇ϵT (τ) ⋅ d∇ϵ(η)]

+ 1

2
∫

t

0−
∫

t

0−
m(2t − τ − η)dθ(τ)dθ(η)

+ ∫
t

0−
∫

t

0−
ϕ(2t − τ − η) ∶ dϵ(τ)dθ(η)

(5.5.16)

where ℓ is a material constant with meaning of internal length scale parameter. The
integrating function (mechanical properties) are assumed to be continuous for τ ≥ 0.
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5.5.2 Constitutive law for the stress gradient model

Now we calculate the time derivative of the Gibbs function as:

Ġ = − σ̇(t) ∶ ∫
t

0−
J(0)(t − τ) ∶ dσ(τ)

− ℓ2∇σ̇(t)∴∫
t

0−
J(1)(t − τ) ∶ d∇σ(τ)

− θ̇(t)∫
t

0−
c(t − τ)dθ(τ)

− σ̇(t) ∶ ∫
t

0−
α(t − τ)dθ(τ)

− θ̇(t)∫
t

0−
α(t − τ) ∶ dσ(τ)

+ Λ̇
= − σ̇∶E ∗σ
− ℓ2∇σ̇∶E ∗ ∇σ
− θ̇c ∗ θ
− σ̇∶α ∗ θ
− θ̇α ∗σ
+ Λ̇

where Λ̇ is the dissipation function. Substituting the above relation into the Clausius-
Duhem inequality, we obtain:

σ̇ ∶ [−e + J ∗σ +α ∗ θ]
+∇σ̇∴ [−η + ℓ2J ∗ ∇σ]
+ θ̇ [−s + c ∗ θ +α ∗σ]

+ Λ̇ − q ⋅ ∇θ
T0
≥ 0

For this relations to be satisfied for all values of σ̇, ∇σ̇ and θ̇, it is necessary that the
coefficients in brackets vanish, that is:

e = J(0) ∗σ +α ∗ θ (5.5.17)

η = ℓ2J(1) ∗ ∇σ (5.5.18)

s = c ∗ θ +α ∗σ (5.5.19)

These relations are the constitutive laws for the conjugate strains and entropy, respectively
and represent the reversible part of the constitutive law. As shown by Polizzotto [71], the
total strain ε reads

ε = e −∇ ⋅ η = ∇su, (5.5.20)

where ∇su denotes the symmetric part of the gradient operator ∇.
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Substituting (5.5.17) and (5.5.18) into (5.5.20) we obtain:

ε = J(0) ∗σ +α ∗ θ −∇ ⋅ (ℓ2J(1) ∗ ∇σ) (5.5.21)

If the system is homogeneous and if J(0) = J(1) = J, the above equation becomes

ε = J ∗ (σ − ℓ2∆σ) +α ∗ θ (5.5.22)

For isothermal conditions and neglecting the viscosity, the above constitutive law reduces
to the well known one of stress gradient elasticity as:

ε =C ∶ (σ − ℓ2∆σ) (5.5.23)

It remains to consider the dissipative part of the entropy production:

Λ̇ − q ⋅ ∇θ
T0
≥ 0 (5.5.24)

where the change of T with respect to T0 would be valid for small values of θ. Also Λ̇
reads as

Λ̇ =(∫
t

0−
−∫

2t

t
)(J̇(0) ∗σ) (2t − τ)dσ(τ)

+ l2 (∫
t

0−
−∫

2t

t
)(J̇(1) ∗ ∇σ) (2t − τ)d∇σ(τ)

+ (∫
t

0−
−∫

2t

t
) (ċ ∗ θ) (2t − τ)dθ(τ)

+ (∫
t

0−
−∫

2t

t
) (α̇ ∗σ) (2t − τ)dθ(τ)

In the above equation we have used the following formula due to Brun (1969)

(∫
t

0−
−∫

2t

t
) y(2t − τ)dx(τ) = ∫

t

0−
∫

t

0−
r(2t − τ − η)dx(τ)dx(η) (5.5.25)

where

y(t) = ∫
t

0−
r(t − τ)x(τ)dτ = r ∗ x(t) (5.5.26)

Using another formula due to Brun (1969)

(∫
t

0−
−∫

2t

t
)x(2t − τ)dx(τ) = x2(t) if x(0−) = 0 (5.5.27)

and using the Fourier’s law, we can write

−q ⋅ ∇θ
T0
= k

T0
∇θ ⋅ ∇θ = (∫

t

0−
−∫

2t

t
) k
T0
∇θ(2t − τ) ⋅ d∇θ(τ)

= − 1

T0
(∫

t

0−
−∫

2t

t
)q(2t − τ) ⋅ d∇θ(τ)

(5.5.28)



CHAPTER 5. GRADIENT THERMOVISCOELASTICITY 115

In the isotropic case, α becomes a scalar αv and then remains only the volumetric part of
α̇ ∗σ(2t − τ)dθ(τ). The dissipative part of the entropy production becomes:

(∫
t

0−
−∫

2t

t
){J̇(0)v ∗ σv(2t − τ)dσv(τ)

+ J̇(0)d ∗ τ (2t − τ)∶dτ (τ)
+ ℓ2J̇(1)v ∗ ∇σv(2t − τ) ⋅ d∇σv(τ)
+ ℓ2J̇(1)d ∗ ∇τ (2t − τ)∴d∇τ (τ)
+ ċ ∗ θ(2t − τ)dθ(τ)
+ α̇ ∗ σv(2t − τ)dθ(τ)

+ 1

T0
k∇θ(2t − τ) ⋅ d∇θ(τ)}

(5.5.29)

where τ is the deviatoric part of σ.
We now have to write constitutive equations relating the thermodynamic fluxes to the

thermodynamic forces. According to Curie’s theorem, in an isotropic medium, fluxes and
forces of different tensorial rank cannot be coupled (see for instance, deGroot and Mazur,
1962 [153] ). Hence, scalar, vectorial and tensorial terms in the above equation represent
dissipation processes of different physical nature and, accordingly, should be non-negative
independently of the others, that is

ṡprscalar = (∫
t

0−
−∫

2t

t
){J̇(0)v ∗ σv(2t − τ)dσv(τ) + ċ ∗ θ(2t − τ)dθ(τ)

+ α̇ ∗ σv(2t − τ)dθ(τ)} (5.5.30)

ṡprvector = (∫
t

0−
−∫

2t

t
){ℓ2J̇(1)v ∗ ∇σv(2t − τ) ⋅ d∇σv(τ) −

1

T0
q(2t − τ) ⋅ d∇θ(τ)} (5.5.31)

ṡprs.o.tensor = (∫
t

0−
−∫

2t

t
){J̇(0)d ∗ τ (2t − τ) ∶ dτ (τ)} (5.5.32)

ṡprt.o.tensor = (∫
t

0−
−∫

2t

t
){l2J̇(1)d ∗ ∇τ (2t − τ)∴d∇τ (τ)} (5.5.33)

According to the Onsager’s theory, for sufficient small deviations from equilibrium, a con-
stitutive equation gives the thermodynamic flux as a linear function of the thermodynamic
force for each dissipation [20, 153]

Ji =∑
k

LikXk (5.5.34)

with symmetric coefficient matrix Lik = Lki.
In Onsager theory the response of a system to an applied force is simultaneous with the
application of the force. There are situations where there is no simultaneity, for example
in the case of the deformation of viscoelastic solids. Zwanzig (1961) considered situations
in which the rate of entropy production ṡpr has the following form:

ṡpr = ∫
t

0
Kij(τ)Fj(t − τ)dτ (5.5.35)

and proved the following reciprocity relationship:

Kij(τ) =Kji(τ) (5.5.36)
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related to memory functions Kij .
In our case, we can choose the following fluxes and forces:

J1 = J̇(0)v ∗ σv +
1

2
α̇ ∗ θ X1 = σv

J2 = ċ ∗ θ +
1

2
α̇ ∗ σv X2 = θ

J3 = l2J̇(1)v ∗ ∇σv X3 = ∇σv

J4 = −q =
k

T0
∇θ X4 = ∇θ

J5 = J̇(0)d ∗ τ X5 = τ
J6 = l2J̇(1)d ∗ ∇τ X6 = ∇τ (5.5.37)

Thus, the coupled constitutive laws assume the following form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1
J2
J3
J4
J5
J6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11 L12 0 0 0 0
L21 L22 0 0 0 0

0 0 L33 0 0 0
0 0 0 L44 0 0

0 0 0 0 L55 0

0 0 0 0 0 L66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

X4

X5

X6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5.38)

5.5.3 Constitutive law for the strain gradient model

Integrating of the equation (5.5.12) over Ω, expanding the time derivative of ψ, gives

∫
Ω
T ṡpr dΩ = ∫

Ω
[σ ∶ ε̇ − ∂ψ

∂ε
∶ ε̇ − ∂ψ

∂∇ε
∴∇ε̇] dΩ − ∫

Ω
[(∂ψ
∂T
+ s) Ṫ + ψ̇ + q ⋅ ∇T

T
] dΩ ≥ 0
(5.5.39)

We denote

σ(0) = ∂ψ
∂ε

; σ(1) = ∂ψ

∂∇ε (5.5.40)

where σ(0) = {σ(0)ij } is a Cauchy-like stress tensor, whereas σ(1) = {σ(1)pij } is a third order

stress tensor. σ(0) and σ(1) are thermodynamic forces associated, respectively, with ϵ and
∇ϵ, considered independent of one another.
Applying the divergence theorem, one can write:

∫
Ω
σ(1)∴∇ε̇dΩ = −∫

Ω
∇ ⋅σ(1) ∶ ε̇dΩ + ∫

∂Ω
n ⋅σ(1) ∶ ε̇dΓ (5.5.41)

Substituting (5.5.41) into (5.5.39), and using the compatibility relation

ε̇ = ∇su, (5.5.42)

the latter equation becomes

∫
Ω
T ṡpr dΩ = ∫

Ω
(σ −σ(0) +∇ ⋅σ(1)) ∶ ∇u̇dΩ

− ∫
Ω
[(∂ψ
∂T
+ s) Ṫ + ψ̇ + q ⋅ ∇T

T
] dΩ − ∫

∂Ω
n ⋅σ(1) ∶ ∇u̇dΓ ≥ 0

(5.5.43)
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Applying the surface integral transformation formula (see Appendix A)one can write

∫
∂Ω

n ⋅σ(1) ∶ ∇u̇dΓ = ∫
∂Ω

G ⋅ (n ⋅σ(1)) ⋅ u̇dΓ + ∫
∂Ω

n ⋅ n ⋅σ(1) ⋅ ∂nu̇dΓ (5.5.44)

where G denotes the surface gradient. The derivation of G has been explained in the
appendix at the end of the current chapter. Also ∂nu̇ ∶= ∂u̇

∂n (n in the direction of the
vector n on ∂Ω).

