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A B S T R A C T

The fourth industrial revolution is a profound transformation utilizing emerging technologies like smart
automation, large-scale machine-to-machine communication, and the internet of things to change traditional
manufacturing and industrial practices. The analysis of the huge amount of data collected in all modern
industrial plants not only greatly benefited from modern tools of artificial intelligence but has also spurred
the development of new ones. In this context, we present a new approach based on the combined use of Long
Short-Term Memory (LSTM) neural networks and Bayesian inference for the predictive maintenance of an
industrial plant. Hotelling’s 𝑇 2 and 𝑄 metrics, assessing the degree of compatibility between the time-evolving
industrial data and the output of the LSTM, trained on a reference period of good working condition, are used
to update the Bayesian posterior probability about the good working condition of the plant. This method has
successfully been applied to a real industrial case, and the results are presented and discussed.
. Introduction

Maintenance plays an increasingly important role in business eco-
omics and planning: the goal is to ensure the plant functionality
nd the cost-effectiveness of its operation, in the sense of reducing
roduction costs and safeguarding all the equipment, which repre-
ent a company asset. In the literature (see for example [1,2]), three
ain maintenance methodologies are identified: (i) reactive maintenance

also called run-to-failure maintenance); (ii) preventive maintenance; (iii)
redictive maintenance.

In the case of run-to-failure maintenance, maintenance interven-
ions are deferred until a failure occurs in a part of the plant. The
urpose of this type of intervention is to restore the operation, and it
s mainly employed in cases of non-critical and/or low-cost equipment.
reventive maintenance, on the other hand, is time-based: maintenance
perations on the components of a plant occur at predetermined inter-
als, with the goal of making the plant operate in a regime in which the
robability of failure is low. Maintenance interventions are therefore
cheduled according to the number of service hours of each component,
ased on the expected mean life between failures provided by the man-
facturer and/or extracted from the literature. Predictive maintenance
PdM) departs from the previously described approaches by aiming at
nferring the health of a plant, based on the temporal evolution of its
ondition. The idea is to perform maintenance interventions only when
ctually needed, resulting in less overall maintenance costs, intended as
he sum of those associated to prevention and repair, as shown in Fig. 1.

E-mail address: davide.pagano@unibs.it.

2. Status-of-the-art and related works

Several techniques have been proposed in literature on how to
assess the health of a plant, as measured by means of some metrics,
from the analysis of the temporal evolution of its monitoring data. In
general, they are classified as physical model-based, knowledge-based,
or data-driven [3].

Approaches based on physical models rely on the knowledge of the
degradation processes occurring for the individual components of the
plant, integrated into typically very complex models, which are then
used to simulate the effects of different types of failures on condition
data [4–6]. Because of the need for assumptions to define the physical
models, this approach to predictive maintenance is typically limited to
small parts of the plant or specific components, and this does not allow
general conclusions to be drawn about the health of an entire plant.

Knowledge-based approaches try to reduce the complexity of a phys-
ical models by taking advantage of the current knowledge of a system,
for example through a set of rules defined by experts. Approaches like
this are sometimes employed in large industrial plants, where there is
a lot of experience about its behavior and typical failures, but there is
not enough knowledge to develop a quantitative models [7].

More relevant for this work are, finally, the data-driven techniques,
which only rely on collected monitoring data and maintenance events
history. They take advantage of the high flexibility of Machine Learn-
ing (ML) techniques to learn how the plant behaves when working
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Fig. 1. Maintenance costs, as intended as the sum of those associated to prevention and repair, as a function of the number of failures.
n optimal conditions, as well as in presence of failures. The learn-
ng by ML algorithms can follow three main approaches: supervised,
nsupervised, and semi-supervised.

