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Introduction 

The burgeoning domain of artificial intelligence (AI) has witnessed an exponential growth in 

recent years, spurred by notable technological and methodological advancements. In a short period 

of time, the typical approaches in computer vision went from manual feature extraction and 

subsequent analysis by basic machine learning algorithms, to direct application of neural networks. 

Furthermore, a landmark transition was the application of the transformer architecture, such as 

GPT (Generative Pre-trained Transformers), in natural language processing. This advancement 

has not only revolutionized everyday applications but has also begun to significantly impact the 

medical sector. From this development, the vision transformer architecture emerged as a promising 

strategy to address challenges within computer vision, consistently achieving state-of-the-art 

results and in some cases surpassing the previous dominance of convolutional neural networks. 

This investigation started with a comprehensive review of the current advancements in AI and 

computer vision within Otolaryngology – Head and Neck Surgery. This understanding facilitated 

the delineation of specific objectives, goals, and areas that have been relatively under-explored. 

The primary aim of this step was to ascertain the prerequisites for creating a system dedicated to 

computer vision analysis in endoscopy and surgical procedures. Once the primary goal was 

established, a rigorous technical assessment was undertaken to discern the most fitting 

methodological approach and architectural paradigm for the problem at hand. 

Initially, the endeavor was to design a computer vision tool capable of detecting and segmenting 

upper aerodigestive tract (UADT) neoplasms, transitioning from a preliminary proof of concept to 

a robust multi-site algorithm. This primarily addressed the challenges associated with static 

images. Additionally, our research ventured into the dynamic aspect of vision: movement. We 



designed a deep learning model to pinpoint laryngeal pivot points and assess vocal fold motility, 

a crucial determinant in laryngeal cancer staging. Both methodologies underwent iterative 

refinement throughout the course of the research. 

In the concluding phase, the research pivoted towards the latest innovations in AI: vision 

foundation models (or Large Vision Models). The advent of vision transformer-based foundation 

models exudes immense potential across various computer vision tasks, including the medical 

field. Notably, vision transformers, when trained via self-supervision, could potentially mitigate 

the long-standing challenge of requiring extensive expert annotations, thereby profoundly 

benefiting niche fields with limited cases, such as Otolaryngology – Head and Neck Surgery. 

Throughout this research, various experiments underscored the promise held by these generic 

foundation models in medical image classification, even within the constraints of few-shot 

learning. 

Finally, to transition from a research paradigm to tangible clinical applications, a complex 

infrastructure to manage processes and policies is strictly required. This realm, recently coined as 

MLOps (Machine Learning Operations), was delved into by devising a bespoke web application 

aimed at enhancing and expediting the annotation process in upper aerodigestive tract (UADT) 

endoscopy. 

The subsequent section will provide a broader overview of the research path that has been followed 

throughout this exploration, describing the rationale and context for each step. 

 

1. Exploration phase: What is there, what is needed, and how can we achieve that.  



In the first step, the aim of the research was to precisely define the conceptual framework and 

methodology of the study. In fact, this represents one of the first applications of artificial 

intelligence in this field. A broad and comprehensive review of the international literature on AI 

application in clinical endoscopy has been performed, providing the first direct definition of this 

branch of research, and proposing the term "Videomics". This term denotes a burgeoning field 

where several computer vision and deep learning methods are systematically used to interpret the 

unstructured data of video obtained during diagnostic video-endoscopy. 

In the available literature, Narrow Band Imaging (NBI), an optical biopsy technique applied in the 

field of clinical endoscopy, provided the best results in terms of diagnostic performance when 

using AI-based algorithms. For this reason, we selected NBI as the primary imaging technique in 

some of the subsequent studies. 

Furthermore, we identified the best performing analytic methods to be applied to video-

endoscopies, initially selecting convolutional neural networks (CNNs) among the wide variety of 

AI-based algorithms. Different types of CNNs have also been tested to identify the ones most fitted 

for each computational task. 

 

2. Setting a plan: Identifying objectives and future perspectives 

After the first general review, we better classified the different objectives and technical 

approaches. Future efforts in the field of endoscopic computer vision can be framed around five 

broad tasks with increasing complexity and computational load, which can be summarized as 

follows: 



• Quality assessment of endoscopic images; 

• Classification of pathologic and non-pathologic frames; 

• Detection of lesions inside frames; 

• Segmentation of pathologic lesions; 

• In-depth characterization of neoplastic lesions. 

This provided an initial structure for the subsequent research, clarifying progressive steps and 

objectives. 

 

3. Defining standards: Guidelines for adequate reporting in medical computer vision 

studies 

The in-depth review of the literature revealed critical flaws in the current reporting of computer 

vision research in the medical domain. Here, we defined and proposed standards and guidelines to 

adequately frame and report studies on artificial intelligence on medical images. In particular, we 

cover the domains of study definition and objectives, technical specifications, and selection of 

adequate endpoints. 

 

4. Proof of concept: Setting the acquisition pipeline and testing technical approaches. 

In this step, we performed a preliminary study with a limited number of frames (N=226) to 

standardize each phase of the analysis: endoscopic evaluation, conversion of the video files, 



extraction of the frames, manual annotation, optimization of the images, and algorithm training. 

The study identified different critical aspects that allowed for optimization of the entire process 

for the subsequent cases. Homogeneous illumination turned out to be a critical factor impacting 

the diagnostic potential of the CNNs. Similarly, the application of the CNN-based algorithms to 

distinct subsites of the upper aerodigestive tract showed different diagnostic performances 

according to the complexity and the number of diverse structures in the region, this aspect has been 

better investigated in the subsequent section of this research process. 

After this first experience, a specific application was introduced to speed up the annotation process 

(i.e., Labelme). This approach was progressively improved during the research process, going from 

better local applications (i.e., Label Studio), to dedicated online platforms (i.e., Roboflow and 

Hasty.ai). 

 

5. From proof of concept to structured clinical study: Overall assessment of CNNs for 

the semantic segmentation of UADT lesions. 

After the promising results of the proof-of-concept study. We performed a more extensive 

evaluation (N=1034 endoscopic frames) including various anatomical subsites and a more 

innovative technical approach (i.e., instance segmentation). According to the previously available 

data, we focused our evaluation on NBI frames. With this work, we proved the feasibility of multi-

object segmentation and classification in the endoscopy field, and we highlighted the significant 

differences in performance when comparing various UADT subsites. 

 



6. From static vision to motion: The role of vocal fold motility. 

Vocal fold motility has critical importance in laryngeal cancer staging. This variable is one of the 

key determinants of the cT category in the TNM staging, differentiating between cT1, cT2, and 

cT3 lesions. For this reason, a purely morphologic automatic identification of tumor extension 

would not be sufficient to achieve complete tumor staging. However, preliminary research showed 

the possibility of distinguishing between normal vocal fold motility and vocal fold paralysis 

through AI-based methods. Our aim was to extend this analysis to oncologic cases, providing an 

objective evaluation of vocal fold motility and potentially predicting vocal muscle infiltration. 

 

7. Artificial intelligence models as a commodity: Standardized workflows for out-of-the-

box training of pivotal vision models – The nasal polyps case-study. 

The rapid pace of development in artificial intelligence led to the introduction of multiple “general 

purpose” vision algorithms that are easily finetuned for each specific application. This is associated 

to the development of novel tools for image collection and annotation, allowing to significantly 

scale a previously lengthy and burdensome process.  

Here, we approached a simple case-study (i.e., nasal polyps) to prove the commoditization of 

machine learning algorithm. In fact, in the current stage of development, it is possible to apply 

“pre-packaged” models (e.g., YOLOv8) to highly specific tasks with minimal training and still 

achieve optimal results in terms of diagnostic performance. 

 



8. Foundation models in clinical endoscopy: Proof of concept classification task with 

minimal training data – The oropharyngeal cancer case-study. 

A paradigmatic shift in the realm of medical computer vision has been the development and 

deployment of transformer-based vision foundation models (such as DINOv2 by Meta). These 

algorithms are trained with a self-supervised approach on vast datasets, enabling them to derive 

reliable embeddings from each image, which are vector representations that encapsulate and distill 

visual patterns and objects. 

Our investigation was centered around a dual objective: Primarily, to evaluate the diagnostic 

prowess of embeddings derived from DINOv2 in differentiating between normal mucosa and 

neoplastic tissue within the oropharyngeal region. Secondarily, to situate this endeavor within the 

overarching discourse of foundation models and their applicability in analyzing complex medical 

images. 

 

9. Foundation vision models for automatic feature extraction: New approaches to 

reduce subjectivity. 

In this follow-up experiment, we evaluated the efficacy of large vision models, notably those based 

on the transformer architecture, in autonomously discerning image attributes, or embeddings, 

tailored for image classification. Specifically, our objective was to trace the trajectory of progress 

from earlier methodologies that hinged on manual feature extraction. By revisiting an 

oropharyngeal cancer dataset, previously assessed through manual extraction, we juxtaposed the 

diagnostic proficiencies offered by both NBI and white light imaging. Our findings underscored 



that our approach for automated extraction was not only simpler and quicker, but also consistently 

outperformed manual feature extraction in terms of classification performance, particularly with 

white light images. This showed that current approaches are becoming progressively independent 

of image pre-processing and enhancement. 

 

10. Working at scale: MLOps platforms to allow large-scale training and deployment of 

computer vision AI models. 

Working with the Poznan Supercomputing and Networking Center, we developed ENDO-CLOUD 

(Enhanced Network for Deep learning-Oriented Classification and Leveraging of Optimized 

Upper aerodigestive tract Data), an advanced cloud-based system tailored for videolaryngoscopy. 

Machine learning, especially deep learning, offers potential solutions for videoendoscopic image 

processing. However, a key challenge is data gathering. We developed ENDO-CLOUD to provide 

a web-based segmentation platform that performs automatic representative frame selection from 

endoscopic videos of the UADT. This platform allows for collaboration between medical experts, 

deep learning specialists, and system administrators, ensuring efficient data management, security, 

and user-friendly segmentation procedures. 

  



1. Videomics: Bringing deep learning to diagnostic endoscopy 

Exploration phase: What is there, what is needed, and how can we achieve that. 

 

Introduction 

Artificial intelligence is beginning to transform clinical medicine in specialties where large 

datasets of annotated images are an essential element of the clinical workflow. The use of machine 

learning (ML) algorithms has augmented human judgment by identifying adverse events in the 

operating room,1 detect diabetic retinopathy,2 and even identify skin cancer.3 From radiology to 

pathology, deep learning4 has promise in reaching a diagnostic accuracy comparable with that of 

human experts from automating the detection of pneumonia on chest roentgenograms5 and CT 

scans,6 to identifying clinically occult nodal metastasis in breast cancer.7 This rapid pace of 

innovation suggests that the development of expert systems will soon be applicable in everyday 

clinical settings, providing real-time assistance to the physician in a variety of diagnostic tasks, 

using computer technology to improve the human vision and judgment. 

Notwithstanding these promises, at present, little progress has been made in applying deep learning 

algorithms to video-endoscopy, which plays a prominent role in otorhinolaryngology, head and 

neck surgery, pulmonary medicine, and gastroenterology, as well as in thoracic and abdominal 

surgery. For the purpose of this section, we explore how automated analysis of unstructured data 

obtained by video-endoscopy can provide valuable information during initial diagnosis, measuring 

treatment-response, and assessing prognosis. Endoscopic evaluation has always been a crucial 

component of head and neck oncology (HNO), since tumor superficial spread assessment has a 

significant impact on treatment selection and may not be adequately quantified by conventional 



radiologic imaging. Often seen as inherently descriptive, deep learning has helped to convert 

subjective assessment into objective findings based on systematic evaluation of visual data seen 

on video, analogous to findings obtained by conventional techniques in genomics and proteomics. 

Here, in fact, we propose the term ’Videomics’ as a burgeoning field wherein several methods of 

computer vision and deep learning are systematically used to organize the unstructured data of 

video obtained during diagnostic endoscopy. Indeed, in this review of the literature, we argue that 

based on a growing number of publications, a new discipline is emerging within the large field of 

computer vision and pattern recognition. Herein, we review this promising new field, assessing 

preliminary findings, potential and limitations, and consider future developments. 

 

Machine learning in endoscopy 

Because of the higher caseload compared with HNO, gastrointestinal endoscopy was the first field 

in which ML was effectively applied. For this reason, it is useful to first analyze the progress in 

this branch of endoscopy to identify potential advances that are applicable to evaluation of the 

upper aerodigestive tract (UADT). Even in this broader research field, reports assessing the role 

of ML are scarce. As of today, efforts have been directed toward different lines of analysis, in 

particular: (1) blind-spot detection and automatic quality control; (2) lesion detection; (3) lesion 

classification; and (4) lesion characterization. This approach is strictly related to the perceived 

needs in digestive system endoscopy and has given promising results and potential real-life 

applications. 

Concerning blind-spot detection, Wu et al.8 developed a convolutional neural network (CNN)- 

based system aimed at detecting early gastric cancer although avoiding blind-spots during 



esophagogastroduodenoscopy. The algorithm was trained to identify the different subsites of the 

esophagus and stomach to ensure the complete visualization of the entire gastroesophageal 

mucosa. Further- more, CNN was trained to distinguish between nor- mal mucosa and early gastric 

cancer. In both tasks, the accuracy was remarkable (>90%). The same authors9 validated the 

efficacy of this blind-spot detection system in a randomized controlled trial, showing a 

significantly lower blind-spot rate in CNN-assisted endoscopy vs. a control group (5.9% vs. 

22.5%). 

In the same perspective, Su et al.10 developed an automatic quality control system aimed at 

improving diagnostic accuracy during colonoscopy. The system was based on CNN models for 

timing the withdrawal phase, supervise withdrawal stability, evaluate bowel preparation, and 

detect colorectal polyps. A randomized controlled trial showed that this CNN-based quality control 

system significantly increased lesion detection (adenomas and polyps) during colonoscopy 

compared to that without CNN assistance. 

Lesion detection and characterization remain the main objective of ML-based strategies in 

gastrointestinal endoscopy. Texture analysis has shown good preliminary results in detecting 

mucosal abnormalities (e.g., colon polyps),11 and CNNs proved to be a key instrument in this field. 

In fact, the vast majority of recent reports on automatic lesion detection and classification have 

taken advantage of this algorithm architecture. Different authors have described its significant 

potential in the detection and diagnosis of gastric, esophageal, and small bowel cancers, as well as 

gastrointestinal polyps.12-16 Furthermore, CNNs are also useful in classification tasks, 

distinguishing between normal and inflamed mucosa (gastritis), and identifying early gastric 

cancer using magnifying endoscopy.17-19 



Interestingly, although some authors employed conventional white light (WL) endoscopy, most 

studies have applied ML evaluation to Narrow Band Imaging (NBI) pictures or videos. In this 

view, multispectral imaging may have the potential to further improve detection and 

characterization of mucosal lesions in the field of automatic analysis, adding more definition to 

tumor margins and highlighting features of submucosal vascularization that are not evident during 

WL endoscopy. In 2012, Takemura et al.20 demonstrated the value of NBI in the classification of 

colonoscopy magnified images using support vector machines. This aspect was explicitly 

investigated by Horie et al.,14 who reported that NBI had a higher sensitivity compared with 

conventional WL endoscopy (although not reaching a statistically significant difference). 

Finally, ML has shown promise in the in-depth characterization of known lesions of the 

gastrointestinal tract and may also provide risk stratification for malignant transformation of 

nonneoplastic mucosa. Specifically, recent studies21,22 have demonstrated that CNNs can 

differentiate between early and deeply infiltrating gastric cancer. This result shows the potential 

of Videomics approaches to go beyond simple diagnosis and extract more extensive information 

on the lesion itself. Nakahira et al.22 further confirmed this potential by showing that CNN is able 

of correctly stratify the risk of gastric tumor development by analyzing the non- neoplastic mucosa 

at video-endoscopy. 

 

Machine learning applications in upper aero-digestive tract endoscopy 

Video-endoscopic evaluation of the UADT poses even more challenges than gastrointestinal 

endoscopy.23 This anatomic region is, in fact, structurally more complex, composed of a wide 

variety of tissues,24,25 and easily shaded. Furthermore, deglutition, gag, and cough reflexes often 

come into play, interrupting or limiting the observation. The oral cavity and oropharynx are the 



most accessible sites; however, their video-endoscopic evaluation is not standardized and may be 

performed using rigid or flexible endoscopes, or even external cameras. Therefore, this factor adds 

an adjunctive layer of complexity to image analysis since data collection should be ideally 

standardized and characterized by low variance. 

 

Oral cavity and oropharynx 

Different authors26,27 have recognized the value of ML in the evaluation and screening of oral 

cancer and potentially malignant lesions. Song et al.28 developed a smartphone-based automatic 

image classification system for oral dysplasia and malignancy employing CNNs. The system 

aimed to screen high-risk populations in middle- and low-income countries and took advantage of 

dual-modality images (WL and autofluorescence). The authors demonstrated the potential of dual-

modal image analysis, which showed better diagnostic performance than single-modal images. 

The final model reached an accuracy of 87%, sensitivity of 85%, and specificity of 89%. 

Mascharak et al.29 were the first to use ML to better identify oropharyngeal tumor margins using 

a simple naıve Bayesian classifier (color and texture). Interestingly, the diagnostic performance 

was significantly enhanced by multispectral NBI compared with conventional WL video-

endoscopy. Five-fold cross-validation yielded an area under the curve (AUC) above 80% for NBI 

models and below 55% for WL endoscopy models (P < 0.001). 

Finally, Paderno et al.30 published preliminary data showing that it is possible to obtain real- time 

oral and oropharyngeal tumors segmentation using different fully CNNs applied to NBI 

endoscopic images, identifying potential confounding factors and technical drawbacks. 

 



Larynx and hypopharynx 

In general, laryngo-pharyngeal lesions are those more frequently investigated when assessing the 

role of automatic analysis by ML. This is due to use of a standardized endoscopic approach through 

trans-nasal or transoral video-endoscopy and the relative similarity with gastrointestinal subsites. 

In 2014, Huang et al.31 proposed an automatic system aimed at recognizing images of the glottis 

and classifying different vocal fold disorders. The technique was based on a support vector 

machine classifier and reached an accuracy of 99%. However, the patterns to be classified were 

limited to ‘normal vocal fold,’ ‘vocal fold paralysis,’ ‘vocal fold polyp,’ and ‘vocal fold cyst,’ and 

did not include dysplasia or malignancy. 

A preliminary attempt at automatic detection and classification of laryngeal tumors has been 

described by Barbalata et al.32 The authors used anisotropic filtering to analyze the submucosal 

vasculature of normal and neoplastic laryngeal mucosa during NBI video-endoscopic examination, 

obtaining an overall classification accuracy of 83%. Although not employing adaptive algorithms, 

the study confirmed the value of NBI in maximizing feature extraction in endoscopic images. 

Subsequent studies, focusing on the diagnosis and classification of pharyngo-laryngeal lesions at 

video-endoscopy, extensively employed CNNs and demonstrated remarkable results. A work by 

Laves et al.33 used CNNs to segment a novel 7-class (void, vocal folds, other tissue, glottal space, 

pathology, surgical tools, and tracheal tube) dataset of the human larynx during transoral laser 

microsurgery. The dataset, consisting of 536 manually segmented endoscopic images, was tested 

to monitor the morphological changes and autonomously detect pathologies. Different CNN 

architectures were investigated, and a weighted average ensemble net- work of UNet and ErfNet 

(two of the most used CNNs in the current literature on this topic) was the best suited for laryngeal 

segmentation with a mean Intersection-over-Union (IoU) evaluation metric of 84.7%. 



