OMS-2 molecular sieves doped with ceria for the development of new emission control catalyst

Ruairi O'Donnell, Kathryn Ralphs, Maxime Grolleau, Haresh Manyar, Nancy Artioli* ¹ Queen's University Belfast, BT9 5AG, UK. *corresponding author: n.artioli@qub.ac.uk

Introduction

Manganese oxide octahedral molecular sieves (OMS) are microporous, inorganic nanostructures. Manganese oxides with cryptomelane type structures (OMS-2), has a onedimensional tunnel structure composed of edge shared MnO_6 octahedra that form a 2 x 2 arrangement. [1] OMS-2 materials are hydrophobic and hence have improved hydrolytic stability under oxidation conditions. The mixed valency in OMS-2 contributes to its highly active and selective catalysis. [2] Functionality of OMS-2 can be further extended by structural incorporation of various dopants. In this work we have synthesized a range of OMS-2 based supports doped with Ce, CeZr and Pt for emission control. Materials often used for emission control applications are precious metals supported on a Ceria Zirconia mixed oxide [3-5]. Currently, one of the main challenges is to provide a catalyst which is active at low temperature, due to the high emissions of combustion engines during cold start cycles [6]. In particular, we have investigated the use of these OMS-2 hybrid catalyst supports for their activity in the oxidation reactions of CO, C_3H_6 and CH_4 and compared with a commercial diesel oxidation catalyst. The new catalyst samples were tested under representing those in the catalytic filter of a light duty diesel vehicle. The effect of doping the OMS-2 support with Ceria and Zirconia have been studied both pre and post loading with 1wt% Pt.

Materials and Methods

OMS-2 molecular sieves were prepared by a sol-gel method. KMnO₄ (12.65 g, 0.08 mol) was dissolved in deionized water (800 ml). Maleic acid (3.09 g, 0.027 mol) was added slowly to the KMnO₄ solution and stirred for the desired duration. After stirring, the mixture was allowed to settle, and the top water layer decanted. The resultant gel was then washed 4 times with deionized water. During washing the gel and water were stirred for approximately 5 min each time, the gel was allowed to settle then the water was decanted off. The remaining water was then removed *via* vacuum and the gel transferred to an oven and dried overnight at 90 °C. The gel was then crushed into a fine powder and calcined in air at 450 °C for 4 h. Ce doped OMS-2 was prepared by addition of Ce nitrate during the synthesis of OMS-2 prior to the addition of maleic acid. 1 wt% Pt materials were prepared by incipient wetness impregnation.

To investigate the effect of the dopants on the catalytic activity of the OMS-2 supports, temperature programmed reactions were carried out. A reaction mixture composed of 10% O₂, 4.5% H₂O, 2000ppm CO, 2000ppm CH₄, 2000ppm C₃H₆, and 200ppm NO with a total flow of 100ml/min. The temperature was increased from 303 K to 773 K at a rate of 5 K/min and held for 20 mins before being cooled to room temperature. A temperature programmed desorption was carried out immediately after the reaction with 100 ml/min of Ar, using the same temperature ramp. Commercial Ce_{0.5}Zr_{0.5} from Sigma Aldrich and commercial Pt 1 wt% Ce_{0.5}Zr_{0.5} were used as a reference. This cycle was repeated 3 times on each sample. The exit stream was analysed using a Pfeiffer Vacuum quadrupole mass spectrometer. Further characterisation has been carried out including XRD, ICP metal analysis and BET surface area.

Results and Discussion

Figure 1 shows the C_3H_6 conversion as a function of temperature in a typical oxidation cycle for each support prepared. It is shown that the addition of Ceria and Zirconia has an impact on

the activity of the OMS-2 support. The addition of CeO_2 has improved the activity with 50% Ce OMS-2 and 75% Ce OMS-2 reducing the T_{50} value by 115 K and 136 K respectively, compared to the commercial $Ce_{0.5}Zr_{0.5}$ support. Less enhancements are observed when $Ce_{0.5}Zr_{0.5}$ is added, with the T_{50} values of 577K and 620K for 50% $Ce_{0.5}Zr_{0.5}$ OMS-2 and 75% $Ce_{0.5}Zr_{0.5}$ OMS-2 respectively, compared with the commercial $Ce_{0.5}Zr_{0.5}$ support.

Figure 1 shows the C_3H_6 conversion as a function of temperature for each support loaded with Pt 1wt%. It can be seen that the enhancements of the support are maintained when loaded with Pt. The T_{50} values are reduced by 52 K, 81 K and 45 K for 1% Pt 50% Ce OMS-2, 1% Pt 75% Ce OMS-2, and 1% Pt 75%

 $Ce_{0.5}Zr_{0.5}$ OMS-2 respectively when compared with the commercial 1%Pt $Ce_{0.5}Zr_{0.5}$ sample.