Supervised learning, in addition to data, also requires the knowl-
dge about the system’s performance at the time data refer to. Data are
herefore labeled according to several categories associated to different
orking conditions of the plant, with and without failures. The PdM
roblem can be dealt with as a classification task or, if data can be
abeled in a continuous way, as a regression problem [8]. In this
ontext, a plethora of ML techniques have been investigated over the
ears, as summarized in Table 1, which also presents a selection of the
ost recent literature for each ML method. Of course the list is far from

omprehensive, as it goes beyond the scope of this manuscript, so we
efer the reader to the following recent literature reviews [7–10] for
ore details.

Unsupervised learning aims at finding patterns in data and rela-
ionships between their features. It does not require any labeling of
ata and, in the context of PdM, is typically used to identify different
orking conditions of a system by means of clustering tasks. A hybrid
aradigm, between supervised and unsupervised learning, is the semi-
upervised approach, which works with both labeled and unlabeled
ata. In the context of PdM, this approach could be useful when a
ufficiently large record of failures of a system is missing, like in the
ndustrial case presented in this work. In this case, the underlying idea
s to make predictions on the basis of models, trained with reference
labeled) data, in order to understand the time evolution of data
nd to assess, from the comparison with the actual measurements,
he presence of degradation trends or other features which could be
raced back to a problem in the plant. Table 1 also presents a (non-
omprehensive) selection of the most recent literature for unsupervised
nd semi-supervised techniques used in the context of PdM.

In this manuscript a technique based on the combined use of long
hort-term memory networks (LSTM) and Bayesian inference for the
ssessment of the health of an industrial plant, in the context of pre-
ictive maintenance, is presented. This approach has been successfully
pplied to an industrial plant and the results are also presented. It
s important to highlight, though, that because of a non-disclosure
greement, no detail about the company, as well as their data, will
e released. Even though the data presented in the following are not
ensitive, as condition data of some active parts of the plant, variable
ames, units of measurement and scales will be omitted in all plots,
ot to allow their identification. Of course, the company has given its
onsent to the publication of the plots in the form in which they are
resented in this manuscript.

. The method

The basic idea of the proposed method, that is to model the con-
ition data in order to study how the agreement between model pre-
ictions and data evolve over time, is common to many data-driven
2

Table 1
A selection of the most recent literature on ML-based data driven approaches to PdM.

Learning ML technique References

Supervised Decision Trees Arena et al. (2022) [11]
Ouadah et al. (2022) [12]
Dangut et al. (2021) [13]
Cakir et al. (2021) [14]

Support Vector
Machines

Nikfar et al. (2022) [15]
Baptista et al. (2021) [16]
Aremu et al. (2021) [17]
Lin (2021) [18]

Neural Networks Zonta et al. (2022) [19]
Demidova (2021) [20]
Lv et al. (2021) [21]
Sun et al. (2021) [22]
Morariu et al. (2020) [23]
Silva et al. (2019) [24]

Linear/Logistic
Regression

Kang et al. (2021) [25]
Saranya et al. (2020) [26]
Keartland et al. (2020) [27]
Zenisek et al. (2019) [28]

K-Nearest Neighbors Xu et al. (2021) [29]
Pinto et al. (2019) [30]

Unsupervised and
Semi-supervised

Partitional
clustering

Giordano et al. (2021) [31]
Kamat et al. (2021) [32]
Bekar et al. (2020) [33]
Oliveira et al. (2020) [34]

Hierarchical and
Density-based
Clustering

Serradilla et al. (2021) [35]
Aremu et al. (2020) [36]
Hsu et al. (2020) [37]
Zschech et al. (2019) [38]

Deep Learning Wang et al. (2022) [39]
Malawade et al. (2021) [40]
Basora et al. (2021) [41]
Ning et al . (2021) [42]
Cho et al. (2020) [43]

techniques for predictive maintenance already available in literature.
Indeed, differences between the various approaches rely on the way
the modeling is performed, on how to measure the agreement between
data and predictions, and on how to use this information to assess the
overall health of the plant.

