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Abstract: We investigate the formation of the Kuznetsov-Ma solitons and Ahkmediev breathers
in a coldΛ-type three-level atomic system that interacts with a probe field of nanosecond pulse du-
ration and a strong continuous-wave driving field via an electromagnetically induced transparency
process. Within the framework of the Hirota equation, exact explicit analytical solutions of these
breathers are obtained, showing different amplitude and oscillatory characteristics. Numerical
simulations confirm the stability of both types of breathers against non-integrable perturbations
that are caused by the nonvanishing decay rates of atomic states. We show that both breathers
thus generated can propagate at a quite low group velocity.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The breathers on a finite background have attracted increasing attention in many fields including
hydrodynamics and optics [1,2], due to their intimate connection to the formation of extreme
rogue wave events [3,4]. One type of such breathers is the Kuznetsov-Ma (KM) soliton [5,6],
which behaves like an ordinary soliton, localized yet oscillatory as it propagates. The other one is
the Ahkmediev breather (AB) [7] who is localized in the longitudinal dimension while oscillating
along the transversal direction. Interestingly, as the oscillating period becomes infinity, both
types of breathers can reduce to the Peregrine soliton [8], which is localized in both space and
time. To date, because of their fundamental interests and practical implications, both breathers,
including their reduced Peregrine soliton state, have become a hot topic, either theoretical [9–13]
or experimental [14,15], at the cutting edge of nonlinear optics. Generally, the generation of
optical breathers uses far-off-resonant mechanisms and high-intensity optical fields [2,15] which,
as a result, cause a group velocity close to the light speed in vacuum.

In the past decades, there have been significant achievements concerning the propagation of
electromagnetic waves in highly resonant media [16–22]. Among them, an important quantum
interference effect known as electromagnetically induced transparency (EIT) was uncovered
[23,24], by which the light pulses are allowed to propagate through an otherwise opaque atomic
medium. Due to this EIT effect, the light-matter interaction process may exhibit some unique
properties such as reducing the group velocity of light pulses [25,26], enhancing the Kerr
nonlinearity [27,28], and lasing without population inversion [29]. In addition, ultraslow ordinary
optical solitons were predicted to exist in the three-level [30,31] and four-level [32,33] atomic
media. Also, the weak-light KM solitons and ABs were found to occur in such highly resonant
media, within the framework of the nonlinear Schrödinger (NLS) equation [34–36].
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In this article, we will investigate the formation of KM solitons and ABs in a cold three-level
atomic medium exposed to a probe field of nanosecond pulse duration. Within the integrable
Hirota equation framework, we obtain for the first time the exact KM soliton and AB solutions.
We then confirm by numerical simulations that both types of breathers are stable against non-
integrable perturbations caused by the nonvanishing decay rates of atomic states and reveal that
these breathers thus generated can propagate at a quite low group velocity.

2. Model, multiscale method, and generalized NLS equation

For our study, let us start with a lifetime broadened three-state atomic system that interacts with a
weak pulsed probe field Ep(r, t) = (ℏ/D0)Ωp exp[iωp(z/c − t)] + c.c. (central frequency ωp, Rabi
frequency 2Ωp) tuned to the transition |1⟩ → |3⟩ and a strong continuous-wave (cw) control field
(angular frequency ωc, Rabi frequency 2Ωc) tuned to the transition |2⟩ → |3⟩ (see Fig. 1). Here
ℏ is the Planck constant divided by 2π, D0 the dipole moment for the transition |1⟩ → |3⟩, and
c.c. is the shorthand of the complex conjugate terms. As a cold atomic medium is adopted here,
we preclude the atomic collisions and Doppler broadening effect. Therefore, in the interaction
picture and under the slowly varying envelope and rotating-wave approximations, the atomic
equations for motion and the wave equation for the time-dependent probe field, often termed
Maxwell–Bloch (MB) equations, can be expressed as [31]
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∂t
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where Aj (j = 1, 2, 3) are the probability amplitudes of atomic states |j⟩ and the asterisk stands for
complex conjugate. These probability amplitudes may evolve with the propagation distance z,
the time t, and the transverse coordinates x and y, but need to obey the conservation condition:

