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Compendio 

La tipologia di contenuti digitali che fruiamo ogni giorno sta evolvendo e 
vedendo estensioni di dominio nelle quali diventa sempre più importante la 
componente tridimensionale, sia a livello consumer che in ambito industria-
le e professionale. All’interno di questa evoluzione tecnologica si riscontra 
quindi l’esigenza di disporre di strumenti per la transizione dal mondo reale 
a quello digitale che siano sempre più efcaci ed immediati. Inoltre, il con-
tinuo incremento delle capacità computazionali favorisce nuove soluzioni via 
via sempre più sofsticate e performanti, al contempo sempre più accessibili 
anche dal punto di vista economico. In questo contesto possono difondersi 
(su diverse tipologie di mercato) dispositivi in grado di fornire fessibilità 
e accuratezza nel processo di ricostruzione 3D, mantenendo contenute le 
richieste di specifche hardware. 

Negli anni, la ricerca accademica ha prodotto una serie di risultati eccel-
lenti basandosi sull’uso di quelli che comunemente vengono defniti scanner 
3D ottici a basso costo, nati nel contesto delle piattaforme di gaming. Questi 
dispositivi sono caratterizzati da dimensioni compatte, camere di profondità 
con risoluzione relativamente bassa e campo di lavoro relativamente ampio. 
Per via di queste caratteristiche, questi strumenti trovano largo impiego in 
situazioni di utilizzo per ricostruzioni indoor o per applicazioni di rilevamen-
to di oggetti, o di gestualità dove il livello di dettaglio della ricostruzione 3D 
non è necessariamente prioritario. 

Un’evoluzione di queste tecnologie è rappresentata dagli scanner 3D por-
tatili manovrabili a mano libera, basati su ricostruzione ottica, in grado di 
produrre dati a qualità più elevata rispetto alle controparti a basso costo, 
pur rimanendo in fasce di prezzo accessibili a livello professionale. In questo 
contesto è molto interessante disporre di tecniche di ricostruzione 3D real-
time che assecondino e siano in grado di guidare l’azione dell’utente mediante 
feedback visivi immediati. 

La possibilità di creare modelli complessi deputati allo svolgimento di 
attività a loro volta complesse è afascinante e apre le porte a diversi e nuovi 
scenari applicativi. Contestualmente ad un trend evolutivo in termini di 
hardware, l’interesse per le tematiche di ricostruzione 3D sta trovando nuove 
soluzioni nel settore di ricerca in forte ascesa legato alle tecniche di deep 
learning. È quindi di attuale interesse rivalutare problemi classici nell’ambito 
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ii 

della ricostruzione 3D da nuovi punti di vista, basati sui dati e su approcci 
di apprendimento guidati da questi. 

L’importanza dei dati è quindi cruciale, oltre che in un contesto di va-
lutazione sperimentale, per la necessità di fornire esempi e informazioni ai 
modelli che si vogliono progettare. Tuttavia, abbiamo rilevato alcune caren-
ze legate alla tipologia dei dati impiegati nella ricerca accademica dove vi 
è un’attenzione prevalente legata ai dati provenenti da dispositivi a basso 
costo rispetto ad un più esteso panorama oferto dalle moderne tecnologie 
di scansione. Si tratta dunque di capire se e come le diverse caratteristiche 
dei dati e i diversi requisiti sulla qualità e sulle tempistiche di scansione si 
relazionino alla tipologia di dato generato ed alla scelta o al design delle 
migliori soluzioni di ricostruzione. 

Durante il percorso di dottorato, ho avuto modo di lavorare con un pro-
totipo pre-commerciale di scanner 3D portatile manovrabile, denominato 
Insight, sviluppato con l’obiettivo di fornire ricostruzioni con un maggiore 
livello di accuratezza rispetto alle controparti a basso costo, per essere uti-
lizzato in contesti applicativi in cui il target è un singolo oggetto di scala 
medio-piccola di cui si vuole una fedele rappresentazione digitale. Esempi 
di questi contesti sono il controllo di qualità, il reverse engineering, la digi-
talizzazione per fni ludici (cinema e videogiochi), contesti commerciali (ad 
esempio cataloghi per lo shop online), culturali (preservazione di statue e 
oggetti storici) ed anche medicali (creazione di protesi ed ortesi). 