Xiong et al.34 developed a CNN-based diagnostic system trained using 13,721 laryngoscopic 

images of cancer, premalignant lesions, benign alterations, and normal tissue collecting exams 

across several centers in China. The CNN distinguished malignant/premalignant lesions from 

benign ones and normal tissues with an accuracy of 87% (sensitivity 73%, specificity 92%, and 

AUC 92%). Ren et al.35 described a similar approach, training the CNN with a total of 24,667 

laryngoscopy images (normal, vocal nodule, polyps, leukoplakia, and malignancy), and achieving 

an overall accuracy of 96%. Strikingly, the CNN-based classifier outperformed physicians in the 

evaluation of the abovementioned conditions. 

Further detection and classification attempts have mainly taken advantage of NBI images, which 

yielded superior results in terms of diagnostic performance, as previously demonstrated by 

Mascharak et al.29 in the oropharyngeal site, and confirmed by Tamashiro et al.36 These studies36-

38 were performed in the setting of transoral esophagogastroduodenoscopy and were aimed at 

detecting incidental laryngo-pharyngeal cancer during the procedure. However, direct 

comparisons between the different studies may be misleading because of the heterogeneous 

definition of ‘correct diagnosis.’ 

Tamashiro et al.36 focused on pharyngeal cancer and reported an accuracy, sensitivity, and 

specificity of 67%, 80%, and 57%, respectively. These results were slightly improved when 

limiting the analysis to NBI frames only. The authors trained a ‘Single Shot MultiBox Detector’ 

with a total of 5,403 images. Adequate detection was considered as frames including less than 80% 

of the area with noncancerous sites. Kono et al.37 showed similar results in pharyngeal cancer 

detection by using a mask region-based CNN trained with 4,559 images. Each frame was judged 

as cancer when its probability score was >0.60, and its dimensions overlapped with the cancer area 

by a factor of >0.20. Accuracy, sensitivity, and specificity were 66%, 92%, and 47%, respectively. 



Finally, Inaba et al.38 trained a CNN-based algorithm (RetinaNet) with sequential sets of images 

until reaching 400 frames of superficial laryngo- pharyngeal cancer and 800 frames of normal 

mucosa. The diagnostic accuracy gradually improved with the sequential addition of training 

images until reaching an accuracy, sensitivity, and specificity of 97%, 95%, and 98%, respectively. 

The definition of correct diagnosis was set with an IoU parameter > 0.4. 

 

Future perspectives and conclusions 

Videomics is an emerging discipline that has the potential to significantly improve human 

detection of clinically significant lesions during video-endos- copy across medical and surgical 

disciplines. Preliminary reports have shown promising diagnostic potential and demonstrated the 

ability of ML algorithms to provide adjunctive information on tumor characteristics, such as depth 

of infiltration and, hence, infer important tumor-related issues such as extra-visceral extension, 

submucosal spread, and risk of regional/distant metastases. However, as early ‘proof-of-concept’ 

studies are published, it is important to note that these efforts are not yet part of routine endoscopic 

examination. In this view, further advances may allow obtaining an ever-growing amount of data 

from video-endoscopic sequences, thus assisting in tumor staging, margin recognition, treatment 

planning, and prog- nostic assessment. Furthermore, features extracted from video-endoscopy may 

be integrated into broader ‘-omic’ models (including radiomics, genomics, proteomics, 

salivaomics, etc.), thus creating a precise representation of a given tumor and/or fine- tune the 

assessment of a specific patient. This is a crucial step in the perspective of tailoring treatment and 

personalized medicine. 

For Videomics to flourish and to deliver practical tools for clinicians in daily practice, it is 

imperative to create large-scale image and video repositories. Currently, many ongoing efforts are 



fragmented and highly variable in their approach: the anatomical regions investigated (upper or 

lower digestive tracts), quality of images (definition, focus, illumination, and color balance), type 

of spectral filters (WL, NBI, autofluorescence, others), and setting (office-based, intraoperative) 

vary widely. Nonetheless, the current bottleneck for the development of ML-based video-analysis 

techniques is represented by the need to manually annotate training images. 

In this view, the development of self-supervised learning techniques using unlabeled data for CNN 

pretraining and training may significantly and progressively improve algorithms without the need 

for human intervention.39 

Finally, study objectives (detection, classification, or segmentation) are often not clearly stated or 

distinguished in each study. Last but not least, the statistical definition of correct and incorrect 

diagnosis is subjectively determined by each author, leading to significant variation in diagnostic 

performance metrics (e.g., accuracy, sensitivity, specificity, and AUC). For this reason, at this 

early stage in the field, research teams should focus on standardization of data collection, 

identification of common targets, and optimal reporting. With such a collaborative stepwise 

approach, Videomics is likely soon augment human detection during endoscopy and improve 

cancer treatment and subsequent out- comes. 
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2. Artificial intelligence in clinical endoscopy: Insights in the field of 

Videomics  

Setting a plan: Identifying objectives and future perspectives 

 

Introduction 

As previously mentioned, the use of artificial intelligence (AI) is currently increasing in every field 

of medicine, progressively encompassing the entire patient care process, from embryo selection to 

survival prediction.1 Machine learning (ML), a branch of AI, has the objective to automatically 

extract actionable insights from complex and large datasets that cannot (or are hard to) be 

effectively analyzed by conventional statistical methods or human intuition. ML algorithms have 

been designed to tackle the variability of “-omics” datasets (e.g., genomics, epigenomics, 

transcriptomics, proteomics, etc.), and unstructured data as radiologic images (radiomics), 

histopathology (pathomics), and surgical or videoendoscopic images (videomics).2 In this area, 

ML is being applied to identify disease patterns and predict specific characteristics that may assist 

clinicians in diagnosis, therapeutic management, and follow-up.  

While promising results have been obtained for -omics datasets, radiological and histopathologic 

images, analysis of videoendoscopic frames still represents a challenge. In this context, videomics 

represents a field wherein several methods of computer vision are systematically used to organize 

the unstructured data of frames obtained during diagnostic videoendoscopy. These applications 

are still in the early stage of development, especially in the field of otolaryngology, head and neck 

surgery, where the term videomics was first introduced.2 In particular, one of the main limits in 



developing robust and automatic ML algorithms that can be translated in the clinical practice is 

represented by the paucity of annotated datasets to train algorithms.  

 

Aims of Videomics 

Diagnostic endoscopy is an essential component in assessment of the upper aerodigestive tract 

(UADT) and is a cornerstone as first-line diagnostic tool, especially after the introduction of the 

“bioendoscopy” concept.3 The introduction of videoendoscopy significantly improved this field 

by the development of high-quality videorecording, image magnification, high-definition 

visualization, and advanced optical filters such as Narrow Bang Imaging (NBI), Storz Professional 

Image Enhancement System (SPIES or Image 1S), and I-Scan. These nuances, together with the 

constant advancement in ML, have opened new possibilities for image analysis in a computer 

vision-oriented approach. Here, deep learning (DL), a branch of ML, is playing a paramount role. 

In the field of supervised learning, when provided with both the “problem” (i.e., unlabeled 

videoendoscopic frame) and the “solution” (i.e., annotated frame or “ground truth”), DL 

algorithms iteratively learn their internal parameters (i.e., weights) to progressively improve 

diagnostic performance and specialize on a given objective. As described in this section, recent 

studies have focused on five broad tasks with increasing complexity and computational load, 

which can be summarized as follows: 

• Quality assessment of endoscopic images (Figure 2.1); 

• Classification of pathologic and non-pathologic frames (Figure 2.2); 

• Detection of lesions inside frames (Figure 2.3); 

• Segmentation of pathologic lesions (Figure 2.4); 

• In-depth characterization of neoplastic lesions (Figure 2.5). 



Figure 2.1. Depiction of the potential input and output of a quality assessment 
algorithm. 

 

 

Figure 2.2. Example of a classification task. The algorithm distinguishes between 
normal and pathologic frames without identifying the area involved by the disease. 

 



Figure 2.3. Image showing a bounding box localizing a laryngeal lesion. This is the 
typical output of detection algorithms.  

 

Figure 2.4. Automatic segmentation of a laryngeal lesion provided by a convolutional 
neural network after adequate training and optimization.  

 

Figure 2.5. Endoscopic NBI frame showing an example of adjunctive data drawn from 
in-depth characterization by hypothetical machine learning algorithms. 



 

 

In this area, a stepwise approach has the potential to make use of incremental refinements of 

algorithms and develop functional “minimal viable products” that can be introduced in clinical 

practice as early as possible, even without the full suite of the abovementioned applications. This 

is especially true considering that, as mentioned, the main limiting factor in this field is the paucity 

of large dedicated datasets that are usable for training. Gómez et al.4 initially addressed this issue 

in the field of high-speed laryngeal videoendoscopy by collecting and publishing the BAGLS 

multihospital glottis segmentation dataset. However, with the progressive expansion of the 

available training images, it will be possible to tackle increasingly complex challenges.  

Furthermore, the application of transfer learning techniques may significantly improve algorithm 

training and reduce the number of images needed to reach optimal performance. Transfer learning 

consists in pre-training the algorithm with images that are not directly correlated to the task to be 

explored, but which have certain similarities with the target dataset. For example, the weights of 



convolutional neural networks (CNNs) for endoscopic image analysis are often initialized with 

weights obtained by training CNNs on natural images from everyday objects (i.e., ImageNet 

dataset). This allows CNNs to detect generic low-level features (e.g., corners, edges). Pre-training 

with endoscopic images from a different anatomic site may provide an adjunctive advantage, 

especially in small datasets. CNNs are then fine-tuned to slightly adjust their parameters using 

endoscopic images. 

A potential approach to address the low number of manually annotated images is offered by 

unsupervised and self-supervised learning. Unlike supervised learning, which is biased towards 

how it is being supervised, unsupervised learning derives insights directly from the data itself, 

groups the data, and helps to make data-driven decisions without external biases.5 This approach 

may be particularly useful to cluster endoscopic frames into different categories (e.g., low visibility 

vs. good visibility) to help the clinician’s assessment. On the other hand, self-supervised learning 

takes advantage of unlabeled images of the same pathology but captured from different views to 

significantly enhance the performance of pretraining. However, these options still need to be fully 

explored in the field of UADT endoscopy.6 

 

Quality assessment 

The first step in which AI can be effectively applied to diagnostic videoendoscopies is their quality 

control. In fact, in every examination, the majority of videoendoscopic frames are not diagnostic 

due to the presence of technical or patient-related factors that limit visualization. These factors, in 

the field of UADT evaluation, are mainly represented by repeated swallowing, gag reflex, 

secretions, blurring of the camera, specular reflections, and over- and underexposure. Automatic 

identification and classification of these issues can be of help in real time determination of the 



quality of an endoscopic examination, and may allow to automatically detect the most significant 

frames in a given recording.  

In this field, Patrini et al.7 developed a ML-based strategy for automatic selection of informative 

videolaryngoscopic frames. This approach resulted in a recall (i.e., true positive rate = true 

positives over true positives and false negatives) of 0.97 when classifying informative vs. 

uninformative frames (i.e., blurred, with saliva or specular reflections, and underexposed) with 

support vector machines (SVM) (i.e., conventional ML algorithms), and 0.98 with a CNN-based 

classification. Furthermore, their work demonstrated the potential of transfer learning in medical 

image analysis. 

As a proof of concept, recent advances in the field of gastrointestinal endoscopy have led to the 

development of a fully automatic framework that can detect and classify different artifacts, 

segment artifact instances, provide a quality score for each frame, and restore partially corrupted 

frames.8  

 

Classification 

Classification is a typical task in the field of DL, distinguishing between normal and pathological 

mucosa. Here, the objective is not to localize or finely characterize a particular lesion, but rather 

to distinguish entire frames into different classes, usually pathologic vs. non-pathologic. 

In this field, He et al.9 applied CNN to interpret images of laryngeal squamous cell carcinoma 

using static NBI frames to determine whether a lesion was benign or malignant. The model reached 

an accuracy of 90.6%, a sensitivity of 88.8%, and a specificity of 92.2%. Furthermore, the authors 

demonstrated that the accuracy of the CNN model was higher than that of human experts. A similar 

approach was described by Esmaeili et al.,10 training a CNN for the automatic classification of 



NBI images into benign and malignant. A pre-trained ResNet50 architecture was adopted, and 

three experiments with several models were generated and validated. The model showed a striking 

diagnostic performance and achieved a testing accuracy of 0.83. 

Considering multiple classification groups, Zhao et al.11 proposed a four class-system of vocal 

cord targets (i.e., normal mucosa, polyp, keratinization, and carcinoma), and a laryngoscopy 

dataset was divided into “urgent” (keratinization, carcinoma) and “non-urgent” (normal mucosa, 

polyp) cases. An overall accuracy of 80.2%, a F1 score (i.e., the harmonic mean of the precision 

and recall, a measure of accuracy) of 0.78, and an area under the curve (AUC) of 0.96 were 

achieved. The proposed method delivered high classification performance of normal mucosa, 

polyps, and carcinoma in an extremely rapid time. 

Other studies12,13 have employed ML to classify pharyngo-laryngeal benign lesions during 

videoendoscopy, demonstrating notable results. A preliminary attempt was described in 2014 by 

Huang et al.,12 who proposed an automatic system aimed at recognizing the dynamic image of the 

glottis and classifying different vocal fold disorders (“normal vocal fold,” “vocal fold paralysis,” 

“vocal fold polyp,” and “vocal fold cyst”). This study used an SVM classifier and reached an 

accuracy of 98.7%. However, the patterns to be classified did not include dysplasia or malignancy. 

Dunham et al.13 proposed the concept of “optical biopsy” (already introduced by the Brescia group 

before implementing AI applications in videomics)14 using CNN technology. The first objective 

was to classify endoscopic images into one of five benign classes (normal mucosa, nodules, 

papilloma, polyps, and webs). The second was, using a binary classifier, to distinguish 

malignant/premalignant from benign lesions. The overall accuracy for the multiclass benign vocal 

fold lesion classifier was 80.8%, while the binary test achieved an overall accuracy of 93%.  



Different authors15,16 also demonstrated the feasibility of classifying oropharyngeal and oral cavity 

lesions using ML technology. For the oropharynx, the Stanford group15 used a naïve Bayesian 

classifier (color and texture) to demonstrate the value of NBI imaging instead of white light (WL) 

videoendoscopy, which added more definition to tumor margins and highlighted submucosal 

vascularization. Five-fold cross-validation provided an AUC over 80% for NBI and under 55% for 

WL endoscopy models (p<0.001).  

In the oral cavity, in 2018 Song et al.16, employing CNNs, proposed a low-cost, smartphone-based, 

automatic image classification system. The authors collected data from 190 patients across several 

centers in India to detect oral dysplasia and malignancy using a dual-mode image analysis with 

WL and autofluorescence (AF). The study compared accuracy of the single- (WL or AF) and dual-

mode (WL and AF) image analysis, demonstrating that the latter had a better diagnostic 

performance. The final model reached an accuracy of 87%, sensitivity of 85%, and specificity of 

89%.  

 

Detection 

Lesions detection remains the main objective of DL-based strategies in contemporary clinical 

videoendoscopy. Different authors have described the potential of CNN in detection of cancer, 

premalignant lesions, benign lesions, and normal tissue. In this setting, algorithms are constantly 

being improved that better conform to specific tasks or subsites. 

As mentioned in the previous section, Inaba et al.17 trained a CNN-based algorithm (RetinaNet) to 

detect superficial laryngo-pharyngeal cancer. To evaluate diagnostic accuracy, 400 pathologic 

images and 800 of normal mucosa were collected, reaching an accuracy, sensitivity, and specificity 

of 97%, 95%, and 98%, respectively. The definition of correct diagnosis was set with an 



intersection over union (IoU) (i.e., the measure of overlap between prediction and ground truth) 

>0.4. Interestingly, the authors showed a direct correlation between the algorithm diagnostic 

performance and the number of images used for training. This is a not surprising outcome and 

clearly highlights the importance of training data, both in quantitative as well as in qualitative 

terms, during the training phase of an algorithm. In fact, to date, the low number and small size of 

the available medically-oriented datasets are the real bottleneck that limit the development of 

clinically relevant computer vision algorithms. A similar approach was described by Xiong et al.18 

who developed a CNN-based diagnostic system using videoendoscopic images of laryngeal 

cancer, premalignant lesions, benign lesions, and normal tissue. The results were comparable to 

those obtained by a human expert with 20 years of experience. 

Concerning real-time detection, Matava et al.19 and Azam et al. (in collaboration with our group)20 

developed CNN algorithms that were applied in real time during videoendoscopy and which aimed 

at identifying, on one side, normal airway anatomy and, on the other, UADT lesions. Using this 

type of approach, DL may be a useful complementary tool for clinicians in endoscopic 

examinations, progressively implementing the concept of human-computer collaboration. In 

detail, Matava et al.19 compared the predictive performance of three models (ResNet, Inception, 

and MobileNet) in the identification of normal components of laryngeal and tracheal airway 

anatomy. ResNet and Inception achieved a specificity of 0.98 and 0.97, and a sensitivity of 0.89 

and 0.86, respectively. Finally, Azam et al.20 identified a CNN model for real-time laryngeal cancer 

detection in WL and NBI videoendoscopies. The dataset, consisting of 219 patients, was tested 

with an algorithm that achieved 0.66 precision (i.e., positive predictive value = true positives over 

true and false positives), 0.62 recall, and 0.63 mean average precision with an IoU>0.5. In addition, 

the model ran with an average computation time per videoframe of 0.026 seconds.  



 

Segmentation 

Automated segmentation of anatomical structures in medical image analysis is a prerequisite for 

autonomous diagnosis and represents one of the most complex tasks in the field of computer vision. 

In this case, the algorithm does not only need to detect lesions, but also to automatically delineate 

their margins. Recent CNN-based methods have demonstrated remarkable results and are well-

suited for such a complex task.  

During transoral laser microsurgery, a 7-class (void, vocal folds, other tissue, glottic space, 

pathology, surgical tools, and tracheal tube) dataset was trained by Laves et al.21 using a CNN-

based algorithm, as previously mentioned, this represents the first application of segmentation 

algorithms in this anatomical area. Different CNN architectures were investigated, and a weighted 

average ensemble network of UNet and ErfNet (two of the most commonly used CNNs) turned 

out to be the best suited for laryngeal segmentation, with a mean IoU of 84.7%. Advances in ML 

and computer vision have led to the development of methods for accurate and efficient real-time 

segmentation. As presented in section 4, our group performed a preliminary exploration on the use 

of fully CNNs for real-time segmentation of squamous cell cancer in videoendoscopies of the oral 

cavity (OC) and oropharynx (OP).22 In this work, we compared different architectures and detailed 

their diagnostic performance and inference time, demonstrating their significant potential and the 

possibility to achieve real-time segmentation. However, for the first time, we suggested that highly 

heterogeneous subsites such as those encountered in the OC may have inferior results when 

compared with more structurally homogeneous areas such as the OP. This is in line with what we 

previously observed when applying bioendoscopic tools alone in a non-AI environment,14 and is 

possibly related to the larger epithelial differentiation within the OC vs. the OP, and to specific 



limits related to oral examination (presence of light artifacts and confounders such as tongue blade, 

teeth, or dentures). 

When dealing with laryngeal lesions, Fehling et al.23 explored the possibility to achieve a fully 

automated segmentation of the glottic area and vocal fold tissue using a CNN in high-speed 

laryngeal videos. The algorithm obtained a Dice similarity coefficient (i.e., the measure that 

evaluates the intersection of the two regions as a ratio to the total area of them both) of 0.85 for 

the glottis, 0.91 for the right, and 0.90 for the left vocal fold. Furthermore, the results revealed that, 

in both pathologic and healthy subjects, the automatic segmentation accuracy obtained was 

comparable or even superior to manual segmentation.  