3∑︂
j=1

|Aj |
2 = 1, (4)

which means the total probability of finding an atom in any of three states is equal to unity.
While the parameters γj (j = 2, 3) denote the decay rates of the state |j⟩ of energy eigenvalue ϵj,
∆3 = ωp − ϵ3/ℏ and ∆2 = ωp − ωc − ϵ2/ℏ represent the one-photon detuning between the states
|1⟩ and |3⟩ and the two-photon detuning between the states |1⟩ and |2⟩, respectively, where the
energy of the ground state has been set zero, i.e., ϵ1 = 0. Of course the one-photon detuning ∆c
for the control field tuned to the transition |2⟩ → |3⟩ reads as ∆c = ωc − (ϵ3 − ϵ2)/ℏ = ∆3 − ∆2.
In addition, κ = 2πNωp |D0 |

2/(ℏc) signifies the strength of coherent coupling, with N being the
concentration of three-level atoms and c the speed of light in vacuum.

We now use a standard multiscale approach [37] to derive the nonlinear envelope equation
describing the evolution of the weak probe optical field, under the assumption of a small
population depletion of the ground state. To this end, one can perform the asymptotic expansions
Aj =

∑︁∞
m=0 ε

ma(m)

j and Ωp =
∑︁∞

n=1 ε
nΩ

(n)
p , and let all quantities therein be the functions of

zι = ειz (ι = 0, . . . , 3), t1 = εt, x1 = εx, and y1 = εy. It should be noted that there is a slight
difference between our multiscale variables and those used in [31,34]. Then, inserting these
expanded formulas into Eqs. (1)–(4), followed by equating the coefficients of εm to zero, one
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Fig. 1. The excitation scheme of a Λ-type lifetime broadened three-state atomic system
interacting with a pulsed probe field (central frequency ωp, Rabi frequency 2Ωp) and a
strong cw control field (angular frequency ωc, Rabi frequency 2Ωc).

can obtain a succession of linear but nonhomogeneous equations involving a(m)
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Obviously, the system of linear Eqs. (5)–(7) can be solved in an iterative yet exact man-
ner, with the help of the conservation relation (4). After some algebra, we find Ω(1)

p =

F(z1, z2, z3, t1, x1, y1) exp(iK0z0) and Ω(n)
p = 0 for n ⩾ 2, where F is the complex amplitude and

K0 = κd2/D is the complex wave number, with D = |Ωc |
2 − d2d3 and dj = iγj + ∆j (j = 2, 3). In

terms of the function F and its derivatives, the probability amplitudes a(m)

j can also be exactly
defined (we do not present their explicit expressions here, for the sake of brevity). Recalling that
Ωp = εΩ

(1)
p = U exp[iRe(K0)z0], where U = ϵF exp(−αz0), with α = Im(K0) and Im standing

for the imaginary part, is the envelope amplitude, we find, after returning to the original variables
(z, t, x, y), that the nonlinear envelope equation for U can read as
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where the subscripts for U denote partial derivatives, and the equation coefficients are given by
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We should point out that our Eq. (8) obtained here is a direct result of Eqs. (5)–(7) without
any further approximations; it seems to be similar in form to Eq. (18) derived in [31], but
involves different equation coefficients defined by Eqs. (9)–(14). It is apparent that these equation
coefficients are all complex (because of the introduction of the complex d2 and d3) and can be
separated into the real and imaginary parts, namely, Kj = K ′

j + iK ′′
j (j = 1, 2, 3), γ = γ′+ iγ′′, and

β1,2 = β
′
1,2 + iβ′′1,2. Usually, Vg = 1/K ′

1 gives the group velocity of the probe field. In this regard,
Eq. (8) becomes an analog of the (3+1)D complex Ginzburg-Landau equation [38], comprising
the spectral filtering denoted by K ′′