Significance

These results demonstrate that the addition of CeO₂ to OMS-2 has a significant impact on the oxidation of these catalysts in the low temperature region. The catalysts doped with CeO₂ showed a catalytic enhancement than Ce_{0.5}Zr_{0.5}O₂ with OMS-2, due to the higher reduction temperature of Zirconia. Therefore, only oxygen stored within the Ceria lattice is available for the oxidation reaction, of which the concentration is lower than that of the supports which are doped with Ceria only. This would also explain why 75% Ce OMS-2 performs better than 50% Ce OMS-2. Furthermore, the enhancement observed when loading Pt was much greater in the 75% Ce_{0.5}Zr_{0.5} OMS-2 and commercial samples, where T₅₀ were decreased by 118 K and 68 K respectively. Both 75% and 50% Ce OMS-2 samples where T₅₀ value were decreased by only 13 K and 5 K respectively. This could also be an indication to the metal-support interaction in each group of material.

References

[1] L. Pahalagedara, D. A. Kriz, N. Wasalathanthri, C. Weerakkody, Y. Meng, S. Dissanayuka, M. Pahalagedara, Z. Luo, S. L. Suib, P. Nandi, R. J. Mever, Appl. Catal. B. Environ. 2017, 204, 411.

[2] C. Chen, E. Njagi, S. Chen, D. Howwath, L. Xu, A. Morey, C. Mackin, R. Joesten, S. Suib, Inorg. Chem. 2015, 54, 10163

[3] T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, "Fundamentals and Catalytic Applications of CeO₂-Based Materials," *Chem. Rev.*, vol. 116, no. 10, pp. 5987–6041, 2016.

[4] R. M. Heck and R. J. Farrauto, "Automobile exhaust catalysts," Appl. Catal. A Gen., vol. 221, no. 1–2, pp. 443–457, 2001.

[5] M. Keenan, R. Uk, and R. Powerlink, "Exhaust Emissions Control: 60 Years of Innovation and Development," p. 14, 2017.

[6] A. Roberts, R. Brooks, and P. Shipway, "Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions," *Energy Convers. Manag.*, vol. 82, pp. 327–350, 2014.

уксс 2019

List of Orals 2019

#	Title	Authors
PI01	Design and implementation of <i>de novo</i> biosynthetic cascades	Sabine Flitsch
PI02	Process intensification through structuring catalyst and reactor - Highly active Fischer-Tropsch synthesis catalysts by MOF mediated synthesis	Freek Kapteijn, Xiaohui Sun, Tim Wezendonk, David Vervloet, Bart Kaskes, Ruud van Ommen and Jorge Gascon
PI03	Design of stable Ni/ZrO2 catalysts for methane dry reforming	Andreas Jentys, M. Steib, Y. Lou, Y. Liu, J. A. Lercher
P104	Computer-aded Design of Sulfide Nano- catalysts for Sustainable Energy Applications	Nora H. de Leeuw
	Can Base Metals Replace PGMs in Catalysts for Three-way Gasoline	Andrew York, Crispin Cooper, Kerry Simmance and Sam Wilkinson
K01	Emissions Control? Kinetic, Reaction Mechanism and Catalyst Sizing	
	Biocatalyst – artificial metalloenzyme cascade based on alcohol dehydrogenase	Simone Morra and Anca Pordea
K02	A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H2O2	Simon Freakley
К03	Developing "Strong and Stable" Palladium Catalysts for Wacker-Type Oxidation Reactions	Mark Muldoon and Matthew Blair
K04	Molecular insights into the enzymatic oxidation of polysaccharides by lytic polysaccharide monooxygenases	Paul Walton and Gideon Davies
K05	From Lignin to Chemicals: Hydrogenation of Lignin Models and Mechanistic Insights into Hydrodeoxygenation via Low Temperature C–O Bond Cleavage	George Britovsek
K06	Direct Correlation between Adsorption Energetics and Nuclear Spin Relaxation in a Liquid-saturated Catalyst Material	Carmine D'Agostino, Neil Robinson, Christopher Robertson, Lynn Gladden and Stephen Jenkins
K07	Fischer-Tropsch – An Old Technology with New Opportunities	James Paterson