Generally, laryngo-pharyngeal lesions are those more frequently examined when measuring the 

role of automatic analysis by ML. In fact, only limited studies on nasopharyngeal disease 

differentiation have been performed based on endoscopic images. For example, Li et al.24 proposed 

a method to segment nasopharyngeal malignancies in endoscopic images based on DL. The final 

model reached an accuracy of 88.0%. 

Finally, DL proved to be a promising addition to the field of endoscopic laryngeal high-speed 

videos. In clinical practice, the previous lack of dedicated software to analyze the data obtained 

resulted in a purely subjective assessment of the symmetry of vocal fold movement and oscillation. 

The development of easy-to-use DL-based systems that are capable of automatic glottal detection 

and midline segmentation allowed obtaining objective functional data without the need for manual 

or semi-automatic annotation as previously described, among others, by Piazza et al.25 thus 

significantly simplifying the process. These results were obtained through an organized and 

stepwise approach headed by the Erlangen research group that achieves high-fidelity automatic 

segmentation of the glottis23 and glottal midline26 as well as extraction of relevant functional 



parameters.27 Thanks to these preliminary data, a DL- enhanced software tool for laryngeal 

dynamics analysis was developed.28 This software provides 79 unique quantitative analysis 

parameters for video- and audio-based signals, and most of these have already been shown to 

reflect voice disorders, highlighting its clinical importance. 

 

In-depth characterization 

All the previously described tasks aim to provide an accurate definition of a given lesion, 

classifying it according to its nature, defining its location in the frame, and delineating its margins 

(with possible future roles in real-time definition of resection margins during a surgical procedure). 

However, all these objectives only reproduce what is generally achieved by an expert clinician, 

and do not try to overcome the limits of human perception, even though their future 

implementation within a telemedicine environment would represent a large step towards more 

homogeneous diagnostic opportunities.  

However, there is already indirect evidence that pattern recognition capabilities of novel AI 

systems may allow finding a correlation between the endoscopic appearance of a given lesion and 

its finer characteristics. Among these, depth of infiltration (DOI), so far investigable only by 

radiologic imaging or histopathologic evaluation,29 plays a remarkable role in prognostication of 

OC cancer and has fueled great interest in the possibility of speeding up its definition by AI tools 

applied to videomics. Identification through videomics of other tumor characteristics, such as 

histopathological risk factors (e.g., perineural and lymphovascular invasion), viral status (Human 

Papilloma and Epstein-Barr viruses), and genomic markers is definitively more ambitious but 

already within the reach of similar approaches like radiomics and pathomics. Bridges connecting 



all these sources of information would be of great help in the near future to build up sharable 

profiling of tumors and their microenvironment. 

Recent studies in the gastrointestinal tract, for example, have provided the proof of concept of this 

hypothesis and demonstrated that CNNs can differentiate between early and deeply infiltrating 

gastric cancer.30 Nakahira et al.31 further confirmed the potential of this approach by showing that 

CNN was able to correctly stratify the risk of gastric tumor development by analyzing the non-

neoplastic mucosa at videoendoscopy. 

 

Future perspectives 

The introduction of computer vision in UADT endoscopy is still in its infancy and further steps 

will need to be taken before reaching widespread application. In this view, the first step outside of 

purely research-driven applications will be the use of ML algorithms for human-computer 

collaboration. Dedicated algorithms can assist in every step of the endoscopic diagnostic approach, 

from quality assurance, effective storage and video classification to risk determination, histologic 

definition, margins evaluation, and in-depth lesion profiling. As previously stated, this will be a 

stepwise approach that will start from easier tasks (i.e., quality assurance) and will progress 

towards more complex and more clinically relevant objectives. The ideal outcome will be to 

achieve accurate lesion characterization in terms of histologic nature, margins, and biologic 

characteristics, and to be able to integrate these insights fully and objectively with data from other 

types of examinations (e.g., radiology, molecular biology, and histopathology). 

Morphologic image analysis is the main field in which videomics is evolving in the context of 

clinical endoscopy. However, other more innovative aspects can be assessed by taking advantage 

of current computer-vision technologies. A particularly interesting feature in otolaryngology is 



vocal fold motility; in fact, objective evaluation of this variable can be extremely helpful in both 

assessment of functional deficits and in the precise staging of neoplastic disease of the glottis. This 

is especially true when considering that the AJCC/UICC TNM classification32 of laryngeal cancer 

relies on purely subjective definitions of “normal vocal cord mobility”, “impaired vocal cord 

mobility”, and “vocal cord fixation” for categorization of T1, T2, and T3 glottic tumors, 

respectively. 

In this field, Adamian et al.33 recently developed an open-source computer vision tool for 

automated vocal fold tracking from videoendoscopies that is capable of estimating the anterior 

angle between vocal folds of subjects with normal mobility and those with unilateral vocal fold 

paralysis. The authors demonstrated the possibility to identify patients with vocal fold palsy by 

assessing the angle of maximal glottic opening (49° vs. 69°; p<0.001). In particular, an angle of 

maximum opening <58.6° was predictive of paralysis with a sensitivity and specificity of 0.85. 

Notwithstanding, this approach has significant limits in evaluation of reduced mobility due to 

neoplastic involvement since it relies on identification of the free margin of vocal folds, which is 

often altered by glottic tumors. However, the development of alternative strategies is providing 

valuable outcomes in such a task, as described in the following sections. 

Finally, novel surgical technologies such as transoral robotic34 and exoscopic surgery35 rely on 

digital video acquisition of a large amount of data and will potentially extend the applications of 

videomics to the intraoperative setting of quality and safety control as well as didactic proficiency. 

This is especially interesting considering the urgent need for more extensive training and 

collaborative datasets that will enable better refinement of ML algorithms, coming not only from 

diagnostic instrumentation, but also from surgical robots and exoscopic tools. 
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3. Deep learning in endoscopy: The importance of standardization 

Defining standards: Guidelines for adequate reporting in medical computer vision studies 

 

Introduction 

As previously described, different DL architectures have been proposed to address a variety of 

tasks, including image classification, object detection, segmentation and characterisation.1 These 

advancements have led to significant progress in assisting clinicians in the evaluation of 

endoscopic frames.2 However, a major challenge is that the performance of these methods is often 

not directly comparable among different institutions/series because of the lack of standardised 

evaluation methodology.  

The importance of standardising outcomes in DL for medical imaging cannot be overemphasised 

and its lack is a major barrier to translation into actual clinical practice of such algorithms for 

videomics. To enable fair algorithm comparisons, it is essential to have common evaluation 

metrics that are agreed upon by the research community from both clinical and technical 

perspectives.3 

The dataset used for algorithm training, validation and testing should be representative of the real-

world clinical scenario, possibly including data from different centres and annotated by different 

clinicians.  

Herein, we propose a general guideline to standardise reporting in studies focused on the automatic 

analysis of endoscopic images (i.e., videomics). Figure 3.1 shows a schematic framework aimed 

at addressing study definition and outcome metrics.  



Figure 3.1. Schematic framework detailing a proposal to standardize study definitions 
and outcome measures in studies assessing deep learning in videoendoscopy. Legend: 
aHD, average Hausdorff distance; AUC, area under the curve; CNN, convolutional 

neural network; DSC, Dice Similarity Coefficient; IoU, Intersection-over-Union. 

 
 

Study definition 

The first step is to clearly describe the setting and methodology: 

1. Objective: clearly state the type of task to be assessed. 

2. Algorithm: describe the DL algorithm, its architecture, and technical features (e.g., loss 

function, optimizer, learning rate, batch size, validation metric, strategy to stop training, 

training curves). 



3. Describe the number of patients and number of frames extracted from each (with selection 

criteria). Technical information regarding endoscopic and recording equipment, as well as 

the use of optical filters (e.g., narrow band imaging), should also be available. 

4. The training-validation-test set split ratio should be described, specifying the type of cross-

validation. Patients should be clustered in different sets. 

 

Definition of primary outcomes 

A further step is to clearly define the study outcomes by selecting measures that are actually 

representative of diagnostic performance. Figure 3.1 shows the suggested metrics for each task, 

selecting those with a lower risk of resulting in an illegitimate high score. Adjunctive metrics can 

be added, but should not be considered as primary outcomes unless there is a clear rationale.  

Regarding classification, thanks to the clear dichotomic distinction between positive and negative 

results, the same rationale used for standard diagnostic tests should be applied. A wide range of 

metrics (see Figure 3.1) should be provided to allow a comprehensive assessment of the 

algorithm’s diagnostic characteristics. In addition, in case of class unbalance, appropriate metrics 

should be considered (e.g., F1-score instead of accuracy, precision-recall curve). 

Conversely, special considerations should be applied to detection and segmentation tasks. It is 

essential to define the percentage of frames in which a region of interest (ROI) has been detected. 

Here, the most commonly used parameter is accuracy (Acc), which measures the percentage of 

correctly classified pixels. However, endoscopic frames are commonly highly class-imbalanced. 

Frames usually contain a single region of interest involving only a small portion of pixels, whereas 

the remaining image is labelled as background. Because of the positive impact of true negatives 

(i.e., background), Acc will always result in high scores. Similarly, specificity (Spec) indicates the 



model capability to detect the background in an image. Due to the large fraction of pixels annotated 

as background compared to the ROI, specificity values close to 1 are typical. For this reason, Acc 

and Spec should not be used as primary outcomes. 

Sensitivity (also defined as Recall) is another popular metric, but in detection and segmentation 

tasks it is less representative than overlap metrics such as the Dice Similarity Coefficient (DSC) 

and Intersection over Union (IoU). In particular: the DSC is calculated by taking the number of 

data points that are shared by both sets and dividing it by the total number of data points; IoU is 

calculated by taking the intersection of the predicted segmentation and the ground truth 

segmentation, and dividing it by the union of the two. 

Finally, the Hausdorff Distance (HD) measures the distance between two sets of points (i.e., 

ground truth and predicted segmentation), and allows scoring localisation similarity by focusing 

on the delineation of margins. Since the HD is sensitive to outliers, the average HD may be better 

suited for most applications. 

This is a first proposal to standardise reporting in videomics studies. Some technical concepts 

should be taken into consideration to improve collaboration and reliably assess the performance 

of novel DL algorithms before introducing them into a clinical setting. 
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4. Deep learning for automatic segmentation of oral and 

oropharyngeal cancer using Narrow Band Imaging: Preliminary 

experience in a clinical perspective 

Proof of concept: Setting the acquisition pipeline and testing technical approaches. 

 

Introduction 

Surgical data science (SDS)1 is an emerging field of medicine aimed at extracting knowledge from 

medical data and providing objective measures to assist in diagnosis, clinical decision making, and 

prediction of treatment outcomes. In this context, image segmentation, an essential step in 

computer vision, can be defined as the task of partitioning an image into several non-intersecting 

coherent parts.2 It is also well known that segmentation is a prerequisite for autonomous diagnosis, 

as well as for various computer- and robot-aided interventions. Many methodologies have been 

proposed for image segmentation,3 but recent and successful approaches are based on fully 

convolutional neural networks (FCNNs), applying convolutional filters that learn hierarchical 

features from data (i.e., input images), and then collecting them in maps. In general, a high number 

of filters will give better results up to a certain point, when a further increase in their number either 

does not improve the segmentation performance, or deteriorates it.4  

FCNNs applied to video-analysis are of particular interest in the field of head and neck oncology, 

since endoscopic examination (and its storage in different ways and media) has always represented 

a crucial step in diagnosis, staging, and follow-up of patients affected by upper aero-digestive tract 

cancers. In this view, Narrow Band Imaging (NBI) represents an already consolidated 



improvement over conventional white light endoscopy, allowing for better and earlier 

identification of dysplastic/neoplastic mucosal alterations.5-8 However, so far, NBI-based 

endoscopy remains a highly operator-dependent procedure, and its standardization remains 

particularly challenging, even when employing simplified pattern classification schemes.9-14 In 

fact, even though such bioendoscopic tools are aimed at identifying pathognomonic superficial 

vascular changes in forms of abnormal intrapapillary capillary loops, a relatively long learning 

curve and intrinsic subjectivity of subtle visual evaluations still hamper their general and 

widespread adoption in daily clinical practice. Furthermore, subtle differences in NBI patterns 

according to the head and neck subsite to be analyzed have also been described. This is especially 

true considering the oral cavity (OC) in comparison with other upper aerodigestive tract sites.9 

The aim of this study was to test FCNN-based methods for semantic segmentation of early 

squamous cell carcinoma (SCC) in video-endoscopic images belonging to OC and oropharyngeal 

(OP) subsites to pave the way towards development of intelligent systems for automatic NBI 

video-endoscopic evaluations.  

 

Materials and Methods 

This study was performed following the principles of the Declaration of Helsinki and approved by 

the Institutional Review Board, Ethics Committee of our academic hospital (Spedali Civili of 

Brescia, University of Brescia, Brescia, Italy). The workflow of the approach used is shown in 

Figure 4.1. In particular, informative NBI frames were selected from videos of OC and OP SCC 

through a case by case evaluation (“Original frames”, Figure 4.1). Each frame was manually 

annotated by an expert clinician contouring the lesion margins, thus creating a mask referring to 



every frame (“Original mask”, Figure 4.1). The original frames and original masks were employed 

to train the FCNNs in order to obtain an automatic tumor segmentation. 

Figure 4.1. Workflow of the approach used for detection of mucosal SCC in 
videoendoscopic frames by NBI. 

 

Mucosal cancer segmentation  

Two datasets were retrieved from the institutional registry analyzing 34 and 45 NBI endoscopic 

videos of OC and OP, respectively. Each video was from a different patient affected by SCC, 

clinically presenting as a leuko- or erythroplastic lesion. Image acquisition was performed at the 

Department of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili, University 

of Brescia, Brescia, Italy between January 2010 and December 2018. Only video-endoscopies of 

biopsy-proven OC and OP SCC were included in the study. Patients with previous surgical and/or 

non-surgical treatments for tumors of these anatomical sites and frankly ulcerated neoplasms with 

significant loss of substance were excluded from the analysis. 



All videos were acquired under white light and NBI by a rigid telescope coupled to an Evis Exera 

II HDTV camera connected to an Evis Exera II CLV-180B light source (Olympus Medical 

Systems Corporation, Tokyo, Japan). From the total amount of frames constituting the NBI videos, 

non-informative frames (i.e., blurred, out of focus, dark, or with signs of bleeding) were discarded 

through a case by case evaluation. After this selection process, the dataset referring to the OC was 

composed of 110 frames, while a total of 116 frames composed the OP dataset. Table 4.1 shows 

the number of frames tested per patient for each dataset and the relative total amount of frames 

and patients involved. Each frame in these databases was manually annotated by an expert clinician 

contouring the lesion margins. The correspondent mean lesion size in percentage of pixels with 

respect to the entire frame size for each dataset is reported in Table 4.2.  

Table 4.1. Investigated datasets for mucosal SCC segmentation task and corresponding 
number of NBI videoframes per patient. 

Oral cavity 

 
No. patients No. frames per patient No. frames 

 6 1 6 
 26 2 52 
 8 4 32 
 5 4 20 

Total 45  110 

 
Oropharynx 

 
No. patients No. frames per patient No. frames 

 10 2 20 

 8 3 24 

 12 4 48 

 4 6 24 
Total 34  116 

 



Table 4.2. Investigated datasets for mucosal SCC segmentation task and corresponding 
amount of mean percentages of lesion pixels per frame and relative standard deviations. 

Dataset Mean of lesion pixels in % 
Standard deviation of lesion 
pixels in % 

Oral cavity 22.84 11.68 
Oropharynx 38.04 18.54 

 

Before segmenting the tumor area with FCNNs, the images underwent a cropping procedure to 

remove black borders. Given the different dimensions and shapes of extracted NBI video-frames, 

the cropping was customized for each of them. For memory constraints, frames were down-

sampled to dimensions of 256×256 pixels to prevent exceeding the available GPU memory 

(∼14858 MB). Prior to FCNN-based segmentation, images were standardized sample-wise, 

namely the image mean was removed from each image. Given the small size of the two datasets, 

data augmentation was performed to avoid overfitting and to increase the ability of the model to 

better generalize the results. Hence, the training set was augmented by ∼10 times at each cross-

validation, imposing the following random transformations to the frames (and corresponding gold-

standard masks obtained with manual segmentation): image rotation (random rotation degree in 

range 0°-90°), shift (random shift in range 0-10% of the frame side length for both width and 

height), zoom (with zoom values in range 0 and 1), and horizontal and vertical flip.  

Three FCNNs were investigated to segment neoplastic images in OC and OP. The architectures 

tested were: 

U-Net, a fully convolutional U-shaped network architecture for biomedical image segmentation;15  

U-Net 3, consisting of the previous deep network improved by Liciotti et al.16 to work with very 

few training images and yield more precise segmentations; 

ResNet, composed of a sequence of residual units.17  

 



Technical definitions 

FCNNs are a type of artificial neural networks that have wide application in visual computing. 

Their deep hierarchical model roughly mimics the nature of mammalian visual cortex, making 

FCNNs the most promising architectures for image analysis. FCNNs present an input layer, an 

output layer, and a variable number of hidden layers, that transform the input image thorough the 

convolution with small filters, whose weights and biases are learned during a training procedure. 

U-Net is a fully convolutional U-shaped FCNN that is especially suitable for biomedical images. 

The descending path U-Net is made of repeated 3x3 convolutions and max-pooling, for down-

sampling the input image. This path acts as an encoder for feature extraction. The ascending path 

consists of 3x3 convolutions and up-sampling, for restoring the original input image size. This 

path acts as decoder for feature processing to achieve the segmentation. The encoder and decoder 

are linked to each other via long skip connections. U-Net3 is inspired by U-Net but introduces 

batch normalization, which makes the training process faster. ResNet is also divided in two parts: 

the descending and ascending paths, each consisting of 5 blocks. Each block of the descending 

path is made of a convolutional sub-block and two identity sub-blocks, whereas in the ascending 

path there is one up-convolutional sub-block and two identity sub-blocks. The convolutional and 

identity sub-blocks follow the implementation of He et al.17 and are made of convolution filters. 

In order to study the complexity of ResNet, in this work we also tested the performance of ResNet 

considering 1 block, 3 blocks, and 4 blocks per path. In each block, we kept the number of filters 

for each convolution equal to 16. We also investigated the ResNet with 1 block per path and 8 

filters per convolution instead of 16: this represents the simplest model.  

 



Data analysis  

FCNN performance was evaluated for each network tested and compared to the gold standard 

represented by manual annotation performed by expert clinicians. A contingency table considering 

true positive (TP), true negative (TN), false negative (FN), and false positive (FP) results was used. 

The overall accuracy (Acc) was calculated and defined as the ratio of the correctly segmented area 

by the algorithm over the annotated area by the expert examiner. The positive and negative samples 

refer to pixels within and outside the segmented region, respectively. Precision (Prec) was defined 

as the fraction of relevant instances among the retrieved ones (i.e., positive prediction value; true 

positives over true and false positives). Recall (Rec) was defined as the fraction of the total amount 

of relevant instances that were actually retrieved (i.e., true positive rate; true positives over true 

positives and false negatives). The Dice Similarity Coefficient (Dsc) was evaluated as overlapping 

measure. The Dsc is a statistical validation metric based on the spatial overlap between two sets 

of segmentations of the same anatomy. The value of Dsc ranges from 0, indicating no spatial 

overlap between two sets of binary segmentation results, to 1, indicating complete overlap. Tumor 

detection performance was evaluated by measuring the computational time required by each of the 

FCNN architectures investigated to perform automatic segmentation per frame.  