2 , the third-order spectral correction by K ′′
3 , the linear loss by α,

and the nonlinearity gain by γ′′. However, in a very short distance and considering that ∆2 ≫ γ2
and ∆3 ≫ γ3, which is accessible by typical alkali atoms, these extra effects resulting from the
imaginary parts of the coefficients will become insignificant and thus can be neglected. Under
the circumstances, Eq. (8) can be reduced to the generalized NLS equation, whose coefficients
are still given by Eqs. (9)–(14), but with dj being replaced by ∆j. For this case, one can obtain
the group velocity Vg of the weak probe field:

Vg =
c

1 + cκ(|Ωc |2 + ∆
2
2)/(|Ωc |2 − ∆2∆3)2

, (15)

which depends on the coupling strength (κ), the input power of the coupling beam (∝ |Ωc |
2),

and the one- and two-photon detunings (∆2,3). It suggests that, for obtaining a significantly low
group velocity, sufficiently small one- and two-photon detunings yet still predominating over the
decay rates, along with a moderately weak control field, are favorable. This is a trade-off process,
whose outcome is unavailable with the conventional perfectly resonant EIT scheme under weak
driving conditions, in which exceptionally low light speeds can be observed [25,26].

3. Dynamics of KM solitons and ABs and numerical simulations

More interestingly, if we neglect the spatial diffraction effect and the linear loss, which holds true
for a propagation distance of a few dispersion lengths LD = τ

2
0 /|K2 |, and let further

β1 ≃ 0, β2 − β1 =
γK3
K2

, (16)

Equation (8) becomes the celebrated Hirota equation:

iUz −
K2
2

Uττ − γ |U |2U − iK3

(︃
1
6

Uτττ +
γ

K2
|U |2Uτ

)︃
= 0, (17)

where τ = t − z/Vg is the retarded time in a frame comoving with Vg. When substituting
the specified parameters into the relations (16), one can figure out the experimental parameter
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conditions that may lead to the above Hirota equation:

∆2 ≃ 3∆3, |Ωc | =

√︄
(∆2 + 3∆3)∆

2
2

∆2 − ∆3
. (18)

The first of Eqs. (18) actually requires that the one-photon detuning ∆c for the control field tuned
to the transition |2⟩ → |3⟩ should be negative twice that for the probe field tuned to the transition
|1⟩ → |3⟩, i.e. ∆c = −2∆3. The second of Eqs. (18) imposes a restriction on the Rabi frequency
Ωc and thus on the input power of the control field, which can also be accessible for current
commercial cw lasers. An inspection of these two parameter conditions reveals that if ∆3>0,
the atomic medium entails the normal dispersion and self-defocusing nonlinearity, otherwise it
entails the anomalous dispersion and self-focusing nonlinearity, i.e., in whatever case, γ/K2>0.

The Hirota Eq. (17) is integrable and can be solved by many analytical methods [39,40]. It
admits plenty of exact solutions, such as solitons, rogue waves, and breathers [41,42]. Of special
interest are the KM and AB solutions, either of which arises from the modulation instability of
the unstable background field [2]. By means of the bilinear Hirota approach [39] and starting
from the seeding plane-wave solution

U0 =
√

P exp(ikz + iωτ), (19)

with k = − 1
6 K3ω

3 + 1
2 K2ω

2 + η and η = γP(K3ω/K2 − 1), we obtain for the first time, to the best
of our knowledge, the KM soliton solution, in an elegant compact form

UKM =
cos(gz − 2iϕ) − cosh(ϕ) cosh [q(zχ + τ)]

cos(gz) − cosh(ϕ) cosh [q(zχ + τ)]
U0, (20)

where ϕ is a real free parameter defining the oscillating frequency, P is the background intensity,
ω is the detuning from the central frequency ωp, g = η sinh(2ϕ), q = 2

√︁
γP/K2 sinh(ϕ), and

χ = (γPK3/K2)[1 + 2
3 sinh(ϕ)2] − K3ω

2/2 + K2ω. In a similar fashion, the AB solution can be
found to be

UAB =
cosh(gz − 2iϕ) − cos(ϕ) cos [q(zχ + τ)]

cosh(gz) − cos(ϕ) cos [q(zχ + τ)]
U0, (21)

where we use now g = η sin(2ϕ), q = 2
√︁
γP/K2 sin(ϕ), and χ = (γPK3/K2)[1 − 2

3 sin(ϕ)2] −
K3ω

2/2 + K2ω. One can readily show that, as the frequency parameter ϕ approaches zero, both
the KM solution (20) and the AB solution (21) will boil down to the same rational solution [42]