This work was triggered by a real industrial case: a company (in the
heavy industry) wanted to investigate the possibility of implementing
a PdM program, on the basis of the information from the monitoring
sensors already installed in their plant. From a preliminary analysis of
the available data, we identified two constraints to take into account:
(i) the lack of a proper record of failures for each active/moving part
of the plant; (ii) the availability of only time series, with different
levels of autocorrelation among the variables, as input data. The first
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Fig. 2. Standardized residuals for two variables from an active part of the plant, as obtained from the use of a (multivariate) Random Forests approach. The vertical dashed line
separates the training period from the test one.
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point basically prevented the use of supervised techniques, whereas the
second one posed some troubles to other popular approaches available
in literature, as described below.

It is well know that a time series can be framed as a supervised
regression problem with techniques such as the sliding-window rep-
resentation [44–47]. Thanks to this, several popular ML techniques
can be employed to times series and, in particular, we focused on
multivariate approaches in order to exploit the possible correlations
among variables. Preliminary tests showed, thought, that some of the
most popular approaches in literature, such as Random Forests and
Deep Learning, tended to struggle in predicting the trends of several
monitoring variables of the plant, especially on a time scale longer than
1 or 2 weeks. As an example, Fig. 2 shows the standardized residuals
(residuals divided by their standard deviation) for two variables associ-
ated to an engine of the plant. Both training and test data (separated by
the dashed line in the plot) belong to a period of known good working
conditions of the part. The black curve is what was obtained with a
(multivariate) Random Forests [48] (RF), wheres the red line is what
was obtained with a Long-Short Memory Network [49], investigated in
this work.

As it can be noticed, while the performance of the two methods in
the training period are similar, the results are very different in the test
period. In particular, a set of peaks, associated to large discrepancies
between predictions and data, are present for the RF but not for the
LSTM. Those peaks appear in both variables but at very different times
and cannot be associated to any issue with the engine.

As already mentioned, we ended up investigating the use of long-
short memory networks [49] to model the condition data of the in-
dustrial plant we analyzed. The LSTM architecture has been proposed
to solve the well known vanishing gradient problem [50] with recurrent
neural networks. Nowadays, the most commonly used setup for LSTM
networks is the one proposed by Graves and Schmidhuber [51], gen-
erally referred to as vanilla LSTM, which is also the one used in this
work. It consists of a set of recurrently connected memory blocks, each
containing one or more self-connected memory cells and three multi-
plicative units: input, output and forget gates, the latter missing in the
original formulation of Hochreiter [49]. The memory cells remember
values over arbitrary time intervals and the three gates regulate the
flow of information through the cell. While over the years several other
variations of the LSTM architecture have been proposed, the results of
a large-scale study conducted by Gref et al. [52] showed that none
of the eight investigated LSTM variations significantly improved the
performance of the vanilla LSTM.
3

We decided to model each active component of the plant (such
as fans, engines, etc.) with LSTM networks, as very well-suited to
make predictions based on time series data. In general, even restricting
their use to individual active units, it is very likely that the number
of variables to model is high and that some of them are not very
informative. This was indeed the scenario with the industrial case we
analyzed. For this reason, after having dealt with the presence of fully
correlated variables, of missing values and placeholder values, and of
variables with zero or near-zero variance, we performed a principal
components analysis, which is a orthogonal linear transformation of the
variables into new ones in a way where most of the variation in data
can be described with fewer dimensions [53].

For a 𝑚×𝑛 data matrix 𝑿, the PCA model is defined by the sum of 𝑘
uter products of vectors 𝒕𝑖 and 𝒑𝑖, plus a residual matrix 𝑬, describing
he unmodeled information (residual variance [54]:

= 𝒕1𝒑𝑇1 + 𝒕2𝒑𝑇2 +⋯ + 𝒕𝑘𝒑𝑇𝑘 + 𝑬 = 𝑻 𝑘𝑷 𝑇
𝑘 + 𝑬.