Using the above equation and applying the divergence theorem, inequality (5.5.43)
becomes:

∫
Ω
T ṡpr dΩ = − ∫

Ω
∇ ⋅ (σ −σ(0) +∇ ⋅σ(1)) ⋅ u̇dΩ

− ∫
Ω
[(∂ψ
∂T
+ s) Ṫ + ∂ψ

∂t
+ q ⋅ ∇T

T
] dΩ

+ ∫
∂Ω
[n ⋅ (σ −σ(0) +∇ ⋅σ(1)) −G ⋅ n ⋅σ(1)] ⋅ u̇dΓ

− ∫
∂Ω

n ⋅ n ⋅σ(1) ⋅ ∂nu̇dΓ ≥ 0

(5.5.45)

Consider that inequality (5.5.45) must hold true for any displacement-driven deformation
mechanism and for any Ṫ , it follows, as necessary and sufficient conditions, that

∇ ⋅ (σ −σ(0) +∇ ⋅σ(1)) = 0 in Ω

n ⋅ (σ −σ(0) +∇ ⋅σ(1)) =G ⋅ n ⋅σ(1) on ∂Ω

n ⋅ n ⋅σ(1) = 0 on ∂Ω (5.5.46)

that is

σ = σ(0) −∇ ⋅σ(1) in Ω

n ⋅ n ⋅σ(1) = 0 on ∂Ω (5.5.47)

Since heat conduction is, by assumption, a local-type phenomenon, the evaluation of R
can be achieved by considering isothermal deformation processes. Then

R = ḣ∣T=const −σ ∶ ε̇ in Ω (5.5.48)

Thus, expanding the time derivative of ψ at constant T , gives:

R = ∇ ⋅σ(1) ∶ ε̇ +σ(1)∴∇ε̇ + ∂ψ
∂t
= ∇ ⋅ [σ(1) ∶ ε̇] +D in Ω (5.5.49)

where D = ∂ψ
∂t .

Therefore, taking a quadratic form for ψ

ψ(ε,∇ε, θ, t) = 1

2
∫

t

0−
∫

t

0−
{J(0)(2t − τ − η)∶ ∶ dε(τ)dε(η)

+ ℓ2J(1)(2t − τ − η)∶ ∶ (d∇εT (τ) ⋅ d∇ε(η))
+m(2t − τ − η)dθ(τ)dθ(η)
+ 2ϕ(2t − τ − η) ∶ dε(τ)dθ(η)}

(5.5.50)
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the last contribution in cross term.

D = ψ̇(ε,∇ε, θ, t) = ∫
t

0−
∫

t

0−
{J̇(0)(2t − τ − η)∶ ∶ dε(τ)dε(η)

+ J̇(1)(2t − τ − η)∶ ∶ (d∇ε(τ) ⋅ d∇ε(η))
+m(2t − τ − η)dθ(τ)dθ(η)
+ 2ϕ(2t − τ − η) ∶ dε(τ)dθ(η)}

(5.5.51)

Using Brun’s formulae, the irreversible part of the entropy production reads:

(∫
t

0−
−∫

2t

t
){J̇(0) ∗ ε(2t − τ) ∶ dε(τ)

+ J̇(1) ∗ ∇ε(2t − τ) ⋅ d∇ε(τ)
+m ∗ θ(2t − τ)dθ(τ)
+ϕ ∗ ε(2t − τ)dθ(τ) +ϕ ∗ θ(2t − τ) ∶ dε(τ)

− 1

T0
q(2t − τ) ⋅ d∇θ(τ)}

(5.5.52)

that is

(∫
t

0−
−∫

2t

t
){[J̇(0) ∗ ε(2t − τ) +ϕ ∗ θ(2t − τ)] ∶ dε(τ)

+ [J̇(1) ∗ ∇ε(2t − τ)] d∇ε(τ)
+ [m ∗ θ(2t − τ) +ϕ ∗ ε(2t − τ)] dθ(τ)

− 1

T0
q(2t − τ) ⋅ d∇θ(τ)}

(5.5.53)

5.5.4 A particular class of strain gradient thermoviscoelasticity

We now consider only isotropic solids with the following simplified free energy density:

ψ = ψ (ε,∇ε, θ, t) =1
2
∫

t

0−
∫

t

0−
{J(0)(2t − τ − η)∶ dε(τ)∶ dε(η)

+ ϕ(2t − τ − η)dεv(τ)dθ(η)
+ J(1)(2t − τ − η)∶ ∶ [d∇ε(τ) ⋅ d∇ε(η)]
+m(2t − τ − η)dθ(τ)dθ(η)}

(5.5.54)

Splitting ε in the volumetric and deviatoric parts, εv and εd respectively, the dissipation
part of the entropy production becomes:

ψ̇ − q

T0
⋅ ∇θ =(∫

t

0−
−∫

2t

t
){J̇(0)v ∗ εv(2t − τ) + J̇(0)d ∗ εd(2t − τ) ∶ dεd(τ)

+ ϕ ∗ εv(2t − τ)dθ(τ)
+ J̇(1)v ∗ ∇εv(2t − τ) ⋅ d∇εv(τ)
+m ∗ θ(2t − τ)dθ(τ)

− 1

T0
q(2t − τ) ⋅ d∇θ(τ)} ≥ 0

(5.5.55)
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According to Gurtin’s theorem, in an isotropic medium, fluxes and forces of different
tensorial ranks cannot be coupled. Hence, scalar, vectorial and tensorial terms in the
above equation represent dissipation processes of different physical nature and, accord-
ingly, would be non-negative independently of the others, that is

ṡprscalar = (∫
t

0−
−∫

2t

t
){J̇(0)v ∗ εv(2t − τ)dεv(τ)

+m ∗ θ(2t − τ)dθ(τ)
+ϕ ∗ εv(2t − τ)dθ(τ)} ≥ 0

(5.5.56)

and

ṡprvector = (∫
t

0−
−∫

2t

t
){J̇(1)v ∗ ∇εv(2t − τ) ⋅ d∇εv(τ) −

1

T0
q(2t − τ) ⋅ d∇θ(τ)} ≥ 0, (5.5.57)

ṡprtensor = (∫
t

0−
−∫

2t

t
) J̇(0)d ∗ εd(2t − τ) ∶ dεd(τ) ≥ 0 (5.5.58)

Obtained equations can be arranged in matrix-vector format as:

J1 = J̇(0)v ∗ εv +
1

2
ϕ ∗ θ X1 = εv

J2 =m ∗ θ +
1

2
ϕεv X2 = θ

J3 = J̇(1)v ∗ ∇εv X3 = ∇εv

J4 = −
1

T0
q = k

T0
∇θ X4 = ∇θ

J5 = J̇(0)d ∗ εd X5 = εd (5.5.59)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1

J2

J3

J4

J5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11 L12 0 0 0

L21 L22 0 0 0

0 0 L33 0 0

0 0 0 L44 0

0 0 0 0 L55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

X4

X5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5.60)

or

Ji =∑
k

LikXK (5.5.61)

5.6 Case Studies

As a proof of concept, and to show the applicability of the developed theory, a few subcases
are reported herein. Mathematica software, version 13.3 [154], is used to numerically
calculate inverse Laplace transforms and plot the resultant functions.
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5.6.1 Gradient Elasticity

A one-dimensional bar model under extension with length L is considered. At one end
(x = 0) it is clamped and at the other end (x = L) the displacement u = ū is prescribed.
The bar is made of a gradient elastic material and obeys the constitutive relation (Aifantis
Model [54]) as

σ = E(ε − ℓ2ε′′) ∀x ∈ (0, L), (5.6.1)

and boundary conditions as

ε′ = 0 at x = 0 and x = L, (5.6.2)

where E denotes the Young modulus, and prime and double prime signs respectively stand
for first and second degree spatial derivatives (here in 1d problem with respect to x). The
letter ℓ represents the length scale parameter.

Two different conditions, namely a homogeneous and a nonhomogeneous bar are con-
sidered.

Homogeneous bar

To derive the relationship for displacement response of a one-dimensional gradient elastic
bar with constant cross section (A) under an axial load (F ) one can start with the consti-
tutive relation and equilibrium equation. In this case, we have σ = F

A , and the constitutive
relation σ = E(ε − ℓ2ε′′), where strain and its first and second derivatives are defined
respectively as

ε = du
dx

ε′ = d

dx
(du
dx
) = d

2u

dx2

ε′′ = d

dx
(d

2u

dx2
) = d

3u

dx3
.

Thereby one can deduce

σ = F
A
= E(du

dx
− ℓ2d

3u

dx3
), (5.6.3)

and
d

dx
(F
A
) = d

dx
(Edu

dx
−Eℓ2d

3u

dx3
) = 0, (5.6.4)

which leads to

E(d
2u

dx2
− ℓ2d

4u

dx4
) = 0, (5.6.5)

or
d2u

dx2
− ℓ2d

4u

dx4
= 0. (5.6.6)

So, with a change of notation, under the aforementioned conditions, displacement
response of a homogeneous bar in 1D reads as

(u − ℓ2u′′)′′ = 0 in (0, L) (5.6.7)
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which involves the following boundary conditions:

u(0) = 0, u(L) = ū (5.6.8)

and
u′′(0) = u′′(L) = 0. (5.6.9)

The general solution for displacement reads as [86]:

u(x) = A1x +A2 +B1 sinh
x

ℓ
+B2 cosh

x

ℓ
(5.6.10)

where A1, A2, B1 and B2 would be constants which are determined through (5.6.8) and
(5.6.9). Using (5.6.9) one can write

B2 = 0, B1 sinh
L

ℓ
= 0→ B1 = 0. (5.6.11)

Consequently (5.6.8) yields
u(x) = ūx/L, σ = Eū/L. (5.6.12)

It can be observed that in this case, the solution for the gradient problem would collapse
to the classical elasticity formulation.