In questa tesi ci concentriamo quindi su tecniche di ricostruzione 3D 
innovative, legate principalmente alla suddetta tipologia di dati, cercando 
di analizzare e di rispondere ai requisiti sfdanti legati a strumenti come 
quelli in uso durante il nostro lavoro, specialmente il requisito di ricostru-
zione real-time, confrontandoci con altre soluzioni disponibili in letteratura. 
In particolare, ci siamo preoccupati dapprima di collezionare e di rendere 
disponibile un nuovo dataset, DenseMatch, e di analizzare e confrontare ap-
profonditamente, e per la prima volta, le recentissime soluzioni basate su 
deep learning, potenzialmente sfruttabili e fruibili nei contesti di interesse. 
Tale confronto avviene sfruttando sia un dataset classico che il nostro, per 
avere una comparazione che stabilisca quali metodi meglio generalizzano su 
diversi domini e quali sono i più promettenti per il nostro contesto. 

Facciamo infne leva su tutti i risultati ottenuti per sviluppare un fusso 
di ricostruzione real-time adeguato allo scanner portatile che renda più af-
fdabile e robusta la soluzione di ricostruzione nativa dello scanner Insight. 
Il nostro approccio supera nettamente la soluzione di riferimento in lettera-
tura, denominata BundleFusion, soprattutto per la tipologia di dati e per 
le applicazioni di interesse. Vedremo come i migliori risultati si ottengano 
unendo il meglio degli approcci classici basati su feature geometriche con 
quelli che sfruttano i moderni modelli di apprendimento guidati dai dati. 



Abstract 

The type of digital content that we use every day is evolving and seeing 
domain extensions in which the three-dimensional component becomes in-
creasingly important, both at the consumer level and in the industrial and 
professional felds. Within this technological evolution there is therefore the 
need to have tools for the transition from the real to the digital world that are 
increasingly efective and immediate. Furthermore, the continuous increase 
in computational capabilities favors new solutions that are increasingly so-
phisticated and performing, at the same time increasingly accessible also 
from an economic point of view. In this context, devices capable of provid-
ing fexibility and accuracy in the 3D reconstruction process can spread on 
diferent types of market, while keeping the requests for hardware specifca-
tions moderate. 

Over the years, academic research has produced a number of excellent 
results based on the use of what are commonly referred to as low-cost optical 
3D scanners, born in the context of gaming platforms. These devices are 
characterized by compact dimensions, depth chambers with relatively low 
resolution and relatively large working range. Due to these characteristics, 
these tools are widely used in situations of use for indoor reconstructions or 
for object and gesture detection applications, where the level of detail of the 
3D reconstruction is not necessarily a priority. 

An evolution of these technologies is represented by the hand-held portable 
3D scanners, based on optical reconstruction, capable of producing higher 
quality data than their low-cost counterparts, while remaining in price ranges 
afordable at a professional level. In this context it is very interesting to have 
real-time 3D reconstruction techniques that support and are able to guide 
the user’s action through immediate visual feedback. 

The possibility of creating complex models for carrying out complex ac-
tivities is fascinating and opens the doors to diferent and new application 
scenarios. Concurrently to an evolutionary trend in terms of hardware, the 
interest in 3D reconstruction issues is fnding new solutions in the rapidly 
growing research area linked to deep learning techniques. It is therefore 
of current interest to re-evaluate classical problems in the feld of 3D recon-
struction from new points of view, based on data and on learning approaches 
guided by these. 
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The importance of data is therefore crucial, other than in an experimen-
tal evaluation context, for the need to provide examples and information to 
the models we want to design and develop. However, we found some short-
comings related to the type of data used in academic research where there is 
a prevalent attention linked to data coming from low-cost devices compared 
to a wider panorama ofered by modern scanning technologies. It is therefore 
a question of understanding if and how the diferent characteristics of the 
data and the diferent requirements on the quality and timing of the scan 
relate to the type of data generated and to the choice or design of the best 
reconstruction solutions. 

During my PhD, I was able to work with a pre-commercial prototype of 
a hand-held 3D scanner, called Insight, developed with the aim of providing 
reconstructions with a higher level of accuracy than its low-cost counterparts, 
to be used in application contexts where the target is a single small-medium 
scale object of which a faithful digital representation is desired. Examples 
of these contexts are quality control, reverse engineering, digitization for 
entertainment purposes (cinema and video games), commercial contexts (for 
example catalogs for online shops), cultural heritage (preservation of statues 
and historical objects) and also biomedical (e.g. anatomic scanning for the 
design of prostheses and orthoses). 

