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Abstract: Increasingly, information technology facilitates the storage and management of data
useful for risk analysis and event prediction. Studies on data extraction related to occupational
health and safety are increasingly available; however, due to its variability, the construction sector
warrants special attention. This review is conducted under the research programs of the National
Institute for Occupational Accident Insurance (Inail). Objectives: The research question focuses on
identifying which data mining (DM) methods, among supervised, unsupervised, and others, are
most appropriate for certain investigation objectives, types, and sources of data, as defined by the
authors. Methods: Scopus and ProQuest were the main sources from which we extracted studies
in the field of construction, published between 2014 and 2023. The eligibility criteria applied in
the selection of studies were based on the Preferred Reporting Items for Systematic Review and
Meta-Analyses (PRISMA). For exploratory purposes, we applied hierarchical clustering, while for in-
depth analysis, we used principal component analysis (PCA) and meta-analysis. Results: The search
strategy based on the PRISMA eligibility criteria provided us with 63 out of 2234 potential articles,
206 observations, 89 methodologies, 4 survey purposes, 3 data sources, 7 data types, and 3 resource
types. Cluster analysis and PCA organized the information included in the paper dataset into two
dimensions and labels: “supervised methods, institutional dataset, and predictive and classificatory
purposes” (correlation 0.97–8.18 × 10−1; p-value 7.67 × 10−55–1.28 × 10−22) and the second, Dim2
“not-supervised methods; project, simulation, literature, text data; monitoring, decision-making
processes; machinery and environment” (corr. 0.84–0.47; p-value 5.79 × 10−25—3.59 × 10−6). We
answered the research question regarding which method, among supervised, unsupervised, or other,
is most suitable for application to data in the construction industry. Conclusions: The meta-analysis
provided an overall estimate of the better effectiveness of supervised methods (Odds Ratio = 0.71,
Confidence Interval 0.53–0.96) compared to not-supervised methods.

Keywords: clustering; principal component analysis (PCA); meta-analysis; construction industry;
data mining; machine learning; prediction models; workplace safety; smart technology (ST); state of
the art

1. Introduction

The activities attributable to the construction sector, according to the International
Labour Organisation (ILO) classification, are as follows: (i) building, including excavation
and the construction, structural alteration, renovation, repair, maintenance (including
cleaning and painting), and demolition of all types of buildings or structures; (ii) civil
engineering, including excavation and the construction, structural alteration, repair, main-
tenance, and demolition of structures such as airports, docks, harbors, inland waterways,
dams, river, avalanche, and sea defense works, roads and highways, railways, bridges,
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tunnels, viaducts, and works related to the provision of services such as communications,
drainage, sewerage, water, and energy supplies; and (iii) the erection and dismantling
of prefabricated buildings and structures, as well as the manufacturing of prefabricated
elements on construction sites [1].

Construction safety research is abundant and motivated by the alarming rates of
accidents and fatalities, focusing on two perspectives: management and technology [2].
In general, workplace safety management is based on organizational and technological
strategies. Construction safety standards and accident reduction are achieved through
information and worker training, aiming to enhance the level of risk perception associated
with the production process. However, the impact of traditional accident prevention
strategies has been limited due to their reactive and regulatory nature [2,3]. A relevant
aspect is the increased risks associated with the organization and production goals of
construction companies.

According to Razi et al. [4], Artificial Intelligence (AI) is a broad field of computer
science concerned with developing intelligent robots capable of performing tasks that tradi-
tionally require human intellect. In a more in-depth analysis, the same authors list the most
common sub-areas of AI applicable in the construction sector, such as machine learning,
computer vision, automated planning and scheduling, robotics, knowledge-based systems,
natural language processing, and optimization, listing their advantages and disadvan-
tages. AI plays a crucial role in assisting construction supervisors in minimizing accidents,
supporting project efficiency, and significantly improving operational safety. Alongside
the advancement of information and communication technology, various innovative tech-
nologies have been investigated to aid and improve existing management-driven safety
management practices. Besides the aid of technologies, new injury prevention strategies
have been developed for the construction industry. The risk analysis method is one of
them, used in safety programs to improve safety performance. A relevant factor is the
relationship between the type of construction project and the type of accident.

Data mining methods are applicable in various fields dealing with different types of
data and objectives. Studies focusing on DM techniques applied to construction safety date
back to no later than 2014 [5]. Our study has been developed as part of Inail’s 2022–2024
research program and the objective “Study of the effectiveness and efficiency indices related
to innovative technologies aimed at preventing the risk of injury in highly variable work
environments”. Considering the articles found to be eligible for review (Appendix A),
we first focused on data mining methods (Appendix B) by categorizing them into three
types: supervised, unsupervised, and other (not supervised). Subsequently, through
cluster analysis, principal component analysis, and meta-analysis, we identified statistical
associations between the two types of methods and the study objectives, types, and sources
of data. The protocol of review is led by the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) protocols [6]. Despite its limitations, the review has
enabled us to determine the most effective method between supervised and other methods
for different survey purposes, sources, and data types. It also gives a reference for those
who have to choose and apply a DM method on the basis of certain fundamental inputs,
such as the type of data available and the objectives to be achieved.

Section 1 of the article introduces the background and objectives of the investigation.
Section 2 describes the materials and methods, while Section 3 presents the results obtained
from applying cluster analysis, PCA, and meta-analysis. Section 4 offers an extensive
discussion of the results considering the current state of the art and our future goals. Finally,
Section 5 summarizes the salient results achieved in this review.

2. Materials and Methods

The set of articles published from 2014 to September 2023, which were useful for the
purposes of this review, was extracted from Scopus [7,8] and ProQuest [9]. Authoritative
sites on conferences in the field of computer science and DM and Management in Construc-
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tion field were queried; however, only Web of Conference provided an eligible contribution
for the purposes of our review.

2.1. Selection and Inclusion Criteria

All searches were conducted using a combination of subject headings and free-text
terms. The search criteria applied in the PRISMA methodology were obtained by successive
reiterations using different arguments and different Boolean AND and OR operators.
Of these reiterations, the final one is given in Appendix A. We focused exclusively on
peer-reviewed articles, conference papers, and book chapters. The topics included were
“machine learning” AND construction AND work OR safety, across the following subject
areas: (i) Engineering, (ii) Social and Environmental Sciences, and (iii) Computer Sciences.
The criteria applied in the search strategy are defined in Table 1. The final search strategy
was developed through several preliminary searches, including (i) articles, (ii) conference
papers, and (iii) book chapters (Appendix A).

Table 1. Query input for document search inclusion criteria. Source: Scopus and ProQuest data.

Stream Query

tit-abs-key “machine learning” AND construction AND work OR safety

subject area Engineering AND Social Science AND Environmental Science AND
Computational Science

publication year From 2014 to September 2023

document Article, Conference Paper, Book chapter (Peer reviewed)

language Not restriction

Figure 1 summarizes the result of the PRISMA document selection process. The
collected dataset includes information on authors, title, year of publication, source of title,
volume, issue, number of pages, citation number, DOI, affiliations, author information,
abstract, keywords, type of publication, and further information. Three authors (AP, AB,
and DB) independently reviewed the titles and abstracts to assess the eligibility of all studies.
We applied PRISMA procedures and checklists [6] to identify topic datasets and keywords
and filter content according to the abstract, assessing the eligibility of publications in the
research scope. Further insights were made into the selected articles by conducting full-text
reviews and analyzing the content for search purposes (see Figure 1) [10]. Disagreements
were resolved by a fourth evaluator (ML) until a consensus was reached between the
authors. Only studies that met the eligibility criteria were included.
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2.2. Risk of Bias for Selected Studies

The risk in non-randomized studies was assessed based on the following biases:
(1) due to confounding, (2) in the selection of the types of data in the study, (3) in the
classification of the study objective, (4) due to missing data, (5) in the measurement of
outcomes, (6) in the evaluation metrics, and (7) in the selection of the reported outcome.
Each individual study included was assessed as having a low, moderate, severe, and critical
risk of bias. If critical information was missing for the assessment of the risk of bias, these
studies were considered devoid of information.