Nonhomogeneous bar

Consider ξ to be a coordinate axis in alignment with the x axis such that x = ξ + L/2
meaning −L/2 ≤ ξ ≤ L/2. For ξ ≤ 0 let E− = E and for ξ ≥ 0 let E+ = µE. Displacement
responses for two halves of the bar read as

u+(ξ) = A+1ξ +A+2 +B+1 sinh
ξ

ℓ
+B+2 cosh

ξ

ℓ
(ξ ≥ 0), (5.6.13a)

u−(ξ) = A−1ξ +A−2 +B−1 sinh
ξ

ℓ
+B−2 cosh

ξ

ℓ
(ξ ≤ 0). (5.6.13b)

where A1,A2,B1 and B2 would be constants that are be obtained using boundary condi-
tions. Boundary conditions would be

Ju(0)K = Ju′(0)K = Ju′′(0)K = 0, (5.6.14)

Jσ(0)K = 0, (5.6.15)

u(−L/2) = 0, u(L/2) = ū (5.6.16)

where J(⋅)(x)K represents the jump of (⋅) at x. Through (5.6.14) one can obtain

A+2 = A−2 ∶= A2, B+2 = B−2 ∶= B2, (5.6.17)

A+1 −A−1 + (B+1 −B−1 )/ℓ = 0. (5.6.18)

By means of (5.6.15) we have
A−1 = µA+1 , (5.6.19)

and through (5.6.9), and observing that u′′(−L/2) = u′′(L/2) = 0, we can write

B+1 = −B−1 ∶= B1, B2 = −B1 tanh
L

2ℓ
. (5.6.20)
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Having all the required constants determined, the following describing the displacement
responses of each side of the bar are obtained as

u+(ξ) = ū

(1 + µ) [2
ξ

L
+ µ − (1 − µ) ℓ

L
(sinh ξ

ℓ
− tanh L

2ℓ
cosh

ξ

ℓ
)] (ξ > 0), (5.6.21a)

u−(ξ) = ū

(1 + µ) [2µ
ξ

L
+ µ + (1 − µ) ℓ

L
(sinh ξ

ℓ
+ tanh L

2ℓ
cosh

ξ

ℓ
)] (ξ < 0). (5.6.21b)

Consequently, the stress response reads as

σ = 2Eū

(1 + µ)L, (5.6.22)

and strains on each side of the bar are expressed as

ε+(x) = ū

(1 + µ)L [2 − (1 − µ) (cosh
2x −L
2ℓ

− tanh L
2ℓ

sinh
2x −L
2ℓ
)] (x ≥ L

2
) (5.6.23a)

ε−(x) = ū

(1 + µ)L [2µ + (1 − µ) (cosh
2x −L
2ℓ

+ tanh L
2ℓ

sinh
2x −L
2ℓ
)] (x ≤ L

2
) .

(5.6.23b)

Strain responses of homogeneous and nonhomogeneous bars for both gradient and local
elasticity theories have been plotted in Figures 5.1 and 5.2 respectively. As mentioned
earlier, the Young modulus of the left side of the bar is E and of the right side is µE. The
influence of µ is observed clearly in both cases.

In the case of gradient elastic bar (Fig. 5.1 ) where the constitutive law obeys by the
gradient elasticity theory through the introduction of the length scale parameter (ℓ) the
strain response shows to be continuous on either sides of the interface. However, when
the same bar is defined through the local elasticity theory, i.e. when ℓ → 0 (hyperbolic
expressions are vanished), strains responses at the either sides of the bar are expressed as

ε+ = 2ū

(1 + µ)L, (x ≥ L
2
) (5.6.24)

and

ε− = 2µū

(1 + µ)L, (x ≤ L
2
) (5.6.25)

and we observe a discontinuity (jump) in strain response of the bar (Fig. 5.2).

5.6.2 Gradient Viscoelasticity

As the second example, a one-dimensional gradient viscoelastic bar under extension is
considered. Based on gradient elasticity theory [56, 155], and after adapting it to one-
dimensional form, the total stress σ can be described as the combined effect of the Cauchy
stress τ and double stress ω:

σ = τ − ω′, (5.6.26)

where

τ = Eu′ = Eε, (5.6.27)

ω = ℓ2Eu′′ = ℓ2Eε′. (5.6.28)
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Figure 5.1: Gradient elasticity response (ℓ ≠ 0) of a nonhomogeneous bar (µ ≠ 1) with
Young modulus E in the left half and Young modulus µE in the right half; µ = 1 represents
homogeneous bar.

Substituting (5.6.28) in (5.6.26) one can get

σ = Eu′ − ℓ2Eu′′′ = Eε − ℓ2Eε′′. (5.6.29)

According to Christensen [149], for linear viscoelastic materials, we can write

σ(t) = ∫
t

0
E(t − τ)[dε(t)/dτ]dτ = E(t) ∗ ε̇(t), (5.6.30)

where E(t) would be the relaxation function.
Following the same reasoning of Christensen [149], Papargyri-Beskou et al. [155] con-

cluded that the equations (5.6.26) and (5.6.28) can be extended to gradient viscoelastic
form as

σ(t) = τ(t) − ω′(t), (5.6.31)

τ(t) = E(t) ∗ ū(t)′ = E(t) ∗ ε̇(t), (5.6.32)

ω(t) = ℓ2E(t) ∗ u̇(t)′′ = ℓ2E(t) ∗ ε̇(t)′. (5.6.33)

Equilibrium equation of a bar with uniform cross section A and density ρ under an axial,
symmetric load q = q(x, t) follows as

Aσ′ + q = ρü. (5.6.34)

The above equation, when written for a gradient elastic bar, leads to the following expres-
sion for displacement

AE[u(x, t)′′ − ℓ2u(x, t)′′′′] + q(x, t) = ρü(x, t). (5.6.35)

For a gradient viscoelastic bar (5.6.31) - (5.6.33), equilibrium equation (5.6.34) when
written for displacement reads as

AE(t) ∗ [u̇(x, t)′′ − ℓ2u̇(x, t)′′′′] + q(x, t) = ρü(x, t). (5.6.36)

Neglecting the inertial effects, ρü(x, t), the last two equations, respectively represent gov-
erning equations for static and quasi-static conditions.
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Figure 5.2: Local elasticity response (ℓ = 0) of a nonhomogeneous bar (µ ≠ 1)with Young
modulus E in the left half and Young modulus µE in the right half; µ = 1 represents
homogeneous bar.

Correspondence Principle

The Laplace transform with respect to time t of function f(x, t) is denoted by f̄(x, s) and
is defined as

f̄(x, s) = ∫
∞

0
f(x, t)e−stdt, (5.6.37)

where s is the Laplace transform parameter.
According to the correspondence principle, solution to the gradient viscoelastic prob-

lem can be expressed in the form of time domain Laplace transformed solution of the
corresponding gradient elastic problem when the elastic modulus E is replaced by sĒ(s)
[155]. Thereby, for a gradient viscoelastic bar we can write:

σ̄ = τ̄ − ω̄′,
τ̄ = sĒū′,
ω̄ = ℓ2sĒū′′,

AsĒ(ū′′−ℓ2ū′′′′) + q̄ = ρs2ū. (5.6.38)

1D Bar under Quasi-Static Loading

Assuming a straight bar with cross-section area A and length L, clamped at one end x = 0
and loaded with axial force P at the other end x = L we write the classical boundary
conditions as

u(0, t) = 0, AE(t) ∗ [u′(L, t) − ℓ2u′′′(L, t)] = P, (5.6.39)

and the non-classical boundary conditions as

Aℓ2E(t) ∗ u′′(0, t) = 0, u′(L, t) = ε0 (5.6.40)

with ε0 denoting a constant. Initial conditions are assumed to be zero.
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i Ei(lbs/in
2) ti(sec.)

0 1300.0

1 2592.2 1.5 × 10−5

2 1398.8 1.5 × 10−4

3 1284.4 1.5 × 10−3

4 1019.2 1.5 × 10−2

5 795.6 1.5 × 10−1

6 400.4 1.5

7 309.4 1.5 × 10

8 52.0 1.5 × 102

Table 5.1: Values of relaxation function, E(t), at different times for a polyurethane based
nanocomposite [149].

We also consider that the bar is composed of a polymeric nanocomposite (polyurethane
matrix with salt crystals and aluminum powder as nano-fillers) material. For this com-
posite under a creep test, Christensen [149] suggests the values for relaxation function as
presented in the table 5.1.

Accordingly, he assumes the following relation for the relaxation function:

E(t) = E0 +
8

∑
i=1

Eie
−t/ti , (5.6.41)

where E0, Ei and ti are given in the above table. The elastic modulus is obtained from
Eq. (5.6.41) for t = 0 in the form of:

Ee =
8

∑
i=0

Ei. (5.6.42)

The corresponding gradient elastic problem is already solved in [156], according to which
the displacement u and strain ε are expressed in the following forms:

u(ξ) = C1e
ξ/ℓ̄ +C2e

−ξ/ℓ̄ +C3ξ +C4,

ε(ξ) = (C1/ℓ̄)eξ/ℓ̄ − (C2/ℓ̄)e−ξ/ℓ̄ +C3, (5.6.43)

where ξ = x/L, ℓ̄ = ℓ/L and the constants (C1,C2,C3 andC4) defined through the boundary
conditions as

C1 =
ℓ̄[ε0 − (P /AEe)]

2cosh(1/ℓ̄)
,

C2 = −
ℓ̄[ε0 − (P /AEe)]

2cosh(1/ℓ̄)
,

C3 = P /AEe,
C4 = 0. (5.6.44)



CHAPTER 5. GRADIENT THERMOVISCOELASTICITY 126

For ℓ̄ = 0 the above gradient elasticity solution collapses to classical elastic solution as

ue(ξ) = (P /AEe)ξ,
εe(ξ) = P /AEe. (5.6.45)

Employing the correspondence principle, one can obtain the Laplace transformed solutions
of gradient viscoelastic problem in time domain as

ū(ξ, s) = C1(s)eξ/ℓ̄ +C2(s)e−ξ/ℓ̄ +C3(s)ξ +C4(s),
ε̄(ξ, s) = (C1(s)/ℓ̄)eξ/ℓ̄ − (C2(s)/ℓ̄)e−ξ/ℓ̄ +C3(s), (5.6.46)

where ε0 is replaced by ε0/s, P by P /s and Ee by sĒ(s). The transformed form of
relaxation function Ē(s) is expressed as

Ē(s) = E0

s
+

8

∑
i=1

Ei
s + (1/ti)

(5.6.47)

The Laplace transformed solutions as defined above, are then transformed into the time
domain solution through numerical Laplace inversion. Figs. 5.3 to 5.6 demonstrate nor-
malized displacement u(ξ, τ) and strain ε(ξ, τ) responses versus the dimensionless time
variable τ where

τ = (t/L)
√
Ee/ρ.

As can be seen, in Fig. 5.3a to 5.3c changing ℓ̄ from 0.1 to 0.5 significantly alters the
strain responses at each point of the bar. It is also observed that increasing the ℓ̄, lowers
the displacement response. The influence of gradient coefficient on displacement response
is further investigated through graphs 5.4a to 5.4c. In accordance with previous graphs,
moving on the bar, starting from the clamped end toward free end where the load is
applied, the magnitude of displacement increases. Again, comparing these three graphs,
we notice that the effect of length scale parameter is conveyed throughout the bar.

In terms of strain responses, as shown in Figs. 5.5a to 5.5c, the influence of gradient
effect on the strain is clearly demonstrated. Additionally, the analyses in Figs. 5.6 reveal
that with increasing the value of the gradient coefficient, this effect would become more
pronounced. For instance, in Fig. 5.6a where ℓ̄ = 0.1 the strain responses at ξ = 0.1 − 0.3
almost overlapped. It means that at this range, and with this ℓ̄, these points are not
kinematically differentiated. This is while, with increase in the value of the gradient
coefficient from 0.3 to 0.5 (Figs. 5.6b and 5.6c), strain responses are well separated and
differentiated. Moreover, a closer look shows that this differentiation is elevated as ℓ̄
increases from 0.3 to 0.5. These interesting results illustrate the influence of considering
the length scale effect (and gradient based theories) in advanced materials and/or complex
phenomena.