In this thesis we therefore focus on innovative 3D reconstruction tech-
niques, mainly related to the aforementioned type of data, trying to analyze 
and respond to the challenging requirements related to tools such as those 
in use during our work, especially the real-time reconstruction requirement, 
comparing ourselves with other solutions available in the literature. In par-
ticular, we frst took care to collect and make available a new dataset, Dense-
Match, and to analyze and compare in depth, and for the frst time together, 
several very recent solutions based on deep learning, potentially exploitable 
and usable in the contexts of interest. This comparison takes place using 
both a classic dataset and ours, to have a comparison that establishes which 
methods best generalize on diferent domains and which ones are the most 
promising for our context. 

Finally, we leverage all the results obtained to develop a real-time 3D 
reconstruction pipeline suitable for our handheld scanner that improves and 
makes the native reconstruction solution of the Insight scanner more reliable 
and robust. Our solution clearly outperforms the reference method in the 
literature, i.e. BundleFusion, especially for the type of data and for the 
applications of interest. We will see how optimal results are obtained by 
combining the best of classic approaches based on geometric features with 
those that exploit modern data-driven learning models. 
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I 

Introduction 

Scenario 

Deep Learning (DL) is a remarkably interesting topic which is infuencing the 
research activities of a wide range of felds. This range includes 3D analysis, 
which is growing interest due to the increasing requirement of instruments 
for producing and consuming contents that go beyond the bi-dimensional 
barrier. For instance, applications such as augmented reality and virtual 
reality, along with the transition of sectors, as industrial and bio-medical, 
towards new technological paradigms, are demanding for new devices and 
solutions to create and to represent 3D models. Moreover, aimed by the 
successful results obtained by applying deep learning to Computer Vision, 
the community recently started developing solutions that extend the 2D-
tailored approaches in order to tackle 3D related problems. Some of these 
problems are typically faced during the process of reconstructing a scene via 
3D scanning. 

In this work, 3D scanning is declined as the problem of reconstructing 
a scene in real-time fashion by means of an handheld optical scanner. This 
specifc type of application is chosen due to the collaboration with Open-
Technologies - FARO (Rezzato, Brescia, Italy), the company where I worked 
during the PhD in apprenticeship period. Indeed, at the company I had 
the opportunity to test a prototype of 3D scanner they are developing in 
order to target sector specifc applications in which it is important to ofer 
an accurate reconstruction with a fast and robust system. The prototype is 
still a work in progress and some critical aspects are still under review. In 
particular, we want to detect suitable solutions to improve the robustness of 
the system, which indeed is afected by several loss of track episodes, it lacks 
of smart solutions to adjust and refne the on-going reconstruction and does 
not ofer an appealing feature as the recover of the tracking in the middle of 
the scan. 

Then the fnal goal is to defne a new working pipeline for the scanner 
under study. In order to achieve this, our research led us to investigate 
the world of deep learning to address canonical problems in 3D domain, 
namely 3D feature extraction for matching corresponding points which refer 
to multiple views and 3D registration to align them. Moreover, to proceed 
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2 Introduction 

with the research we also found the necessity to remedy for the lack of a 
dataset close enough to our working scenario. All these elements compose 
the fnal aims of the work, which we declare properly in the following section. 

II Aims of the work 

II.i Creation of benchmarks for high resolution handheld 
scanners 

Recently, the widespread availability of low-cost depth sensors and the aford-
ability of high-performance computing and graphics cards helped to achieve 
signifcant results in the feld of real-time reconstruction. This kind of devices 
are appealing for the market because of the advantages they ofer compared 
with static scanners. In fact, these scanners allow constructing a 3D scene 
by relying on a fast and fexible solution: the user is free to move with no 
fxed path to follow, while a constant feedback is returned live, so that it can 
show the growing model to help to understand the areas still missing from 
the scan. 

However, it is important to notice how these devices usually focus more 
on providing fast and robust reconstruction systems at the expense of a cer-
tain level of accuracy. Such a trade-of is well suited for specifc applications 
like indoor reconstruction. In contrast with this scenario, many other ap-
plications can be targeted with handheld scanners, but they usually require 
a higher accuracy and data fdelity. Examples of these applications are for 
instance reverse engineering for product design, for quality assurance, cul-
tural heritage or even medical CAM/CAD-related as orthotics. Indeed the 
recent developments move towards an improved accuracy for low cost optical 
devices but the literature still lacks of examples for this kind of objectives. 
Therefore we aim to fll the void by proposing a reference dataset that can 
be useful for future researches. 

Exploiting the prototype available for this research, we create a novel col-
lection of scenes representing subjects which are typically targeted in several 
application context, such as quality inspection, modeling for commercial and 
ludic purposes, reverse engineering and body scanning. The collection com-
prises both the source data generated with the scanner, i.e. the stream of 
frames RGB and the associated DepthMaps, and the point clouds extracted 
from these frames, properly aligned by hand to provide a reliable ground 
truth. 