уксс 2019

K08	Structure Selectivity of Supported Pd nanoparticles for Catalytic NH3 Oxidation resolved using combined Operando Spectroscopy	Ellie K. Dann, Emma K. Gibson, Rachel H. Blackmore, C. Richard A. Catlow, Paul Collier, Arunabhiram Chutia, Tugce Eralp Erden, Christopher Hardacre, Anna Kroner, Maarten Nachtegaal, Agnes Raj, Scott M. Rogers, S. F. Rebecca Taylor, Paul Thompson, George F. Tierney, Constantinos D. Zeinalipour Yazdi, Alexandre Goguet and Peter P Wells
K09	Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions	Christopher Parlett, Mark Isaacs, Simon Beaumont, Karen Wilson and Adam Lee
K10	Biocatalyst – artificial metalloenzyme cascade based on alcohol dehydrogenase	Simone Morra and Anca Pordea
K11	Magnetocatalysis for selectivity manipulation	Pip Hellier, Michael Bowker, Adli Peck and Michael Claeys
K12	Mechanistic Insights into the Liquid Phase Hydrogenation/Deuteration of Mandelonitrile	Mairi McAllister, Cédric Boulho, Colin Brennan and David Lennon
K13	Cross-checking typical Langmuir- Hinshelwood model assumptions with direct liquid-phase adsorption studies	Nikolay Cherkasov, Alexander Kunitsa, David Jackson and Evgeny Rebrov
O01	Low Temperature NOx Storage on Pd zeolites for low temperature cold start emissions	Maria Pia Ruggeri, Loredana Mantarosie and Husn Islam
O02	Selective Catalytic Reduction of NO with NH3 over Cu, Fe-Zeotype Catalysts: Operando Synchrotron IR Microspectroscopic Study	Ivalina Minova, Paul Wright, Alex Greenaway, Andrew Beale, Russell Howe, Santhosh Matam, Mark Frogley and Gianfelice Cinque
O03	OMS-2 molecular sieves doped with ceria for the development of new emission control catalysts	Kathryn Rogers, Ruairi O'Donnell, Maxime Grolleau, John Duffin, Haresh Manyar, Nancy Artioli
O04	Towards Application of Prenylated Flavin- dependent Decarboxylase	Godwin Aleku and David Leys
O05	Simulation as an Aid for Biocatalyst Engineering: Insights, Tools and In Silico Assays	Marc van der Kamp, Sam Johns and Stefano Serapian
O06	Electro-catalytic reduction of CO2 to acetic acid on greigite Fe3S4	David Santos-Carballal, Alberto Roldan Martinez and Nora H. de Leeuw

007	Effect of NOx on the Capture and Utilisation of CO2 in Superbase Ionic Liquids	Adam Greer, Rebecca Taylor, Helen Daly, Christopher Hardacre, Johan Jacquemin, Matthew Quesne and Richard Catlow
O08	Selectivity of CO2 photoelectrochemical reduction on Ag, Bi tungstates	Miguel Galante, Mohammad Hossain, Paola Munoz, Luis Duarte, Rebecca Taylor, Christopher Hardacre, Robin Macaluso, Krishnan Rajeshwar and Claudia Longo
O09	Is there an Alternative to the Haber-Bosch process? An ab-initio Analysis of the Catalytic Oxidation of Nitrogen	Ulrich Hintermair, Vera Krewald and Jack Glancy
O10	Au-Pd alloy catalysts for the oxidation of organic compounds	Ali Nasrallah, David Willock and Richard Catlow
011	Total Neutron Scattering integrated with NMR to Study Heterogeneous Catalysis	Markus Leutzsch, Marta Falkowska, Terri- Louise Hughes, Andrew J. Sederman, Lynn F. Gladden, Michael D. Mantle, Tristan G. A. Youngs, Daniel T. Bowron, Haresh Manyar and Chris Hardacre
O12	Recent Developmetns in Asymmetric Reduction using Ruthenium Catalysts	Martin Wills
O13	Towards a Mechanistic Understanding of Antimicrobial Resistance to Colistin	Reynier Suardiaz, Emily Lythell, Philip Hinchliffe, Natalie Fey, James Spencer and Adrian Mulholland
O14	Constrained geometry complexes for ethylene polymerisation catalysis	Thomas Williams, Jean-Charles Buffet, Alexander Smith, Zoë Turner and Dermot O'Hare
O15	Influence of catalyst aging on the low- temperature interactions of 1-octene with ZSM-5 cracking catalyst: a neutron spectroscopic study.	Alexander Hawkins, Alexander O'Malley, Andrea Zachariou, Paul Collier, Russell Ewings, Ian Silverwood, Russell Howe, Stewart Parker and David Lennon
O16	ULTRA laser facility: what we can offer to the catalysis community	Igor Sazanovich, Gregory Greetham, Ian Clark, Paul Donaldson and Michael Towrie
017	Using Inelastic Neutron Scattering to Study the Changing Nature of the ZSM-5 Catalyst during the Methanol-to- Hydrocarbons Reaction	Andrea Zachariou, Alexander Hawkins, Suwardiyanto, Russell Howe, Paul Collier, Stewart F. Parker and David Lennon
O18	Molecularly Imprinted Polymers for the Recovery and Recycling of Thio(urea) organocatalysts	Federica Pessagno, Matthew Blair, Mark Muldoon and Panagiotis Manesiotis
O19	Killing Two Birds with One Stone: Organocatalytic Membrane Reactor for Integrated Synthesis and Separation	Levente Cseri, Jozsef Kupai and Gyorgy Szekely