UPS =

[︃
1 −

2iηz + 1
η2z2 + γP(zχ + τ)2/K2 + 1/4

]︃
U0, (22)

where χ = γPK3/K2 − K3ω
2/2 + K2ω. This solution, when γ/K2>0 is met, represents nothing

less than a Peregrine soliton [8], featuring a three-fold-amplitude peak on a finite background
and two deep troughs on each side.

It follows easily that the KM soliton solution (20) oscillates along the propagation direction
zχ + τ = 0, with the amplitude of all peaks as high as [1 + 2 cosh(ϕ)]

√
P (⩾ 3

√
P), but

located on (τj, zj) = (−2jπχ/g, 2jπ/g), (j = 0,±1,±2, . . .). By contrast, the AB solution (21)
is found to oscillate along the transversal (i.e., z = 0) direction, with its peaks being located
on (τj, zj) = (2jπ/q, 0), (j = 0,±1,±2, . . .) and as high as [1 + 2 cos(ϕ)]

√
P (⩽ 3

√
P). On the

other hand, the peak power associated to the incident pulsed probe beam of cross-section area
S0 can be calculated by Ppeak = 2ϵ0cnpS0(ℏ/D0)

2P, where ϵ0 is the permittivity of free space
and np = 1 + cK0/ωp is the phase refractive index experienced by the probe field. Albeit P is a
free parameter in Eqs. (20) and (21), there is a practical requirement on the input peak power
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Ppeak for forming stable KM solitons and ABs within a limited-size cell of alkali atom gases.
Besides, we need to point out that although both the KM and AB solutions discussed above bear
a similarity to the corresponding ones of the standard NLS equation [35,36,42], they can describe
more accurately the propagation of the probe pulses of duration down to the picosecond order,
due to the inclusion of the parameters η and χ, which are related to the third-order dispersion
(K3) and self-steepening (γK3/K2) effects.

We now consider some numerical examples to demonstrate these two types of breathers in a
typical alkali (Rubidium 87 D2 transition, say) atomic system, where the coupling strength is
κ = 1.0 × 109cm−1s−1 and the decay rates are Γ2 = 2γ2 = 10kHz and Γ3 = 2γ3 = 5MHz [31].
When a weak probe pulse of 0.12 cm beam diameter (central wavelength λp = 2πc/ωp = 780 nm,
pulse duration τ0 = 30 ns, peak power Ppeak = 700 mW or P = 6.25 × 1015 s−2) was launched
into the medium (let D0 = 2.1 × 10−27 cm C), we tuned the detunings by ∆3 = 50MHz and
∆2 = 3∆3 = 150MHz, which are much larger than the decay rates, and adjusted the Rabi frequency
of the control field by 2Ωc = 6

√
3∆3 = 519.6MHz, which will be significantly greater than that

of the probe field, 2
√

P = 158 MHz. In fact, for a typical nanosecond pulse laser of 100 kHz
repetition rate, the above peak power value corresponds to 2.1mW average output power, which
is also much less than the nominal average power of most current commercial 780nm cw lasers,
thereby justifying the choice of the above adopted parameters. With these characteristic values,
one can calculate the equation coefficients as K1 = 2.5 × 10−6 sm−1, K2 = 2.5 × 10−14 s2m−1,
K3 = 5.0×10−22 s3m−1, γ = 6.25×10−15 s2m−1, β1 = 0, and β2 = 1.25×10−22 s3m−1, where the
insignificant imaginary parts are dropped. Then the dispersion length is found to be LD = 3.6 cm,
which has been made to equal to the nonlinearity length LNL = 1/(γP) in order to favor the
formation of fundamental soliton. The analytical dynamics of the KM soliton solution (20) and
the AB solution (21) are shown in Figs. 2(a) and 2(b), respectively, with ϕ and ω being specified
in the caption. It is shown that the KM soliton oscillates periodically along the z axis, whereas
the AB oscillates periodically along the τ axis, as stated above, both propagating with a group
velocity of Vg = c/751. When ϕ = 0, the recurring peaks of both breathers disappear, left with
only one single peak and two side troughs, namely, a Peregrine soliton structure that has been
shown in Fig. 2(c). As indicated by the red cross-section profiles of the framed patterns at z = 0,
the peak amplitude of the KM is always larger than that of the Peregrine soliton, but the latter is
always larger than that of the AB, no matter what parameters are used.