We state that this dataset can be used to develop new strategies to 
address diferent tasks that deal with high resolution optical scanners input 
data. Moreover, it can be used by computer scientists as a benchmark to 
perform both quantitative and qualitative analysis and comparisons. Finally, 
it can be used to train or fne-tune AI models to cope with small-scale and 
dense 3D object acquisitions and reconstructions. 
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Indeed, in this work we will refer to it for our own assessment. 

II.ii Deep Learning applied to 3D registration of dense data 

Real-time optical scanners [1] are a powerful and fexible tool for 3D recon-
struction. In essence, they need to rely on fast and robust techniques to 
align the partial views they acquire at a high rate during the scan. Many 
traditional methods addressed the challenges through the years and some so-
lutions became the standard de facto to deal with live reconstruction-related 
problems. However, no solution is fawless and the research continues by 
exploring new paths every day. A promising example of such a new path, is 
represented by the novel introduction of Deep Learning to tackle 3D prob-
lems. 

Early attempts tried to leverage standard 2D deep learning solutions by 
translating the problem to 2D domain via projection mapping [2, 3, 4, 5]. 
Later, a structured representation of 3D space [6, 7, 8] was adopted to ex-
tend the algorithms efortless. However, these solutions require a high level 
of quantization and partially lose local information which can be valuable 
instead. Conversely, PointNet [9, 10] is the frst attempt to deal with unstruc-
tured data to feed a network able to process a dense point cloud. Despite 
the technological step, the method sufers from several limitations, such as 
the curse of dimensionality and poor understanding of local context. 3D 
convolutional neural networks (3D CNNs) are then an appealing alternative 
because of the advantages of convolutional layers which mitigate the issue 
arose with PointNet. However, 3DCNN can not be applied directly on point 
clouds due to the unstructured nature. Sparse convolution [11, 12] has then 
been introduced to cope with this problem. By means of sparse convolutional 
layers backends, promising works have been recently introduced in relation 
with tasks which are meaningful to us, such as feature extraction and false 
correspondence rejection to infer the alignment transformation by exploiting 
valid matches only. 

3D local feature extraction 3D local feature extraction commonly re-
quires the preliminary detection of interesting points to use as an anchor 
during the defnition of a local reference frame. Such a reference frame 
is necessary to defne the descriptor representing the feature invariant to 
changing views and eventually to varying scale and local points density. Usu-
ally, the descriptor refers to spatial and geometrical relationships internal to 
the neighborhood. Each descriptor favors a specifc property, therefore it is 
more suitable for specifc applications only. In general, there is no standard 
method able to generalize well and most of the solutions can be exploited 
only on a sparse set of data due to low compactness and time consuming 
estimation [13]. Recent 3DCNN-based model [14, 15], conversely, allows to 
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exploit the whole set of points to extract geometric features from the full 
dense point cloud. 

3D registration 3D registration can be classifed according to multiple 
criteria. Our main focus is on pairwise rigid registration because it allows 
the tracking of a moving camera in a scene while scanning the model itself. 
Such a problem is usually split in diferent steps: a corresponding set of 
features is detected across two views. The matches are refned by pruning 
the outliers and the sparse set of correspondences is used to retrieve the 
coarse registration matrix which aligns the two. Finally, a last stage exploits 
the dense set of points to refne the alignment. 

Most prominent DL-based contributions for 3D view alignment appeared 
very recently and almost concurrently [16, 17, 18]. They all tackle the task 
as a classifcation problem and weight the correspondences set according to 
their accuracy. By means of this weighting vector they then regress the 
transformation. 

Due to their contemporaneity, an in-depth comparison among these meth-
ods is lacking, therefore we aim to fll the void by analyzing the opportunities 
they ofer, as well as the eventual limitations. 

Moreover, all of these technologies have been proposed and tested on 
data from low-cost scanners and with medium-large scales (about 1 to 10 
meters). Therefore, there is the need to understand if the same solutions are 
equally efective when dealing with data acquired with hand-held scanners 
targeted for quality reconstruction of single objects/subjects rather than 
entire scenes/environments, and operating on smaller scales and ranges (from 
cm to few meters). 

II.iii A Deep Learning framework for real-time 3D scanning 
pipeline 

The DL-based methods we deal with during our dissertation have all been 
introduced with the goal of replacing handcrafted solutions to address clas-
sical problems. Up to our knowledge, none of these technologies have yet 
been introduced and tested in a real-time reconstruction framework. Thus, 
there is the need to understand their possible role and practical contribution 
especially in solving open issues afecting this demanding kind of reconstruc-
tion. 