Analysis of variance (Anova test) with a significance level of 0.05 was performed to check whether 

the averages of the computed metrics significantly differed from each other. When significant 

differences were found, a pairwise T-test for multiple comparisons of independent groups was 

performed.  

 



Results 

Oral cavity dataset  

For FCNN-based segmentation of the OC dataset, the best results in terms of Dsc were achieved 

by ResNet with 5(×2) blocks (5 for the descending and 5 for the ascending path) and 16 filters, 

with a median value of 0.6559, as reported in Figure 4.2. The comparison in terms of Acc in Figure 

4.3 for the tested FCNN architectures showed the best results in terms of median for the U-Net, 

with a value of 0.8896. Both the abovementioned architectures showed the best results in terms of 

other metrics. Specifically, ResNet with 5(×2) blocks and 16 filters appeared to be the best in terms 

of Rec, with a median value of 0.7545, as reported in Figure 4.4. U-Net, in contrast, showed the 

best result in terms of Prec, with a median value of 0.7079, as reported in Figure 4.5. All FCNNs 

tested presented very high values of variance, leading to very low values of minima for all metrics 

evaluated, except for Acc which showed better results than in the OP dataset. 

No significant difference was found when analyzing variance with the Anova test (p>0.05) to the 

Dsc, Acc, Rec, and Prec vectors constituted by the metrics of each architecture.  

Figure 4.2-4.5. Boxplots of performance metrics for the OC dataset, obtained for (a) U-
Net architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d) ResNet 
with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16 filters, (f) ResNet 

with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2) blocks and 16 filters. Green 
triangles indicate the mean values, while the orange numbers at the top of each boxplot 

are the corresponding median values. 

 



 

 

 

The computational times required by the FCNNs for the automated segmentation task for one 

image are reported in Table 4.3. It is worth noticing that less deep networks, such as ResNet with 

1(×2) blocks and 8 filters, and ResNet with 1(×2) blocks and 16 filters, achieved automated 

segmentation in shorter times than the others. In particular, ResNet with 1(×2) blocks and 8 filters 

took only 14 ms to predict a single frame.  

Table 4.3: Tested FCNNs and the corresponding times of inference for each single 
frame, expressed in milliseconds (ms). 

FCNNs 

Inference 
time per 
frame (ms) 

U-Net ∼115 
U-Net 3 ∼96 
ResNet with 4x2 blocks, 16 filters ∼66 



ResNet with 1x2 blocks, 8 filters ∼14 
ResNet with 1x2 blocks, 16 filters ∼23 
ResNet with 3x2 blocks, 16 filters ∼59 
ResNet with 5x2 blocks, 16 filters ∼59 

 

 

Oropharyngeal dataset  

Considering FCNN-based segmentation for the OP dataset, the best results in terms of Dsc were 

achieved by ResNet with 4(×2) blocks and 16 filters, with a median value of 0.7603, as reported 

in Figure 4.6. The comparison in terms of Acc in Figure 4.7 for the FCNN architectures showed 

the best results in terms of median for the ResNet with 3(×2) blocks and 16 filters, with a median 

value of 0.8364. Both the abovementioned architectures also showed the best results in terms of 

Rec, with a median value of 0.8560 for both, as reported in Figure 4.8.  

Conversely, considering the comparison in terms of Prec in Figure 4.9, the best result was achieved 

with a deeper network, the ResNet with 5(×2) blocks and 16 filters. However, no significant 

difference was found when analyzing variance with the Anova test (p>0.05) to the Dsc vectors 

constituted by the Dsc of each architecture.  

A significant difference among the different FCNNs was found applying the same test to the Rec 

vectors (Figure 4.8). A further investigation was performed using a pairwise T-test for multiple 

comparisons of independent groups that demonstrated a p value of 0.043 between U-Net 3 and 

ResNet with 1(×2) blocks and 8 filters, demonstrating that architectures with skip connections (i.e., 

all the architectures tested except for U-Net and U-Net 3) had greater performances in detecting 

mucosal sites affected by SCC. 

Moreover, a significant difference among the different FCNNs was also found by applying the 

Anova test to the Prec vectors (Figure 4.9). A further investigation using a pairwise T-test for 



multiple comparisons of independent groups showed a p value of 0.0454 between ResNet with 

5(×2) blocks and 16 filters, and ResNet with 1(×2) blocks and 8 filters, demonstrating that deeper 

architectures were more precise in detecting SCC.  

Figure 4.6-4.9. Boxplots of performance metrics for the OP dataset, obtained for (a) U-
Net architecture, (b) U-Net 3, (c) ResNet with 4(×2) blocks and 16 filters, (d) ResNet 
with 1(×2) blocks and 8 filters, (e) ResNet with 1(×2) blocks and 16 filters, (f) ResNet 

with 3(×2) blocks and 16 filters, and (g) ResNet with 5(×2) blocks and 16 filters. Green 
triangles indicate the mean values, while the orange numbers at the top of each boxplot 

are the corresponding median values. 

 
Samples of original frames, manual masks, and relative predicted masks for the OC and OP are 

shown in Figure 4.10-4.12 in order to provide a visual input on the characteristics of correctly and 

incorrectly segmented tumors, and non-diagnostic cases. 

Figure 4.10: Sample of original OC frames, manual masks, and relative predicted 
masks for ResNet with 5 (x2) blocks and 16 filters. The red and green boxes correspond 

to values of Dsc less than 45% (Dsc <0.45) and Dsc greater than 85% (Dsc >0.85), 
respectively. 



 

Figure 4.11: Sample of original OP frames, manual masks, and relative predicted masks 
for ResNet with 4 (x2) blocks and 16 filters. The red and green boxes correspond to 
values of Dsc less than 45% (Dsc <0.45) and Dsc greater than 85% (Dsc >0.85), 

respectively. 



 
 

Figure 4.12: Sample of original frames excluded from the boxplot comparisons due to 
their Dsc less than 5 % (Dsc <0.05) assessed by ResNet with 4 (x2) blocks and 16 filters 
for OP frames, and ResNet with 5 (x2) blocks and 16 filters for OC frames. The manual 

masks and relative predicted masks are also reported. 



 

Discussion 

This study presents a computer-aided method for segmentation of SCC through FCNN-based 

evaluation of NBI video-endoscopic frames afferent to two frequently involved upper aero-

digestive tract sites (OC and OP), and evaluates its performance in distinguishing between 

neoplastic and healthy areas. The overall median Dsc for OC and OP frames of the best performing 

FCNN [ResNet with 1(×2) blocks and 8 filters] with the shortest time of inference (14 ms) were 

0.5989 and 0.6879, respectively.  

Of note, this was the first attempt to automatically segment SCC in complex anatomical regions 

from NBI video-frames. Considering the absence of deep-learning methods in the head and neck 



literature from which to draw inspiration, this early experience can be considered as a practical 

approach for segmentation of pathological areas in endoscopic videos, applicable in real time 

during routine clinical activities, given the short time of inference needed per frame. 

Moreover, this approach demonstrates the value of SDS in OC/OP examination and could motivate 

more structured and regular data storage in the clinic. Indeed, large amounts of data would lead to 

the possibility of further exploring deep-learning-based algorithms for semantic segmentation, 

covering a more substantial variability of tissues classification scenarios. In addition, associating 

such diagnostic videos to subsequently obtained radiologic imaging, pathological specimens, and 

prognostic characteristics, could pave the way to data mining aimed at understanding adjunctive 

tumor features (e.g., HPV status, depth of infiltration, risk of regional/distant metastasis) by simple 

video-endoscopy.  

In this field, few methodologies have been presented for automatic diagnosis of tumors of the 

upper aero-digestive tract. As in the present series, most were focused on optimizing the analysis 

by providing adjunctive features (e.g., NBI, autofluorescence) complementing those obtained by 

conventional white light endoscopy. Taking advantage of the value of autofluorescence in the OC, 

Song et al.18 developed an automatic image classification using a smartphone-based system for 

OC lesions employing CNNs that evaluated dual-modality images (white light and 

autofluorescence). The final model reached an accuracy of 87%, sensitivity of 85%, and specificity 

of 89%.  

Conversely, different approaches aimed at maximizing extraction of features focusing on tissue 

vascularization. Specifically, Barbalata et al.19 proposed a method for automated laryngeal tumor 

detection based on post-processing of images. Laryngeal tumors were detected and subsequently 

classified, focusing on their abnormal intrapapillary capillary loops through anisotropic filtering 



and matched filter. This further reinforces the rationale of using NBI data for our analysis, since 

this light-filtering system better highlights blood vessels, thus increasing the quality and quantity 

of data to be analyzed in each image. This concept was also confirmed by Mascharak et al.20 who 

took advantage of naıve Bayesian classifiers trained with low-level image features to automatically 

detect and quantitatively analyze OP SCC using NBI multispectral imaging. The authors showed 

a significant increase in diagnostic accuracy using NBI compared to conventional white light 

video-endoscopy. 

Recent studies confirmed the potential of FCNNs in the automatic diagnosis of benign and 

malignant diseases of the upper aero-digestive tract,21-25 demonstrating an outstanding Acc, 

comparable with that of experienced physicians. However, these studies were only focused on 

tumor detection and did not include OC and anterior OP tumors since the examination was only 

based on transnasal/transoral flexible video-endoscopy. Furthermore, no attempt at segmentation 

of the precise tumor margins was made. 

Considering segmentation and margin recognition tasks, a study by Laves et al.3 put effort into 

using FCNN to segment a dataset of the human larynx. The dataset, consisting of 536 manually 

segmented endoscopic images obtained during transoral laser microsurgery, was tested in order to 

monitor the morphological changes and autonomously detect pathologies. The intersection-over-

Union metric reached 84.7%. To date, no attempt to a precise visual segmentation by FCNN has 

been described in the pertinent OC/OP cancer literature.  

It should be underlined that our investigation is only a preliminary assessment of feasibility and 

future potential that could encourage collection of additional evidence and support more extensive 

studies. The datasets, in fact, were relatively small and partially patient-unbalanced, denoting their 

high variability. In particular, the OC dataset was composed of a relatively low number of frames 



in relation to its considerable anatomical complexity and variability of epithelia with different 

histological and NBI-associated features.26 Moreover, the mean percentage of lesion pixels in each 

frame was only 22.82 ± 11.68% (with respect to the 38.04 ± 18.54% of the OP dataset). Hence, 

the high values of Acc might be partially due to the small size of the OC lesions with respect to 

the entire size of each frame presented in the dataset. Finally, it is worth noticing that all FCNNs 

tested presented very high values of variance, leading to low values of minima. This is probably 

due to the difficult task related to the small size of datasets and the significant tissue variability in 

the regions analyzed. Additionally, OC and OP are characterized by very different endoscopic 

superficial appearances, with the richness in lymphoid tissue of the latter being one of the most 

prominent diagnostic obstacles when searching for small tumors of this site even by NBI.26 The 

lower overall accuracy FCNNs in the OP in the present study may be a sign of this potential 

confounding factor. 

In general, the type of FCNN did not lead to radical differences in the diagnostic performance in 

both subsites (while some minor differences may be observed in the OP). The same holds true 

considering inference times, that were always in the range of “real-time detection” (between 14 

and 115 ms). However, in the OP it was possible to observe a higher precision in deeper 

architectures, demonstrating that an added layer of complexity may improve diagnostic results. 

Still, deeper architectures were also those needing higher inference times, thus requiring more 

processing power and potentially impacting on the aim of real-time segmentation. In this view, 

when dealing with automatic detection and segmentation of mucosal neoplastic lesions, it will be 

essential to find a balance between the depth of the FCNN and the time needed to detect lesions 

and delineate their margins. 



At a subjective evaluation, all FCNNs tended to detect malignant areas where illumination was 

more prominent, usually in the middle of the picture (Figures 4.10-4.12). This factor hints at the 

importance of optimal and homogeneous illumination, which should be equally distributed 

throughout the visual field and not directed only on its central portion. In fact, the operator usually 

centers the image on the lesion to be identified, leading to a significant bias in automatic 

segmentation by FCNNs. The key role of illumination has also been emphasized by others,21,22 

even showing different diagnostic performances in relation to the types of endoscopic device 

employed.22 In this view, novel advances in the field of image analysis should be supported by a 

parallel technical evolution of endoscopes, especially in terms of homogeneous illumination, high 

definition, colors, and optimization of image clarity. 

An adjunctive limitation of this type of studies is that the “ground truth” (i.e., the image 

segmentation defining true tumor margins) is defined through a single expert opinion. This issue 

is related to the current impossibility in creating a histopathologic image to be superimposed to 

the endoscopic view, defining tumor margins at a microscopic level. However, independent 

evaluations by multiple experts may lead to a more accurate definition of endoscopic tumor 

margins. 

 

Conclusions 

SDS has promising potential in the analysis and segmentation of OC and OP video-endoscopic 

images. All tested FCNN architectures demonstrated satisfying outcomes in terms of Dsc, Acc, 

Rec, and Prec. However, further advances are needed to reach a diagnostic performance useful for 

clinical applicability. On the other hand, the inference time of the processing networks were 

particularly short, ranging between 14 and 115 ms, thus showing the possibility for real-time 



application. Future prospective studies, however, should take into account the number and quality 

of training images, optimizing these variables through accurate planning and data collection. 
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5. Instance segmentation of upper aerodigestive tract cancer: Site-

specific outcomes  

From proof of concept to structured clinical study: Overall assessment of CNNs for the 

semantic segmentation of UADT lesions 

 

Introduction 

The application of computer vision techniques in diagnostic videoendoscopies (i.e. Videomics)1,2 

is a promising research field that is currently showing a fast rate of growth in many medical 

specialties. The recent refinement of deep learning (DL) algorithms for image processing and their 

application in the medical field opened novel possibilities in the management of endoscopic exams 

that, in the past, had only subjective value. In particular, videoendoscopy is a key component in 

the management of upper aerodigestive tract (UADT) tumors, influencing their entire diagnostic 

process, treatment, and follow-up. Still, it remains a purely operator-dependent and time-

consuming procedure, which is substantially limited by the variables of human experience and 

perception. This is especially true when endoscopy is applied in conjunction with optical biopsy 

techniques such as Narrow Band Imaging (NBI), requiring an even more specialized training and 

adding a further layer of complexity and subjectivity. Finally, no easily classifiable and structured 

data can be drawn from these examinations, significantly limiting their integration with other 

technologies (e.g., cross sectional imaging, ultrasound, genomic markers, and so on). 

Our study aimed to explore the potential of a novel DL algorithm, Mask R-CNN3, in the diagnostic 

approach to UADT squamous cell carcinoma (SCC). The primary goal was to detect and classify 

neoplastic lesions and, at the same time, precisely define their margins, a task overall defined as 



“instance segmentation”. In fact, Mask R-CNN provides a flexible and general framework for 

object instance segmentation that can also be potentially applied to medical images. This approach 

combines elements from the tasks of object detection (where the goal is to localize the lesion using 

a bounding box), object classification (where the purpose is to classify each pixel into a set of 

categories – e.g., tumor vs. normal mucosa), and semantic segmentation (where the aim is to 

automatically delineate the lesion’s margins). Finally, we included in our analysis three different 

areas of the UADT (oral cavity, oropharynx, larynx/hypopharynx) in order to identify potential 

site-related differences in the diagnostic capability of this DL algorithm, an information that is still 

lacking in the current specialized literature. In fact, studies assessing the value of artificial 

intelligence in endoscopy are generally focused on a single site and are difficult to generalize in 

the context of UADT SCC, which can arise from a wide variety of anatomical structures, as well 

as epithelial and mucosal types. 

 

Materials and methods 

A retrospective study was performed including videoendoscopies performed between September 

2009 and January 2021 in patients treated at the Unit of Otorhinolaryngology – Head and Neck 

Surgery, University of Brescia, Italy for SCC of the UADT. A total of 7.567 videoendoscopies 

were collected from a dedicated archive. All recordings were anonymized and associated with the 

corresponding histopathologic report.  

The study primary endpoint was the definition of the diagnostic accuracy (in terms of Dice 

Similarity Coefficient [Dsc]) of the Mask R-CNN algorithm when applied to NBI UADT 

videoendoscopic frames. The secondary endpoint was the comparison of the algorithm’s Dsc in 

the three different anatomical areas herein considered. 



Inclusion criteria were as follows: 

• Primary or recurrent SCC of the UADT (distinguished between those occurring in the oral 

cavity, oropharynx, and larynx/hypopharynx); 

• NBI evaluation with adequate quality (without pooling of saliva, blood spots, swallowing 

reflex, coughing or other technical issues); 

• available histological examination obtained at the time of videoendoscopy or subsequent 

surgery. 

All patients were examined both under white light (WL) and NBI through transnasal 

videolaryngoscopy (HD Video Rhino-laryngoscope Olympus ENF-VH, ENF-VQ, or ENF-V2, 

Olympus Medical System Corporation, Tokyo, Japan) or through transoral endoscopy by 0° rigid 

telescope coupled to an Evis Exera II HD camera connected to an Evis Exera II CLV-180B/III 

CV-190 light source (Olympus Medical Systems Corporation, Tokyo, Japan). Endoscopic videos 

were selected independently by two otolaryngologists with extensive experience (at least 4 years) 

in endoscopic assessment of UADT lesions by NBI and independently reviewed by an adjunctive 

expert. Images were then manually quality-controlled, with exclusion of those that were blurred, 

obscured by blood or secretions, or without adequate NBI evaluation. 

 

Image processing 

Three representative frames per video were selected for every lesion and saved in .jpeg format. 

The most representative NBI videoframe was chosen and subsequent frames at 0.3 seconds time 

intervals were then automatically selected. Frame annotation was performed manually using the 

LabelMe application4. Annotations consisted of a variable number of key points marking the lesion 

margins in the videoendoscopic frame taking into account positive NBI patterns. The resulting 



masks were then saved in .json format and stored in a dedicated folder. Two clinical experts 

concomitantly annotated the images and a further review was performed by a senior staff member. 

When an agreement regarding lesion margins was not reached, the frame was excluded from the 

analysis. 

After this selection process, a total of 1034 endoscopic images were obtained. Three different sub-

datasets were generated according to the lesion primary site: oral cavity, oropharynx, and 

larynx/hypopharynx. In this way, the total frames analyzed were 653 for the larynx/hypopharynx, 

246 for the oral cavity, and 135 for the oropharynx.  

 

Dataset 

The dataset included 1034 images from 323 patients. For algorithm training and testing the dataset 

was split over patients and balancing the three classes into three sets: 935 images from 290 subjects 

for training, 48 images from 16 subjects for validation, and 51 images from 17 subjects for testing. 

All images were resized to the same dimension of 480x640 pixels.  

 

DL analysis 

In this work, Mask R-CNN5 was used to segment the tumor in endoscopic frames. This 

convolutional neural network (CNN) consists of backbone, Region Proposal Network (RPN), and 

three heads for classification, bounding-box regression, and segmentation (Figure 5.1). 

Figure 5.1. Schematic representation of the proposed architecture. The Mask R-CNN is 
made of a backbone (composed by a ResNet50 and a feature pyramid network), a region 

proposal network (RPN), ROIAlign, and three heads, for classification, bounding-box 
regression, and segmentation. 



 

As backbone, we used the ResNet506 combined with the Feature Pyramid Network (FPN),7 to 

extract features from the input frame at multiple scales. Starting from the features computed with 

the backbone, the RPN identifies candidate regions containing the tumor. For each of the proposed 

regions, the final bounding box containing the tumor and the tumor segmentation are obtained 

from the three heads.  