Fig. 2. Contour plots of the normalized field amplitude of (a) a KM soliton, (b) an AB, and (c)
a Peregrine soliton versus dimensionless distance z/LD and time τ/τ0, obtained with different
ϕ and ω values: (a) ϕ = 1/2, ω = 1.29 × 108 s−1, (b) ϕ = 1/2, ω = 1.22 × 108 s−1, and (c)
ϕ = 0, ω = 1.25 × 108 s−1.The red curves show the cross-section profiles |U(z = 0, τ)|/

√
P

of the patterns framed by the white box.
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Lastly, one may wonder whether both the KM soliton and the AB shown in Fig. 2 are stable
against perturbations, even when the imaginary parts of equation coefficients are taken into
account. To clarify this concern, we numerically integrate Eq. (17) to unwrap the KM soliton
and AB dynamics from an initial profile defined by the analytical solution (20) at z = −3LD and
by the solution (21) at z = −2LD, respectively, using a split-step Fourier method [9,10]. Here
we particularly remark that one may simulate the original MB Eqs. (1)–(3) for more accurate
results, but basically, for a very short propagation distance, an efficient simulation of Eq. (17) will
suffice for our present purpose. Typical simulation results are shown in Fig. 3, where we have
considered the non-integrable perturbations, that is, violating the integrability of Eq. (17) by use
of a set of complex coefficients that is caused by the nonvanishing decay rates of atomic states. It
is exhibited that our KM soliton and AB solutions are still robust against such non-integrable
perturbations, within a distance of a few dispersion lengths. More interestingly, in Fig. 3(a), there
also appears a partial AB dynamics at around z = 2LD, which agrees well with its analytical
solution shown in the middle of picture (see the patterns framed by the white box). This excited
AB tends to interfere with the original KM soliton and eventually distorts it.

Fig. 3. Numerical excitations of (a) the KM soliton and (b) the AB that have been shown
in Fig. 2(a) and 2(b), respectively, by integrating Eq. (17) with complex coefficients. The
middle contour plot between (a) and (b) gives the analytical solution of AB, using the same
ϕ and ω as in (a).

4. Conclusion

In conclusion, we investigated the formation of the KM solitons and ABs in a cold three-level
atomic medium, within the framework of the Hirota equation that has comprised the third-order
dispersion and self-steepening effects seen by nanosecond probe pulses. We revealed the
unique amplitude and oscillatory characteristics associated with these breathers and confirmed
numerically their stability against non-integrable perturbations. It was shown that such types
of breathers can propagate at a quite low group velocity. However, for probe pulses of shorter
(picosecond, say) duration, our results developed here still apply. In the latter situation, the
bandwidth of incident pulses will fall outside the EIT transparency window seriously, leading to
a light-matter interaction in the proximity of the off-resonant regime and consequently making
the group velocity of probe pulses closer to the light speed c. We envision that these results may
shed some light on how extreme rogue waves form in highly resonant media.
Funding. National Natural Science Foundation of China (11474051, 11974075); Scientific Research Foundation of
the Graduate School of Southeast University (YBPY1872).

Disclosures. The authors declare no conflicts of interest.



Research Article Vol. 4, No. 5 / 15 May 2021 / OSA Continuum 1495

References
1. A. Chabchoub, B. Kibler, J. M. Dudley, and N. Akhmediev, “Hydrodynamics of periodic breathers,” Phil. Trans. R.