Vectors 𝒕𝑖 are known as principal component scores and are a
inear combination of the original data 𝑿, through the transformation
ectors 𝒑𝑖, which are the eigenvectors of the covariance of matrix 𝑿:
𝒑𝑖 = 𝒕𝑖. The eigenvalues associated with each eigenvector 𝒑𝑖 provide

he information on how much variance in data is explained by each
rincipal component.

In our industrial case, depending on the active component, we cut
n the cumulative variance between 85% and 90%, corresponding to a
umber of principal components between 20 and 40. Thanks to this, at
he cost of small loss in the variance explained, we reduced the number
f variables up to 55%. The networks were then trained on the resulting
CA models. As an example, Fig. 3 shows the cumulative variance as a
unction of the number of principal components (only the first 30 are
eported), for a particular active unit (an engine) of the plant.

For several active parts of the plant, we used a vanilla LSTM
etwork, consisting of a number of input and output units equal to the
umber 𝑛 of features, and a number of hidden units between 32 and
28 (depending on 𝑛). In the other cases, instead, because of the very
arge number of variables we got better performance with a stacked
STM network, that is, with multiple hidden LSTM layers stacked one
n top of another. We used a configuration with two hidden layers and
number of units between 32 and 64 per layer. In all cases the training
as performed using the mean squared error as loss function (although

ests with other regression losses gave very similar results) and the
dam optimizer [55], which is a first-order gradient-based optimization
lgorithm, based on adaptive estimates of lower-order moments.
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Fig. 3. Cumulative variance as a function of the number of principal components (only the first 30 are reported), for a PCA performed on an active unit of the plant.
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Before training the networks we also performed a re-sampling of
the variables, as for some time series the sampling frequency was too
high in relation to the measured physical phenomenon. This was indeed
the case of many temperature sensors, sampled up to 100 Hz. After
having prepared the data, we modeled them during a period when the
plant was in a supposedly good working conditions. More specifically,
we identified, together with the company, temporal windows, generally
following operations of preventive maintenance, where there was high
belief about the good health of the plant. The training of the networks
was performed with data in those temporal regions. As working con-
ditions, especially for some components, can change quickly, training
data spanned over 15 days at most.

The first step was to check whether the trained models could be
used to detect anomalies in data, which could be associated to a change
in the working conditions of the plant. Fig. 4 shows 4 variables (out
of 28) associated to an active component of the plant we analyzed.
The first column of plots shows the 15 days of data used as training
period, whereas the second one shows the following 45 days, used as
test period.

The initial agreement in the test region, between model and data,
was very good for all variables until the barred area, starting at day 11,
when some tension started to appear in most of the variables. Indeed,
during the period between day 11 and day 18, there was a shutdown
of that active part and a maintenance intervention on it and, therefore,
afterwards it started working in different conditions with respect to
those used for the training. The sensitivity of this approach to changes
in the working conditions of the plant was confirmed by several other
tests, by using test data including maintenance interventions.

4. Early detection of failures

A wide range of failures, which can occur in an industrial plant, are
preceded by the appearance of trends or other changes in the condition
data, which could be very difficult to notice, especially at the onset
of the problem. For this reasons, with the help of the company, we
analyzed a set of historical data, where there may or may not have
been a problem with an active component of the plant. We did not
know this information when analyzing the data. In the following, the
results of one those tests are presented.

Fig. 5 shows some of the data, associated to an active component

of the plant, we used for the training and test, separated by the a

4

superimposed red line. For visualization clarity, only 6 variables (out
of 29) are reported in plot and also the test period has been limited to
15 days (out of 45 days).

In order to measure the agreement between predictions from the
model and data, we used both the Hotteling’s 𝑇 2 and 𝑄 metrics,
which are common statistics in evaluating new (test) data using models
based on PCAs. The 𝑇 2-statistic is usually thought as a measure of the
variation within the model and is defined as the sum of the normalized
squared scores: 𝑇 2

𝑖 = 𝒕𝑖(𝑻 𝑇
𝑘 𝑻 𝑘)−1𝒕𝑇𝑖 . The 𝑄-statistic, instead, is usually

considered as a measure of the unexplained variance in the model
and is defined as the difference between the test data point and its
projection on the PCA model [56]. Fig. 6 shows the agreement between
data and predictions of 3 variables and for the first 15 days of the test
period.