2.3. Data Quality and Items

The titles and abstracts of the identified studies were independently checked at
two different points in time. Eligibility and inclusion criteria were initially assessed on
a subset of 30 studies before searching all databases. Decisions were made by examining
both the abstracts and the full texts. Only studies that were complete and met all
inclusion criteria were included in the qualitative and quantitative synthesis. The
information and data included in the papers obtained through the PRISMA method
were then included in the review.

2.4. Study Design

The scientific articles falling under the eligibility criteria of PRISMA were pre-processed
to extract information suitable for the purpose of review. The 63 papers included in the
review were categorized by 31 source titles and publication year. The bibliometric anal-
ysis involved a review of the global literature and geographic mapping worldwide. The
cluster analysis (HC) was used to find the best aggregations between groups. Using the
Silhouette index, it was found that the best degree of aggregation was represented in a
cluster plot based on correlations and variances. Principal component analysis (PCA) was
useful to find the correlation classes between the various parameters of the dataset in a
simplified reading of the results. Through PCA, we reduced the items and obtained the
extent of correlation between variables, methods, and components. The meta-analysis
of these classes was useful in estimating the reliability of HC and PCA results and the
odds ratios OR and confidence intervals CI of groups of items. Spatial data collection,
analysis, classification, and bibliometric analysis were performed with VOS viewer [11], R
(https://www.r-project.org/ accessed on 13 June 2024), and QGIS 3.18.3-Zürich software,
(Free Software Foundation, Inc., Boston, MA 02110-1301 USA).

Articles that met the PRISMA eligibility criteria were classified according to their
country/region of origin (corresponding author) and placed in one of the classes de-
picted in Figure 2 according to the numerosity marked by a colour (brown, green, purple,
red, blue).

In Figure 2, to the brown class belong the 18 countries/regions with 1 article such
as Austria, Brazil, Cyprus, India, Iran, Iraq, Italy, Japan, Jordan, New Zealand, Poland,
Republic of Korea, Saudi Arabia, Singapore, Spain, Sweden, Taiwan, United Arab Emirates.
To the green class belong the 6 countries/regions with 2 items such as Australia, Hong
Kong, Pakistan, South Korea, Turkey, UK. To the purple class belong Malaysia with 6 items.
To the blue class belong the USA with 8 items. Finally, to the red class, the most numerous,
belongs China with 19 items. The details of classes 1, 2, 6, 8, 19 in Figure 2 and their articles
are specified in Appendix B.

https://www.r-project.org/
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3. Results
3.1. Study Selection and Bibliometric Analysis

The search strategy based on the PRISMA eligibility criteria yielded 63 papers that
were included in the review and categorized by 31 source titles (Table 2) and publication
year. Regarding the latter, there was an increasing trend in publication from 2014 to
September 2023, where the articles recorded the following trend: 1 paper each in 2014
and 2015, 3 papers in 2016 and 2017, 4 papers in 2019, 6 papers in 2020, 3 papers in 2021,
17 papers in 2022, and 23 papers in 2023.

Table 2. Papers included in the review by source. Years: 2014 to September 2023. Source: Scopus,
ProQuest data.

Source Title Author Papers

Accident Analysis and Prevention [12] 1
Advances in Civil Engineering [13] 1

Applied Sciences [14] 1
Applied Sciences (Switzerland) [15–18] 4

Applied Soft Computing [19] 1
Automation in Construction [20–25] 6

Buildings [26–36] 11
Chinese Journal of Mechanical Engineering (English Ed.) [37] 1

Civil and Environmental Engineering [38] 1
Computer-Aided Civil and Infrastructure Engineering [39] 1

E3S Web of Conferences [40] 1
Engineering, Construction and Architectural Management [41] 1

IEEE Access [42,43] 2
IEEE Robotics and Automation Letters [44] 1

International Journal of Computational Methods and Experimental
Measurements [45] 1

International Journal of Environmental Research and Public Health [46–49] 4
IOP Conference Series. Earth and Environmental Science [4,50] 2

Journal of Civil Engineering and Management [51] 1
Journal of Safety Research [52] 1
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Table 2. Cont.

Source Title Author Papers

Journal of Construction Engineering and Management [53,54] 2
Lecture Notes in Civil Engineering [55,56] 2

Mathematical Problems in Engineering Volume [2] 1
PLoS One [57] 1

Rock Mechanics and Rock Engineering [58] 1
Safety Science [59–61] 3

Scientific Programming [62] 1
Sensors (Switzerland) [63] 1

Sustainability [64–67] 4
Sustainability (Switzerland) [3,68,69] 3
Visualization in Engineering [70] 1

Wireless Communications and Mobile Computing [71] 1

Total 63

3.2. Classes of Data and DM Methods

The information extracted from the individual articles was grouped into six homo-
geneous classes: DM method, study objective, field, data type, DM type, and resource
type. In a separate dataset, we compiled the study objective, type of data under inves-
tigation, applied DM methods, applied DM type (supervised, unsupervised, and other),
validation metrics (if available), the DM method found to be most effective, and number
of rows and columns in the dataset used by the authors (if available). The set of classes
has been reduced to 20 features, which are summed up in Appendices D and F. The
63 selected articles provided 206 observations, 89 DM methods (50 of which were consid-
ered the best method), 4 survey purposes, 3 fields, 7 data types, 3 DM types, and 3 resource
types (as detailed in Table 3 and Appendices D and F). DM method: for each method and
each method found to be the most effective (best method among those applied by the
authors), absolute frequencies were reported. This feature consists of the method(s) used
by the authors (from 1 method to more than 10). Study objective: this feature consists
of the purpose for which the authors applied one or more methods in their article (from
1 up to 4). As a survey objective, we obtained X1 classifying (18%), X2 decision making
(15%), X3 monitoring (16%), and X4 predicting (51%). Field: this characteristic indicates the
source from which the data came in terms of construction process data, accident data, and
health and safety risk management data. As fields, we obtained X5 construction process
(38%), X6 occupational accident (34%), and X7 health and safety risk management process
(28%). Data type: this means the format in which the information is represented and
made available to authors for research purposes. The types of data investigated were X8
construction project (5%), X9 institutional dataset (70%), X10 interview report (2%), X11
literature data (3%), X12 narrative text (6%), X13 signal (10%), and X14 simulation (4%).
DM type: this indicates a grouping into three classes of the feature DM method. The need
for this additional class is linked to the fact that some DM methods can be used both as
supervised and unsupervised. As the Type of DM investigated, we found X15 supervised
method (58%), X16 unsupervised method (24%), and X17 other method (18%). Resource
type: this feature was necessary to specify the field to which the authors’ results referred.
This is the case with data from accidents to predict the outcome of a production process.
As a resource type, we found X18 process (63%), X19 environment resource (15%), and X20
plant and machinery resource (22%).
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Table 3. Classification of content included in the 63 articles selected by the PRISMA method. Years:
2014 to September 2023. Authors’ processing from Scopus and ProQuest data.

Class n Description Index

dm method 89 Appendices C and D
study objective 4 classifying, decision making, monitoring, predicting x1–x4

field 3 construction process, occupational accident, risk management x5–x7
data type 7 project, institutional data, interview, literature, text, signal & video, simulation x8–x14
dm type 3 supervised, unsupervised, other x15–x17

resource type 3 construction and h&s process, environment, plant and machinery x18–x20

3.3. Cluster Analysis

Clustering is a significant approach in DM that aims to identify groups within datasets.
In real-world applications, both numeric and categorical features are often used to define
the data. Clustering analysis is one of the most important approaches in DM, and it seeks
to find the nature of groupings or clusters of data objects within an attribute space [72–74].
For an exploratory approach, we applied clustering analysis to the dataset in Appendix D.
With this unsupervised ML approach, the algorithm processes input data and generates a
sequence of clusters based on relational similarities with surrounding data points. The ques-
tions to answer in this DM method are “when do we stop combining clusters?” and “How
do we represent clusters?”. By applying hierarchical clustering (HC) and the appropriate
indexes, we identified the optimal number of clusters of our data.