5.6.3 Gradient Thermoelasticity

A one-dimensional bar with length 2L clamped at both ends is considered. Temperature
reduction along the x axis of this bar is expressed in the form of θ(x) = θ̄(1−x2/L2) where
θ̄ ≥ 0 represents the maximum temperature reduction. The resultant thermal strain reads
as εθ = −αθ̄(1 − x2/L2) with α as the thermal expansion coefficient. Assuming the stress
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(a) Displacement versus time at ξ = 0.3 of the bar.
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(b) Displacement versus time at the middle (ξ = 0.5) of the bar.
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Figure 5.3: Displacement response of the quasi-statically loaded gradient viscoelastic bar
versus dimensionless time variable for various values of ℓ̄ at ξ = 0.3, 0.5 and 0.7 of the bar.
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Figure 5.4: Influence of gradient coefficient on displacement response at various positions
(ξ = 0.1, 0.3, 0.5 and 0.7) on the gradient viscoelastic bar .
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(b) Strain versus time at the middle (ξ = 0.5) of the bar.
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(c) Strain versus time at ξ = 0.7 of the bar.

Figure 5.5: Strain response of the quasi-statically loaded gradient viscoelastic bar versus
dimensionless time variable for various values of ℓ̄ at ξ = 0.3, 0.5 and 0.7 of the bar.
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(c) Strain at various positions (ξ) of the bar with ℓ̄ = 0.5.

Figure 5.6: Influence of gradient coefficient on strain at various positions (ξ = 0.1, 0.3, 0.5
and 0.7) of the gradient viscoelastic bar .
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to be a function of strain and its second gradient, the governing differential equation to
be solved would be [83]

σ = E[(ε − εθ) − ℓ2(ε − εθ)′′], (5.6.48)

that is equipped with nonstandard boundary conditions ε′ = u′′ = 0 at x = ±L. The
following general solution is obtained as

u′ − εθ = A
ℓ
cosh

x

ℓ
+ B
ℓ
sinh

x

c
+ σ
E
, (5.6.49)

with A and B as constants. Integrating the last equation, we obtain an expression for
displacement

u = A sinh
x

ℓ
+B cosh

x

ℓ
+ σx
E
+ uθ(x) +C, (5.6.50)

where C is introduced as another constant and uθ(x) is expressed as

uθ(x) ∶= −αθ̄L(x
L
− x3

3L3
). (5.6.51)

Through the nonstandard boundary conditions, u′′(−L) = u′′(L) = 0, A and B are obtained

A = − 2αθ̄L

sinh L
ℓ

c2

L2
, B = 0. (5.6.52)

Using standard boundary conditions, u(−L) = u(L) = 0, C and σ are formulated as

C = 0, σ = 2αEθ̄(1
3
+ ζ2) (5.6.53)

with ζ = ℓ/L.
Defining ξ = x/L, the relations for displacement and strain respectively reads as:

u

L
= αθ̄ [1

3
(ξ2 − 1)ξ + 2ζ2 (ξ − sinh(ξ/ζ)

sinh(1/ζ))] , (5.6.54)

ε = αθ̄ [ξ2 − 1

3
+ 2ζ2 − 2ζ cosh(ξ/ζ)

sinh(1/ζ) ] . (5.6.55)

It is noticed that for ζ = 0, the local type solution is obtained as

σ = 2

3
αEθ̄,

u

L
= 1

3
αθ̄(ξ2 − 1),

ε = αθ̄ (ξ2 − 1

3
) . (5.6.56)

Local type (ζ = 0) and gradient type solutions for strain and displacement are plotted in
Fig. 5.7 and 5.8, respectively. The influence of length scale parameter is observed in both
solutions; besides a distinguishable difference with local type solutions.
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Figure 5.7: Strain response of a gradient elastic bar under thermal loading with different
length scale parameters (ζ = 0.2,0.4) as compared to classical (local) elasticity (ζ = 0)
solution and imposed strain( σE = 74.666 × 10
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Figure 5.8: Displacement response of a gradient elastic bar under thermal loading with two
length scale parameters (ζ = 0.2,0.4) as compared to classical elasticity (ζ = 0) solution.
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A Boundary Integral Transformation

Let A = Api1i2...im and B = Bi1i2...im denoting tensors of ranks m + 1 and m respectively
with m ≥ 0; where m = 0 would represent A as a vector and B as a scalar. A is defined
over the boundary surface Γ = ∂Ω of domain Ω and B is defined over Ω. Furthermore it
is assumed that both tensors are sufficiently regular to support surface integral:

∫
Γ
A⊙ (∇B)dΓ = ∫

Γ
Api1i2...im∂pB = Bi1i2...imdΓ. (A.1)

The symbol ⊙ represents a scalar product with complete index contraction for the factor
of lower order.
Due to regularity assumption of surface Γ we may decompose the gradient ∇ = ∂p into its
tangential and normal components as

∇ = ∇̄ + n∂n (A.2)

where with I = δij denoting the unit second-order tensor we can write the tangential part
as

∇̄ ∶= (I − nn) ⋅ ∇, ∂n ∶= n ⋅ ∇ (A.3)

which in index notation reads as

∇̄p = (δpq − npnq)∂q, ∂n = np∂q. (A.4)

Substituting A.2 into A.1 leads to

∫
Γ
A⊙ (∇B)dΓ = ∫

Γ
∇̄ ⊙ (∇̄B)dΓ + ∫

Γ
A⊙ (n∂nB)dΓ. (A.5)

when transformed, the first integral on the right-hand side of A.5 can be rewritten as

∫
Γ
A⊙ (∇B)dΓ = ∫

Γ
∇̄ ⋅ (AT ⊙BT )dΓ − ∫

Γ
(∇̄ ⋅A)⊙BdΓ. (A.6)

Through the so called surface divergence theorem and in the case of sufficient regularity
(as in here) one can transform the first integral on the right hand side according to identity
as

∫
Γ
∇̄ ⋅ (AT ⊙BT )dΓ = ∫

Γ
Kn ⋅ (AT ⊙B)TdΓ, (A.7)

where K equals twice the mean curvature of Γ at the integration point, that considering
r1 and r2 as the principal curvature radii,

K = ∇̄ ⋅ n = 1

r1
+ 1

r2
. (A.8)

Henceforth, substituting A.7 into A.6 then A.6 into A.5, and introducing G = Gp for the
sake of compactness one can write

G ∶=Kn − ∇̄, (A.9)

and ultimately equation A.5 takes the form

∫
Γ
A⊙ (∇B)dΓ = ∫

Γ
(G ⋅A)⊙BdΓ + ∫

Γ
(n ⋅A)⊙ ∂nBdΓ. (A.10)

Worthy of notice that the surface integrals on the right-hand side involves only values of
B and its normal derivatives. The formula A.10 offers a general applicability and can be
referred as surface integral transformation formula.
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Conclusion

This research aimed to study and better understand the phenomenon of thermoelastic
damping in tiny scales and in the case of micro-/nano-resonators. Such small structures
are widely employed in various branches of science and technology where their performance
(which is measured through their sensitivity) largely depends on the magnitude of energy
dissipated within their structures. Unfortunately there is a gap between mathematical
models describing the dynamic behavior of such structures and what is actually measured
in the lab.

It turns out that at this level (namely micro/nano scales) classical elasticity theories are
not very well equipped to describe and resolute the mechanical fields such as deformation
and strain. In other words they are not sufficient to fully (or at least to an acceptable
level) characterize the kinematics of the deformed body. In fact a parameter through
which the length scale effects can be introduced into the model is missing in classical
theories. However more recent theories such as nonlocal elasticity and gradient theories
have been emerged to fill such a gap. This study employed gradient elasticity theory and
developed constitutive models for both stress gradient and strain gradient materials.

On the other side, in thermoelastic damping, thermal and mechanical fields are coupled
leading to exertion of heat and production of entropy which eventually causes dissipation
of energy within the structure of micro and nano beams. Henceforth another influencing
factor, namely thermodynamics of irreversible processes, was needed to be taken into
account in order to devise a more comprehensive theory where all influencing parties
collide.

Irreversible thermodynamics can be divided into two categories, namely Classical Ir-
reversible Thermodynamics (CIT) and Extended Irreversible Thermodynamics (EIT). In
EIT the space of state variables is formed by the union of the space of classical variables
such as mass, momentum, energy, etc., and the space of corresponding fluxes. In the case
of problems with internal friction many calculations based on CIT have been performed
showing excellent agreement with experimental data. It implies that the assumption of the
CIT would be valid for these problems. Thereby this study opted to stick with principles
of CIT though room for improvements always exists.

In the context of irreversible thermodynamics, a well known theory namely Onsager’s
reciprocal theory was used for introducing interference effects of various fields on each
other. Additionally the Zwanzig’s generalization (to Onsager’s theory) was incorporated
as well to incorporate causal effects.

As a generalized class of materials, thermoviscoelasticity was chosen to be combined
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with gradient theories. As a result, for the first time, a general framework obeying the laws
of thermodynamics as well as principles of irreversible thermodynamics was developed in
which the length scale effects were incorporated as well.

However there is always room for improvement. In the case of current endeavor several
other milestones can be suggested as future outlook. For instance, in this study the
development of theory was grounded on linear theory of viscoelasticity. It can definitively
be advanced through modeling materials exhibiting nonlinear viscoelasticity.

Also, simple boundary conditions for heat transport as employed in the current study
can be extended toward more advanced boundary conditions. In a linear regime, boundary
conditions can be divided into three main categories. First kind involves the prescription
of temperature on the surface of the boundary. The other type involves prescription of
the heat flux on the surface. And the third type would be the convection boundary con-
dition. Depending on the problem any of these or certain combination of these boundary
conditions could be imposed.

Fourier model was used to describe the heat transport in this study. There are studies
in which Non-Fourier model for heat is considered. So as an extension to the current
theory, Fourier heat transport equation can be advanced toward non-Fourier models.

As already mentioned current theory is based on principles of CIT and it has been
shown to be sufficient for the problem at hand. However since the EIT offers a broader
space in terms of thermodynamical state variables, it is suggested that this branch of non-
equilibrium thermodynamics to be exploited for specialized classes of problems in which
a larger thermodynamical space would be necessary and leads to better resolution of the
problem.