To cope with the relatively limited size of the dataset, we used the weights computed on the COCO 

dataset8 to initialize the layers of Mask R-CNN. To reduce the risk of overfitting, we performed 

on-the-fly data augmentation during training by applying: random brightness changes in the range 

(0.5, 1.1), random contrast changes in the range (0.8, 3), and random rotation in the range (-20, 

20). 

The model was trained for 100 epochs, using the Stochastic Gradient Descent (SGD) as optimizer 

with an initial learning rate of 0.001 and momentum of 0.9. We used a loss which is the 

combination of different contributions:   

where  is the loss in the classification head,  is the loss in bounding-box regression 

head,  is the classification loss in the RPN,  is the localization loss in the RPN, and 



 is the loss in segmentation head. The loss equations can be found in the original Mask R-

CNN paper.5 

 

Performance metrics and statistical analysis 

As a primary endpoint the segmentation performance was evaluated using the Dsc, which is a 

statistical validation metric based on the spatial overlap between the predicted ( ) and ground-

truth ( ) segmentation: 

 

Dsc can assume values in a range from 0, indicating no overlap, to 1, indicating complete overlap. 

Furthermore, outcomes were also evaluated using the following spatial overlap-based metrics: 

Pixel accuracy (Acc) represents the percent of pixels in the image which are correctly classified.  

It is defined as:   

where TP, TN, FP, FN denote the true positives, true negatives, false positives, and false negatives, 

respectively.  

Recall (Rec), also known as Sensitivity or True Positive Rate, defines the portion of positive pixels 

in the ground-truth which are also identified as positive in the predicted segmentation.  

It is defined as:  

Specificity (Spec), or True Negative Rate, measures the portion of negative pixels (background) 

in the ground-truth that are also identified as negative in the predicted segmentation.  

It is defined as:  



Precision (Prec), or Positive Predictive Value, measures how accurate the predictions are, i.e. the 

percentage of correct predictions.  

It is defined as:  

F1-score is a balance between precision and recall, also known as harmonic mean.  

It is defined as:  

Intersection over Union (IoU), also referred to as Jaccard index, represents the area of overlap 

between the predicted segmentation and the ground truth divided by the area of union between the 

predicted segmentation and the ground truth.  

It is defined as:  

Mean Average Precision (mAP), which represents the average of the area under the Recall-

Precision curve, was also computed. 

Outcomes were compared between the different subsites analyzed using non-parametric statistics.  

The Kruskal-Wallis H-test was used for the overall comparison and the Mann-Whitney U rank test 

for pair comparisons. Statistical analysis was performed using Jupiter Notebook 6.4.5 with pandas 

1.4.1 and ScyPy 1.8.0 libraries. 

 

Results 

Overall performance 

The total number of images used for the test set was 51. The algorithm demonstrated the ability to 

correctly predict 39 images out of 51 images (76.5%). The average Dsc score was 0.79 (range, 

0.26-0.97; standard deviation (SD), 0.22). Overall and site-specific performance metrics are 



summarized in Table 5.1 and Figure 5.2. Samples of the segmentation results are presented in 

Figure 5.3.  

Table 5.1. Summary of the diagnostic performance according to different metrics. Dsc: 
Dice similarity coefficient; IoU: Intersection over Union; SD: standard deviation. 

Mean value (SD) Overall Larynx/hypophaynx Oral cavity Oropharynx 

Dsc 0.79 ±0.23 0.90 ± 0.05 0.60± 0.26 0.80 ± 0.30 

Accuracy 0.91 ± 0.12 0.98 ± 0.01 0.79 ± 0.13 0.92 ± 0.14 

Specificity 0.93 ± 0.12 0.98 ± 0.01 0.86 ± 0.16 0.92 ± 0.15 

Precision 0.85 ± 0.24 0.94 ± 0.06 0.73 ± 0.32 0.79 ± 0.36 

Recall 0.86 ± 0.22 0.91 ± 0.08 0.73 ± 0.33 0.95 ± 0.04 

IoU 0.73 ± 0.27 0.87 ± 0.09 0.49 ± 0.30 0.76 ± 0.14 

F1 score 0.80 ± 0.23 0.92 ± 0.05 0.61 ± 0.27 0.81 ± 0.31 

 

Figure 5.2. Box plots detailing the diagnostic accuracy of the algorithm in different sites 
according to various metrics. A: Dice Similarity Coefficient (DSC); B: Accuracy; C: 
Specificity; D: Precision; E: Recall; F: Intersection Over Union (IoU); G: F1 score. 



 

Figure 5.3. Visual samples of the segmentation results. From left to right: raw 
endoscopic frames, ground truth annotation, and predictions obtained with the proposed 

method. 



 



Laryngeal/hypopharyngeal lesions 

The total number of images representative for laryngeal and hypopharyngeal lesions in the test set 

were 27 (52.9% of the test dataset). Out of that number, our algorithm correctly predicted 21 

lesions (77.8%). The mean Dsc score was 0.90+/-0.05, the first quartile was 0.90 and the third 

quartile 0.94 (Table 5.1). 

 

Oral lesions 

The oral lesions comprised in the test set were 15 (29.4% of the total). The algorithm performed a 

correct prediction in 13 cases (86.7%). The mean Dsc score was 0.60+/-0.26, the first quartile was 

0.34 and the third quartile 0.84 (Table 5.1). 

 

Oropharyngeal lesions 

In the test set, the oropharyngeal lesions were 9 in total out of 51 images (17.6%). The algorithm 

predicted 5 images (55.5%). The mean value of Dsc score was 0.81+/-0.30, the first quartile was 

0.92 and the third quartile 0.95 (Table 5.1). 

 

Comparison between three different UADT sites 

Results for each site are summarized in Table 5.1. The overall diagnostic performance, defined by 

the Dsc score, was significantly different between the different sites (p=0.002). Pairwise analysis 

showed that the difference was related to significantly inferior results in the oral cavity when 

compared with larynx/hypopharynx (p<0.001). 

Diagnostic results proved to be significantly correlated with the site analyzed also considering 

other performance metrics: accuracy (p<0.001), specificity (p=0.02), IoU (p=0.002), and F1 score 



(p=0.002). As above, this difference is related to inferior results in the oral cavity vs. 

larynx/hypopharynx. However, when considering accuracy, it is also possible to evidence a 

significant difference between oral cavity and oropharynx (p=0.03). 

 

Discussion 

In this study, we evaluated for the first time the specific task of instance segmentation in clinical 

endoscopy for head and neck SCC. The analysis included three sites of the UADT to allow a 

comparison of the algorithm’s diagnostic performance in different anatomical areas. The algorithm 

was able to identify and segment the lesion in 76.5% of cases, and showed remarkable diagnostic 

accuracy, especially in consideration of the complex task to be performed. Interestingly, results 

were significantly inferior in the oral cavity, where all outcome measures underperformed when 

compared with larynx/hypopharynx and, in some cases (i.e., accuracy), oropharynx. This is in line 

with what previously observed by Piazza and coworkers9 when applying bioendoscopic tools such 

as NBI. This result is possibly related to the wide array of epithelial subtypes observed in the oral 

cavity, adjunctive limits specifically correlated with oral examination (e.g., presence of light 

artifacts), and confounding factors (e.g., tongue blade, teeth, or dentures) that the ML software 

must learn to take into account. 

Instance segmentation represents the ultimate step in video analysis since it allows at the same 

time detection, classification, and segmentation of multiple elements in each single frame, which 

is possible thanks to the integration of different analytic components in the same general algorithm. 

This approach is particularly suited to the context of UADT endoscopy since different alterations 

(e.g., concomitant inflammatory or benign lesions) can be frequently encountered in the field of 

view together with the target lesion, and due to the fact that patients with head and neck SCC can 



develop distinct islands of neoplastic or dysplastic mucosa (i.e., field of cancerization) that might 

involve various portions of the videoframe, even without continuity. 

In general, recent CNN-based methods have demonstrated remarkable results in segmentation of 

the UADT and proved to be well-suited for such a complex task. Laves et al.10 first demonstrated 

that a weighted average ensemble network of UNet and ErfNet were the best suited for laryngeal 

segmentation of intraoperative images under direct laryngoscopy, with a mean IoU of 84.7%. 

However, different authors subsequently strived toward development of diagnostic algorithms that 

could be applied in real time in office-based and intraoperative endoscopy. Paderno et al.11 

explored the use of fully CNNs for real-time segmentation of SCC in the oral cavity and 

oropharynx. In this work, different architectures were compared detailing their diagnostic 

performance and inference time, demonstrating the possibility to achieve real-time segmentation. 

In accordance with previous findings in literature, the present study confirms that the oral cavity 

may have inferior diagnostic results due to the high variability of subsites when compared with 

other areas of the UADT (i.e., oropharynx, larynx, and hypopharynx). When dealing with normal 

laryngeal anatomy, Fehling et al.12 explored the possibility to achieve a fully automated 

segmentation of the glottic area using a CNN in high-speed laryngeal videos. The algorithm 

obtained a Dsc over 0.85 for all subsites analyzed. Finally, Li et al.13 proposed a method to segment 

nasopharyngeal malignancies in endoscopic images based on DL, reaching an accuracy of 88.0%. 

However, progressive advances in automatic segmentation of the UADT can be observed thanks 

to a recent article by Azam et al.2, in which SegMENT, a novel CNN-based segmentation model, 

outperformed previously published results on the external validation cohorts. The model was 

initially trained on WL and NBI endoscopic frames of laryngeal SCC, but also showed to be 

effective in the segmentation of independent frames of oral and oropharyngeal cancer. The authors 



stated that the model demonstrated potential for improved detection of early tumors, more precise 

biopsies, and better selection of resection margins. 

In general, results of automatic segmentation are inferior to those obtained in more straightforward 

tasks such as frame classification 14 15 16 or lesion detection 17 18 since a more in-depth conceptual 

model of UADT lesions is required to allow accurate definition of margins. However, semantic 

segmentation is a key objective when striving towards more complex tasks involving computer 

vision and human-machine interaction. In fact, other than providing a purely diagnostic tool, a 

comprehensive understanding of all UADT alterations and suspicious lesions may grant significant 

aid in intraoperative management. This is even more true when considering instance segmentation, 

which epitomizes in itself all the needs and requirements of the visual examination of endoscopic 

images, allowing a full automatic understanding of complex endoscopic scenarios, even those 

involving more than one lesion and/or more than one pathology. 

Potential issues have been addressed to limit biases related to the analysis technique: 

• patients (and their related frames) in the training, validation, and test sets have been 

distinguished into separated groups to avoid overfitting; 

• Frames were annotated and reviewed by 3 experts to limit subjective errors; 

• Frame selection and data augmentation were performed to reduce the impact of artifacts or 

technical biases. 

However, intrinsic limits should be acknowledged. In particular, the gold standard over which the 

algorithm has been trained (i.e., the “ground truth”) is represented by an expert opinion of the 

tumor margins and not by the histopathological definition per se. In fact, as of today, it is not 

technically possible to provide a direct “in situ”, “in vivo” morphologic correlation between 

endoscopic images and their histopathological specimen. 
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6. Classifying vocal folds fixation from endoscopic videos with 

machine learning  

From static vision to motion: The role of vocal fold motility 

 

Introduction 

With the advent of artificial intelligence (AI), the last decade has seen a revolution in the field of 

medical-image analysis, with applications ranging from diagnosis to treatment, guidance, and 

follow-up.1 While promising results were obtained for processing anatomical images, such as 

computerized-tomography,2 ultrasound,3 and magnetic-resonance images,4 the analysis of 

endoscopic videos still represents a challenge5 and only few commercially available solutions 

exist.6 This may be explained considering the peculiar challenges of endoscopic videos, including 

poor contrast, low signal-to-noise ratio, presence of motion blurring, and tissue motion. The field 

of otolaryngology and head and neck surgery makes not an exception.7 Videoendoscopy is largely 

used in clinical practice for a number of applications, among which the assessment of vocal cords 

motility. Paralysis of one or both vocal folds may jeopardize key physiological functions of the 

larynx, from breathing to airway protection and phonation.8 The clinical diagnosis relies on the 

subjective examination and interpretation of vocal folds motion during real-time viewing or 

playback of videos captured through videoendoscopy. This evaluation is time-consuming, requires 

a skilled professional to be performed and characterized by high inter- and intra-rater variability.9 

In this context, machine learning (ML) has the potential to tackle the variability of 

videoendoscopic frames, and to provide a quantitative perspective to the analysis of vocal folds 



motility. In this paper, we focus on the analysis of endoscopic frames extracted from endoscopic 

videos, proposing a ML algorithm for the assessment of vocal folds motility.  

The literature on ML algorithms for laryngeal videoendoscopic image analysis has been growing 

since 2017. The work by Moccia et al.10 is among the first ones to investigate the use of ML 

algorithms for early stage cancerous laryngeal tissue classification. Since then, several studies have 

been published.7 Motility assessment, instead, is mostly addressed with deep learning (DL) 

methods based on glottal segmentation, from which the motility is evaluated based on the 

movement of each fold with respect to the midline; or through region of interest detection, and 

glottal gap delimitation.11 Hamad et al.12 developed a DL system for automatic segmentation of 

the glottal region in laryngoscopy videos using a fully convolutional regression network. More 

recently, Yousef et al.13 studied vocal folds kinematics during the running speech, analyzing vocal 

folds vibrations in adductor spasmodic dysphonia. A U-Net model was deployed for glottal area 

segmentation in high-speed videoendoscopy to quantitatively analyze vibrations in both healthy 

and unhealthy patients. Similarly, in the work by Yousef et al.14 vocal folds dynamics is evaluated 

in association with voice disorders. They trained a deep neural network with data from laryngeal 

high-speed videoendoscopy with the aim of segmenting the glottal area, from which the glottal 

edges are derived during connected speech. Other studies make use of phasegram15 (a visualization 

method of system dynamics that can be interpreted as a bifurcation diagram in time) or 

phonovibrogram,9,16 (a graphical representation of the vocal folds deflections, automatically 

extracted from laryngeal high speed recordings) to evaluate vocal folds motility related with voice 

disorders. However, unlike videoendoscopy, these kinds of tests are not usually performed in 

clinical practice.  



Differently from the work in the literature, we rely on ML for vocal folds motility estimation. We 

propose, in fact, a method to classify motility into two classes (namely: preserved motility and 

fixation) based on keypoints. This method is advantageous as it allows to directly obtain a 

classification, without the need of post-processing, as in the case of glottal segmentation. Each of 

the selected keypoints represents an important clinical landmark for the analysis, providing a close 

approximation of both glottic and arytenoid movements. Starting from the coordinates of the five 

key-points, clinically relevant features were handcrafted to train the classification models.  

 

Methods 

Vocal folds model and keypoints annotation  

The dataset used for this analysis is made of videoendoscopic frames of patients treated at the Unit 

of Otorhinolaryngology - Head and Neck Surgery, University of Brescia, Italy. Data were acquired 

following the principles of the Helsinki Declaration, and approval was obtained by the local ethical 

committee of Spedali Civili of Brescia. A total of 558 endoscopic images from 186 patients was 

collected from a dedicated archive and anonymized, and for each video three representative frames 

were selected. The motility was estimated among these three endoscopic frames from five 

keypoints located at specific sites of the larynx: the epiglottic insertion point of the left and right 

aryepiglottic folds (LE and RE, respectively), the posterior angle of the left and right vocal folds 

(LV and RV, respectively), and the anterior commissure (A), as shown in Figure 6.1. RE and LE 

represent the insertion of the aryepiglottic folds in the epiglottis. In particular, they are one of the 

pivot points that remain fixed when the arytenoid moves (together with the aryepiglottic fold). 

Hence, they are suitable reference points when trying to assess the movements of the supraglottic 

larynx, using the angle formed by them and the vocal folds.  



Figure 6.1. Representation of three consecutive frames (from left: abducted, normal, 
and adducted vocal cords, respectively) with ground truth keypoints annotation. The 
images in the first row refer to a subject with preserved motility, while the ones in the 
second row to a subject with fixation. The colored points represent the keypoints: left 

epiglottic in red, left vocal fold in yellow, anterior commissure in green, right vocal fold 
in magenta, right epiglottic in cyan.  

 
 

Frames annotation was performed by an expert (more than 10 years of experience) laryngologist 

using LabelMe1. Only subjects for which three frames representing a specific vocal folds position 

(abducted, neutral, adducted) were available, were included in the study. After this process of data 

selection, the collected dataset counted 101 subjects with preserved motility and 51 subjects with 

fixation. The dataset includes both oncologic and non-oncologic patients.  

 

Feature extraction and classification 

To assess vocal folds motility, we extracted the following features from the labeled frames:  

• The central and the two external angles for each frame (as shown in Figure 6.1).  



• The static index: the difference between the two external angles for each of the three 

frames.  

• The dynamic index: the ratio between the difference of the right angle in the first and third 

frames and the difference of the left angle in the first and third frames.  

We investigated common ML classification algorithms, including support vector machines with 

linear (SVC) and non linear (SVM) kernels, XGBoost (XGB), and random forest (RF). The 

optimal hyperparameters for each classifier were retrieved via grid-search and cross validation on 

the training set, using stratified three-fold cross validation. This ensures that every patient in our 

dataset appears at least once in the testing set. In particular, the three-fold cross validation 

cyclically splits the dataset into three equally sized folds, of which two are used to train and one 

to validate and tune the parameters. Before classification, features were normalized by removing 

the mean (centering) and scaling to unit variance. Given the unbalance between the two classes, 

the minority class was over-sampled using the synthetic minority oversampling technique 

(SMOTE). Also, class weights were balanced according to the number of samples of each class. 

 

Experimental Analysis  

The performance of the classifiers was evaluated using classification precision (Prec), recall (Rec), 

and F1-score (F1) on the test set. Considering the unbalance of our dataset, the area under the 

precision-recall curve (AUC) and the average precision (AP) were also computed.  

 

Results 

The performance of all the classifiers is shown in Table 6.1, results are reported in terms of the 

metrics computed on the test set. Figure 6.2 shows the precision-recall curves of all the classifiers. 



All the tested models showed comparable results, however, the best-performing classification 

algorithm resulted to be the XGB, with an AP of 0.76 and 0.94, and an AUC of 0.76 and 0.93 for 

the fixation and preserved motility class, respectively. Features importance of the XGB classifier 

is reported in Figure 6.3. Specifically, on 152 test subjects (among the three cross validation folds), 

XGB achieved the lowest number of incorrect predictions (27 subjects). Samples of misclassified 

frames are shown in Figure 6.4.  

Table 6.1. Performance evaluation metrics. Precision (Prec), recall (Rec), F1-score 
(F1), accuracy (Acc), average preci- sion (AP), and area under the precision-recall 

curve (AUC) are reported. For each classifier, the first row refers to the class fixation, 
while the second to the class preserved motility. 

 

Figure 6.2. Precision-Recall curves calculated on the test set, for all the classifiers. The 
best-performing classifier resulted to be XGB, showing the highest average precision 

and area under the precision-recall curve for both classes.  



 

Figure 6.3. Features importance of the XGB classifier. Features from 0 to 8 refer to the 
three angles (central and externals) of the three successive frames, features from 9 to 11 
refer to the static indexes of the three frames, and feature 12 refers to the dynamic index.  

 

Figure 6.4. Visual samples of misclassified frames. The images in the first row were 
erroneously predicted as belonging to the fixation class, while the images in the second 

row were erroneously predicted as belonging to the preserved motility class. In the latter 



case, the vocal folds area occupies a small portion of the frame, which makes the 
prediction more challenging.  

 

Figure 6.5. Visual samples of frames from the used dataset. It is characterized by high 
variability among the frames, which reflects also on the variability of the features used 

to train the models.  