According to Chang and Mirking, the “silhouette” index provided the best deter-
mination of cluster number; the highest average silhouette width indicates the optimal
number of clusters. The concept of silhouette width involves the difference between the
within-cluster tightness and separation from the rest. Specifically, the silhouette width si
for entity i ∈ I is defined as:

si =
bi − ai

max(ai, bi)
(1)

where “ai” is the average distance between “i” and all other entities in the cluster to which
“i” belongs, and “bi” is the minimum of the average distances between “i” and all entities
in every other cluster. Silhouette width values range from −1 and 1. If the silhouette width
value for an entity is approximately zero, it means that the entity could also be assigned
to another cluster. If the silhouette width value is close to −1, it means that the entity has
been incorrectly classified. If all silhouette width values are close to 1, it means that the
set “i” is well clustered [75]. As shown in Figure 3, the best aggregation of the dataset in
Appendix D consists of two clusters with a silhouette index of more than 0.7.

We created the item groupings through an iterative hierarchical process of aggregating
pairs of “most similar” groups of methods by calculating the dissimilarity (“distance”
for triangular inequality). Thus, we obtained the dendrogram in which the Euclidean
distance between the elements, the similarity, and the shape of the clusters are represented.
Figure 4 shows the results of the hierarchical cluster (HC) for the dm methods included
in Appendices C and D. The abscissa shows the dm methods, the ordinate the Euclidean
distances between the methods. The two red squares comprise the two large clusters
into which the dm methods have been aggregated according to their Euclidean distances.
Specifically, the first box explains the first cluster, containing RF (random forest), DT
(decision tree), KNN (k-nearest neighbour) and SVM (support vector machine). The second
large box contains the grouping of the remaining methodologies.
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3.4. Principal Component Analysis (PCA)

The objective of PCA is to identify suitable Y linear transformations of the observed
variables that are easily interpretable and capable of highlighting and synthesizing the in-
formation inherent in the initial matrix X. This tool is particularly useful when dealing with
a considerable number of variables from which one wants to extract as much information
as possible while working with a smaller set of variables [73,74]. The analysis was carried
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out on the data matrix that contains 89 individuals corresponding to DM methods and 22
quantitative variables (Appendix D).

X =
(
X1, X2 . . . Xp

)T (2)

Given a matrix X containing n features, it is possible to obtain a matrix of new data Y,
consisting of p interrelated variables, which turn out to be linear combinations of the first.
Each principal component can be expressed as follows:

→
Y

=

Y1
...

Yp

 =

l11 · · · l1p
...

. . .
...

lp1 · · · lpp

.

X11 · · · X1p
...

. . .
...

Xp1 · · · Xpp

 (3)

→
Y

= lijX1 + lijX2 + . . . lipXp where i = 1, 2 . . . p (4)

The generic coefficient li j is the weight that the variable Xj has in finding the prin-
cipal component Yi (with i = 1, 2, k, p) [11,38]. The larger li j is (in absolute value), the
greater the weight that the values Xj (j = 1, 2, k, p) have in deciding a given principal com-
ponent [74]. The data extracted from the articles included in the review were organized
into subclasses (Table 3) and grouped according to Appendix D. The linear correlation
coefficients lij between each pair of standardized variables included in Appendix E are
the result of the ratio of the covariance to the product of the standard deviation between
xi and xj (lij = σij/σiσj). The Pearson correlation coefficient lij provides the intensity and
direction of the linear relationship between the variables. The bold numbers express
the significance of the correlation given by p-values below 0.05 (Appendix E). Before
conducting PCA, we checked the linear relationship, the correlation between all quan-
titative variables, and the absence of outliers [74]. The correlation matrix suggested
the features in Appendix D be grouped for a more effective PCA. Proceeding with
successive reiterations of the correspondence of different aggregations of features, we
obtained the corresponding performances of the PCA. The tables and images in this
paragraph refer to the performance found more concise and consistent with the results
of the cluster analysis.

3.4.1. Inertia Distribution

The dataset contains 89 individuals corresponding to DM methods and 20 features.
Analysis of the graphs reveals no outlier. The inertia of the first dimension shows whether
there are strong relationships between variables and suggests the number of dimensions
that should be studied. The first two dimensions of analysis express 69.71% of the total
dataset inertia; that means that 69.71% of the individual (or variable) cloud total variability
is explained by the plane. This percentage indicates that the first plane effectively represents
the data’s variability. The first factor is the main one: it expresses 57.36% of the variability
of the data (Figure 5).

In this case, the variability relating to the other components may be less signifi-
cant despite the high percentage. The first axis has a higher amount of inertia than the
0.95 quadrant of the random distribution. This observation suggests that only two axes
carry information. Consequently, the description will stick to these axes.

The criteria for selecting dimensions in the final model are threefold: the Kaiser rule
where eigenvalues are greater than 1 (Table 4); the proportion of variance explained by the
components at least equal to 60–80% of the overall variability (Table 4); and the Cattell rule,
according to which the right number of components corresponds to the elbow or change
in slope in the component–eigenvalue graph (Figure 5). From these observations, it could
be better to also interpret the dimensions as greater or equal to the second one. The above
criteria allowed us to assign a “label” to each component.
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Table 4. PCA. Eigenvalues, percentage of variance, and cumulative percentage of variance.

Dim Eigenvalue % of Variance Cumulative % of Variance

Dim1 6.31 57.36 57.36
Dim2 1.36 12.35 69.71
Dim3 1.19 10.83 80.54
Dim4 0.68 6.16 86.71
Dim5 0.57 5.18 91.88
Dim6 0.38 3.42 95.30
Dim7 0.33 2.97 98.27
Dim8 0.18 1.62 99.89
Dim9 0.01 0.09 99.97
Dim10 0.00 0.03 100.00
Dim11 0.00 0.00 100.00

3.4.2. Axes Descriptions

Dimension 1 opposes individuals such as dt (32), knn (49), svm (81), and rf (69) to the
right of the graph characterized by a strongly positive coordinate on the axis to individuals
such as MCDA C (58), characterized by a strongly negative coordinate on the axis (to the
left of the graph).

Dimension 2 opposes individuals such as lstm (54), word2vec (88), nlp (63), and
BIM (16), which are located at the top of the graph and characterized by a low positive
coordinate on the axis, with individuals such as ann (8), adaboost (3), which have low
negative coordinates on the axis and are located at the bottom of the graph (Figure 6).

Dim1 group 1 (dt, knn, svm, and rf) shares high values for the variables “predicting”,
“supervised”, “monitoring”, “frequency”, “institutional data”, “data project-simulation-
signal”, “classifying”, “best method”, and “interview-literature-text” (variables are sorted
from the strongest to the weakest). Group 2 is characterized by a negative coordinate on
the axis, with the individual MCDA C (58) sharing low values for the variables “interview-
literature-text”, “classifying”, “frequency”, “institutional data”, “monitoring”, “predicting”,
“supervised”, “project-simulation-signal”, “best method”, and “other methods” (variables
are sorted from the weakest to the strongest). The variables “supervised” and “frequency”
are highly correlated with this dimension (correlations of 0.94 and 0.98, respectively). These
variables could therefore be summarized as dimension 1. Dim2 group 1 shares high values
for the variables “not supervised” and “decision making” while group 2 shows the same
for “monitoring”, “machinery”, and “environment” (Tables 5 and 6).



Int. J. Environ. Res. Public Health 2024, 21, 831 11 of 26

Int. J. Environ. Res. Public Health 2024, 21, x 11 of 27 
 

 

Dim8 0.18 1.62 99.89 
Dim9 0.01 0.09 99.97 
Dim10 0.00 0.03 100.00 
Dim11 0.00 0.00 100.00 

3.4.2. Axes Descriptions 
Dimension 1 opposes individuals such as dt (32), knn (49), svm (81), and rf (69) to the 

right of the graph characterized by a strongly positive coordinate on the axis to individu-
als such as MCDA C (58), characterized by a strongly negative coordinate on the axis (to 
the left of the graph). 