Throughout our research, we found that BundleFusion [19] is the state-
of-the-art for medium and large scale 3D reconstruction. Most of its contri-
butions are appealing to us because it ofers a robust solution which is also 
able to adjust and refne the reconstruction on-the-fy. However, our exper-
iments have shown that the registration strategy adopted by BundleFusion 
tends to struggle with our own data. Our investigation led us to assume that 
relying exclusively on 2D features for coarse matching can be tricky in our 
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context. Indeed, conversely to the situation addressed by BundleFusion, we 
target the reconstruction of single objects for which the frames we take can 
present regions with repetitive pattern or lack of signifcant texture to rely 
on for 2D feature matching. 

Therefore, encouraged by the results we achieved from the preliminary 
evaluation of DL-based methods, we try to exploit the method proposed in 
BundleFusion by replacing the critical elements with some promising data-
driven solutions, in order to combine the best of the two worlds. The fnal 
result is a new pipeline we developed in a DL framework that can perform 
a robust real-time 3D reconstruction. The key features of this pipeline are: 

• A robust 3D registration module that is based on data-driven geometric 
feature extraction and coarse registration methods which are properly 
tuned to deal with high resolution 3D data for object reconstruction. 
The module is used to deal with the issue of tracking loss and camera 
relocation. 

• A hierarchical structure to split the problem of frames alignment both 
locally and globally, operating within the scope of real-time reconstruc-
tion. 

• A pose refnement module, similar to what is proposed in BundleFu-
sion, which leverages the hierarchy division for a feasible adjustment. 

In order to evaluate our pipeline we perform an extensive analysis by testing 
the benchmark dataset we presented earlier and we compare against two 
standard solutions (KinectFusion [20] and BundleFusion [19]) either with 
our dataset and with other common datasets as well. Finally, we point out 
that such a pipeline relies solely on open source libraries, therefore we are 
able to provide an open version of the code to the community. We think 
that this is a frst contribution in the direction of streamlining real-time 3D 
reconstructions with the help of data-driven technologies that can be of help 
to investigate more advanced solutions in the same direction and to extend 
their application scope. 

III Document organization 

This document is organized as follows. In Chapter 1 we introduce the reader 
to the topic of 3D scanning. The chapter is preparatory to understand the 
challenges we encounter when dealing with real-time 3D reconstruction and 
what opportunities an handheld optical scanner can ofer, especially when 
paired with high resolution cameras to target high quality object reconstruc-
tion. At the end of the chapter we clarify the motivations behind this work 
and we summarize the diferent stages it is composed by, which are then 
refected in the structure of the document. In Chapter 2 we focus on the 
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device we tested throughout the entire PhD program, explaining the key 
characteristics and the challenges we faced to improve the user experience. 
At the end of this chapter we introduce a dataset we created with this scan-
ner which is then used to assess novel deep learning methods we introduce 
at the beginning of Chapter 3. All of these evaluations lead us to propose 
in Chapter 2 our own reconstruction pipeline which exploits deep learning 
models to deal with some critical components and ofers a new framework 
to tackle real-time 3D reconstruction via optical 3D scanning. 



Chapter 1 

3D scanning and 
reconstruction: traditional 
approaches and benchmark 
datasets 

With 3D scanning and reconstruction (or, more concisely, 3D scanning) we 
refer to the process of geometry information retrieval from a real world scene 
(as well as additional gathering, such as the surface color information). The 
goal is to create a numerical representation of the scene that can be processed 
into a digital framework for several applications. The scene can qualify to 
be indoor/outdoor or to represent a single/collection of objects. In this 
chapter we introduce the reader to topic of 3D scanning. To this, we set the 
ground on multiple levels: we frst discuss 3D scanning from an hardware 
perspective by describing what kind of sensors are typically used. Then we 
take a look at what data collections are accessible in literature, in order to 
test novel approaches and benchmark diferent solutions. Finally, we review 
the state-of-the-art of multiple-view 3D registration and we introduce the 
best pipelines currently available to achieve real-time 3D reconstruction. It 
is worth to mention here that in this chapter we will discuss about the 
traditional approaches only, meaning we deepen the handcrafted methods 
which are based upon standard heuristics, handcrafted features, and most 
popular real-time reconstruction algorithms not driven by neural networks 
decisions. Indeed, the recent introduction of Deep Learning to 3D processing, 
comprising its possible adoption for real-time 3D reconstructions will be the 
objective in Chapter 3 later in the document. 