Finally constitutive models as developed in the current study for the case of stress and
strain gradient materials can be used and incorporated within a well structured boundary
value problem describing the deflection or oscillation of cantilevered micro/nano beams
through which the quality factor of the beam can be predicted and compared to experi-
mental observation and numerical computations.
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Mathematica Scripts

1 (*

2 Author: Behrooz Karami

3 Department of Civil & Environemental Engineering

4 University of Brescia

5 Date: 2023 -06 -15

6 Strain Response of a nonhomogeneous 1D Bar with

7 Gradient Elasticity Theory

8 *)

9 (*

10 Strain relation at the right half of the bare

11 *)

12

13 \[ CurlyEpsilon]p =

14 uboL /(1 + \[Mu]) (2 - (1 - \[Mu]) (Cosh [(2 xoL - 1)/(2 coL)] -

15 Tanh [1/(2 coL)]*Sinh [(2 xoL - 1)/(2 coL)]));

16

17 (*

18 Strain relaiton at the left half of the bare

19 *)

20 \[ CurlyEpsilon]n =

21 uboL /(1 + \[Mu]) (2 \[Mu] + (1 - \[Mu]) (Cosh [(2 xoL - 1)/(2 coL)] +

22 Tanh [1/(2 coL)]*Sinh [(2 xoL - 1)/(2 coL)]));

23

24 (*

25 Plotting the strain of the right half

26 *)

27 p1 = Plot[

28 {

29 \[ CurlyEpsilon]p /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 0.7},

30 \[ CurlyEpsilon]p /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 0.8},

31 \[ CurlyEpsilon]p /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 0.9},

32 \[ CurlyEpsilon]p /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 1},

33 \[ CurlyEpsilon]p /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 1.1},

34 \[ CurlyEpsilon]p /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 1.3}

35 },

36 {xoL , 1/2, 1},

37 PlotStyle ->

38 {

39 {Blue , Thickness [0.005]} ,

40 {Magenta , Thickness [0.005]} ,

41 {Orange , Thickness [0.005]} ,
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42 {Red , Thickness [0.005]} ,

43 {Purple , Thickness [0.005]} ,

44 {Darker[Green], Thickness [0.005]}}];

45

46 (*

47 Plotting the strain of the left half

48 *)

49 p2 = Plot[

50 {

51 \[ CurlyEpsilon]n /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 0.7},

52 \[ CurlyEpsilon]n /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 0.8},

53 \[ CurlyEpsilon]n /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 0.9},

54 \[ CurlyEpsilon]n /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 1},

55 \[ CurlyEpsilon]n /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 1.1},

56 \[ CurlyEpsilon]n /. {uboL -> 0.1, coL -> 0.1, \[Mu] -> 1.3}

57 },

58 {xoL , 0, 1/2},

59 PlotStyle ->

60 {

61 {Blue , Thickness [0.005]} ,

62 {Magenta , Thickness [0.005]} ,

63 {Orange , Thickness [0.005]} ,

64 {Red , Thickness [0.005]} ,

65 {Purple , Thickness [0.005]} ,

66 {Darker[Green], Thickness [0.005]}} ,

67 PlotLegends -> {"\[Mu]=0.7", "\[Mu]=0.8", "\[Mu]=0.9",

68 "\[Mu ]=1.0", "\[Mu ]=1.1", "\[Mu ]=1.3"}];

69

70 (*

71 Showing the graph

72 *)

73 p0 = Show[{p1, p2},

74 PlotRange -> {{0, 1}, {0.08 , 0.12}} ,

75 Frame -> {True , True , True , True},

76 Axes -> False ,

77 FrameStyle -> {{Black , Thickness [0.001]}} ,

78 FrameLabel -> {Style["\!\(\*

79 StyleBox [\"x\" ,\nFontSlant ->\"Italic\"]\) /\!\(\*

80 StyleBox [\"L\" ,\nFontSlant ->\"Italic\"]\)",

81 FontFamily -> "Times New Roman", FontSize -> 16, Black],

82 Style["Strain (\[ CurlyEpsilon ])", FontFamily -> "Times New Roman",

83 FontSize -> 16, Black ]} ]

84

85 (*

86 Exporting the file.

87 *)

88 Export["Gradient.pdf", p0]

89
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1 (*

2 Author: Behrooz Karami

3 Department of Civil & Environemental Engineering

4 University of Brescia

5 Date: 2023 -06 -15

6 Strain Response of a nonhomogeneous 1D Bar with

7 Local Elasticity Theory

8 *)

9 (* Strain relation at the right half of the bare*)

10 \[ CurlyEpsilon]p = (2 uboL)/(1 + \[Mu]);

11

12 (* Strain relaiton at the left half of the bare*)

13 \[ CurlyEpsilon]n = (2 \[Mu] uboL)/(1 + \[Mu]);

14

15 (* Plotting the strain of the right half*)

16 p1 = Plot[

17 {

18 \[ CurlyEpsilon]p /. {uboL -> 0.1, \[Mu] -> 0.7},

19 \[ CurlyEpsilon]p /. {uboL -> 0.1, \[Mu] -> 0.9},

20 \[ CurlyEpsilon]p /. {uboL -> 0.1, \[Mu] -> 1},

21 \[ CurlyEpsilon]p /. {uboL -> 0.1, \[Mu] -> 1.3}

22 },

23 {xoL , 1/2, 1},

24 PlotStyle ->

25 {

26 {Blue , Thickness [0.005]} ,

27 {Orange , Thickness [0.005]} ,

28 {Red , Thickness [0.005]} ,

29 {Darker[Green], Thickness [0.005]}}];

30

31 (* Plotting the strain of the left half*)

32 p2 = Plot[

33 {

34 \[ CurlyEpsilon]n /. {uboL -> 0.1, \[Mu] -> 0.7},

35 \[ CurlyEpsilon]n /. {uboL -> 0.1, \[Mu] -> 0.9},

36 \[ CurlyEpsilon]n /. {uboL -> 0.1, \[Mu] -> 1},

37 \[ CurlyEpsilon]n /. {uboL -> 0.1, \[Mu] -> 1.3}

38 },

39 {xoL , 0, 1/2},

40 PlotStyle ->

41 {

42 {Blue , Thickness [0.005]} ,

43 {Orange , Thickness [0.005]} ,

44 {Red , Thickness [0.005]} ,

45 {Darker[Green], Thickness [0.005]}} ,

46 PlotLegends -> {

47 "\[Mu ]=0.7",

48 "\[Mu ]=0.9",

49 "\[Mu ]=1.0",

50 "\[Mu ]=1.3"}];

51

52

53 (*

54 Showing the graph

55 *)

56 p0 = Show[{p1, p2},

57 PlotRange -> {{0, 1}, {0.08 , 0.12}} ,

58 Frame -> {True , True , True , True},
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59 Axes -> False , FrameStyle -> {{Black , Thickness [0.001]}} ,

60 FrameLabel -> {Style["\!\(\*

61 StyleBox [\"x\" ,\nFontSlant ->\"Italic\"]\) /\!\(\*

62 StyleBox [\"L\" ,\nFontSlant ->\"Italic\"]\)",

63 FontFamily -> "Times New Roman", FontSize -> 16, Black],

64 Style["strain (\[ CurlyEpsilon ])",

65 FontFamily -> "Times New Roman",

66 FontSize -> 16, Black ]} ];

67

68 (*

69 Exporting the file.

70 *)

71 Export["Local.pdf", p0]
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1 (*

2 Gradient Viscoelasticity Code for Displacement Response of 1D bar

3 *)

4

5 (*

6 Author: Behrooz Karami

7 Department of Civil & Environemental Engineering

8 University of Brescia

9 Date: 2023 -06 -15

10 1D Bar Modeling: Gradient Viscoelasticity

11 *)

12

13

14 (*

15 Defining material properties and experimental data.

16 *)

17 E0 = 1300;

18 Ej = {2592.2 , 1398.8 , 1284.4 , 1019.2 , 795.6, 400.4, 309.4, 52.0};

19 tj = {1.5*10^ -5 , 1.5*10^ -4 , 1.5*10^ -3 , 1.5*10^ -2 , 1.5*10^ -1 , 1.5,

20 1.5*10 , 1.5*10^2};

21

22 (*

23 Defining the parameters.

24 *)

25 \[ CurlyEpsilon ]0 = 0.6;

26 L = 0.1; \[Rho] = 50;

27

28 (*

29 Relaxation function relationships.

30 *)

31 Ebar = E0/s + \!\(

32 \* UnderoverscriptBox [\(\[ Sum ]\), \(j = 1\), \(8\)]

33 \* FractionBox [\(Ej[[j]]\), \(s +

34 \* FractionBox [\(1\) , \(

35 \* FractionBox [\(tj [\([\) \(j\)\(]\) ]\), \(L\)]

36 \* SqrtBox[

37 FractionBox [\(Ee\), \(\[ Rho]\) ]]\) ]\)]\);

38 Ee = E0 + \!\(

39 \* UnderoverscriptBox [\(\[ Sum ]\), \(j = 1\), \(8\) ]\(Ej[[j]]\)\);

40 (*

41 Defining constants

42 *)

43 c1 = (lbar (\[ CurlyEpsilon ]0/s - P/(s A s Ebar)))/(2 Cosh [1/ lbar]);

44 c2 = -((lbar (\[ CurlyEpsilon ]0/s - P/(s A s Ebar)))/(

45 2 Cosh [1/ lbar]));

46 c3 = P/(s A s Ebar);

47 c4 = 0;

48

49

50 (* Laplace transform solution for the displacement

51 *)

52 ubar = c1 Exp [\[Xi]/lbar] + c2 Exp[-\[Xi]/lbar] + c3 \[Xi] + c4;

53 (*

54 Laplace transform solution for the strain

55 *)

56 \[ CurlyEpsilon]bar =

57 c1/lbar Exp [\[Xi]/lbar] - c2/lbar Exp[-\[Xi]/lbar] + c3;

58 (*
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59 Time domain displacement solution:

60 *)

61 u\[Xi]t = InverseLaplaceTransform[ubar , s, t];

62

63 (*

64 Time domain strain solution:

65 *)

66 \[ CurlyEpsilon ]\[Xi]t =

67 InverseLaplaceTransform [\[ CurlyEpsilon]bar , s, t];

68

69

70 (*

71 Introducing dimensionless \[Tau] parameter for displacement.

72 *)

73 u\[Xi]\[Tau] := u\[Xi]t /. t -> (L \[Tau] )/Sqrt[Ee/\[Rho]];

74 (*

75 Introducing dimensionless \[Tau] parameter for strain.

76 *)

77 \[ CurlyEpsilon ]\[Xi]\[ Tau] := \[ CurlyEpsilon ]\[Xi]t /.