Dimension 2 opposes individuals such as lstm (54), word2vec (88), nlp (63), and BIM 
(16), which are located at the top of the graph and characterized by a low positive coordi-
nate on the axis, with individuals such as ann (8), adaboost (3), which have low negative 
coordinates on the axis and are located at the bottom of the graph (Figure 6). 

 
Figure 6. PCA. The graph of individual (DM methods). Dim1 vs. Dim2 (correlation or cos2 > 0.4). 

Dim1 group 1 (dt, knn, svm, and rf) shares high values for the variables “predicting”, 
“supervised”, “monitoring”, “frequency”, “institutional data”, “data project-simulation-
signal”, “classifying”, “best method”, and “interview-literature-text” (variables are sorted 
from the strongest to the weakest). Group 2 is characterized by a negative coordinate on 
the axis, with the individual MCDA C (58) sharing low values for the variables “interview-
literature-text”, “classifying”, “frequency”, “institutional data”, “monitoring”, “predict-
ing”, “supervised”, “project-simulation-signal”, “best method”, and “other methods” 
(variables are sorted from the weakest to the strongest). The variables “supervised” and 
“frequency” are highly correlated with this dimension (correlations of 0.94 and 0.98, re-
spectively). These variables could therefore be summarized as dimension 1. Dim2 group 
1 shares high values for the variables “not supervised” and “decision making” while 
group 2 shows the same for “monitoring”, “machinery”, and “environment” (Tables 5 and 
6). 

Table 5. PCA. Axes descriptions and correlations between axes, methods, and variables (cos2 > 0.4). 
Years: 2014 to September 2023. Source: Authors� processing from Scopus and ProQuest data. R. 

Axes (+) (−) DM Class Study Objective Data Type Resource Type 

Dim1 
dt (32), knn (49), 

svm (81) and rf (69) 
MCDA C 

(58) supervised 
classifying 
predicting 

institutional data, 
interview-literature-

text  
- 

Figure 6. PCA. The graph of individual (DM methods). Dim1 vs. Dim2 (correlation or cos2 > 0.4).

Table 5. PCA. Axes descriptions and correlations between axes, methods, and variables (cos2 > 0.4).
Years: 2014 to September 2023. Source: Authors’ processing from Scopus and ProQuest data. R.

Axes (+) (−) DM Class Study Objective Data Type Resource Type

Dim1 dt (32), knn (49),
svm (81) and rf (69) MCDA C (58) supervised classifying

predicting

institutional data,
interview-literature-

text
-

Dim2 lstm (54), word2vec
(88), nlp (63), BIM (16)

ann (8),
adaboost (3)

other-
supervised

(not-supervised)

decision making
monitoring

project-simulation-
signal;

interview-literature-
text

machinery
environment

Table 6. PCA. Axes descriptions, correlations between methods, and axes. Years: 2014 to September
2023. Source: Authors’ processing from Scopus and ProQuest data. R.

Dim1 Correlation
(cos2) p-Value Dim2 Correlation

(cos2) p-Value

frequency 9.874 × 10−1 1.603 × 10−71 other type 8.413 × 10−1 5.790 × 10−25

supervised 9.694 × 10−1 7.675 × 10−55 decision making 5.077 × 10−1 3.801 × 10−7

institutional data 9.412 × 10−1 8.809 × 10−43 interview-literature-text 4.688 × 10−1 3.593 × 10−6

predicting 9.361 × 10−1 2.984 × 10−41 classifying 3.060 × 10−1 3.547 × 10−3

classifying 8.181 × 10−1 1.286 × 10−22

According to the correlation method variable and axes, the x-axis (Dim1) can be
renamed “Supervised methods” (dt, knn, svm, and rf) applied to institutional data to
classify and make inferences (predicting)”. The y-axis (Dim2) can instead be renamed
“Not-supervised methods” (lstm, word2vec, nlp, and BIM) applied to project, simulation
signal, interviews, literature, or textual data to make decisions and classify.

3.5. Meta-Analysis

The data from the complete collection of studies selected according to the PRISMA
method and aggregated according to the classes defined in Table 1 allowed us to derive a
single conclusive result that answered our research question. Through a meta-analysis, we
assessed whether supervised methods were more effective than not-supervised ones across
the various classes. The forest plot summarizes the results of the meta-analysis, which
include the OR with its CIs, the sample size weight, the heterogeneity of the data, and a
quantitative, whole-data assessment of the effectiveness of the treatment with supervised
methods (Figure 7).
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Figure 7. Funnel plot. Odds ratio (OR) and relative confidence interval (95% CI) for the total number
of data mining methods analyzed, by class. The relative weight of each estimate in the analysis is
marked with a box. The diamond represents the meta-analytical OR. Years: 2014 to September 2023.
Source: Authors’ processing from Scopus and ProQuest data. R.

The heterogeneity is null (the sets under study are compatible). The analysis of the
groups shows that the CIs intercept the “no effect” line and lose significance when taken
individually; however, they consistently overlap and are similar to each other. Figure 7
shows a generally positive trend toward data treatment with supervised methods (on the
left from the “no-effect” line), summarized by OR = 0.71 and the CI (0.53–0.96).

4. Discussion and Future Directions

Studies focusing on DM techniques applied to the construction industry are recent,
dating back to 2014 at the latest and, therefore, the review dates we reviewed were from
2014 to September 2023. The number of articles in this sector increased from 1 in 2014 to
23 in 2023. Similarly, the evolution of the total number of applied DM techniques increased
from 5 between 2014 and 2016 to approximately 60 in 2023 (data not yet completed at the
time of the survey).

In the construction process field, 20 out of 63 observations were made regarding
the construction of buildings, dams, roads, and tunnels. Within this field, 60 out of the
206 observations covered topics such as construction delays [38]; crane, drilling, and ex-
cavation tasks [13,21,24,41,44,45,50]; geological conditions [55]; scaffolding collapse [51];
transport delays [56]; tunneling [19,26,27,37,42,58,70]; and worker and machinery loca-
tion [43,71]. According to Erzaij et al., project suspensions are among the most persistent
challenges facing the construction sector due to the difficulty of the industry and the
essential interdependence between the bases of delay risk. The influence of delays can
lead to increased time, costs, disputes, litigation, and overall rejection. The study aims
to develop a data prediction tool to examine and learn the sources of delay based on
previous data from construction projects, using decision trees and Bayesian naïve classi-
fication algorithms. Among the prediction models developed by the authors applied
to 97 projects, the decision tree showed the highest accuracy [38]. Kumari et al. [71]
investigated a machine learning architecture for excavator position detection using a
Global Positioning System (GPS), which can guarantee an excavator and driver position
remarkably close to the real one. Wang J. et al. [27] used the principal component
analysis (PCA) approach to select input factors for the prediction of tunnel-boring
machine (TBM) performance, particularly the travel speed. Liu et al. [15] developed a
model capable of predicting tunnel-boring machine disc replacements based on a binary
classification algorithm of the Gaussian kernel support vector type cutting performance.
After being trained using a period of historical data, the proposed model can predict
whether cutter disc replacement is necessary, thus reducing the time required for peri-
odic inspections. Lin et al. [43] investigated the feasibility of a real-time location service
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system using the Wi-Fi fingerprinting algorithm for the safety risk assessment of tunnel
workers. A location algorithm based on signal strength (RSS) and an artificial neural
network (ann) were used for location analysis and risk assessment. Wei [51] developed
wind speed prediction models based on various deep learning and machine learning
techniques, in particular deep neural networks, neural networks with short-term mem-
ory, support vector regressions, random forests, and k-nearest neighbors. Subsequently,
the author analyzed the wind force on the scaffold and assessed the probability of the
scaffold collapsing under the action of the wind.