Specifcally, this chapter is organized as follows: 

• An overview of the most common types of 3D scanners which are avail-
able in the market is given to the reader in the Section 1. In particular, 

7 
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the last paragraph is entirely focused on handheld optical scanners. As 
we mentioned, such a type of scanner is meaningful to our research. 
Therefore, in order to introduce our own device (we do it in Chapter 2) 
we frst want to present the most similar consumer solutions available 
nowadays. By listing those devices, we point out the strengths and the 
weaknesses of this class of products. 

• Section 2 is dedicated to the data. First we make a list of the most 
common benchmark dataset we have in literature, describing the source 
data input, the main specifcations and the target they address. Then 
we focus on two specifc datasets, which will be useful for cross-referencing 
our work with other popular solutions targeted towards real-time re-
construction. 

• Section 3 is focused on the methods instead. Specifcally, we divide 
the section in two parts. The frst topic is an introduction to 3D regis-
tration, which is fundamental to track a camera during the scan. The 
second part focuses on the pipelines that drive the aforementioned op-
tical scanners to perform real-time 3D reconstruction. We present the 
most relevant solutions and we highlight the open challenges. Indeed 
these challenges also afect our own device and methods. Therefore in 
the next chapters we will seek to understand how recent data-driven 
approaches can favorably contribute to tackle them. 

1 3D Scanning Devices 

Depending on the role that each sensor plays during the acquisition process, 
we can divide the 3D scanners in two macro areas: based on active sensors 
or on passive sensors. As the nomenclature suggests, the distinction is made 
upon the fact that a sensor can either interact with the target surface or it 
can simply not. Moreover, additional distinctions can be made according to 
the technology which is adopted by each sensor. In the following section we 
make a distinction for the most representative types and we briefy cover all 
of them by providing meaningful information for each solution, such as pros 
and cons, price range and applications they are meant for. 

We deliberately decide to keep the review concise and functional to the 
objective of the thesis. Indeed, the introduction is preparatory for under-
standing the context around the scanner we will analyze in the following 
chapters. For more technical details we refer the reader to more special-
ized works. For instance, for the passive system we present in Sec. 1.1 
we refer to [1, 21, 22, 23, 24, 25] while for active stereo system we refer to 
[1, 26, 27, 28, 29] 
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1.1 Passive sensors 

Passive 3D imaging solutions rely on detecting refected ambient radiation, 
mostly visible light but not only (also infra red is a possible option). Because 
of this, the sensor can usually be as simple as a digital camera, with the 
addition of particular flters when necessary. Granting us a bit of terminology 
relaxation, we overlap the concept of passive depth sensing by means of 
optical instruments with the wide discipline of photogrammetry [30, 31, 32, 
33]. Indeed, depending on the type of solutions adopted to process the 
images, several independent research felds are involved. For the sake of 
readability and according with the level of deepening we maintain for this 
preparatory introduction, the main distinction we make is based upon the 
number of sensors (and views) required to reconstruct the geometry of a 
scene. Therefore, in the following paragraphs we review the macro topics 
of single-view and multi-view photogrammetry and we add an additional 
paragraph for stereo confgurations special case. 

1.1.1 Single-view photogrammetry 

Estimating depth map or 3D information from a single view is a common 
problem in computer vision [30]. Instances of these methods include linear 
perspective [34], atmosphere scattering [35], patterned texture [36], symmet-
ric patterns [37, 38] and statistical patterns [39, 40]. 

Figure 1.1: Example of shape from texture. From left to right: original 
image, segmented texture region, surface normals, depth map, reconstructed 
3D shape. Image taken from [36] 

From a more strict photogrammetry perspective, single-view 3D recon-
struction is a kind of linear perspective method which uses straight lines in 
the object space to obtain image rotations (Euler angles), interior orienta-
tion parameters of the image (focal length, and principle points). Relying on 
this information, the distances can be calculated by means of various math-
ematical methods [41]. Overall, the method can be extremely cheap, and 
usually the data processing can be done by non-specialist users. However, 
the reachable accuracy is not suitable in many applications. Moreover, single 
image photogrammetry cannot be used for 3D modelling of an object. In-
deed, in order to determine ground points and obtain a 3D model, both the 
exterior orientation elements and the scale factor of every bundle ray should 
be known (the scale factor is not necessarily stable for diferent regions of an 
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image). This problem is solved by using binocular photogrammetry. 