78 t -> (L \[Tau] )/Sqrt[Ee/\[Rho]];

79

80 (*

81 Normalized displacement soluiton

82 *)

83 u\[Xi]\[Tau]Nrm = u\[Xi]\[Tau] /((P L)/(A Ee));

84

85 (*

86 Normalized strain solution.

87 *)

88 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm = \[ CurlyEpsilon ]\[Xi]\[ Tau] /(P /(

89 A Ee));

90

91

92 (* =============== PLOTTING THE DISPLACEMENT =========== *)

93

94 (* ===== Varying Overscript [\[ ScriptL], _] & \[Xi] = 0.3 ==== *)

95

96 pu3 = Plot[

97 {

98 u\[Xi]\[Tau] /. {lbar -> 0.1, \[Xi] -> 0.3, P -> 10000 , A -> 1} //

99 Chop // Simplify ,

100 u\[Xi]\[Tau] /. {lbar -> 0.3, \[Xi] -> 0.3, P -> 10000 , A -> 1} //

101 Chop // Simplify ,

102 u\[Xi]\[Tau] /. {lbar -> 0.4, \[Xi] -> 0.3, P -> 10000 , A -> 1} //

103 Chop // Simplify ,

104 u\[Xi]\[Tau] /. {lbar -> 0.5, \[Xi] -> 0.3, P -> 10000 , A -> 1} //

105 Chop // Simplify

106 },

107 {\[ Tau], 0, 2*10^2} ,

108 Frame -> {True , True , False , False},

109 FrameLabel -> {"Dimensionless time \[Tau]",

110 "Normalized Displacement u(\[Xi],\[Tau])"},

111 Axes -> False ,

112 (*

113 PlotStyle \[Rule]

114 {

115 {Darker[Green],Thickness [0.005]} ,

116 {Red ,Thickness [0.005]} ,
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117 {Darker[Blue],Thickness [0.005]} ,

118 {Orange ,Thickness [0.005]}

119 },

120 *)

121 PlotLegends -> {"\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

122 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

123 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.4",

124 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5"}];

125

126 (* =================== Optimizing the graphics =================== *)

127 gu3 = Graphics[

128 {

129 Text

130 [

131 Style["\[Xi ]=0.3",

132 FontFamily -> "Times New Roman",

133 FontSize -> 14], {135, .5}

134 ](*,

135 Thickness [0.005] ,

136 Green ,

137 Line

138 [

139 {{110 ,1} ,{120 ,1}}

140 ]*)

141 }

142 ];

143

144

145 (* =================== Showing the graphics =================== *)

146 pu3 = Show[{pu3 , gu3}]

147

148 (* =================== Exporting the graphics =================== *)

149 Export["GV_Displacement_lbar_changing_xi_ .3. pdf", pu3]

150 (* ============================================== *)

151

152

153

154 (* = Varying Overscript [\[ ScriptL], _] & \[Xi] = 0.5 = *)

155

156 pu5 = Plot[

157 {

158 u\[Xi]\[Tau] /. {lbar -> 0.1, \[Xi] -> 0.5, P -> 10000 , A -> 1} //

159 Chop // Simplify ,

160 u\[Xi]\[Tau] /. {lbar -> 0.3, \[Xi] -> 0.5, P -> 10000 , A -> 1} //

161 Chop // Simplify ,

162 u\[Xi]\[Tau] /. {lbar -> 0.4, \[Xi] -> 0.5, P -> 10000 , A -> 1} //

163 Chop // Simplify ,

164 u\[Xi]\[Tau] /. {lbar -> 0.5, \[Xi] -> 0.5, P -> 10000 , A -> 1} //

165 Chop // Simplify

166 },

167 {\[ Tau], 0, 2*10^2} ,

168 Frame -> {True , True , False , False},

169 FrameLabel -> {"Dimensionless time \[Tau]",

170 "Normalized Displacement u(\[Xi],\[Tau])"},

171 Axes -> False ,

172 (*

173 PlotStyle \[Rule]

174 {
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175 {Darker[Green],Thickness [0.005]} ,

176 {Red ,Thickness [0.005]} ,

177 {Darker[Blue],Thickness [0.005]} ,

178 {Orange ,Thickness [0.005]}

179 },

180 *)

181 PlotLegends -> {"\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

182 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

183 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.4",

184 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5"}];

185

186 (* ================== Optimizing the graphics ================= *)

187 gu5 = Graphics[

188 {

189 Text

190 [

191 Style["\[Xi ]=0.5",

192 FontFamily -> "Times New Roman",

193 FontSize -> 14], {125, .8}

194 ](*,

195 Thickness [0.005] ,

196 Green ,

197 Line

198 [

199 {{110 ,1} ,{120 ,1}}

200 ]*)

201 }

202 ];

203

204

205 (* =================== Showing the graphics =================== *)

206 pu5 = Show[{pu5 , gu5}]

207

208 (* =================== Exporting the graphics =================== *)

209 Export["GV_Displacement_lbar_changing_xi_ .5. pdf", pu5]

210 (* ============================================= *)

211

212

213

214 (* ======= Varying Overscript [\[ ScriptL], _] & \[Xi] = 0.7========== *)

215

216 pu7 = Plot[

217 {

218 u\[Xi]\[Tau] /. {lbar -> 0.1, \[Xi] -> 0.7, P -> 10000 , A -> 1} //

219 Chop // Simplify ,

220 u\[Xi]\[Tau] /. {lbar -> 0.3, \[Xi] -> 0.7, P -> 10000 , A -> 1} //

221 Chop // Simplify ,

222 u\[Xi]\[Tau] /. {lbar -> 0.4, \[Xi] -> 0.7, P -> 10000 , A -> 1} //

223 Chop // Simplify ,

224 u\[Xi]\[Tau] /. {lbar -> 0.5, \[Xi] -> 0.7, P -> 10000 , A -> 1} //

225 Chop // Simplify

226 },

227 {\[ Tau], 0, 2*10^2} ,

228 Frame -> {True , True , False , False},

229 FrameLabel -> {"Dimensionless time \[Tau]",

230 "Normalized Displacement u(\[Xi],\[Tau])"},

231 Axes -> False ,

232 (*
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233 PlotStyle \[Rule]

234 {

235 {Darker[Green],Thickness [0.005]} ,

236 {Red ,Thickness [0.005]} ,

237 {Darker[Blue],Thickness [0.005]} ,

238 {Orange ,Thickness [0.005]}

239 },

240 *)

241 PlotLegends -> {"\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

242 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

243 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.4",

244 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5"}];

245

246 (* ================ Optimizing the graphics ================= *)

247 gu7 = Graphics[

248 {

249 Text

250 [

251 Style["\[Xi ]=0.7",

252 FontFamily -> "Times New Roman",

253 FontSize -> 14], {115, 1}

254 ](*,

255 Thickness [0.005] ,

256 Green ,

257 Line

258 [

259 {{110 ,1} ,{120 ,1}}

260 ]*)

261 }

262 ];

263

264

265 (* =================== Showing the graphics =================== *)

266 pu7 = Show[{pu7 , gu7}]

267

268 (* =================== Exporting the graphics ================== *)

269 Export["GV_Displacement_lbar_changing_xi_ .7. pdf", pu7]

270 (* ============================================== *)

271

272

273 (* ========================================= *)

274 (* =========================================== *)

275 (* === Fixing Overscript [\[ ScriptL], _] = 0.1 & Varying \[Xi] ==== *)

276

277 pul1 = Plot[

278 {

279 u\[Xi]\[Tau] /. {lbar -> 0.1, \[Xi] -> 0.1, P -> 10000 , A -> 1} //

280 Chop // Simplify ,

281 u\[Xi]\[Tau] /. {lbar -> 0.1, \[Xi] -> 0.3, P -> 10000 , A -> 1} //

282 Chop // Simplify ,

283 u\[Xi]\[Tau] /. {lbar -> 0.1, \[Xi] -> 0.5, P -> 10000 , A -> 1} //

284 Chop // Simplify ,

285 u\[Xi]\[Tau] /. {lbar -> 0.1, \[Xi] -> 0.7, P -> 10000 , A -> 1} //

286 Chop // Simplify

287 },

288 {\[ Tau], 0, 200},

289 Frame -> {True , True , False , False},

290 FrameLabel -> {"Dimensionless time \[Tau]",
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291 "Normalized Displacement u(\[Xi],\[Tau])"},

292 Axes -> False ,

293 (*

294 PlotStyle \[Rule]

295 {

296 {Darker[Green],Thickness [0.005]} ,

297 {Red ,Thickness [0.005]} ,

298 {Darker[Blue],Thickness [0.005]} ,

299 {Orange ,Thickness [0.005]}

300 },

301 *)

302 PlotLegends -> {"\[Xi]=0.1", "\[Xi]=0.3", "\[Xi]=0.5",

303 "\[Xi ]=0.7"}];

304

305 (* =================== Optimizing the graphics =================== *)

306 gul1 = Graphics[

307 {

308 Text

309 [

310 Style["\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

311 FontFamily -> "Times New Roman",

312 FontSize -> 14], {15, 1.9}

313 ](*,

314 Thickness [0.005] ,

315 Green ,

316 Line

317 [

318 {{110 ,1} ,{120 ,1}}

319 ]*)

320 }

321 ];

322

323

324 (* =================== Showing the graphics =================== *)

325 pul1 = Show[{pul1 , gul1}]

326

327 (* =================== Exporting the graphics =================== *)

328 Export["GV_Displacement_lbar_ .1 _xi_changing.pdf", pul1]

329 (* ================================================== *)

330

331 (* === Fixing Overscript [\[ ScriptL], _] = 0.3 & Varying \[Xi] === *)

332

333 pul3 = Plot[

334 {

335 u\[Xi]\[Tau] /. {lbar -> 0.3, \[Xi] -> 0.1, P -> 10000 , A -> 1} //

336 Chop // Simplify ,

337 u\[Xi]\[Tau] /. {lbar -> 0.3, \[Xi] -> 0.3, P -> 10000 , A -> 1} //

338 Chop // Simplify ,

339 u\[Xi]\[Tau] /. {lbar -> 0.3, \[Xi] -> 0.5, P -> 10000 , A -> 1} //

340 Chop // Simplify ,

341 u\[Xi]\[Tau] /. {lbar -> 0.3, \[Xi] -> 0.7, P -> 10000 , A -> 1} //

342 Chop // Simplify

343 },

344 {\[ Tau], 0, 200},

345 Frame -> {True , True , False , False},

346 FrameLabel -> {"Dimensionless time \[Tau]",

347 "Normalized Displacement u(\[Xi],\[Tau])"},

348 Axes -> False ,
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349 (*

350 PlotStyle \[Rule]

351 {

352 {Darker[Green],Thickness [0.005]} ,

353 {Red ,Thickness [0.005]} ,

354 {Darker[Blue],Thickness [0.005]} ,

355 {Orange ,Thickness [0.005]}

356 },

357 *)

358 PlotLegends -> {"\[Xi]=0.1", "\[Xi]=0.3", "\[Xi]=0.5",

359 "\[Xi ]=0.7"}];

360

361 (* =================== Optimizing the graphics =================== *)

362 gul3 = Graphics[

363 {

364 Text

365 [

366 Style["\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

367 FontFamily -> "Times New Roman",

368 FontSize -> 14], {15, 1.7}

369 ](*,

370 Thickness [0.005] ,

371 Green ,

372 Line

373 [

374 {{110 ,1} ,{120 ,1}}

375 ]*)

376 }

377 ];

378

379

380 (* =================== Showing the graphics =================== *)

381 pul3 = Show[{pul3 , gul3}]

382

383 (* =================== Exporting the graphics =================== *)

384 Export["GV_Displacement_lbar_ .3 _xi_changing.pdf", pul3]

385 (* =================================================== *)

386

387 (* ===== Fixing Overscript [\[ ScriptL], _] = 0.5 & Varying \[Xi] ===== *)