 
 

Discussion 

The main objective of this study was to evaluate the ability of ML algorithms to discriminate 

between vocal cords preserved motility and fixation. To do so, we extracted a number of relevant 

features from triplets of videoendoscopic frames, representing specific vocal folds positions. The 

extracted features were used to train and test four different classifiers, which showed good results, 



and the best-performing resulted to be the XGB. Even though the results of this model do not 

depart from the others, the use of this specific ML classifier could be useful in case of some not 

labeled keypoints, as it is able to handle missing values.17 From the results, it is also possible to 

appreciate the ability of all the tested models in assessing vocal cords motility. This is an expected 

behavior18,19 and confirms that the application on ML may have a positive impact to assist 

clinicians in their practice.  

To the best of our knowledge, this is the first study to rely on keypoints to evaluate vocal cords 

motility. Previous work in literature, in fact, focused on the segmentation of the glottis to evaluate 

the motility. The advantage of relying on keypoints, as already demonstrated in precedent work 

from other fields,20,21 is the possibility to obtain a direct classification. Methods relying on 

segmentation, in fact, need a post-processing step to obtain a diagnosis. A limitation of the 

proposed work could be seen in the relatively limited size of the dataset, which is due to the time 

needed to label each frame, and to the lack of available annotated dataset online. The time 

consuming annotation procedure also makes it difficult, at the moment, to evaluate intra-observer 

variability. Moreover, the dataset used in this work includes frames with very high variability 

among each other, as shown in Figure 6.5, which is typical of videoendoscopic frames. This 

characteristic of the dataset reflects also on the extracted features and on the achieved results. For 

this reason, adding the classification algorithm downstream of a frame selection process might 

improve the results. As future work, to support clinicians in the actual clinical practice, the 

classification model could be included within other computer assisted algorithms for diagnostic 

support, e.g., frames selection and automatic keypoints regression. 

 



Conclusion 

Vocal folds fixation is typically assessed by visually evaluating videoendoscopic frames. This 

process is time consuming and requires an expert eye. To make the evaluation more objective, in 

this paper we compared four ML models to classify vocal cords motility into two classes: preserved 

motility and fixation. The best-performing model, XGB, proved to be a useful tool to investigate 

vocal cords motility in a more objective and reliable way. It is, in fact, able to distinguish between 

the two classes, which makes it a potential tool to support clinicians in the clinical practice.  
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7. Artificial intelligence for automatic detection and segmentation of 

nasal polyposis: a pilot study 

Artificial intelligence models as a commodity: Standardized workflows for out-of-the-box 

training of pivotal vision models – The nasal polyps case-study. 

 

Introduction 

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a specific subtype of chronic rhinosinusitis 

(CRS) usually related to an overactive Type-2 immune response. This association is of significant 

interest because it provides therapeutic targets for monoclonal antibodies, new generation 

molecules that have substantially improved the quality of life of patients with CRSwNP. The recent 

introduction of these new drugs has rekindled the interest of the scientific community towards 

CRSwNP, resulting in a remarkable increase in the related scientific production.1 

However, understanding the full complexity of this pathological entity is still an ongoing area of 

research. Moreover, given the direct and indirect costs related to CRwNP, amongst the highest in 

healthcare,1 many aspects of its practical management should be improved. 

To date, the diagnosis and quantification of CRwNP is based on the integration by the physician 

of endoscopic, radiological, pathological, laboratory, anamnestic and subjective data, with the 

former and latter with a preponderant weight in the decision-making process.1 

Since the costs of monoclonal therapy remain relatively high,1 a precise and standardized selection 

process is mandatory, to propose it only to patients who will potentially benefit from the drugs. 

However, both endoscopy and quality of life assessment are characterized by a high grade of 

subjectivity. If on the symptoms reported by the patients the clinician can optimize only recording 



them as precisely as possible on validated questionaries, an effort to a sound endoscopic 

examination should be done in every case. 

Nasal polyps usually show a typical greyish, translucent round aspect. However, the superficial 

aspect may vary significantly based on the presence of secretions, nasal congestion, highly active 

inflammation, and scar tissue due to previous surgeries. In these conditions, distinguishing normal 

mucosa from pathological tissue may be not obvious, thus jeopardizing diagnosis and 

quantification of the polyps. Moreover, an otolaryngology with the necessary expertise in 

rhinology may not be available in all facilities. 

In this scenario, a computer aided decision support system might be beneficial for early diagnosis 

of nasal polyps. In recent years, among the most transformative applications of artificial 

intelligence (AI) is its integration with medical computer vision, which holds immense promise 

for revolutionizing healthcare diagnostics. By leveraging the power of AI algorithms and image 

analysis techniques, medical professionals can extract valuable insights from medical data with 

great accuracy, speed, and objectivity.2,3 Medical computer vision refers to the intersection of 

computer vision techniques and medical imaging, encompassing the analysis, interpretation, and 

understanding of visual data obtained from various medical imaging modalities.4  

In recent years several applications of image recognition guided by AI algorithms have been 

studied to face different challenges of otorhinolaryngological pathology,5-8 especially regarding 

oncological and otological diseases. Regarding the management of CRSwNP, mainly radiological 

and histological image analysis tools have been exploited to extract information on prognosis, 

response to treatment and differential diagnosis,7,8 whereas little has been done with the huge 

number of clinical videos depicting the objective situation of patient’s nasal fossae collected in 

everyday practice.8 For this reason, the aim of our pilot study is to verify the development 



feasibility of an AI based image analysis system, capable of identifying and delineate nasal polyps 

from nasal endoscopy videos, a task commonly referred as “segmentation”.9,10 

 

Materials and Methods 

Recorded nasal videoendoscopies of patients treated for CRwNP between 2019 and 2022 were 

retrospectively revised. Selection criteria comprised a pathology report positive for inflammatory 

nasal polyposis. All patients underwent high definition (HD) endoscopy (HD Video Rhino-

laryngoscope Olympus ENF-VH, Olympus Medical System Corporation, Tokyo, Japan). 

Nasal endoscopic images were retrospectively manually collected by deriving screenshots from 

videos in two different settings: endoscopic examination videos recorded during recruitment or 

follow-up of patients receiving biologic therapy for CRSwNP; intraoperative pre-intervention 

assessment in video of nasal endoscopic surgery performed for CRSwNP.  

Images included in the dataset were required to have a sufficiently clear view of NPs of various 

degrees, without blood or crusting, at different levels of depth of the nasal fossa. 

Three ENTs (CC, GT, CM) classified independently 1/3 of the screenshots each by manually 

segmenting each nasal polyp present in the image using the web application Roboflow (© 2023 

Roboflow, Inc.). 

After segmentation the following pre-processing was applied to each image: 

- Auto-orientation of pixel data (with EXIF-orientation stripping) 

- Resize to 640x640 (Stretch) 

 

Moreover, the following augmentation was applied to create 3 versions of each source image: 

- Randomly crop between 0 and 45 percent of the image 



- Random rotation of between -23 and +23 degrees 

- Random brightness adjustment of between -33 and +33 percent 

 

Training of the AI Model 

For the automated segmentation of nasal polyps, we employed the Ultralytics YOLOv8.0.28, a 

popular and efficient deep learning model designed for object detection and segmentation tasks. 

The YOLO model, specifically the YOLOv8s-seg variant, was trained using a dataset that was 

previously prepared as mentioned. 

The training was conducted for 100 epochs with an image size of 640x640 pixels. This process 

was executed on a GPU with CUDA support, specifically the Tesla T4. 

After the training was completed, the optimizer data was stripped from the saved model weights. 

Training, validation, and test sets were split with a ratio of 80%:10%:10%. After the split, data 

augmentation was performed on the training set. 

 

Results 

A total of 342 images were screenshotted from the video nasoendoscopy of 52 patients affected 

by CRSwNP, 199 (58%) of images were of the right nasal fossa while the remaining 143 (42%) 

images were of the left nasal fossa. A mean of 3.8 and 2.5 screenshots were taken from the right 

and left nasal fossa respectively.  

Training, validation, and test set were split with a ratio of 80%:10%:10%. After the split, data 

augmentation was performed on the training set. 

A total of 816 images (92%) were used in the training set, 34 images (4%) in the validation set and 

36 images (4%) in the testing set. 



The resulting YOLOv8s-seg model consisted of 195 layers, had 11,779,987 parameters, and 

required 42.4 GFLOPs for operation. 

When tested against the validation set, the model achieved satisfying results. For the box detection 

(detecting the location of nasal polyps), the model achieved a precision (P) of 0.91, recall (R) of 

0.839, and mAP50 (mean average precision at 50% IoU) of 0.949. The mAP from 50% to 95% 

IoU was 0.675. 

For the segmentation task (identifying and delineating the exact shape of nasal polyps), the model 

produced similar metrics with a precision (P) of 0.91, recall (R) of 0.839, mAP50 of 0.949, and 

mAP from 50% to 95% IoU of 0.679 (Figure 1-6). 

In terms of processing speed, the model took an average of 0.2ms for pre-processing, 9.8ms for 

inference, 0.0ms for loss calculation, and 1.2ms for post-processing per image. 

 

Discussion 

Over the past few years, the medical imaging sector has seen a surge in the application of deep 

learning techniques, particularly convolutional neural networks (CNNs). Most research papers 

focusing on the application of AI in rhinology delve into diagnostics,8,11 primarily aiming to 

automate the identification of anatomical and pathological features. Out of these, a significant 

number concentrate on radiology, including CT, MRI, and X-ray imaging.8 

Within papers addressing AI applications for non- radiological diagnostic tools, only few focused 

on endoscopy.8,11-17 The main spot of interest was the nasopharynx, and CNNs have been mainly 

used to develop tools for detecting nasopharyngeal carcinomas and grading adenoid 

hypertrophy.11-13,15,16 



Girdler et al. developed and validated a CNN-based model to detect nasal polyposis and inverted 

papilloma from nasal endoscopic image. Despite the low overall accuracy rates, the authors 

showed the potential of deep learning for the diagnosis of nasal cavity masses,14 paving the way 

for future studies. 

In this context, we wanted to develop and test a highly accurate, AI-based, image analysis system, 

able to identify nasal polyps from endoscopies of patients affected by CRSwNP.  

Leveraging an expansive dataset of 342 high quality images, we crafted an algorithm for 

segmentation of nasal polyps. The precision, recall rate, and mean average precision of 0.91, 0.839 

and 0.949, respectively, emphasize its reliability in detecting nasal polyps with substantial 

accuracy. The integration of this tool into everyday clinical practice could lead to a significant 

improvement in patient management by potentially facilitating the development of personalized 

therapeutic strategies, including the targeted application of biological therapies. Furthermore, the 

integration of this AI-driven tool could mitigate the existing subjectivity in diagnosis, catalyzing 

a shift towards more data-driven and objective clinical management of CRSwNP.  

However, it is pertinent to acknowledge the limitations of our current pilot project. The first is the 

lack of comparison with non-inflammatory polypoid lesions, given that our sample was a priori 

specifically aligned with CRSwNP. Despite having demonstrated the prowess of AI in segmenting 

nasal polyps with high precision, in line with Girdler et al.,14 we should expand the spectrum of 

our study to encompass different nasal lesions, both benign and malignant. This would provide a 

tool with broader clinical applicability, able to orient diagnosis and consequently management of 

lesions with potentially opposite biological behaviors.  



The rarity of nasal lesions different from inflammatory polyposis, in parallel with their superficial 

heterogeneity, are the main elements hampering this type of analysis. However, multicentric 

efforts in collecting large dataset of endoscopic images could overcome these limits. 

Furthermore, to enhance the practical utility of this technological advancement, it is imperative to 

develop a reliable polyp quantification algorithm. This step will be pivotal to assimilate this tool 

into clinical practice, particularly concerning the indication of biological therapy, which nowadays 

is based on endoscopic (i.e., Nasal Polyp Score) and/or subjective (i.e., SNOT-22) quantification 

methods.1 Moreover, it would help in monitoring in a reproducible way the response of patients to 

steroid and biologic therapy. 

In this view, the research effort should be in the direction of segmenting not pathological nasal 

structures (i.e., turbinates, nasal septum, nasal floor), to allow for a quantification of polyps in 

respect to these structures. Moreover, the dataset should include images obtained from patients 

who underwent previous surgery. The large proportion of patients with recurrent polyposis have 

some grade of altered anatomy (i.e., cut or reshape of middle turbinate) and cannot be neglected 

in future analyses, even if this will make them more complex. 

 

Conclusions 

The pilot study represents a significant advancement in the application of AI to the management 

of CRSwNP. Leveraging a robust dataset, the developed algorithm yielded good precision and 

recall metrics, suggesting it could serve as a useful complement to existing diagnostic and 

treatment paradigms. The algorithm has the potential to assist clinicians in making more accurate 

and cost-effective treatment decisions, including the use of monoclonal therapies. However, 

limitations such as the lack of polyps grading and comparison with non-inflammatory polypoid 



lesions indicate room for further research. Overall, the study contributes to a growing body of 

evidence supporting the integration of data-driven methods in medical diagnostics and treatment 

planning. 
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8. Computer vision foundation models in medical images: Proof of 

concept in oropharyngeal cancer classification 

Foundation models in clinical endoscopy 

 

Introduction 

Otolaryngology – Head and Neck Surgery has long been in pursuit of tools that can augment the 

diagnostic precision in the endoscopic evaluation of mucosal lesions. The complex anatomy of the 

upper aerodigestive tract (UADT) and the heterogeneity of lesions arising from this area require 

diagnostic methodologies that are both accurate and objective in the identification of early 

malignancies. While the mainstay of our diagnostic approaches has been rooted in subjective 

endoscopic evaluation and conventional radiologic techniques, the dynamic landscape of 

technological advancements offers a constantly growing range of innovative approaches. 

Artificial intelligence (AI) has been heralded as a transformative force across various medical 

disciplines.1,2 Within AI, computer vision stands out for its potential in medical imaging, 

endoscopy, and surgery. Here, the ability to 'teach' algorithms to interpret and infer from complex 

visual data offers unprecedented opportunities. One of the notable advancements in this space is 

the emergence of computer vision foundation models based on the vision transformer architecture 

3, complex algorithms that can be trained by self-supervised approaches on extensive unlabeled 

datasets, leading to a broad understanding of visual patterns.4 These algorithms are able to process 

input images and to create embeddings, multi-dimensional vectors that provide a summary of the 

visual pattern in each image. A notable example is represented by DINOv2,5 a self-supervised 

vision transformer model by Meta AI that thanks to its robustness and adaptability is particularly 



enticing for applications where fine pattern recognition is required. However, current medical 

applications of image-based foundation models are still limited. 

In our study, the overall endeavor is twofold: first, to rigorously assess the efficacy of DINOv2-

derived embeddings (i.e., the quantitative features extracted from each image) in distinguishing 

between normal mucosa and neoplastic tissue, using the oropharynx as a representative model; 

and second, to position this exploration as a proof of concept within the broader narrative of 

foundation models in the evaluation of complex medical images. 

 

Materials and Methods 

This study was performed following the principles of the Declaration of Helsinki and dataset 

collection was approved by the Institutional Review Board, Ethics Committee of ASST Spedali 

Civili of Brescia, University of Brescia, Italy. 

 

Objective 

This study was designed to determine how effectively features extracted using DINOv2, when 

processed with a standard Support Vector Machine (SVM), can differentiate between neoplastic 

and normal tissue in the oropharynx. 

 

Dataset Source and Image Processing 

Images utilized in this research originated from a previously published dataset by the Department 

of Otolaryngology, Head and Neck Surgery, University of Brescia, Italy.  

All patients were examined using Narrow Band Imaging (NBI). The examinations were carried 

out via transnasal videolaryngoscopy utilizing HD video rhino-laryngoscope models Olympus 



ENF-VH, ENF-VQ, or ENF-V2 (Olympus Medical System Corporation, Tokyo, Japan). 

Alternatively, some examinations were conducted through transoral endoscopy, leveraging a 0° 

rigid telescope that was paired with an Evis Exera II HD camera. This camera was connected to 

an Evis Exera II CLV-180B/III CV-190 light source (Olympus Medical Systems Corporation, 

Tokyo, Japan). 

From full endoscopic frames, multiple 300x300 pixel image patches were extracted by an 

otolaryngologist – head and neck surgeon with experience in UADT endoscopy, selecting the most 

representative areas of neoplastic tissue and regions with normal mucosa that were judged as at 

least 1 cm from the tumor margins. The image patches were clustered according to their tissue of 

origin (i.e., normal mucosa vs. neoplastic tissue). 

To ensure uniformity and mitigate biases stemming from lighting conditions or equipment 

variations, images underwent a normalization process. This involved adjustments in luminosity, 

color, and contrast. OpenCV (Open Source Computer Vision Library), an open-source computer 

vision and machine learning software library was employed for histogram equalization across all 

color channels, followed by Z-score normalization. The final step involved rescaling the images 

to a [0, 255] range.  

 

Embeddings Extraction 

The DINOv2 model5 was then employed with no fine-tuning to extract embeddings from each 

image patch. For this study, we utilized the "ViT-S/14 distilled" variant of DINOv2. This particular 

variant stands out as the smallest and less resource-intensive version of the model (21 million 

parameters), making it an ideal choice for applications where computational efficiency is 

paramount. This model had been pre-trained on an expansive dataset comprising 142 million 



images, which endowed it with a broad understanding of visual features across diverse domains, 

and had been distilled from the original model containing 1 billion parameters. 

 

Classification Using SVM 

The extracted embeddings, representing the processed images in the form of a tensor, were then 

used to train a Support Vector Machine (SVM) algorithm. Emphasis was placed on achieving high 

accuracy, making SVM an apt choice given its efficacy in high-dimensional spaces, as is typical 

with image embeddings. 

To assess the model's discriminative capacity, the dataset was divided into an 80% training and 

20% test split. A validation set was not required due to the absence of hyperparameters tuning. 

The Receiver Operating Characteristic (ROC) curve and the area under the curve (AUC) were 

calculated for the test set. 

All image processing, feature extraction, training, and models testing was conducted using Google 

Colaboratory in a Python 3.10 environment. 

 

Results 

Dataset Overview 

A quality selection process from the original dataset (45 videos and 116 frames) was performed to 

ensure the absence of biases, 7 endoscopic videos were excluded since they did not meet the quality 

criteria for the current task: sufficient quality, illumination, white balance, and magnification in 

order to allow the extraction of at least 1 patch from the image. The dataset used in this study 

comprised 38 endoscopic NBI videos of biopsy-proven oropharyngeal cancer, yielding a total of 

88 frames.  



From this dataset, a total of 327 image patches were extracted, ranging from 1 to 6 patches for 

each image, according to one of the following criteria: 

- Presence of neoplastic tissue of a sufficient size to completely occupy the square. 

- Presence of non-neoplastic mucosa of a sufficient size to completely occupy the square and 

with an adequate distance from the neoplastic tissue. 

Of these, 205 patches were representative of neoplastic tissue, while the remaining 122 were of 

normal mucosa. A sample of their appearance after normalization is provided in Figure 8.1. 

Figure 8.1. Comparative visualization of normalized image patches from normal and 
neoplastic mucosa in oropharyngeal endoscopy. Displayed are representative images 

from both normal (left) and neoplastic (right) oropharyngeal mucosa samples (first ten 
images of each dataset). Each couple of rows corresponds to samples juxtaposing the 

morphological differences evident between the two conditions. The highly complex 
features and patterns discernible in these images underline the challenges inherent in 

the classification task. 

 



 

Diagnostic Performance 

The process of embedding all image patches required a total computation time of 2 minutes and 

55 seconds using an Intel(R) Xeon(R) CPU 2.20GHz or 6 seconds using an Nvidia Tesla T4 GPU. 