Initially, the observed agreement was very good, but, at approx-
imately the time indicated by the dashed line, we starting seeing
an increasing tension, between data and predictions, as measured by
𝑇 2 and 𝑄 metrics. Variables shown in Fig. 6 are those for which
he increasing tensions was more visible and, indeed, it can be also
ppreciated by eye at some point.

The dashed line in Fig. 6 corresponds to one in Fig. 7, which shows
he measured values for 𝑇 2 and 𝑄 for a subset of the test period. As it
an be noted, values of both metrics really exploded in a time scale of
he order of 1 h, starting approximately at 11 pm. The reason for this
ncreasing mismatch, between data and predictions, was actually due

failure in the active components under analysis, which, at the time
hen these data refer to, was identified by the company at some point.
he interesting thing is that the time at which we started observing an

ncrease of the values for both metrics anticipates by many hours the
ime at which the problem was identified by the company: we actually
erformed an early detection of a failure, also confirmed with similar
ther tests.

. Assessment of the health of the plant

Having proved that this technique was sensitive to changes in the
orking condition of the plant, we then tried to use the information

rom 𝑇 2 and 𝑄 metrics to infer the actual health of the plant. We did
his in a Bayesian fashion.

Let 𝝎 be a set of possible states describing the health of a plant
2
nd 𝒙 = {𝑇 ,𝑄} a measurement of the agreement between the model
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𝑃

Fig. 4. Comparison between data and LSTM predictions for one active component of the plant. Left: training period; Right: test period. Only four variables are reported for
visualization clarity.
Fig. 5. Training and test data, as defined by the superimposed red line, used for the blind search of anomalies, as described in the text. Only six variables are reported for
visualization clarity.
and data. According to the Bayes’ theorem, the posterior probability
𝑃 (𝜔𝑗 |𝒙), for each 𝜔𝑗 ∈ 𝝎, is given by Eq. (1),

(𝜔𝑗 |𝒙) =
𝑝(𝒙|𝜔𝑗 )𝑃 (𝜔𝑗 )

∫ 𝑝(𝒙|𝜔𝑗 )𝑃 (𝜔𝑗 )𝑑𝜔𝑗
(1)

where 𝑝(𝒙|𝜔𝑗 ) is the likelihood of 𝒙 given 𝜔𝑗 , 𝑃 (𝜔𝑗 ) is the prior
probability of 𝜔𝑗 , and the denominator is the marginal probability of
𝒙.

In the most simple approach one can simply define two possible
states associated to the health of a plant: 𝝎 = {𝜔 ,𝜔 }, where 𝜔 (𝜔 )
𝑔 𝑏 𝑔 𝑏

5

describes the scenario of a plant in a good (bad) working condition.
The likelihoods 𝑝(𝒙|𝜔𝑗 ) were estimated from data (at least as far as
𝑝(𝒙|𝜔𝑔) is concerned): the joint pdf 𝑝(𝒙|𝜔𝑔) was modeled as the product
of two Normal distributions, whereas uniform distributions were used
for 𝑝(𝒙|𝜔𝑏).

It important to highlight that 𝑝(𝒙|𝜔𝑏) depends on the type of prob-
lem experienced by the plant and, therefore, it cannot be easily mod-
eled from data, especially in absence of long record of failures, which
(luckily for the company) was the case. So, the choice of uniform distri-
butions was a sort of compromise between simplicity and performance,
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Fig. 6. Comparison between model predictions and data, in the test period, for 3 variables of the analyzed active component of the plant. The dashed line indicates when we
started observing an increasing tension, as measured by 𝑇 2 and 𝑄 metrics.
Fig. 7. Hotteling’s 𝑇 2 and 𝑄 metrics as a function of the time, for a sub-range of the test data in Fig. 6. Dashed lines in the two figures correspond to the same time.
s
f

as a result of several tests. In principle 𝝎 can include different possible
states describing bad working conditions, for example, by specifying
the type of failure. In this way, not only a more refined modeling of
𝑝(𝒙|𝜔𝑗 ) is possible, but the proposed method could also suggest the type
of problem the plant may be experiencing.