In the Occupational accident field, 16 out of 63 papers dealt with data on accidents and
injuries at work from 2014 to 2023. In the class “occupational accidents,” 89 out of 206 observations
covered the following topics: reporting of accidents [3,12,14,16,17,22,23,25,26,28,29,40,46,52,59]
and days away from work. On this topic, Yelda et al. analyzed textual narratives to predict
injury outcomes and days off work in a mining operation. For this purpose, they used decision
trees, random forests, and ANNs, and the performance of these models was compared with
that of logistic regression [47]. Lee et al. [16] proposed an optimized data preprocessing method
to minimize the variables and main elements in diverse and complex work accident data
and built an ML prediction model to achieve this. Specifically, they analyzed the correlations
using a flood flow diagram and applied clustering and principal component analysis (PCA) to
analyze the relationships between the main variables and to draw broader conclusions. However,
accidents are unevenly recorded in narrative form. Construction accident reports hold a wealth of
empirical knowledge that could be used to better understand, predict, and prevent the occurrence
of accidents in the construction sector. Large construction companies and federal agencies, such
as the Occupational Safety and Health Administration (OSHA), hold these reports in the form of
huge digital databases [17]. Zhang J. et al. [17] utilized accident narrative data obtained from the
official OSHA website, presenting a new unified architecture with a bi-directional short-term
memory model (BiLSTM) and a convolutional layer for the classification of construction accident
causes. Tixier et al. [22] and Zhan F. et al. [25] proved how the study of safety attributes and
outcomes can be automatically and accurately processed from unstructured accident reports
using natural language processing (NLP).

In the risk management field, 25 out of 63 papers dealt with data on the “risk manage-
ment process”. In this class, 54 observations out of 206 concerned the following topics: awk-
ward working postures [20,30]; compliance with Health and Safety standards [31,32,64];
risk assessment [2,4,48,57,60,65,68]; safe climate [33]; slope instability [18,63]; teaching–
training tasks [34,49,62]; unsafe behaviors [35,36]; worker fatigue—heat stress [24,39,69];
and site image [66,67]. Antwi-Afari et al. [20] used deep learning networks to automati-
cally extract relevant features with spatial-temporal dependence acquired by a wearable
insole pressure system. The aim was to use deep learning-based networks and sensor
data from wearable insoles to automatically recognize and classify types of awkward
working postures for construction workers. So, they adopted recurrent neural networks
(RNNs) and deep learning models to train time series of plantar pressure data acquired
from a wearable insole pressure sensor. Wang F. et al. [60] provided a strategic view of
the relationships between different organizational objectives and technical risks that may
arise during the construction of a tunnel. They created a systems-based model integrating
Systems Dynamics (SD), Bayesian Belief Networks (BBNs), and Smooth Relevance Vec-
tor Machines (sRVMs) called the Organizational Risk Dynamics Observer (ORDO). The
model was applied to an urban metro project built in Wuhan, China, and was used to
provide guidance on effective accident prevention strategies. Mostofi et al. [3] explored
the predictive ability of a multilayer GCN algorithm that learns the connection between
construction accidents and project types, believing that richer information from existing
safety and construction accident datasets by project type would provide better learning for
the predictive model adopted. In addition, it would have supplied more information to
predict the severity of accident consequences. The authors proved the effectiveness of the
network representation of construction accidents in improving the learning capability of the
ML model by using a feedforward reference network (FFN) algorithm with parameters like
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those used in the GCN algorithm to predict severity outcomes. The use of prefabrication
is attracting increasing interest in the construction industry due to sustainability aspects,
product quality, high production efficiency, and cost-effectiveness. Dealing with this topic,
Zhu and Liu [68] developed a prediction and risk assessment model related to the supply
chain management of precast buildings. The BP neural network can be used to predict the
risk of the prefabrication supply chain.

Soil instability and landslides are major problems in the construction sector that can
lead to safety risks for workers and the public, but also to considerable economic damage
due to work stoppages. In this regard, Bay et al. [18] evaluated 102 cases of slopes with arc-
shaped failure modes using eight machine learning regression methods. The slope safety
factor prediction models were set up by performing cross-validation and hyper-parameter
adjustment of the model. Furthermore, based on objective weighting and TOPSIS methods,
a model was developed to evaluate the performance of the machine learning model and
find the best FOS prediction model. Sadeghi et al. [48] developed an Ensemble Predictive
Safety Risk Assessment Model (EPSRAM) to assess the health and safety risks of workers
on construction sites based on the integration of neural networks and fuzzy inference
systems. The model introduces innovation in countries/regions such as Malaysia, where
there is continued growth in the construction industry but where there is a lack of studies
on OHS assessments of workers involved in construction activities. Such circumstances
may expose construction workers to the risk of developing fatigue. If workers continue
to work under fatigued conditions, they are prone to the development of work-related
musculoskeletal disorders (MSDs). Yu et al. [24] and Yan et al. [69] developed a combination
of computer vision technology and biomechanical analysis for non-intrusive whole-body
fatigue monitoring of construction workers using 3D model data from the motion capture
algorithm and biomechanical analysis.

Zhao et al. [62] conducted a study on efficient and parallel DM and machine learning
methods and algorithms distributed on a large scale and proposed an experiential teaching
model focused on the cultivation of independent learning ability and the subjective initia-
tive of individual learners. The article, which could have been excluded for review, was
nevertheless kept as it combined the importance and technical challenges of the algorithms
themselves and the context of the practical application needs of the field. It reported
research on methods and algorithms for DM and machine learning, distributed on a large
scale for training purposes. As an innovative teaching model, the experiential teaching
model described in it focuses, among other things, on cultivating individual learners’ inde-
pendent learning ability and subjective initiative, which was found to effectively activate
the atmosphere of the working class/environment and improve the teaching effect. It
has been included as one of the articles that innovatively deals with the risk management
process, including health and safety training in the workplace. Other studies, not included
in the review, report analyses based on the effectiveness of combinations of Smart Construc-
tion Safety Technologies (SCSTs), potentially able to generate information useful for DM,
and the measurement of the effectiveness of the same technologies, both alone and com-
bined [76]. Zerman et al. used machine learning to create a predictive model to help detect
the most likely factors that affect fatal accidents due to falls from heights in the construction
industry in Malaysia. To this end, the authors used institutional data from the Malaysian
Department of Occupational Safety and Health Records of Occupational Accidents and
applied different machine learning models such as random forest (rf), gradient boosting
(gbdt), logistic regression (lr), naïve Bayes (nbb), multilayer perceptron (mlp), and knn. The
model obtained from the random forest application was the best [61].

Regarding the type of data used in DM, 39 out of 63 papers dealt with institutional datasets
(2016–2023), 8 used signal and video data (2014–2023), 4 used narrative texts (2016–2022),
5 used construction projects (2016–2023), 4 used literature data (2020–2023), 3 used simulations
(2015–2023), and 2 out of 63 used an interview report (2023). The data used may have different
characteristics in reference to specific aspects of an occupational injury, such as, for example,
the body parts affected and the expected probability. Other studies focus on the observation of
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environmental and meteorological precursors of accidents, e.g., associated with the collapse of
scaffolding [19] and slope instability [18,63]. Liu et al. analyzed data from sophisticated and
technologically innovative machine monitoring, capable of returning and processing geological
data and faults and predicting the progress of TBM and maintenance, avoiding downtime and
inspections [26]. According to Schindler et al. [70] and Leng et al. [42], the use of satellite data
has proved to be a winning strategy compared to ground surveys. Data collected by sensors
were used to assess the state of effort associated with the awkward working postures of workers
while performing work on the construction site [20] or physical fatigue and workers’ heat
stress [69]. Another interesting use of data involves the construction practitioner’s interview
through which processes and occupational risk information are integrated [4].