The resulting performance metrics for tumor classification were: 

• Accuracy: 92% 

• Precision: 89% 

• Recall: 100% 

• F1-Score: 94% 

Detailed metrics are presented in Table 8.1. 

Table 8.1. Classification performance with an 80 to 20 split: detailed metrics. Legend: 
Avg, average. 

TRAINING SET METRICS 

 Precision Recall F1-Score Support 
Normal 1.00 0.95 0.97 95 
Tumor 0.97 1.00 0.99 165 
 
Accuracy 0.98 260 
Macro Avg 0.99 0.97 0.98 260 
Weighted Avg 0.98 0.98 0.98 260 
 
TEST SET METRICS 
 Precision Recall F1-Score Support 
Normal 1.00 0.81 0.89 26 
Tumor 0.89 1.00 0.94 39 
 
Accuracy 0.92 65 
Macro Avg 0.94 0.90 0.92 65 
Weighted Avg 0.93 0.92 0.92 65 

 



The Receiver Operating Characteristic (ROC) curve for the test set, displayed in Figure 8.2, 

yielded an area under the curve (AUC) of 0.96, highlighting the model's robust capability in tumor 

detection. 

Figure 8.2. Receiver Operating Characteristic (ROC) curve for the classification model. 

 
 

Discussion 

Our study highlights the potential impact that computer vision foundation models can have on the 

field of medical image evaluation (i.e., Videomics),6 particularly when considering endoscopy and 

surgery, visual inputs that, when compared with radiologic imaging, are closer to the natural 

images employed in the training of currently available solutions. These algorithms, based on the 

transformers architecture and optimized using vast datasets, have showcased their prowess in 

discerning intricate patterns and subtle variations, often challenging to detect through conventional 

means.7 



In this specific application, the DINOv2 model was employed to extract and distill features present 

in the oropharyngeal mucosa evaluated by NBI endoscopy, considering both normal and neoplastic 

areas. Of note, DINOv2 did not receive any form of fine-tuning for this type of task. The extracted 

features, in the form of tensors, were then used to train and test a conventional machine learning 

algorithm (i.e., SVM). NBI was used as a form of image pre-processing in view of the limited 

number of image patches available, allowing to enhance the contrast of the submucosal 

microvascular pattern without the need for dedicated computational approaches. 

The high average accuracy of 92% demonstrates the model's ability in differentiating between 

normal and neoplastic tissues. Furthermore, the high recall (100%) underscores its strength in 

correctly identifying tumors, a crucial metric in this specific clinical context. Finally, the model 

exhibited an AUC of 0.96 in the test set, underlining its outstanding performance in balancing 

sensitivity and specificity for tumor classification. 

While this represents a selected proof of concept, the discourse around AI 'foundation models' in 

healthcare is particularly pertinent.4 These models, often pre-trained on expansive datasets, serve 

as a robust base that can be directly used or fine-tuned for specific tasks. Their generalizability and 

adaptability hint at a future where AI tools might be tailored to diverse clinical scenarios with 

minimal additional training. This is particularly relevant in fields like Otolaryngology – Head and 

Neck Surgery where the prevalence of each specific condition might never be sufficient to provide 

extensive enough datasets for more complex tasks. The recent research by Zhou et al.8 offers a 

compelling illustration of this paradigm. Zhou and colleagues introduced RETFound, an 

innovative foundation model for retinal images, designed to learn universally applicable 

representations from unlabeled retinal images, setting the stage for efficient model adaptation 

across diverse applications. RETFound, was trained on 1.6 million unlabeled retinal images 



through self-supervised learning, and it was subsequently fine-tuned for disease detection tasks 

using explicit labels. Remarkably, the adapted RETFound consistently surpassed several 

benchmark models in evaluating ocular conditions and signs of systemic pathologies. This 

approach represents a significant paradigm shift, offering a scalable solution to augment model 

performance while reducing the annotation responsibilities of experts. 

The trajectory of medical computer vision in endoscopy, particularly when considering specialized 

fields like Otolaryngology, can be distilled into three distinct subsequent phases of development, 

each bringing forth its unique methodologies and innovations: 

1. Handcrafted feature extraction and subsequent feature analysis by machine learning (ML) 

algorithms. 

2. Direct application of convolutional neural networks (CNN) with automatic feature 

extraction. 

3. Application of vision transformer-based foundation models with subsequent task-oriented 

optimization. 

The first attempts were made using handcrafted feature extraction and traditional ML classifiers 

by focusing on the tissue texture (especially from NBI images)9–11 or the microvascular 

structure.12,13 Nevertheless, this approach was limited by the number and quality of the features 

selected by the investigators, and was less efficient compared to current deep learning (DL) 

models. 

In the subsequent phase, CNN-classifiers became the architecture of choice to analyze endoscopic 

images and they have been widely investigated to classify different sites and diseases of the UADT, 

while the oropharynx remained an under-researched area due to the relative rarity of lesions and 

challenges in obtaining high-quality endoscopic images.14–18,18–27 The advancement of these 



approaches has been significantly influenced by the size and quality of training datasets. Larger 

and more diverse datasets tended to lead to improved model accuracy, especially as the complexity 

of classification tasks increased. For example, Xiong et al.16 utilized a dataset of 14,897 laryngeal 

images and achieved an 89.7% accuracy in binary classification, but the model's accuracy dipped 

to 77.3% when faced with a more complex 4-class categorization task. This decline in performance 

with increased classification complexity, even with such a vast dataset, underscores the challenges 

of differentiating between minimal variations in medical images, even with relatively large 

datasets. Contrastingly, Ren et al.'s18 study stands out for its use of 24,667 laryngoscopy training 

images, and thanks to this impressive effort in data collection, their DL model was able to maintain 

an accuracy above 95% even across multiple classes. 

However, not every task can depend on amassing vast amounts of data. Many analytical steps 

hinge on a comprehensive grasp of overarching visual concepts, anatomical structures, and 

common pathological traits. Foundation models based on vision transformers3 provide this basic 

requirements and allow supervised training to be focused only on the domain-specific component 

of the classification problem, as proved by Zhou et al.8 Our study was structured to serve as a 

benchmark for employing such an approach, with specific design choices to fully test this concept: 

- We deliberately chose an anatomical site that remains under-researched (in terms of 

computer vision approaches) and comes with a limited pool of training images. 

Adjunctively, we refrained from any data augmentation. 

- Our methodology was tailored to heavily rely on the intricate discernment of patterns and 

general structures. By selecting 300x300 pixel segments that exclusively displayed 

neoplastic or normal mucosa and normalizing for color and illumination, we constrained 



the model to solely assess the mucosal and microvascular patterns, coupled with their 

spatial distribution. 

- Leveraging the inherent capabilities of the DINOv2 model, we opted against any fine-

tuning. Also, instead of appending a classification head to the model’s backbone, we 

employed a straightforward SVM classifier. This decision was strategic, aiming to 

transparently and quantitatively gauge the efficiency and diagnostic potential of the 

embeddings derived from DINOv2 in feature extraction. 

Even with these premises, we achieved an impressive average accuracy of 91% with solid 

validation and only using 327 image patches. This performance, when juxtaposed against the 

studies mentioned, underscores the efficacy of foundation models, even when operating with a 

limited dataset. 

 

Conclusions 

Our exploration into foundation models, particularly DINOv2, for endoscopic image analysis has 

yielded promising insights. While traditional methods have been predominantly localized, relying 

on extensive data and specific training, foundation models like DINOv2 offer a paradigm shift, 

leveraging vast pre-existing knowledge to discern intricate patterns in lesser-studied anatomical 

sites. Our study underscored the model's proficiency in detecting subtle variations, even with 

limited training data. The generalizability and adaptability of such models pave the way for more 

efficient and flexible medical image analyses, suggesting a transformative trajectory for AI-driven 

diagnostic tools in otolaryngology and endoscopy at large. 
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9. A comparison between manual feature extraction and transformer-

based embeddings in oropharyngeal cancer classification: Evaluating 

the progress of computer vision 

Foundation vision models for automatic feature extraction: New approaches to reduce 

subjectivity. 

 

Introduction 

As presented in the previous section, pre-trained foundation models based on vision transformers 

have the potential to extract reliable feature representations from Narrow Band Imaging (NBI) 

frames depicting normal or neoplastic oropharyngeal mucosa. This is a new and interesting 

concept that can lead to the development of large scale foundation models finetuned on endoscopic 

images. These models can potentially improve feature extraction for a wide series of downstream 

tasks that will require only a limited amount of training frames to reach peak performance, up to 

the concept of “few-shot learning”.1 

NBI conceptually represents a type of pre-processing image enhancement that focuses the 

visualization on certain wavelengths of the visible light to highlight the mucosal and submucosal 

microvasculature.2 This approach has been developed to help the “human expert” in the 

endoscopic diagnosis of undetermined lesions, a concept termed “optical biopsy”.3 However, NBI 

might also limit the amount of available information in the frame by excluding some wavelengths 

that are present in white light (WL) endoscopy and this should be taken into consideration when 

assessing the optimal input data for each algorithm. 



As mentioned in the previous sections, Mascharak et al.4 described one of the first approaches to 

automatic classification of normal or neoplastic mucosa in the upper aerodigestive tract, 

specifically the oropharynx. The authors employed manual features extraction and subsequent 

analysis using a Bayes naïve classifier and reported the different diagnostic outcomes for WL and 

NBI frames. Manual feature extraction and selection represents the first technical approach to 

computer vision tasks, but it is technically challenging, time consuming, and it is burdened by 

some degree of subjectivity. On the other hand, large vision models are capable of extracting image 

features in the form of embeddings, that can be subsequently used for classification tasks. 

Here we perform a secondary analysis on Mascharak et al.’s4 dataset using automatic feature 

extraction with a foundation vision model, DINOv2.5 

The aim of this study is to answer to the following questions: 

- What is the evolution in terms of performance from the previous approach of manual 

feature extraction to automatic feature extraction using a vision foundation model? 

- Are image enhancing techniques still relevant when performing automatic feature 

extraction (i.e., what is the performance gap between WL and NBI evaluation)? 

 

Materials and Methods 

The study objective is to compare the diagnostic performance of different feature extraction 

approaches for image classification: manual feature extraction and automatic feature extraction. 

 

Data Acquisition and Preprocessing 

The dataset comprised of 144 WL and 168 NBI image patches, sourced from the dataset made 

available by Mascharak et al.4 Each image was labeled according to the tissue type it represented, 



falling into one of two categories: Normal or Tumor. The images were stored in PNG format, 

ensuring high-quality and lossless data retention. 

The images underwent a series of preprocessing steps to make them compatible with the DINOv2 

model. This included conversion to tensor format, resizing to a 244x244 resolution, center 

cropping to a final size of 224x224, and normalization of pixel values. The preprocessing pipeline 

ensured that the images were in the appropriate format and dimensionality for feature extraction. 

 

Feature Extraction 

The DINOv2 model, specifically the "dinov2_vits14" variant, was employed for feature extraction. 

The model was loaded using PyTorch's hub functionality and set to evaluation mode to disable any 

training-specific operations. The extracted features were then saved to a JSON file for subsequent 

analysis. 

 

Classifier Training and Evaluation 

A Support Vector Machine (SVM) classifier with a radial basis function kernel was utilized for 

the classification task. The gamma parameter was set to 'scale', and probability estimates were 

enabled. The feature vectors extracted by DINOv2, along with their corresponding labels, formed 

the input data for the classifier. 

To assess the model's performance and generalizability, a train-validation split was performed, 

allocating 80% of the data for training and 20% for test. The classification report revealed 

precision, recall, and F1-score values for both classes on the training and validation sets, providing 

a comprehensive view of the model's performance. A 5-fold cross-validation was performed to 

evaluate the model’s stability and performance across different subsets of the data. 



The Receiver Operating Characteristic (ROC) curve was plotted for the test set to visualize the 

trade-off between the True Positive Rate and False Positive Rate at various threshold settings. The 

area under the ROC curve (AUC) was calculated, providing a single scalar value to summarize the 

classifier's performance. 

 

Results 

1. Performance on WL images: 

The SVM classifier, when applied to white light images, demonstrated a satisfying ability to 

differentiate between Normal and Tumor tissues. 

• Test set accuracy: The accuracy on the test set was recorded at 72.4%, highlighting a 

competent model performance. 

 

In-depth test set metrics: 

• Precision: The model exhibited a high precision of 89% for Normal tissues, 

suggesting that when it predicted a tissue as Normal, it was correct 89% of the time. 

However, the precision for Tumor predictions was lower, at 65%. 

• Recall: There was a noticeable imbalance in recall, with the model demonstrating 

a recall of 93% for Tumor tissues, minimizing the false negatives, which is crucial 

in medical diagnoses. However, the recall for Normal tissues was significantly 

lower at 53%. 

• F1-score: The F1-score, a balance between precision and recall, was 67% for 

Normal and 76% for Tumor tissues. 

• Support: The model was tested on 15 Normal and 14 Tumor samples. 



• ROC AUC: 0.73 (Figure 9.1) 

 

Figure 9.1. ROC curve for white light images. 

 

 

Cross-validation test metrics: 

• Test Accuracy: The average test accuracy across the 5 folds was 72%, consistent 

with the single split test accuracy. 

• Precision: 72% 

• Recall (Sensitivity): 82% 

• F1-score: 76% 

• Specificity: 63% 

 



2. Performance on NBI images: 

The SVM classifier's application to NBI images painted a slightly different picture, displaying a 

balanced and strong performance across metrics. 

• Test set accuracy: The model achieved an accuracy of 79.4% on the test set. 

 

In-depth test set metrics: 

• Precision: The model achieved a precision of 79% for Normal and 80% for Tumor. 

• Recall: The recall was also balanced, with 73% for Normal and 84% for Tumor, 

showcasing the model’s ability to correctly identify both tissue types, though with 

slightly better performance in minimizing false negatives for Tumor tissues. 

• F1-score: F1-scores of 76% and 82% for Normal and Tumor respectively, reflect 

the balanced precision and recall. 

• ROC AUC: 0.82 

• Figure 9.2. ROC curve for NBI images. 

 



 

Cross-validation test metrics: 

• Test Accuracy: A consistent average test accuracy of 79% was noted across the 

folds. 

• Precision: 78% 

• Recall (Sensitivity): 75% 

• F1-score: 75% 

• Specificity: 82% 

 

Discussion 

With WL images, the model showcased its strength in identifying Tumor tissues, but it also 

revealed a conservative approach towards predicting Normal tissues, leading to a lower recall for 

Normal and lower precision for Tumor predictions. The good ROC AUC suggests promising 

discriminative power, still leaving some room for improvement. With NBI images, the model 

displayed a more balanced and slightly superior performance compared to the white light model. 

The precision and recall were notably more balanced across the two classes, and the high 

sensitivity and specificity indicate the model's potential in medical diagnostics. 

Both models, trained on WL and NBI images respectively, demonstrated promising capabilities in 

distinguishing between Normal and Tumor tissues. The high recall for Tumor tissues across both 

models is a highlight, emphasizing their potential in clinical settings where the cost of missing a 

Tumor tissue (false negative) is high. Nonetheless, the observed discrepancies in precision and 

recall, alongside the evident drop in performance from training to testing, signal the need for 



further optimization and validation. Enhancing model generalization and precision is paramount 

to paving the way for more reliable and effective applications in medical image analysis. 

As delineated in Table 9.1, the comparative analysis between two distinctive methodologies— one 

leveraging the nuances of automatic feature extraction with Support Vector Machines (SVM) and 

the other rooted in the traditional paradigms of manual feature selection with naïve Bayes— 

reveals multifaceted insights into endoscopic computer vision. 

Table 9.1. Diagnostic performance using the two different methodologies: comparison. 

Metrics 
Automatic 

(WL) 
Automatic 

(NBI) 
Manual (NBI, 

Color) 
Manual (NBI, Color 

+ Texture) 
Manual (WL, 

Color) 
Manual (WL, Color 

+ Texture) 

Accuracy 72.4% 79.4% 65.9% 70.0% 52.3% 52.4% 

Recall 93% 84% 66.8% 70.9% 44.8% 47.0% 

Specificity 63% 82% 64.9% 68.9% 59.9% 57.9% 

ROC 
AUC 73% 82% 72.3% 80.1% 54.6% 52.3% 

 

First, a commonality emerges: both methodologies manifest superior diagnostic efficacy when 

utilizing NBI over traditional WL imaging. However, delving deeper, it is possible to observe a 

divergence in the performance metrics of the two approaches. For the naïve Bayes approach, which 

necessitates meticulous manual feature selection, the reliance on the robustness of NBI is 

paramount. This is evidenced by its consistent diagnostic performance metrics across the board. 

The NBI, in this context, acts as a compensatory mechanism, bridging the potential gaps and 

limitations intrinsic to manual feature discernment. 

Conversely, evaluating the automatic feature extraction approach coupled with SVM 

classification, an interesting peculiarity unfolds. While NBI's superiority still holds, the disparity 

in performance between NBI and WL imaging diminishes. This suggests that automatic feature 

extraction using a large vision model is capable of gleaning critical diagnostic insights even from 



conventional WL images. The prowess of foundation model-based embeddings, in essence, 

manages to narrow the gap between the two imaging modalities. 

This observation opens a broader discourse on the evolving synergy between imaging technologies 

and machine learning in contemporary medical diagnostics. As machine learning models continue 

their ascent towards higher sophistication, their dependency on external imaging enhancements 

like NBI could potentially attenuate. Instead, the future might see a paradigm where these 

advanced algorithms can autonomously parse and interpret even raw, unenhanced visual data, 

translating them into diagnostic insights with precision. 

Such a trajectory also raises pertinent questions about the future of medical diagnostics. Could we 

be on the cusp of a revolution where the diagnostic process is overwhelmingly automated, powered 

by machine learning algorithms that can seamlessly interpret vast spectrums of visual data? And 

as these models evolve, will the need for specialized imaging modalities, like NBI, become 

obsolete, or will they coexist, complementing the ever-evolving landscape of automated 

diagnostics? This discourse merely scratches the surface, serving as an invitation to delve deeper 

and chart the unexplored terrains of this emerging synergy. 
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10. ENDO-CLOUD: Enhanced Network for Deep learning-Oriented 

Classification and Leveraging of Optimized Upper aerodigestive 

tract Data: A cloud-based annotation system with informative frame 

classification in videolaryngoscopy  

Working at scale: MLOps platforms to allow large-scale training and deployment of 

computer vision AI models. 

 

Introduction 

In the rapidly developing field of contemporary laryngeal endoscopy there are multiple challenges, 

both from the scientific (medical), as well as technological (informatics) perspectives.1 Machine 

learning (ML) approaches, or more specifically – deep learning (DL), constitute a core methodic 

for applying artificial intelligence (AI) concepts to biomedical problems, such as videoendoscopic 

image segmentation and classification.2-5 Utilizing AI methods for bioimaging is of course not 

only restricted to the 2D image pattern analysis;6-8 however, the emphasis in the current section is 

focused predominately on the videolaryngoscopic image processing for laryngeal pathology 

detection.9,10  

In order to further improve diagnostic accuracy of the aerodigestive tract mucosal lesions, as well 

as to provide additional information for specialists during training, AI models can be developed 

and utilized. For instance, there are several support systems for (semi-)automatic lesions 

segmentation of videoendoscopic frames being developed.2,11,12 Importantly, such systems can 

also provide statistical confidence intervals of the model decision, in terms of assigning the 



segment to a given pathology class. Finally, such system can be also utilized for radiological 

images (i.e., source DICOM images can be converted to PNG raster graphics on the per-slice basis, 

prior to being introduced to the system).13  

The initial, critical stage in the development of AI models for laryngeal videoendoscopy involves 

gathering video data captured during the examination of a patient's aerodigestive tract. Despite the 

global prevalence of videoendoscopy as a standard hospital procedure, a single site can only yield 

a restricted quantity of individual patient data. This inherent limitation underscores the necessity 

for diversified and substantial data collection, ensuring the robustness and generalizability of the 

developed AI models. For specialized issues, there are a few hundred patients per year at a given 

hospital or clinic. From the technical standpoint, it means that the number of samples available for 

training and testing ML model is relatively small at a single site, hence the necessity of a multi-

centric cooperation to provide thousands of annotated images of different pathologies.  