1.1.2 Binocular photogrammetry 

Binocular photogrammetry is also known as stereo-view photogrammetry. 
The term stereoscopic refers to the fact that the method this system is based 
on has the same principles driving human stereoscopic vision. In Appendices 
Sec. A we provide more context and we give some elements to understand 
the geometry behind such method, so we do not go much further with details 
here. The reason why we dedicate an appendix section to the stereo vision is 
because it is the basis also for another important type of scanner, specifcally 
the structured light handheld one which is also covered in the following 
section dedicated to the active scanners. In brief, stereoscopic system employ 
two cameras slightly apart (the distance between the two is referred to as 
baseline). The cameras are tilted to look at the same scene. The relationship 
between two views of the same spot taken from diferent angles is expressed 
by means of the epipolar geometry. By analyzing such a relationship it can 
be determined how far the point is from the center of the camera. It is then 
possible to build a depth map which assign a z coordinate to each pixel in the 
image and use the depth information along with localization of the camera 
in the system to retrieve the 3D map of the scene. Pros The solution is 
potentially very cheap but it can ofer a high accurate reconstruction under 
specifc requirements of illuminations of the scene, materials in it and proper 
system calibration. Cons Indeed it is sensitive to refections, light speckles, 
etc. For this reason, external projectors are usually adopted to deal with 
environmental light source. Moreover, the baseline of the camera is critical 
to determine the feld of view of the scanner. A larger feld of view tends to 
sufer more from occlusions and clutter. 

1.1.3 Multi-view photogrammetry 

These systems are usually composed by an array of cameras that are synchro-
nized to acquire several pictures of the target object from multiple locations. 
Those images are then processed using optics and projective geometry to 
fnally retrieve the 3D scene information. Moreover, when particular light 
conditions are preserved, only one camera is sufcient for the goal. In this 
case the camera device is moved around, taking multiple shots from difer-
ent angles. Many variants of algorithms exist to exploit the multitude of 
images. Shape can be derived from varying focus [42], from silhouettes [43], 
from motion. In Fig. 1.2 an example of the 3D reconstruction of a person 
with a photogrammetric system is shown. The polygons foating in the scene 
represent the camera positions where each of the pictures were taken. 

Applications Multi-view photogrammetry is the core technology for sev-
eral applications such as manufacturing, quality control, police investigation 
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Figure 1.2: Example of 3D reconstruction of a human body with a pho-
togrammetric system. Original image from https://xangle3d.com/ 

and cultural heritage. However it can also be used in diferent contexts, in 
fact it can be exploited for topographic mapping, architecture and geology. 
Pros The most sophisticated systems can reach sub-millimeters accuracy 
level. Cost Their cost spans a large interval which depends upon the system 
confguration. The simplest solution requires only a digital camera (even a 
smartphone is valid for very coarse reconstructions). On the contrary the 
most complex solution works with a cluster of high quality digital cameras 
along with a set of coded markers and reference scale bars placed around 
the scene in order to increase the robustness and camera tracking accuracy. 
Cons The reconstruction is performed ofine and it can be time consuming, 
even with modern computers. Since it is ofine, the user has no live feedback 
during the scan. Therefore it is common to deal with missing parts after one 
round of acquisitions. The scan can then be tedious, especially when only 
one camera is available, since it is usually necessary to repeat some shots. 
Finally, the light conditions in the scene should be set up properly to ensure 
quality results, which also increases the overall time-to-data experience. 

1.2 Active sensors 

1.2.1 Contact-based 

As intuitive as it could be, the frst example of active sensors is from the 
contact-based family, i.e. those scanners that retrieve the surface information 
of an object by physically touching it with a probe. These scanners are known 
as coordinate measuring machine (CMM). The measure is given according to 
the reference system of the beforehand calibrated probe which is constantly 
aware of its own placement in the world. Three variants of CMMs are 

https://xangle3d.com/
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currently available on the market: 

• A fxed system in which the probe is attached to a rigid arm and the 
inspected object is placed underneath it. This type of system is usually 
bulky but also highly accurate (in the order of few micrometers) and 
can completely automated via Direct Computer Control (DCC). 

• A portable system with an articulated arm (Fig. 1.3) which is less 
bulky and it is ideal for probing into fssures and holes and other com-
plex geometries. 

• A mix of the previous solutions in which both the rigid and the artic-
ulated arms are deployed. 