According to Gondia et al., the factor that most determines delays in the construction
sector is the late payment of the contractor. The authors used naïve Bayes and decision
tree algorithms to predict project downtime. The decision tree showed an accuracy of
approximately 89%, which is better than that obtained with naïve Bayes due to the type
of data string. The model proposed by the authors has been applied to approximately
97 projects and has been found to have the potential to reduce delays and, consequently,
also costs [53]. Shirazi and Toosi used the literature, interviews, and project data. According
to Shirazi et al., delays in construction are among the most important challenges in the
sector, especially in the infrastructure sector, where serious socio-economic consequences
may occur. The authors identified 65 risk factors associated with delays through data
derived from a comprehensive review of the literature and interviews and applied principal
component analysis. The resulting dataset was used to develop a deep perceptron neural
network (mlp-nn) model to predict project delays. The use of a deep-nn (dnn) model
showed that the addition of characteristic project data to the training dataset significantly
improved the prediction performance of deep-mlp. [54].

By focusing on health and safety aspects, quality, in terms of the homogeneity and
standardization of the various sources of institutional accident data included in the review,
can be affected by the different methods of acquisition, from one institution to another
and from one country/region to another. It can also be assumed that the data produced
by technologies and machines used in the processes have a higher degree of homogeneity
and standardization than the former. Liu et al. underlined the significance of employing
innovative and efficient safety management technologies, along with new management
approaches and automated methods based on artificial intelligence, to promptly detect and
eliminate risks. According to the authors, these innovative technologies would mitigate
any deficiencies in site management, significantly improve site safety management, and
eliminate risks at the source [26]. An increasingly widespread orientation towards auto-
mated management of the site or parts of it would not only lead to an improvement in
the health and safety of the processes but also a significant improvement in the quality
of the data coming from the construction field. It can be assumed that soon, accident
data collection techniques will not be able to function without innovative technologies
capable of automatically acquiring information on near misses, accidents, and injuries in
the construction sector.

Intelligent technologies can generate a range of data that pertain to both the individual
(e.g., worker) and the interaction and connection between different technologies. The
Internet of Things (IoT) is gradually spreading in the construction sector, thus making an
important contribution to the production of new data. Robots and collaborative robots
play a significant role in technological innovation and data extraction as they can produce
quality in terms of productivity, product quality, and the standardization of production
processes. Furthermore, these technologies have the potential to produce high-quality data,
which could play a significant role in the pre-processing of data required for the use of
DM techniques. The use of these technologies in construction sites is still limited due to
unresolved difficulties, attributable to the high variability of environmental conditions
and the need to protect the secrecy of processes and the privacy of workers. Moreover, to
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accompany change, workers and enterprises need vocational training and management
training [1].

Regarding the “construction processes”, “accidents”, and “risk management” fields,
the results of the PCA are consistent with the literature analysis included in the review.
The main component, D1, associates supervised methods such as dt, knn, svm, and rf
with the prediction and classification of data without giving indications on the type of
data and resource. The D2 main component instead associates not-supervised methods
(unsupervised and others) with monitoring and decision making. D2 specifies not only the
methods and objectives to be achieved but also the type and source of the data. Therefore,
unsupervised methods like lstm, word2vec, nlp, and bim are associated with projects, sim-
ulations, signals, interviews, scientific literature, and texts. In addition, D2 combines these
methods with data on work equipment (e.g., machines and installations) and the working
environment (wind, temperature, geological stability, etc.). The two main components, D1
and D2 (Tables 5 and 6), have the potential to guide the actors involved in the management
of the data relative to yards. The latter concerns both construction processes and accidents
and the management of health and safety risks on construction sites. Such evidence has
been integrated with the results of the meta-analysis where better adaptability of the su-
pervised methods is valued over those not supervised. The proposed approach has been
useful in the association between methods (supervised and not) and data types, classified
by type, source, field, and resources of the process from which the same data is derived.
The study shows, among other things, part of the technological development present in
construction yards that has been intercepted by the scientific literature. However, the study
has limitations due to the very origin of the information analyzed. These are differences
determined by the object of investigation that characterizes the individual papers included
in the review. Another limitation is linked to the small size of the paper sample available for
the survey, which could have a bearing on the significance of the results obtained. Any loss
of significance of the data and the results obtained could also be attributed to the absence
of standardized production protocols and the various levels of technology available on
construction sites around the world, in the time frame of reference. In addition to these
aspects, we also note the possible risks due to confusion and the correct classification of the
type of data and the source, the objectives (predictive, monitoring, decision making, and
classification) of missing data, and the extent of the results.

Reducing risks at the source is the most effective measure fpr managing health and
safety at work. Unfortunately, it is not always possible to reduce risks at the source
and, therefore, safety standards and the reduction in occupational accidents are achieved
through prevention and protection measures (ILOSHA). An important aspect that is typical
of construction companies is the increase in risks associated with organizational and
production objectives. In this context, the use of advanced statistical and technological tools
based on data mining can help, both in prevention measures and in measures to protect
against occupational risks. The use of predictive techniques such as dt, knn, svm, and rf can
be decisive in risk assessment, the key measure for risk prevention. Similarly, techniques
such as lstm, word2vec, nlp, and BIM can aid in monitoring and decision making on site,
for example, in the integrated management of safety and construction processes. Decision
making can be applied to the choice of individual and collective prevention devices, the
key measure of protection against occupational risks.

Further future development of the study should focus on a larger and more homo-
geneous sample of sources where the results are based on standardized and repeatable
parameters resulting from data mining techniques. We believe that, despite the limitations
of our work, the results obtained have added value to the complex problem of data mining
in this sector.

5. Conclusions

Cluster analysis and PCA were applied to data from articles that met the PRISMA
eligibility criteria and were included in the review. The study indicates an association
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between the types of methods used and objectives, scope, type of data, and resources
under investigation. This association, based on correlation, was synthesized onto a single
xy-plane (Dim1 and Dim2). The results of the PCA were consistent with those of the cluster
analysis. Each of the two axes was assigned a label summarizing the significance of the
entire review. The x-axis (Dim1) was labeled “Supervised methods (dt, knn, svm, and rf)
applied to institutional data for classification and inference”. The y-axis (Dim2) was labeled
“Not-supervised methods (lstm, word2vec, nlp, and BIM) applied to projects, simulations,
signals, interviews, the literature, or textual data to classify and make decisions”. The
meta-analysis, with an odds ratio (OR) of 0.71 and a confidence interval (CI) of 0.53 to 0.96,
provides an overall estimate of the superior effectiveness of supervised methods compared
to not-supervised ones.
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Appendix A

Table A1. Paper identification criteria, subject, and number (extraction: 20 March 2023 and 12
September 2023).

Subject n.

“machine learning” 526.288
“machine learning” AND work 122.958
“machine learning” AND work AND safety 11.752
“machine learning” AND construction AND work OR safety 2.280
subject area 2.234
abstract reading 189
full text reading 81
selected papers 63

Appendix B

Table A2. Papers by country/region. Classes as represented in Figure 2 (1: brown, 2: green, 6:
purple, 8: blue, 19: red). The country/region references are shown in square brackets. Years: 2014 to
September 2023. Source: Authors’ processing from Scopus and ProQuest data. QGIS 3.18.3

Country/Region Class

Austria [55], Brazil [57], Cyprus [65], India [71], Iran [54], Iraq [38],
Italy [58], Japan [44], Jordan [31], New Zealand [69], Poland [14], Republic
of Korea [13], Saudi Arabia [66], Singapore [12], Spain [45], Sweden [25],

Taiwan [51], United Arab Emirates [64].

1

Australia [34,59], Hong Kong [24,37], Pakistan [32,33], South Korea [16,21],
Turkey [3,29], United Kingdom [20,70]. 2

Malaysia [4,46,48,49,61,67]. 6
United States [22,23,30,40,47,52,53,56]. 8

China [2,15,17–19,26–28,35–37,41–43,50,60,62,63,68]. 19
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Appendix C

Table A3. DM methods included in the review. Source: Authors’ processing by Scopus and ProQuest
archives, R.