In parallel, the role of advanced endoscopic techniques, such as Narrow Band Imaging (NBI), has 

become increasingly prominent in improving diagnostic accuracy.14-20  

Building upon earlier studies,21 our initial results affirm the notion that the right tools and methods 

can meet the hefty data demands necessary to train and test ML models. Moreover, these strategies 

can make the tasks of collecting and labelling data substantially more manageable. However, in 

order to achieve this goal, an advanced system allowing an effective multi-centric cooperation is 

required.  

Past efforts to develop segmentation systems and DL training workflows for aerodigestive 

endoscopy imaging have largely been targeted at desktop platforms.12,22-24 However, often several 

different desktop applications had to be used, in order to: (1) extract the frames from the video, (2) 

segment the image (e.g., LabelMe – http://labelme.csail.mit.edu, VGG Image Annotator (VIA) – 



https://www.robots.ox.ac.uk/~vgg/software/via/; labelimg – https://www.v7labs.com/blog/best-

image- annotation-tools#labelimg; or RIL-Contour25), and, finally, (3) train the model. A 

significant drawback of this approach lies in the necessary involvement of each participating 

specialist in the image segmentation process. They must independently install and configure all 

requisite software on their personal laptops. Only upon completion of this setup can they 

commence the extraction and segmentation of frames. These frames are subsequently shared with 

the AI specialists through an additional application or a web-based file transfer platform (such as 

Google Drive or WeTransfer). This process introduces a layer of complexity and potential 

inefficiency.  

Although, in general, multi-purpose segmentation systems are pretty common,13,26,27 there is a lack 

of such solutions dedicated to 2D videoendoscopic frames. Moreover, from the medical point of 

view, the existing workflows, as well as the available datasets, are often restricted to a single 

anatomical structure of the larynx, e.g., the glottis,28 while with the use of the system herein 

described, it is possible, if needed, to perform the segmentation of all laryngeal structures and/or 

all tissue types.  

 

Materials and Methods 

IBSU-1432 dataset  

The dataset of 1432 frames used in this study comprised three subsets: (1) 720 frames shared as 

part of Moccia et al.;24 (2) 237 frames from the videos recorded in the Department of 

Otorhinolaryngology – Head and Neck Surgery, University of Brescia, Italy; and (3) 475 frames 

extracted from the videos acquired in the Clinic of Otolaryngology, Head and Neck Surgery of the 

Poznan University of Medical Sciences, Poland. The rationale behind the extension of the initial 



dataset of 720 frames was to provide a more robust model for the selection of informative frames 

for the system described in the following sections. Moreover, in the extended 1432-frame dataset, 

there were not only NBI frames (720 from Moccia at al.,24 123 from Brescia, and 475 from 

Poznan), but also 99 WL frames (from the Brescia dataset). In terms of frame quality, four classes 

were distinguished – after Moccia et al.24 in: informative frames (436), blurred frames (383), 

frames with saliva/specular reflections (321), and underexposed frames (292).  

The model created with 1432 frames was quantitatively validated, according to the practices 

routinely utilized in ML model workflows,29-39 as well as qualitatively, as part of the annotation 

practice in the ENDO-CLOUD system by clinical experts. In details, two aspects of the 

quantitative classifier accuracy were analyzed.  

We analyzed our system's performance using two distinct metrics. The first assessed the 

algorithm's efficiency in differentiating among the four categories of frames under review: 

informative, blurred, frames with saliva/light reflections, and underexposed frames. This measure, 

termed 'general accuracy,' gauges the algorithm's overall classification ability. However, in this 

context, not all classification errors carry equal weight. Specifically, the system's primary task is 

to distinguish informative frames from non-informative ones, rendering errors among various 

types of non-informative frames less impactful. Recognizing this practical nuance, we 

incorporated a second metric into our analysis: the accuracy of a binary classifier that focuses 

solely on separating informative from non-informative frames. This measure provides a more 

targeted evaluation of the system's performance in its most critical function.  

EfficientNet's open-source code with examples and pre-trained models helped implement the 

network quickly and transparently in our tool. This allowed us to focus more on the proper 

adaptation of the dataset and the appropriate configuration of the learning process.  



In the current study the EfficientNetB7 DL model was utilized, which is a convolutional neural 

network architecture and scaling method that uniformly scales all dimensions of depth, width, and 

resolution using a compound coefficient.31 The structure of this architecture includes five different 

modules and includes seven blocks for feature extraction, merging, scaling, multiplication, etc., as 

well as input and output modules. Because it its relatively high performance in image feature 

detection, as compared to other commonly utilized convolutional neural networks,31 this network 

can be successfully applied to the frame quality classification. Additionally, EfficientNetB7 is an 

open-source solution, available with a pre-trained model, which allows for faster adaptation of this 

architecture to specific computer vision problems, such as the ones being the subject of the current 

article. The architecture was implemented using Python programming language (v. 3.8), with a 

TensorFlow framework, and several Python modules, commonly utilized in ML applications, such 

as: pandas, NumPy, and scikit-learn.  

The accuracy metrics for the model were obtained with a 10-fold cross-validation procedure, i.e., 

when using the batch size of 4, the first 9 folds contained 36 batches, which means 144 images per 

fold, which gives 1296 frames for the training (9*144=1296), while the last fold consisted of 34 

batches, i.e., 136 example frames for validation (34*4=136). In total, for each fold, there were 

1296 frames for training, and 136 frames for testing, which gives 1432 frames in the whole dataset. 

The following metrics will be reported: accuracy score (for the unbalanced classes), precision, 

recall, F1 score, and G-mean. 

 

ENDO-CLOUD – Segmentation powered by the cloud  

The ENDO-CLOUD system described in the current article is fully web-based, meaning that the 

segmentation process can be easily shared between multiple users and user roles. For example: (1) 



medical experts can access data resources and perform segmentation, (2) DL specialists can use 

the annotated data to develop AI models, and (3) system administrators can be in charge of the 

security and privacy issues, and maintain the remote resources. From the perspective of an end-

user who is performing the segmentation (medical expert), the system is available via browser – 

as a web application, which means that no desktop applications has to be installed on the user 

computer, and no further files have to be shared with the partners. All data management and data 

access functionalities are provided by the system. The segmentation process is based on the open 

source Label Studio web application, originally developed as a general-purpose natural scene 

segmentation toolkit (see https://labelstud.io – Apache 2.0 License)29,30, that was adapted for this 

specific use case. The contribution of the authors of the current article was to specifically adapt 

the base Label Studio application source code to medical image segmentation. The complete 

ENDO-CLOUD system is more than the segmentation tool alone (Figure 10.1): it includes the 

whole process of semi-automatic video frame extraction, combined with segmentation 

functionalities provided by Label Studio, which allows working with medical materials such as 

videolaryngoscopies. 

Figure 10.1. Workflow diagram for uploading and performing segmentation of the NBI 
images, followed by training and usage of a DL model. 



 

 

In the ENDO-CLOUD implementation, the Label Studio has been stripped of any unnecessary 

graphics interface elements, thus making it more straightforward and user friendly. Importantly, 

the predefined labels for particular laryngeal pathologies have been created using Label Studio 

templates, so that the medical experts can start labeling right away – as soon as they start using an 

instance of the system. In the Label Studio implementation terminology, each patient’s 

videoendoscopic data is treated as a separate “project”. For the particular patient’s project, all the 

informative NBI frames are stored on the server, and are accessible through a database, with a 

convenient user interface (Figure 10.2). The use of separate projects for each patient allows an 

efficient data organization, and the workflow is characterized with better usability. After the 

original videos are anonymized and uploaded to the server, projects for particular patients are 

generated by a custom script that transforms whole-length medical videos into images (separate 

frames), which are stored on the server-side in the standardized directory structure. 

 



Figure 10.2. Segmentation process with web-based application – the system is based on 
the Label Studio open source software (https://labelstud.io). Phases (i)-(iv) go from 

patient (case) selection (i), through deciding which frame to annotate (ii), up to 
performing (iii), and finishing (iv) the segmentation on a chosen frame. 

 

The selection of the final frames (i.e., the ones to be segmented), as well as the segmentation 

process itself, is facilitated in the ENDO-CLOUD system by a convenient user interface running 

in the web browser. The user of the system (medical expert) can choose a patient from the list of 

projects – each representing data from a single patient (Figure 10.2, phase “(i)”). For each of the 

project's fields, the annotation progress status is presented, to provide an overview of how many 

frames have already been segmented for a given subject. After selecting a patient’s project, a list 

of videoendoscopic frames for the selected patient is displayed (Figure 10.2, “(ii)”). Subsequently, 



the user can select a frame of interest and begin the annotation procedure. The initial step of the 

segmentation is choosing a type of pathology to be segmented – by selecting a label (button) with 

a given type of disease. Then, by clicking on the image, the user creates an outline of the mucosal 

abnormality (Figure 10.2, “(iii)”). When the user clicks the first “dot” (i.e., user “closes” the 

segment delineation), a mask/region representing a given laryngeal lesion is created (Figure 10.2, 

“(iv)”). In order to save the created region, the "Submit" button in the top right corner of the screen 

has to be clicked.  

The Label Studio software also provides a feature for recording the time spent on annotating each 

image (frame). This allows the system to keep track of how much time it took to perform a given 

annotation, thus providing an estimate of how long all annotations for all project tasks 

(videoframes) may take. It can help to organize the work of a team segmenting the images across 

multiple sites. It allows the team to focus on high-priority tasks and finish them according to the 

schedule. Time spent on annotating particular frames is stored in the database, and can be exported 

with the annotation dataset in the following formats: JSON, JSON-MIN, CSV, and TSV (as a 

“lead_time” field, in seconds). Additionally, all of the Label Studio annotations can be exported 

to formats commonly utilized in training deep neural network models (such as deep convolutional 

neural networks). The available export formats for annotations and images are: COCO, 

CONLL2003, Pascal VOC XML, and YOLO. 

The particular types of laryngeal diseases that are the default labels for the segmented delineations 

on the frames from the WL/NBI videos are: (1) squamous cell carcinoma, (2) dysplasia/carcinoma 

in situ, (3) recurrent respiratory papillomatosis, (4) polyp, (5) Reinke’s edema, (6) cyst, (7) 

keratosis without atypia, and (8) vascular lesion (for the visualization of the labels, see Figure 10.2 

(iii) and (iv)). Importantly, once defined, the same, constant set of labels can be used by all the 



different research groups or clinics who are using a specific version of the web-based ENDO-

CLOUD system. The modification of this set of pathology labels is possible (including renaming 

labels, adding new labels, removing them, etc.), and the changes are automatically applied to all 

the images that have already been segmented, as well as to the new annotation views. Interestingly, 

it is also possible to adjust the system, so that it can be used to segment not only larynx pathologies, 

but also the healthy anatomical sites. 

 

Data sharing and process automation 

Data privacy and security have the highest priority when developing systems that are being used 

for storing and processing medical data. In the ENDO-CLOUD system, the anonymity of the 

patient is provided at the stage of data acquisition, where the patient is assigned a unique ID 

number (identifying him/her in the hospital electronic database, or hospital information system). 

Hence, no name, surname, or any identity-related information is required as the input to the cloud-

based segmentation system. Furthermore, in the ENDO-CLOUD system, stable, robust and secure 

software components are used (such as Ubuntu operating system and Django web framework) in 

order to maximize the security of the system, thus reducing the risk of data being intercepted by 

an untrusted third party (thus minimizing the risk of data leaks).  

The key software component of the ENDO-CLOUD system, which is Label Studio, provides on 

its own high security of the data that are being processed. It is also possible that each institution 

can have its own data storage, and the only common aspect would be providing key functionalities 

by the application. Additionally, each medical or research facility may have independent accounts 

for each member of the medical staff, providing better control over data management and 

segmentation process, also allowing collaboration between experts and cross-validation of the 



segmentation performed. An example of such a collaboration can be that different users from the 

same hospital (or clinic/research center) are allowed to access data from the same patient (Figure 

10.3).  

The workflow with the ENDO-CLOUD segmentation system is as follows: medical specialists 

provide patient data through a secure, dedicated channel. All the data provided to the system have 

to be anonymized, and just then they can be uploaded (once the new batch of data will be detected), 

using a custom script, into the segmentation system. Although the Label Studio application by 

default uses the same database and instances for all users, in the implementation described in this 

article it is ensured that the data are fully secure and isolated between groups of users. This means, 

for example, that one center cannot view data from other medical facilities. The only person who 

can view and add new groups of users (e.g., for a new medical facility that wants to join the multi-

centric effort of data annotation) is the system administrator. Importantly, patient data have also 

been anonymized prior to uploading the data to the system. The procedure for allowing a new 

facility to use the system is that, first, a new instance/accounts are being created for the institution, 

and afterwards the medical staff can work on its data, as presented in Figure 10.2. The roles of 

users involved in the data processing workflow are presented in Figure 10.3.  

Figure 10.3. Specialists from different domains can work together in the ENDO-
CLOUD videoendoscopy data processing workflow. 



 

Results 

Classification results for the IBSU-1432 dataset  

The reliability of the informative frames selection model was validated using the following 

metrics: accuracy, precision, recall, F1 score, and G-mean. The overall accuracy for the 10-fold 

cross- validation of the 4-class classifier (I vs B vs S vs U) was 84.64%. In the case of the binary 

(2-class) classifier differentiating between informative and non-informative frames (I vs B+S+U) 

the following metrics were obtained: accuracy (non-balanced classes), 92.36%; precision, 90.01%; 

recall, 83.80%; F1 score, 86.26%; and G-mean, 89.39%.  

 

Semi-automatic frames selection  

In the first step of this algorithm, one of the several ways of classifying a frame as NBI vs WL is 

being utilized. For certain version of the Olympus system, the devised workflow uses the optical 

character recognition (OCR) system to recognize if a frame has been recorded in NBI or in WL 

mode. Another approach utilizes histogram value analysis – this method yields slightly worse 

results than the OCR algorithm, however, the histograms are a more universal way of determining 



the type of the frame, and it can be used for different versions from various endoscopic system 

manufacturers. For the purpose of the current implementation of the ENDO-CLOUD system, if 

the frame is not classified as an NBI picture, it is not included in further processing. In the next 

stage, for all the frames selected as NBI frames, the EfficientNetB7 neural network31 is used in 

order to create a feature map of each frame and recognize if it is informative or not (based on the 

pre-trained model). In the final stage, every 10th frame is selected to reduce the number of those 

recognized as “NBI informative” ones. Finally, the selected frames are imported into the Label 

Studio segmentation web application program. One of the key advantages of the semi-automatic 

selection of video frames is that the expert does not have to watch the entire videoendoscopy to 

manually select the informative frames (for a similar approach, in terms of ML technologies in 

general, see Breck et al.32). Thanks to the semi-automatic script, a lot of the manual work done by 

the medical experts can be avoided, thus allowing more frames to be segmented in the same 

amount of time.  

Importantly, our work is based on the MLOps pipeline33 which allows better management of the 

model development, and helps to provide more reliable results in a shorter period of time. As a 

first step of the MLOps pipeline, the workflow has been designed, and all the key terms and 

functionalities have been defined and described as follows: (1) dataset definition (including all 

three data sources: Moccia et al.,24 Poznan, and Brescia); (2) DL architecture preparation; (3) 

splitting the dataset into training and testing subsets; (4) obtaining the model performance metrics; 

(5) reporting the results. In detail, the dataset has been obtained from the following sources: (i) the 

repository shared as part of the study by Moccia et al.;24 (ii) the new data provided by the co-

authors of this article from the Department of Otolaryngology, Head and Neck Surgery, Poznan 

University of Medical Sciences (Poznan, Poland); and (iii) data from the Department of 



Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili of Brescia, University of 

Brescia, School of Medicine (Brescia, Italy). After the dataset was prepared, as part of the transfer 

learning method, a pre-trained EfficientNetB7 neural network has been utilized.34 The final, 

combined dataset has been then split into training and testing subsets, and the higher layers of the 

neural network have been trained. The resulting ML model has been used in a semi-automatic 

frame selection script (described in detail in the “Semi-automatic frame selection” section above).  

The project itself, as well as the models described in the current article, are in continuous 

development and integration (continuous delivery),35,36 in order to ensure that the best possible 

and up-to-date models are being utilized in the system.  

 

Discussion 

Future developments 

In this article, a web-based system has been described that enables a multi-centric approach to 

laryngeal pathologies segmentation within videoendoscopies. From the ML perspective, the AI 

algorithms that are currently utilized in the system can still be improved, including: NBI frames 

detection method, informative frames selection model, and a separate algorithm for the automatic 

segmentation and statistics calculation. These improvements can also be achieved by choosing 

different neural network implementations, extending (or changing) the training datasets, or by 

including more pathology types in the models.  

 



Conclusions 

A web-based system has been herein presented that allows semi-automatic frames selection and 

their manual segmentation once extracted from NBI videoendoscopies of the larynx. We believe 

that the implementation and wide usage of such a system can immensely contribute to the effort 

of creating reliable ML models supporting the work of medical experts in the field of 

otolaryngology.  
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Conclusion 

This dissertation underscores the transformative potential of computer vision in medicine, 

particularly in Otolaryngology – Head and Neck Surgery. The primary applications identified are 

in endoscopy and surgical procedures, but there is a clear connection emerging with radiologic 

imaging, pathology, and molecular biology. 

The field of computer vision is evolving at an unprecedented pace. This rapid evolution 

necessitated a strategic approach in structuring the deliverables of this research. Consequently, the 

projects were divided into small, diverse work-packages. This methodology was adopted to 

circumvent the potential pitfall of investing excessively in a singular approach or technology, 

which bore the risk of becoming outdated or obsolete before the conclusion of the investigation. 

This flexible and adaptive strategy ensured that the research remained relevant, cutting-edge, and 

reflective of the current state of the field. 

However, it is crucial to underline that the technical challenges associated with integrating 

computer vision and artificial intelligence into medicine are only one facet of the issue. The 

implementation of artificial intelligence-based applications in clinical practice is a complex 

endeavor that necessitates a thorough and deliberate ethical and regulatory evaluation. While this 

manuscript does not delve into these aspects in detail, they have been identified and acknowledged 

as a critical variable in each experimental setup, underlining their importance in the responsible 

and ethical development of artificial intelligence applications in medicine. 

In conclusion, it is pertinent to highlight the burgeoning impact of large language models on 

society, a development that, while not directly linked to computer vision, is undeniably relevant. 

In particular, the demarcation lines between different artificial intelligence applications are 

increasingly becoming less distinct, paving the way for the advent of multimodal models. These 



models, capable of processing and interpreting various types of inputs (text, images, and more) 

and generating diverse outputs without necessitating distinct models for each data type, can 

potentially revolutionize the medical field. Furthermore, the emergence of independent agents 

powered by artificial intelligence is a development that is showing immense promise, and it is 

anticipated that they will contribute significantly to advancements in many fields, including 

medicine. This research, therefore, not only underscores the potential of computer vision in 

Otolaryngology but also sets the stage for future interdisciplinary innovations and integrations. 