O20	Understanding a Hydroformylation Catalyst the Produces Branched Aldehydes from Alkyl Alkenes	Paul Dingwall, Michael Buehl and Matt Clarke
O21	On the development of kinetic models for gold catalyzed HMF oxidation in basic medium	Arun Pankajakshan, Rebecca Engel, Sankar Meenakshisundaram, Donald Bethell, Graham Hutchings, Asterios Gavriilidis and Federico Galvanin
O22	CO2 hydrogenation to CH3OH over PdZn catalysts	Jonathan Esquius, Robert Armstrong, Hasliza Bahruji and Graham Hutchings
O23	Ni stabilised in La2Zr2O7: a robust catalyst for CO2 recycling	Estelle le Sache, Laura Pastor-Pérez, David Watson, Antonio Sepúlveda-Escribano and Tomas Ramirez-Reina
O24	Sustainable CO2 conversion over visible- light-responsive perovskites via artificial photosynthesis	Eduardo Morais, Kristy Stanley, Ravindranathan Thampi and James Sullivan
O25	Nanocatalysts from Ionic Liquid Precursors for the Direct Conversion of CO2 to Hydrocarbons	Nancy Artioli, Peter Nockemann and Callum Jeffrey
O26	Non-thermal plasma enabled CO2 methanation over zeolite supported Ni catalysts employing La as promoter: probing the reaction mechanisms using in-situ DRIFTS	Huanhao Chen, Yibing Mu, Xiaolei Fan and Christopher Hardacre
027	Selective hydrogenation of sorbic acid over Pd and Pd-Re catalysts	Xiaohan Chen, Helen Daly, Haresh Manyar and Chris Hardacre
O28	Hydrogenation and low temperature hydrodeoxygenation of oxygen- substituted aromatics	Kathleen Kirkwood and David Jackson
O29	Preparation, Characterisation, and Testing of Supported Nickel Catalysts for Tetralin Hydrogenation	Ahmed Alasseel and David Jackson
O30	Hydrodeoxygenation of guaiacol over Pt/NC catalysts by in-situ generated hydrogen from water splitting	Wei Jin, Laura Pastor-Pére, Tomas Ramirez Rein and Sai Gu
O31	Inductive Heating Assisted Catalytic Hydrogenation of Naphthalene as a Model Compound of Poly-aromatics in Heavy Oil	Abarasi Hart, Mohamed Adam, John Robinson, Sean Rigby and Joseph Wood
O32	Bulk and surface properties of metal carbides: implications for catalysis	Matthew Quesne, Alberto Roldan, Nora de Leeuw and Richard Catlow