388

389 pul5 = Plot[

390 {

391 u\[Xi]\[Tau] /. {lbar -> 0.5, \[Xi] -> 0.1, P -> 10000 , A -> 1} //

392 Chop // Simplify ,

393 u\[Xi]\[Tau] /. {lbar -> 0.5, \[Xi] -> 0.3, P -> 10000 , A -> 1} //

394 Chop // Simplify ,

395 u\[Xi]\[Tau] /. {lbar -> 0.5, \[Xi] -> 0.5, P -> 10000 , A -> 1} //

396 Chop // Simplify ,

397 u\[Xi]\[Tau] /. {lbar -> 0.5, \[Xi] -> 0.7, P -> 10000 , A -> 1} //

398 Chop // Simplify

399 },

400 {\[ Tau], 0, 200},

401 Frame -> {True , True , False , False},

402 FrameLabel -> {"Dimensionless time \[Tau]",

403 "Normalized Displacement u(\[Xi],\[Tau])"},

404 Axes -> False ,

405 (*

406 PlotStyle \[Rule]
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407 {

408 {Darker[Green],Thickness [0.005]} ,

409 {Red ,Thickness [0.005]} ,

410 {Darker[Blue],Thickness [0.005]} ,

411 {Orange ,Thickness [0.005]}

412 },

413 *)

414 PlotLegends -> {"\[Xi]=0.1", "\[Xi]=0.3", "\[Xi]=0.5",

415 "\[Xi ]=0.7"}];

416

417 (* =================== Optimizing the graphics =================== *)

418 gul5 = Graphics[

419 {

420 Text

421 [

422 Style["\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5",

423 FontFamily -> "Times New Roman",

424 FontSize -> 14], {15, 1.4}

425 ](*,

426 Thickness [0.005] ,

427 Green ,

428 Line

429 [

430 {{110 ,1} ,{120 ,1}}

431 ]*)

432 }

433 ];

434

435

436 (* =================== Showing the graphics =================== *)

437 pul5 = Show[{pul5 , gul5}]

438

439 (* =================== Exporting the graphics =================== *)

440 Export["GV_Displacement_lbar_ .5 _xi_changing.pdf", pul5]

441 (* ============================================== *)
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1 (* Gradient Viscoelasticity: Strain Response of 1D bar *)

2

3 (*

4 Author: Behrooz Karami

5 Department of Civil & Environemental Engineering

6 University of Brescia

7 Date: 2023 -06 -15

8 1D Bar Modeling: Gradient Viscoelasticity

9 *)

10

11

12 (*

13 Defining material properties and experimental data.

14 *)

15 E0 = 1300;

16 Ej = {2592.2 , 1398.8 , 1284.4 , 1019.2 , 795.6, 400.4, 309.4, 52.0};

17 tj = {1.5*10^ -5 , 1.5*10^ -4 , 1.5*10^ -3 , 1.5*10^ -2 , 1.5*10^ -1 , 1.5,

18 1.5*10 , 1.5*10^2};

19

20 (*

21 Defining the parameters.

22 *)

23 \[ CurlyEpsilon ]0 = 0.6;

24 L = 0.1; \[Rho] = 50;

25

26 (*

27 Relaxation function relationship.

28 *)

29 Ebar = E0/s + \!\(

30 \* UnderoverscriptBox [\(\[ Sum ]\), \(j = 1\), \(8\)]

31 \* FractionBox [\(Ej[[j]]\), \(s +

32 \* FractionBox [\(1\) , \(

33 \* FractionBox [\(tj [\([\) \(j\)\(]\) ]\), \(L\)]

34 \* SqrtBox[

35 FractionBox [\(Ee\), \(\[ Rho]\) ]]\) ]\)]\);

36 Ee = E0 + \!\(

37 \* UnderoverscriptBox [\(\[ Sum ]\), \(j = 1\), \(8\) ]\(Ej[[j]]\)\);

38 (*

39 Defining constants

40 *)

41 c1 = (lbar (\[ CurlyEpsilon ]0/s - P/(s A s Ebar)))/(2 Cosh [1/ lbar]);

42 c2 = -((lbar (\[ CurlyEpsilon ]0/s - P/(s A s Ebar)))/(

43 2 Cosh [1/ lbar]));

44 c3 = P/(s A s Ebar);

45 c4 = 0;

46

47

48 (* Laplace transform solution for the displacement

49 *)

50 ubar = c1 Exp [\[Xi]/lbar] + c2 Exp[-\[Xi]/lbar] + c3 \[Xi] + c4;

51 (*

52 Laplace transform solution for the strain

53 *)

54 \[ CurlyEpsilon]bar =

55 c1/lbar Exp [\[Xi]/lbar] - c2/lbar Exp[-\[Xi]/lbar] + c3;

56 (*

57 Time domain displacement solution:

58 *)
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59 u\[Xi]t = InverseLaplaceTransform[ubar , s, t];

60

61 (*

62 Time domain strain solution:

63 *)

64 \[ CurlyEpsilon ]\[Xi]t =

65 InverseLaplaceTransform [\[ CurlyEpsilon]bar , s, t];

66

67

68 (*

69 Introducing dimensionless \[Tau] parameter for displacement.

70 *)

71 u\[Xi]\[Tau] := u\[Xi]t /. t -> (L \[Tau] )/Sqrt[Ee/\[Rho]];

72 (*

73 Introducing dimensionless \[Tau] parameter for strain.

74 *)

75 \[ CurlyEpsilon ]\[Xi]\[ Tau] := \[ CurlyEpsilon ]\[Xi]t /.

76 t -> (L \[Tau] )/Sqrt[Ee/\[Rho]];

77

78 (*

79 Normalized displacement soluiton

80 *)

81 u\[Xi]\[Tau]Nrm = u\[Xi]\[Tau] /((P L)/(A Ee));

82

83 (*

84 Normalized strain solution.

85 *)

86 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm = \[ CurlyEpsilon ]\[Xi]\[ Tau] /(P /(

87 A Ee));

88

89

90 (* =================== PLOTTING THE STRAIN =================== *)

91 (* ====== Varying Overscript [\[ ScriptL], _] & \[Xi] = 0.3 ====== *)

92

93 ps3 = Plot[

94 {

95 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.1, \[Xi] -> 0.3,

96 P -> 10000 , A -> 1} // Chop // Simplify ,

97 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.3, \[Xi] -> 0.3,

98 P -> 10000 , A -> 1} // Chop // Simplify ,

99 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.4, \[Xi] -> 0.3,

100 P -> 10000 , A -> 1} // Chop // Simplify ,

101 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.5, \[Xi] -> 0.3,

102 P -> 10000 , A -> 1} // Chop // Simplify

103 },

104 {\[ Tau], 0, 2*10^2} ,

105 Frame -> {True , True , False , False},

106 FrameLabel -> {"Dimensionless time \[Tau]",

107 "Normalized Strain \[ CurlyEpsilon ](\[Xi],\[Tau])"},

108 Axes -> False ,

109 (*

110 PlotStyle \[Rule]

111 {

112 {Darker[Green],Thickness [0.005]} ,

113 {Red ,Thickness [0.005]} ,

114 {Darker[Blue],Thickness [0.005]} ,

115 {Orange ,Thickness [0.005]}

116 },
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117 *)

118 PlotLegends -> {"\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

119 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

120 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.4",

121 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5"}];

122

123 (* =================== Optimizing the graphics =================== *)

124 gs3 = Graphics[

125 {

126 Text

127 [

128 Style["\[Xi ]=0.3",

129 FontFamily -> "Times New Roman",

130 FontSize -> 14], {135, 1.5}

131 ](*,

132 Thickness [0.005] ,

133 Green ,

134 Line

135 [

136 {{110 ,1} ,{120 ,1}}

137 ]*)

138 }

139 ];

140

141

142 (* =================== Showing the graphics =================== *)

143 ps3 = Show[{ps3 , gs3}]

144

145 (* =================== Exporting the graphics =================== *)

146 Export["GV_Strain_lbar_changing_xi_ .3. pdf", ps3]

147

148

149

150 (* ======= Varying Overscript [\[ ScriptL], _] & \[Xi] = 0.5 ======= *)

151

152 ps5 = Plot[

153 {

154 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.1, \[Xi] -> 0.5,

155 P -> 10000 , A -> 1} // Chop // Simplify ,

156 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.3, \[Xi] -> 0.5,

157 P -> 10000 , A -> 1} // Chop // Simplify ,

158 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.4, \[Xi] -> 0.5,

159 P -> 10000 , A -> 1} // Chop // Simplify ,

160 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.5, \[Xi] -> 0.5,

161 P -> 10000 , A -> 1} // Chop // Simplify

162 },

163 {\[ Tau], 0, 2*10^2} ,

164 Frame -> {True , True , False , False},

165 FrameLabel -> {"Dimensionless time \[Tau]",

166 "Normalized Strain \[ CurlyEpsilon ](\[Xi],\[Tau])"},

167 Axes -> False ,

168 (*

169 PlotStyle \[Rule]

170 {

171 {Darker[Green],Thickness [0.005]} ,

172 {Red ,Thickness [0.005]} ,

173 {Darker[Blue],Thickness [0.005]} ,

174 {Orange ,Thickness [0.005]}
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175 },

176 *)

177 PlotLegends -> {"\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

178 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

179 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.4",

180 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5"}];

181

182 (* =================== Optimizing the graphics =================== *)

183 gs5 = Graphics[

184 {

185 Text

186 [

187 Style["\[Xi ]=0.5",

188 FontFamily -> "Times New Roman",

189 FontSize -> 14], {125, 1.5}

190 ](*,

191 Thickness [0.005] ,

192 Green ,

193 Line

194 [

195 {{110 ,1} ,{120 ,1}}

196 ]*)

197 }

198 ];

199

200

201 (* =================== Showing the graphics =================== *)

202 ps5 = Show[{ps5 , gs5}]

203

204 (* =================== Exporting the graphics =================== *)

205 Export["GV_Strain_lbar_changing_xi_ .5. pdf", ps5]

206

207

208

209

210 (* ======= Varying Overscript [\[ ScriptL], _] & \[Xi] = 0.7 ======= *)

211

212 ps7 = Plot[

213 {

214 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.1, \[Xi] -> 0.7,

215 P -> 10000 , A -> 1} // Chop // Simplify ,

216 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.3, \[Xi] -> 0.7,

217 P -> 10000 , A -> 1} // Chop // Simplify ,

218 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.4, \[Xi] -> 0.7,

219 P -> 10000 , A -> 1} // Chop // Simplify ,

220 \[ CurlyEpsilon ]\[Xi]\[ Tau] /. {lbar -> 0.5, \[Xi] -> 0.7,

221 P -> 10000 , A -> 1} // Chop // Simplify

222 },

223 {\[ Tau], 0, 2*10^2} ,

224 Frame -> {True , True , False , False},

225 FrameLabel -> {"Dimensionless time \[Tau]",

226 "Normalized Strain \[ CurlyEpsilon ](\[Xi],\[Tau])"},

227 Axes -> False ,

228 (*

229 PlotStyle \[Rule]

230 {

231 {Darker[Green],Thickness [0.005]} ,

232 {Red ,Thickness [0.005]} ,
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233 {Darker[Blue],Thickness [0.005]} ,