DM Method DM Method Description DM Method DM Method Description

abc approximate bayesian computation it2f–ahp interval type-2 (IT2) fuzzy-analytic
hierarchy process

adaboost adaptive boosting (ensemble) it2fd interval type-2 (IT2) fuzzy Delphi
afdd automated fault detection and diagnostics k-means k-means clustering
ahp analytic hierarchy process knn k-nearest neighbour
al ml-based active learning framework ksvm support vector machines in kernlab
anfis adaptive neuro-fuzzy inference system lcca ml based life-cycle cost analysis
ann artificial neural network lin r linear regression
ar augmented reality log r logistic regression
autokeras automl system based on keras lstm long short-term memory

auto-sklearn automatic scikit-learn mlaeld machine learning architecture for
excavators’ location detection

bagging bootstrap aggregating mlp multilayer perceptron

bert bidirectional encoder represent. for
transformers monte carlo montecarlo method

bi-bert binarized bidirectional encoder represent.
for transformers mcda-c multicriteria methodology for decision

aiding-constructivist
bi-lstm bi-directional long short-term memory mosma multi-objective slime mould algorithm
bim building information modeling nb naïve bayes
bnn binarized neural network nbc naive bayes classifier
bns bayesian networks nlp natural language processing
bpnn back propagation in neural network nltk natural language toolkit
catboost gradient boosting on decision trees onehotencoding onehotencoding in scikit-learn

c-bilstm convolutional bi-directional long
short-term memory pca principal components analysis

cbow continuous bag of words pca-ahp analytic hierarchy process-principal
component analysis)

chi-square chi-square pls-sem partial-least-squares structural-equation
modeling

clustering clustering rf random forest
cnn convolutional neural network rl reinforcement learning
cpbt cognitive psychology and bloom’s

taxonomy ros robot operating system
cramer’s v cramer’s v sae sparse autoencorder
cv computer vision process satellite-based

meas. satellite-based measurements

deepar autoregressive recurrent networks scibert scientific bidirectional encoder represent.
for transformers

dl deep learning scikit-learn key library for pyton programming
language

dnn deep neural network sd system dynamics
dt decision tree learning swpl smart work package learning

ebt ensemble of boosted tree smote synthetic minority over-sampling
technique

ensemble ensemble sqp sequential quadratic programming

epsram ensemble predictive safety risk assessment
model srvm smooth relevance vector machines

faxtext faxtext svm support vector machines
ffn feed-forward neural network svr support vector regression

flac3d flac3d tf-idf term frequency-inverse document
frequency

fuz fuzzy approaches tokenitation split sentences into small units

gbdt gradient boosted decision trees topsis technique for order of preference by
similarity to ideal solution

gcn graph convolutional networks 3d motion 3d motion
glove global vectors for words representation vr virtual reality

gru gated recurrent unit (recurrent neural
network) wbs-rbs work breakdown structure-resource

breakdown structure

hcpc hierarchical clustering on principal
components word2vec word2vec (nlp)

ica independent component analysis yolo-v5 you only look once
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Appendix D

Table A4. DM method by frequency (F), best method (BM), and variable (Matrix X). x1–x4 Study ob-
jective (classifying, decision making, monitoring, and predicting); x5–x7 Field (construction processes,
occupational accidents, and risk management); x8–x14 Data type (project, institutional data, interview,
literature, text, signal and video, and simulation); x15–x17 DM type (supervised, unsupervised, and
other); x18–x20; Resource type (construction and H&S processes, environment, plant, and machinery).
Source: Authors’ processing by Scopus and ProQuest archives and R.

Method F BM x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

abc 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

adaboost 3 0 0 0 1 2 1 1 1 0 3 0 0 0 0 0 3 0 0 1 1 3

afdd 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1

ahp 2 2 0 1 0 1 0 1 1 0 2 0 0 0 0 0 0 2 0 0 1 2

al 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1

anfis 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1

ann 5 4 0 0 0 5 4 1 0 0 4 0 0 0 1 0 5 0 0 1 1 5

ar 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1

autokeras 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1

auto-sklearn 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1

bagging 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1

bert 2 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 2 0 1 1 2

bi-bert 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

bi-lstm 3 1 2 0 0 1 1 2 0 0 2 0 0 1 0 0 0 0 3 2 1 3

bim 3 1 0 2 0 1 1 1 1 0 2 0 0 0 0 1 0 0 3 1 1 3

bnn 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

bns 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1

bpnn 3 3 0 0 0 3 2 0 1 0 2 0 1 0 0 0 3 0 0 2 0 3

catboost-mo. 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1

c-bilstm 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1

cbow 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1

chi-square 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1

clustering 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1

cnn 4 1 1 0 1 2 3 1 0 0 3 0 0 1 0 0 0 0 4 1 0 4

cpbt 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1

cramer’s v 2 0 0 0 1 1 0 1 1 0 2 0 0 0 0 0 0 2 0 1 0 2

cv 2 2 0 0 2 0 0 0 2 0 0 0 0 0 2 0 2 0 0 1 0 2

deepar 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1

dl 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1

dnn 2 1 0 0 0 2 1 1 0 1 1 0 1 1 0 0 2 0 0 1 1 2

dt 20 3 4 1 3 13 9 8 4 1 1 13 0 1 4 0 20 0 0 2 0 20

ebt 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1

ensemble 3 2 1 0 0 2 0 2 1 1 1 0 0 1 0 0 3 0 0 12 2 3

epsram 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 2 1 1

faxtext 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1

ffn 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1

flac3d 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

fuzzy appr. 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1

gbdt 3 1 0 0 1 2 1 1 1 0 3 0 0 0 0 0 2 1 0 1 0 3
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Table A4. Cont.

Method F BM x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

gcn 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1

glove 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1

gru 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1

hcpc 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1

ica 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1

it2f–ahp 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1

it2fd 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1

k-means 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1

knn 13 1 3 0 2 8 5 6 2 0 8 0 0 2 3 0 13 0 0 1 0 13

ksvm 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 8 1 1

lcca 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1

lin_r 6 1 1 1 0 4 1 3 2 0 4 0 1 0 1 0 6 0 0 1 0 6

log_r 7 1 4 0 1 3 1 5 2 0 6 0 0 2 0 0 7 0 0 1 0 7

lstm 4 1 3 0 0 1 0 4 0 0 1 0 0 3 0 0 0 0 4 4 0 4

mlaeld 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 6 1 1

mlp 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 4 0 1

montecarlo 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1

mcda-c 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1

mosma 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1

nb 3 1 0 0 1 2 1 1 1 1 0 2 0 0 0 0 3 0 0 1 0 3

nbc 6 0 3 0 0 3 3 3 0 0 4 0 0 2 0 0 6 0 0 2 0 6

nd 2 2 0 1 1 0 1 0 1 0 2 0 0 0 0 0 0 0 2 4 1 2

nlp 4 1 2 0 0 2 0 4 0 0 2 0 0 2 0 0 0 4 0 1 0 4

nltk 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 4 0 1

one hot enc. 2 0 1 0 0 1 0 1 1 0 2 0 0 0 0 0 0 2 0 1 0 2

pca 5 2 0 0 0 5 2 3 0 1 1 4 1 0 0 0 0 5 0 3 0 5

pca-ahp 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 3 0 1

pls-sem 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1

rf 15 9 4 0 2 9 5 6 4 0 10 0 0 1 4 0 15 0 0 0 1 15

rl 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 9 2 1

ros 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1

sae 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1

satellite-
based meas. 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1

scibert 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

scikit-learn 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1

sd 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1

swpl 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1

smote 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1

sqp 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1

srvm 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1

svm 15 2 4 0 2 8 3 8 3 0 11 0 0 2 1 0 15 0 0 10 2 15

svr 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1

tf-idf 3 0 1 0 0 2 1 2 0 0 2 0 0 1 0 0 0 3 0 1 0 3

tokenitation 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 3 1 1
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Table A4. Cont.