O33	Towards the Computational Rational Design of High-Performance Water Oxidation Electrocatalysts	Max García-Melchor, Michal Bajdich and Aleksandra Vojvodic
O34	Hydrogen adsorption on Transition Metal Carbides: A DFT study	Fabrizio Silveri, Matthew G. Quesne, Alberto Roldan, Nora H. De Leeuw and C. Richard A. Catlow
O35	Mesoporous titania thin films for photocatalysis	Genevieve Ososki and Philip Davies
O36	Dye sensitization of semiconducting Sn3S7(trenH)2 by ion exchange for photocatalysis	Mathias Hvid, Henrik Jeppesen and Nina Lock
O37	Nanoscale 3D elemental imaging and quantification to improve synthesis of Au@HgCdTe nanorods	Yi-Chi Wang, Thomas J.A. Slater, Xinyuan Li, Jiatao Zhang and Sarah J. Haigh
O38	Reduction of Methyl Orange in Presence of Silver-Pol(N-isopropylacrylamide-2- hydroxyethylmethacrylate-acrylic acid) Hybrid microgels Catalyst	Zahoor Farooqi, Robina Begum, Shumaila Batool and Khalida Naseem
O39	Enhanced Feedstock Recycling of Plastic Waste	Arthur Garforth, A Akah, A D Martin and J Hernandez-Martinez
O40	Influence of Anodic Potential Limit on the Electrocatalytic Performance of Size- Selected Platinum Clusters	Jo Humphrey, Patrick Harrison, Quanmin Guo, Richard Palmer and Andy Wain
O41	UiO-66 supported nickel catalysts for CO2 hydrogenation to methane assisted by non-thermal plasma	Yibing Mu, Huanhao Chen, Xiaolei Fan and Christophere Hardacre
O42	A newly-developed plug flow plasma DRIFTS cell for the in-situ investigation of plasma-assisted heterogeneously catalysed reaction	Cristina-Elena Stere, Sarayute Chansai, Rahman Gholami, Kanlayawat Wangkawong, Alex Goguet, Chris Hardacre and Burapat Inceesungvorn
O43	Sintering and Coking resistant Nickel/Zinc Oxide Yolk Shell Particles: Performance within the DRM reaction	Cameron Price, Laura Pastor-Perez, Tomas Reina and Jian Liu
O44	Efficient use of Rh via exsolution for application in automotive exhaust control	Chenyang Tang, Kelly Kousi, Dragos Neagu, Evangelos Papaioannou and Ian Metcalfe
O45	The Hydrothermal Growth of Metal Oxide Nanoparticles With Tailorable Morphololgies	Josh Davies, Philip Davies and M Sankar

O46	CO Binding and CO-induced Segregation of Highly Dilute Alloys: Investigating Nanoparticle Edges using Density Functional Theory	Konstantinos Papanikolaou, Matthew Darby and Michail Stamatakis
O47	Computational QM/MM and AIMD studies of the Methanol to Hydrocarbons process on zeolites H-Y and H-ZSM-5	Stefan Nastase, Alexander O'Malley, Andrew Logsdail and Richard Catlow
O48	Structural Geometry of Small α-NiMoO4 Nanoclusters Adsorbed on Al-PILC: a Combined EXAFS and DFT Studies	Ferensa Oemry, Anna Kroner, Indri Badria Adilina, Nino Rinaldi and Elizabeth Shotton
O49	Operando Kerr-Gated Raman Investigation of Methanol Conversion on Zeolites	Ines Lezcano-Gonzalez, Emma Campbell, Miren Agote-Aran, Emma Gibson, Alex Greenaway, Igor Sazanovich, Mike Towrie and Andrew Beale
O50	Experiment and simulation reveal how mutations in functional plasticity regions guide plant monoterpene synthase product outcome	Kara Ranaghan
O51	Hydrodeoxygenation of guaiacol as a lignin model compound over pillared clay supported NiMo catalyst	Indri Adilina, Nino Rinaldi, Sabar Simanungkalit, Fauzan Aulia, Ferensa Oemry, Ian Silverwood and Stewart Parker
O52	Active Site Hydration Governs the Stability of Sn-Beta during Continuous Glucose Conversion	Luca Botti, Daniele Padovan and Ceri Hammond
O53	Nitrogen Based Acidic Ionic Liquids for the Esterification of Glycerol with Acetic Acid	John Keogh, Manish Tiwari and Haresh Manyar
O54	Industrial Fertiliser Production and Performance	Daniel Holland
O55	Growth of carbon nanotubes with enriched chiral angles	Santiago Esconjauregui, Lorenzo D'Arsie, Hisashi Sugime, John Robertson
O56	FAU Y zeolites with superior mesoporosity for fluid catalytic cracking (FCC)	Xiaolei Fan
O57	Decomposition of hydrogen iodide over NiO/ZrO2 xerogel catalyst in sulfur-iodine cycle for the production of hydrogen	Ashok Bhaskarwar, Sony Chaddha, Divya Jyoti, Damaraju Parvatalu and Bharat Bhargav
O58	Chemical Equilibrium Analysis of Glycerol Steam Reforming to Hydrogen at Low Pressure	Ammaru Ismaila and Xiaolei Fan

O59	Phosgene Synthesis over an Activated Carbon Catalyst	Alastair Boyd, David Lennon and Don Jones
O60	Tin exchanged Tungstophosphoric acid supported on K-10 as catalyst for synthesis of n-Butyl levulinate from Furfuryl alcohol	Jennifer Dicks, Manish Tiwari, Vivek Ranade and Haresh Manyar
O61	Gas Phase Hydrogenation of Furaldehydes via Coupling with Alcohol Dehydrogenation over CeO2 supported Au-Cu	Fernando Cárdenas-Lizana, Chiara Pischetola, Laura Collado and Mark A. Keane