Soc. A 372(2027), 20140005 (2014).
2. B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and V. E. Zakharov, “Superregular breathers in optics and

hydrodynamics: omnipresent modulation instability beyond simple periodicity,” Phys. Rev. X 5(4), 041026 (2015).
3. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature (London) 450(7172), 1054–1057

(2007).
4. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics

8(10), 755–764 (2014).
5. E. A. Kuznetsov, “Solitons in a parametrically unstable plasma,” Sov. Phys.–Dokl. 22(9), 507–508 (1977).
6. Y.-C. Ma, “The perturbed plane-wave solutions of the cubic Schrödinger equation,” Stud. Appl. Math. 60(1), 43–58

(1979).
7. N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger

equation,” Theor. Math. Phys. 69(2), 1089–1093 (1986).
8. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. Ser. B:

Appl. Math. 25(1), 16–43 (1983).
9. S. Chen, Y. Ye, J. M. Soto-Crespo, P. Grelu, and F. Baronio, “Peregrine Solitons Beyond the Threefold Limit and

Their Two-Soliton Interactions,” Phys. Rev. Lett. 121(10), 104101 (2018).
10. S. Chen, C. Pan, P. Grelu, F. Baronio, and N. Akhmediev, “Fundamental Peregrine Solitons of Ultrastrong Amplitude

Enhancement through Self-Steepening in Vector Nonlinear Systems,” Phys. Rev. Lett. 124(11), 113901 (2020).
11. L.-C. Zhao, L. Ling, and Z.-Y. Yang, “Mechanism of Kuznetsov-Ma breathers,” Phys. Rev. E 97(2), 022218 (2018).
12. F. Baronio, “Akhmediev breathers and Peregrine solitary waves in a quadratic medium,” Opt. Lett. 42(9), 1756–1759

(2017).
13. F. Baronio, S. Chen, and S. Trillo, “Resonant radiation from Peregrine solitons,” Opt. Lett. 45(2), 427–430 (2020).
14. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. M. Dudley, “The Peregrine soliton

in nonlinear fibre optics,” Nat. Phys. 6(10), 790–795 (2010).
15. B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, and J. M. Dudley, “Observation

of Kuznetsov-Ma soliton dynamics in optical fibre,” Sci. Rep. 2(1), 463 (2012).
16. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, 1975).
17. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent

media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
18. S. Chen, Y. Ye, F. Baronio, Y. Liu, X.-M. Cai, and P. Grelu, “Optical Peregrine rogue waves of self-induced

transparency in a resonant erbium-doped fiber,” Opt. Express 25(24), 29687–29698 (2017).
19. J. Liu, C. Hang, and G. Huang, “Weak-light vector rogue waves, breathers, and their Stern-Gerlach deflection via

electromagnetically induced transparency,” Opt. Express 25(19), 23408–23423 (2017).
20. J. Guan, C. J. Zhu, C. Hang, and Y. P. Yang, “Generation and propagation of hyperbolic secant solitons, Peregrine

solitons, and breathers in a coherently prepared atomic system,” Opt. Express 28(21), 31287–31296 (2020).
21. C. Shou and G. Huang, “Storage, Splitting, and Routing of Optical Peregrine Solitons in a Coherent Atomic System,”

Front. Phys. 9, 594680 (2021).
22. Z. Chen and J. Zeng, “Localized gap modes of coherently trapped atoms in an optical lattice,” Opt. Express 29(3),

3011 (2021).
23. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear Optical Processes Using Electromagnetically induced

transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
24. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
25. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold

atomic gas,” Nature (London, U. K.) 397(6720), 594–598 (1999).
26. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic

medium using halted light pulses,” Nature (London, U. K.) 409(6819), 490–493 (2001).
27. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,”

Opt. Lett. 21(23), 1936–1938 (1996).
28. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic

System,” Phys. Rev. Lett. 87(7), 073601 (2001).
29. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser

Oscillation without Population Inversion in a Sodium Atomic Beam,” Phys. Rev. Lett. 76(12), 2053–2056 (1996).
30. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29(17),

2064–2066 (2004).
31. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,”