234 {Orange ,Thickness [0.005]}

235 },

236 *)

237 PlotLegends -> {"\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

238 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

239 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.4",

240 "\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5"}];

241

242 (* =================== Optimizing the graphics =================== *)

243 gs7 = Graphics[

244 {

245 Text

246 [

247 Style["\[Xi ]=0.7",

248 FontFamily -> "Times New Roman",

249 FontSize -> 14], {115, 1.1}

250 ](*,

251 Thickness [0.005] ,

252 Green ,

253 Line

254 [

255 {{110 ,1} ,{120 ,1}}

256 ]*)

257 }

258 ];

259

260

261 (* =================== Showing the graphics =================== *)

262 ps7 = Show[{ps7 , gs7}]

263

264 (* =================== Exporting the graphics =================== *)

265 Export["GV_Strain_lbar_changing_xi_ .7. pdf", ps7]

266

267

268 (* ===============================================================

269 *)

270 (* ==================================================================

271 *)

272 (* ==== Fixing Overscript [\[ ScriptL], _] = 0.1 & Varying \[Xi] ====== *)

273

274 psl1 = Plot[

275 {

276 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.1, \[Xi] -> 0.1,

277 P -> 10000 , A -> 1} // Chop // Simplify ,

278 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.1, \[Xi] -> 0.3,

279 P -> 10000 , A -> 1} // Chop // Simplify ,

280 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.1, \[Xi] -> 0.5,

281 P -> 10000 , A -> 1} // Chop // Simplify ,

282 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.1, \[Xi] -> 0.7,

283 P -> 10000 , A -> 1} // Chop // Simplify

284 },

285 {\[ Tau], 0, 200},

286 Frame -> {True , True , False , False},

287 FrameLabel -> {"Dimensionless time \[Tau]",

288 "Normalized Strain \[ CurlyEpsilon ](\[Xi],\[Tau])"},

289 Axes -> False ,

290 (*
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291 PlotStyle \[Rule]

292 {

293 {Darker[Green],Thickness [0.005]} ,

294 {Red ,Thickness [0.005]} ,

295 {Darker[Blue],Thickness [0.005]} ,

296 {Orange ,Thickness [0.005]}

297 },

298 *)

299 PlotLegends -> {"\[Xi]=0.1", "\[Xi]=0.3", "\[Xi]=0.5",

300 "\[Xi ]=0.7"}];

301

302 (* =================== Optimizing the graphics =================== *)

303 gsl1 = Graphics[

304 {

305 Text

306 [

307 Style["\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.1",

308 FontFamily -> "Times New Roman",

309 FontSize -> 14], {115, 1.5}

310 ](*,

311 Thickness [0.005] ,

312 Green ,

313 Line

314 [

315 {{110 ,1} ,{120 ,1}}

316 ]*)

317 }

318 ];

319

320

321 (* =================== Showing the graphics =================== *)

322 psl1 = Show[{psl1 , gsl1}]

323

324 (* =================== Exporting the graphics =================== *)

325 Export["GV_Strain_lbar_ .1 _xi_changing.pdf", psl1]

326 (* ====================================================================

*)

327

328 (* ===== Fixing Overscript [\[ ScriptL], _] = 0.3 & Varying \[Xi] ==== *)

329

330 psl3 = Plot[

331 {

332 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.3, \[Xi] -> 0.1,

333 P -> 10000 , A -> 1} // Chop // Simplify ,

334 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.3, \[Xi] -> 0.3,

335 P -> 10000 , A -> 1} // Chop // Simplify ,

336 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.3, \[Xi] -> 0.5,

337 P -> 10000 , A -> 1} // Chop // Simplify ,

338 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.3, \[Xi] -> 0.7,

339 P -> 10000 , A -> 1} // Chop // Simplify

340 },

341 {\[ Tau], 0, 200},

342 Frame -> {True , True , False , False},

343 FrameLabel -> {"Dimensionless time \[Tau]",

344 "Normalized Strain \[ CurlyEpsilon ](\[Xi],\[Tau])"},

345 Axes -> False ,

346 (*

347 PlotStyle \[Rule]
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348 {

349 {Darker[Green],Thickness [0.005]} ,

350 {Red ,Thickness [0.005]} ,

351 {Darker[Blue],Thickness [0.005]} ,

352 {Orange ,Thickness [0.005]}

353 },

354 *)

355 PlotLegends -> {"\[Xi]=0.1", "\[Xi]=0.3", "\[Xi]=0.5",

356 "\[Xi ]=0.7"}];

357

358 (* =================== Optimizing the graphics =================== *)

359 gsl3 = Graphics[

360 {

361 Text

362 [

363 Style["\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.3",

364 FontFamily -> "Times New Roman",

365 FontSize -> 14], {115, 1.3}

366 ](*,

367 Thickness [0.005] ,

368 Green ,

369 Line

370 [

371 {{110 ,1} ,{120 ,1}}

372 ]*)

373 }

374 ];

375

376

377 (* =================== Showing the graphics =================== *)

378 psl3 = Show[{psl3 , gsl3}]

379

380 (* =================== Exporting the graphics =================== *)

381 Export["GV_Strain_lbar_ .3 _xi_changing.pdf", psl3]

382 (* =============================================================== *)

383

384 (* === Fixing Overscript [\[ ScriptL], _] = 0.5 & Varying \[Xi] === *)

385

386 psl5 = Plot[

387 {

388 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.5, \[Xi] -> 0.1,

389 P -> 10000 , A -> 1} // Chop // Simplify ,

390 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.5, \[Xi] -> 0.3,

391 P -> 10000 , A -> 1} // Chop // Simplify ,

392 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.5, \[Xi] -> 0.5,

393 P -> 10000 , A -> 1} // Chop // Simplify ,

394 \[ CurlyEpsilon ]\[Xi]\[ Tau]Nrm /. {lbar -> 0.5, \[Xi] -> 0.7,

395 P -> 10000 , A -> 1} // Chop // Simplify

396 },

397 {\[ Tau], 0, 200},

398 Frame -> {True , True , False , False},

399 FrameLabel -> {"Dimensionless time \[Tau]",

400 "Normalized Strain \[ CurlyEpsilon ](\[Xi],\[Tau])"},

401 Axes -> False ,

402 (*

403 PlotStyle \[Rule]

404 {

405 {Darker[Green],Thickness [0.005]} ,
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406 {Red ,Thickness [0.005]} ,

407 {Darker[Blue],Thickness [0.005]} ,

408 {Orange ,Thickness [0.005]}

409 },

410 *)

411 PlotLegends -> {"\[Xi]=0.1", "\[Xi]=0.3", "\[Xi]=0.5",

412 "\[Xi ]=0.7"}];

413

414 (* =================== Optimizing the graphics =================== *)

415 gsl5 = Graphics[

416 {

417 Text

418 [

419 Style["\!\(\* OverscriptBox [\(\[ ScriptL ]\), \(_\)]\) =0.5",

420 FontFamily -> "Times New Roman",

421 FontSize -> 14], {115, 1}

422 ](*,

423 Thickness [0.005] ,

424 Green ,

425 Line

426 [

427 {{110 ,1} ,{120 ,1}}

428 ]*)

429 }

430 ];

431

432

433 (* =================== Showing the graphics =================== *)

434 psl5 = Show[{psl5 , gsl5}]

435

436 (* =================== Exporting the graphics =================== *)

437 Export["GV_Strain_lbar_ .5 _xi_changing.pdf", psl5]

438 (* =====================================

439 *)

440
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1 (*

2 Author: Behrooz Karami

3 Department of Civil & Environemental Engineering

4 University of Brescia

5 Date: 2023 -06 -15

6 Gradient Thermoelasticity: Strain and Displacement Responses of 1D Bar.

7 *)

8

9

10 (*

11 Defining displacement responses.

12 *)

13 uoL1 = 1/3 \[Alpha] (\[Xi]^2 - 1) \[Xi];

14 uoL2 = \[Alpha] ((1/3 (\[Xi]^2 - 1) \[Xi]) +

15 2 *k^2 *(\[Xi] - Sinh [\[Xi]/k]/Sinh [1/k]));

16

17 p0 = Plot

18 [

19 {

20 uoL1 /. \[ Alpha] -> 0.1,

21 uoL2 /. {\[ Alpha] -> 0.1, k -> 0.2 },

22 uoL2 /. {\[ Alpha] -> 0.1, k -> 0.4}

23 },

24 {\[Xi], -1.0, 1.0},

25 Frame -> {True , True , True , True},

26 PlotRange -> {{-1, 1}, Automatic},

27 FrameLabel -> {" x/L", "Displacement (u)"},

28 PlotLegends -> {"\[Zeta ]=0", "\[Zeta ]=0.2", "\[Zeta ]=0.4"}

29 ]

30

31 Export["displacement.pdf", p0]

32

33

34 (*

35 Defining strain responses.

36 *)

37

38 \[ CurlyEpsilon]Theta = - \[Alpha] (1 - \[Xi]^2 );

39 \[ CurlyEpsilon ]1 = \[Alpha] (\[Xi]^2 - 1/3);

40 \[ CurlyEpsilon ]2 = \[Alpha] (\[Xi]^2 - 1/3 + 2 k^2 -

41 2 k Cosh [\[Xi]/k]/Sinh [1/k]);

42

43 (*

44 Specifying the parameters and plotting the strains.

45 *)

46

47 p1 = Plot

48 [

49 {

50 \[ CurlyEpsilon ]1 /. \[Alpha] -> 0.1,

51 \[ CurlyEpsilon ]2 /. {\[ Alpha] -> 0.1, k -> 0.2},

52 \[ CurlyEpsilon ]2 /. {\[ Alpha] -> 0.1, k -> 0.4},

53 {\[ CurlyEpsilon]Theta /. \[ Alpha] -> 0.1}

54 },

55 {\[Xi], -1.0, 1.0},

56 Frame -> {True , True , True , True},

57 PlotRange -> {{-1, 1}, Automatic},

58 FrameLabel -> {" x/L", "Strain \[ CurlyEpsilon]"},
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59 PlotLegends -> {"\[Zeta ]=0", "\[Zeta ]=0.2", "\[Zeta ]=0.4",

60 "Imposed Strain"}

61 ]

62

63

64 p1 = Plot[

65 \[ CurlyEpsilon ]2 /. {\[ Alpha] -> 0.1,

66 k -> 0.2}, \[ CurlyEpsilon ]2 /. {\[ Alpha] -> 0.1, k -> 0.4},

67 \[ CurlyEpsilon]Theta /. {\[ Alpha] ->

68 0.1, \[ CurlyEpsilon ]1 /. \[Alpha] -> 0.1},

69 PlotLegends -> {"\[Zeta ]=0", "\[Zeta ]=0.2", "\[Zeta ]=0.4",

70 "Imposed Strain"}, {\[Xi], -1, 1}]

71

72 Export["strain.pdf", p1];
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