Fig. 8 shows the posterior probability 𝑝(𝒙|𝜔𝑔) as a function of the
time for the test data in Fig. 5, in a short temporal window around the
time at which we started observing an increase of 𝑇 2 and 𝑄 metrics,
hat is around the dashed line in Figs. 6 and 7. Initially, when the
greement between data and model was still quite good, the posterior
robability remains very high, close to the initial prior probability de-
ided with the company, on the basis of the full inspection of the plant.
ut then, when this good agreement ends, the posterior probability
tarts decreasing and in a time windows of very few hours drops to very
ow values. This posterior probability can be seen as a measurement of
he good health of the plant and this value can trigger an alarm, as
llustrated in the flowchart in Fig. 9.
 h

6

6. Conclusions

This manuscript presented the use of LSTM networks and Bayesian
inference in the context of predictive maintenance. The proposed
method consists of two steps: (i) monitoring data associated to each
active component of the plant are modeled, after a PCA to reduce their
dimension, with these type of neural networks, by using appropriately
chosen training periods, where the plant is in supposedly good working
conditions; (ii) Hotteling’s 𝑇 2 and 𝑄 metrics are used to measure the
degree of agreement between network predictions and test data, and
their values update the posterior probability of the good health of the
component, given the data, in a Bayesian fashion.

This method has been successfully applied to an industrial case.
Despite having only considered two possible states for 𝝎 and having
imply used uniform distributions for 𝑝(𝒙|𝜔𝑏), we obtained good results
rom many tests we performed. Because of this, the presented technique
as been integrated in a specifically designed dashboard, which is now
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Fig. 8. Posterior probability 𝑃 (𝜔𝑗 |𝒙) of the good health of the component, given the data, as a function of data. The presented temporal window is around the dashed black lines
n Fig. 7 and 6, as described in the text.
Fig. 9. Flowchart of the proposed method. After the training phase (not represented in
the Figure), the user chooses the initial priors 𝑃 (𝜔𝑗 ) and the alarm threshold 𝑝𝑡ℎ𝑟. The
CA is performed for all new data, to reduce their dimension, and then the model
rediction for them is computed. Hotteling’s 𝑇 2 and 𝑄 metrics are calculated and
sed to update 𝑃 (𝜔𝑗 ) according to the Bayes’ theorem. As long as 𝑃 (𝜔𝑔𝑜𝑜𝑑 ) ≥ 𝑝𝑡ℎ𝑟 the
rocedure is iterated, otherwise an alarm is raised.

art of the tools used by the company for the maintenance of their
lant.

As a final note, while this work was triggered and focused on a
articular study case, that is the predictive maintenance of an industrial
lant, it is worth to mention that the proposed technique can extended
o many other scenarios, where time-evolving systems are involved. It
s important to highlight, though, two possible limitations related to the
ethod. The first one, obvious and common to all Bayesian methods, is

he possible lack of sensitivity if the likelihoods 𝑝(𝒙|𝜔𝑗 ) are very similar
to each other. The other, more subtle, is the possible appearance of
large fluctuations in the posterior probability because of noisy data.
Indeed, in this multivariate context, occasionally large values of the
𝑇 2 and 𝑄 metrics could be just the result of random fluctuations of
data because of noise. As a result, a large variation in the posterior
probability could be induced. While this effect was not an issue for the
analyzed data, also thanks to the re-sampling of the variables reducing
their noise level, it could be an issue for other cases. However, these
large fluctuations of the posterior probability can be regularized, for
example by performing the Bayesian update on the averaged values of
the metrics over batches of data.
7
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