Phys. Rev. E 72(1), 016617 (2005).
32. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93(14), 143904 (2004).
33. L.-G. Si, W.-X. Yang, and X. Yang, “Ultraslow temporal vector optical solitons in a cold four-level tripod atomic

system,” J. Opt. Soc. Am. B 26(3), 478–486 (2009).
34. J. Liu, C. Hang, and G. Huang, “Weak-light rogue waves, breathers, and their active control in a cold atomic gas via

electromagnetically induced transparency,” Phys. Rev. A 93(6), 063836 (2016).

https://doi.org/10.1098/rsta.2014.0005
https://doi.org/10.1098/rsta.2014.0005
https://doi.org/10.1103/PhysRevX.5.041026
https://doi.org/10.1038/nature06402
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1002/sapm197960143
https://doi.org/10.1007/BF01037866
https://doi.org/10.1017/S0334270000003891
https://doi.org/10.1017/S0334270000003891
https://doi.org/10.1103/PhysRevLett.121.104101
https://doi.org/10.1103/PhysRevLett.124.113901
https://doi.org/10.1103/PhysRevE.97.022218
https://doi.org/10.1364/OL.42.001756
https://doi.org/10.1364/OL.381228
https://doi.org/10.1038/nphys1740
https://doi.org/10.1038/srep00463
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1364/OE.25.029687
https://doi.org/10.1364/OE.25.023408
https://doi.org/10.1364/OE.398424
https://doi.org/10.3389/fphy.2021.594680
https://doi.org/10.1364/OE.412554
https://doi.org/10.1103/PhysRevLett.64.1107
https://doi.org/10.1063/1.881806
https://doi.org/10.1038/17561
https://doi.org/10.1038/35054017
https://doi.org/10.1364/OL.21.001936
https://doi.org/10.1103/PhysRevLett.87.073601
https://doi.org/10.1103/PhysRevLett.76.2053
https://doi.org/10.1364/OL.29.002064
https://doi.org/10.1103/PhysRevE.72.016617
https://doi.org/10.1103/PhysRevLett.93.143904
https://doi.org/10.1364/JOSAB.26.000478
https://doi.org/10.1103/PhysRevA.93.063836


Research Article Vol. 4, No. 5 / 15 May 2021 / OSA Continuum 1496

35. S. Asgarnezhad-Zorgabad, R. Sadighi-Bonabi, and B. C. Sanders, “Excitation and propagation of surface polaritonic
rogue waves and breathers,” Phys. Rev. A 98(1), 013825 (2018).

36. K. M. Devi, G. Kumar, and A. K. Sarma, “Surface polaritonic solitons and breathers in a planar plasmonic waveguide
structure via electromagnetically induced transparency,” J. Opt. Soc. Am. B 36(8), 2160–2166 (2019).

37. A. Jeffrey and T. Kawahara, Asymptotic Methods in Nonlinear Wave Theory (Pitman, 1982).
38. Z. Li, L. Li, H. Tian, G. Zhou, and K. H. Spatschek, “Chirped Femtosecond Solitonlike Laser Pulse Form with

Self-Frequency Shift,” Phys. Rev. Lett. 89(26), 263901 (2002).
39. R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation,” J. Math. Phys. 14(7), 805–809 (1973).
40. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation,”

Phys. Rev. E 81(4), 046602 (2010).
41. Y. Tao and J. He, “Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux

transformation,” Phys. Rev. E 85(2), 026601 (2012).
42. S. Chen, F. Baronio, J. M. Soto-Crespo, P. Grelu, and D. Mihalache, “Versatile rogue waves in scalar, vector, and

multidimensional nonlinear systems,” J. Phys. A: Math. Theor. 50(46), 463001 (2017).

https://doi.org/10.1103/PhysRevA.98.013825
https://doi.org/10.1364/JOSAB.36.002160
https://doi.org/10.1103/PhysRevLett.89.263901
https://doi.org/10.1063/1.1666399
https://doi.org/10.1103/PhysRevE.81.046602
https://doi.org/10.1103/PhysRevE.85.026601
https://doi.org/10.1088/1751-8121/aa8f00