Method F BM x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

topsis 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1

3d motion 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1

vr 3 0 1 1 0 0 0 0 0 0 2 0 0 0 0 2 0 2 1 0 1 3

wbs-rbs 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1

word2vec 4 2 1 2 0 0 0 2 0 1 0 0 0 1 0 0 1 3 0 1 0 4

yolo-v5 2 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 2 1 2

Appendix E

Table A5. Correlation matrix (lij) and analysis of significance. The bold numbers express the
significance of the correlation with p-values < 0.05). x1–x4 Study objective (classifying, decision
making, monitoring, and predicting); x5–x7 Field (construction processes, occupational accidents, and
risk management); x8–x14 Data type (project, institutional data, interview, literature, text, signal and
video, and simulation); x15–x17 DM type (supervised, unsupervised, and other); x18–x20; Resource
type (construction and H&S processes, environment, plant, and machinery). Source: Authors’
processing by Scopus and ProQuest archives and R.

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

x1 1.0 −0.1 0.5 0.7 0.6 0.9 0.6 −0.1 0.4 0.8 −0.1 0.8 0.6 −0.1 0.8 0.0 0.1 0.2 0.1 0.0

x2 −0.1 1.0 −0.1 −0.2 −0.2 −0.1 0.1 0.1 −0.1 −0.1 0.2 −0.1 −0.1 0.5 −0.1 0.1 0.2 0.0 0.1 0.2

x3 0.5 −0.1 1.0 0.6 0.6 0.6 0.7 −0.1 0.5 0.7 −0.1 0.3 0.7 −0.1 0.7 −0.2 0.0 0.1 0.1 −0.1

x4 0.7 −0.2 0.6 1.0 0.9 0.8 0.6 0.0 0.6 0.9 0.0 0.4 0.8 −0.1 0.9 −0.1 −0.2 0.1 0.1 0.0

x5 0.6 −0.2 0.6 0.9 1.0 0.6 0.5 0.0 0.6 0.8 0.0 0.3 0.8 −0.1 0.8 −0.2 0.0 0.1 0.1 0.0

x6 0.9 −0.1 0.6 0.8 0.6 1.0 0.6 −0.1 0.5 0.9 −0.1 0.7 0.6 −0.1 0.8 0.1 0.0 0.2 0.1 0.0

x7 0.6 0.1 0.7 0.6 0.5 0.6 1.0 −0.1 0.3 0.7 0.2 0.2 0.7 −0.1 0.8 −0.2 −0.1 0.1 0.2 0.0

x8 −0.1 0.1 −0.1 0.0 0.0 −0.1 −0.1 1.0 0.0 −0.2 −0.1 0.0 −0.1 −0.1 0.0 0.0 −0.1 0.1 0.0 0.2

x9 0.4 −0.1 0.5 0.6 0.6 0.5 0.3 0.0 1.0 0.5 0.0 0.1 0.6 0.0 0.6 −0.1 −0.1 0.0 −0.1 −0.1

x10 0.8 −0.1 0.7 0.9 0.8 0.9 0.7 −0.2 0.5 1.0 −0.1 0.5 0.7 −0.1 0.9 −0.1 −0.1 0.1 0.2 0.0

x11 −0.1 0.2 −0.1 0.0 0.0 −0.1 0.2 −0.1 0.0 −0.1 1.0 −0.1 0.0 −0.1 0.0 −0.1 −0.1 0.0 −0.1 0.0

x12 0.8 −0.1 0.3 0.4 0.3 0.7 0.2 0.0 0.1 0.5 −0.1 1.0 0.3 −0.1 0.5 0.1 0.2 0.3 0.1 0.0

x13 0.6 −0.1 0.7 0.8 0.8 0.6 0.7 −0.1 0.6 0.7 0.0 0.3 1.0 −0.1 0.8 −0.2 −0.1 0.0 0.1 0.0

x14 −0.1 0.5 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 0.0 −0.1 −0.1 −0.1 −0.1 1.0 −0.1 0.1 0.2 −0.1 0.1 −0.1

x15 0.8 −0.1 0.7 0.9 0.8 0.8 0.8 0.0 0.6 0.9 0.0 0.5 0.8 −0.1 1.0 −0.2 −0.2 0.2 0.2 0.1

x16 0.0 0.1 −0.2 −0.1 −0.2 0.1 −0.2 0.0 −0.1 −0.1 −0.1 0.1 −0.2 0.1 −0.2 1.0 −0.3 −0.1 −0.2 −0.2

x17 0.1 0.2 0.0 −0.2 0.0 0.0 −0.1 −0.1 −0.1 −0.1 −0.1 0.2 −0.1 0.2 −0.2 −0.3 1.0 0.1 0.1 0.1

x18 0.2 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.0 0.3 0.0 −0.1 0.2 −0.1 0.1 1.0 0.5 0.6

x19 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 −0.1 0.2 −0.1 0.1 0.1 0.1 0.2 −0.2 0.1 0.5 1.0 0.4

x20 0.0 0.2 −0.1 0.0 0.0 0.0 0.0 0.2 −0.1 0.0 0.0 0.0 0.0 −0.1 0.1 −0.2 0.1 0.6 0.4 1.0

Appendix F

Table A6. Papers by variables. x1–x4 Study objective (classifying, decision making, monitoring, and
predicting); x5–x7 Field (construction processes, occupational accidents, risk management); x8–x14
Data type (project, institutional data, interview, literature, text, signal and video, and simulation);
x15–x17 DM type (supervised, unsupervised, and other); x18–x20; Resource type (construction and
H&S processes, environment, plant, and machinery). Source: Authors’ processing by Scopus and
ProQuest archives and R.

Reference x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

[2] 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

[3] 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0
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Table A6. Cont.

Reference x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

[4] 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

[38] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2 0 0 1 0 0

[21] 0 0 1 0 1 0 0 0 0 0 0 0 1 0 4 0 0 0 0 1

[41] 1 0 0 0 0 0 1 0 0 0 0 0 1 0 2 0 0 0 0 1

[45] 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2 0 0 1

[13] 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1

[44] 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1

[50] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1

[24] 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0

[55] 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0

[51] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 6 6 2 0 1 0

[56] 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

[58] 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

[42] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2 0 1 0 0 1

[37] 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1

[19] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1

[26] 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 2 0 1 0 0

[70] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1

[27] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 3 0 0 0 1

[71] 0 0 0 1 1 0 0 0 0 0 0 0 1 0 4 0 1 0 0 1

[43] 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1

[15] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 4 1 1 0 0 1

[59] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 3 2 1 1 0 0

[12] 1 0 0 0 0 1 0 0 1 0 0 0 0 0 6 1 1 1 0 0

[52] 0 0 0 1 0 1 0 0 0 0 0 1 0 0 4 0 1 1 0 0

[14] 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0

[46] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 6 0 0 1 0 0

[16] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 3 5 0 1 0 0

[40] 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

[28] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 7 0 0 1 0 0

[22] 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0

[23] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 4 1 1 0 0

[29] 0 0 1 0 0 0 1 0 1 0 0 0 0 0 6 0 2 1 0 0

[25] 1 0 0 0 0 1 0 0 0 0 0 1 0 0 6 4 0 1 0 0

[17] 1 0 0 0 0 1 0 0 0 0 0 1 0 0 3 2 5 1 0 0

[47] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 4 4 0 1 0 0

[20] 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 2 1 0 0

[30] 1 0 0 0 1 0 0 0 0 0 0 0 1 0 3 0 0 1 0 0

[64] 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0

[31] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

[32] 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0
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Table A6. Cont.

Reference x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

[57] 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

[48] 0 1 0 0 0 0 1 0 0 0 1 0 0 0 3 0 0 1 0 0

[65] 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

[60] 0 0 0 1 1 0 0 1 0 0 0 0 0 0 2 1 0 0 0 1

[68] 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0

[33] 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0

[18] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 8 1 0 0 1 0

[63] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

[49] 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0

[34] 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 2 2 1 0 0

[62] 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0

[35] 0 0 0 1 0 0 1 0 1 0 0 0 0 0 4 0 0 1 0 0

[36] 1 0 0 0 0 0 1 0 1 0 0 0 0 0 4 1 1 1 0 0

[39] 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2 1 0 0

[69] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

[66] 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0

[67] 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0

[61] 0 0 0 1 0 1 0 0 1 0 0 0 0 0 7 0 0 0 0 1

[53] 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0

[54] 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0
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