Application CMMs are mostly used for comparing parts against design in-
tent, a common procedure in manufacturing process in diferent industrial 
sectors. Pros The main advantages are the high accuracy of the measure 
and the possibility to automate the scanning process. Cons On the other 
side, both the carriage system with rigid arm and the portable system with 
articulated arm have rigid stability constraints on the scanning environment 
(the system needs to be fxed during the acquisition). Moreover, the interac-
tion with the object under inspection can be critical since the object could 
be damaged by the contact with the probe. Finally, the whole process of ac-
quisition is typically slow if compared with other solutions. Cost The cost 
ranges from 30k euros for the entry levels up to easily more than 150k euros 
according to specifcations. 

(a) (b) 

Figure 1.3: Example of a Coordinate Measuring Machine. (a) Articulated 
arm with rigid bones in action. (b) Detail of the probe. 

1.2.2 Laser-based 

Laser scanners are versatile solutions that ofer a large pool of options in 
terms of applications that can be addressed with. The core technology is 
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the source monochromatic laser beam that is obtained through a controlled 
electromagnetic radiation. Such a laser beam is then employed in diferent 
ways to sense the target surface. The two main confgurations are briefy 
described in the following paragraphs. 

Emitter

Object

Rotating mirror
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Object
Rotating mirror

CCD
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Rotating mirror
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(a) Range fnder (b) Triangulation 

Figure 1.4: Laser-based scanner confgurations. 

Laser range fnder Usually known also as LIDAR [29, 27, 28], such a 
scanner works under one of two measurement principle: time-of-fight mea-
surement or phase shift measurement. The former evaluates how long the 
emitted beam takes to bounce back after hitting the target object (Fig. 
1.4(a)). The rationale is that the speed of light being a constant, it allows 
the distance to be evaluated as the product between the velocity of the beam 
and its round-trip time. In alternative, the phase shift can also be measured. 
Due to the wave nature of the emitted light, if the original wavelength is 
known, the a distance measure can be derived by measuring the diference 
between the phase of the emitted wave and the phase of the refected one. 
Moreover, in order to scan multiple points on the target surface, the beam 
needs to be moved over the target scene or object. A common practice to 
achieve this is to use mirrors to defect the beam. Indeed the mirrors are 
lightweight and allow for very accurate defections when a sufcient quality 
of the optics is guaranteed. Moreover, they can be rotated at a high rate, 
allowing the scanner to acquire up to millions of points per second. Each of 
this points is collected creating a point cloud data structure. Multiple point 
clouds are fnally aligned to create the complete 3D model. Pros Overall, 
the stability of the laser beam is one of the key properties for this type of 
scanners: a point can be acquired few centimeters away from the scanner, up 
to hundreds or even thousands of meters of distance. Application For this 
reason, the most common application felds are remote sensing and build-
ing information modeling (BIM [44]) (Fig. 1.5). Cons These solutions are 
usually expensive and mostly oriented to professional applications. More-



14 
3D scanning and reconstruction: traditional approaches and 

benchmark datasets 

over, the accuracy and the point density can be sub-optimal with respect 
to other solutions: indeed, they can sufer the competition of passive stereo 
systems for medium and large scale scenes (e.g. indoor and outdoor scan-
ning) reconstruction while structured light solutions can perform better on 
small scale reconstruction (e.g. single object scanning). Cost Due to the 
high standards required for optical and mechanical manufacturing, the entry 
level class starts from nearly 40k euros. 

Figure 1.5: Example of a range fnder laser scanner. A rotating mirror 
mechanism spans the laser beam on x and y axes to create a point cloud. 

Triangulation based laser scanner Instead of elaborating how the beam 
traveled from emitter to sensor, triangulation based laser scanner rely on a 
camera sensor (e.g. a charge-coupled device, CCD) to evaluate how the 
beam hit the surface. The name is due to the fact that emitter-camera-dot 
confguration compose the three vertices of a triangle (Fig. 1.4(b)). The dis-
tance between laser emitter and camera sensor is given at calibration stage, 
while efective methods of Computer Vision [30] are involved to detect the 
laser dot in the image. In practice, in order to speed up the acquisition 
process a laser stripe is projected instead of a single dot. Then, every single 
acquisition provides a set of sparse points, which are referenced to the laser-
camera system. In order to align each set to create the fnal model, it is 
necessary to keep track of the scanner during the acquisition process. Then, 
a common choice to provide a reference to the system is to place markers 
all over the scene, since they are easy to detect and to track throughout the 
scan session. As an alternative to markers, natural features and direct ge-
ometry based alignments can be exploited for tracking. However, the former 
requires to work with a rich texture (few symmetries, presence of corners, 
edges, etc.) while the second needs to increase the number of stripes to lever-
age on a slightly more dense geometry from a single shot. Nevertheless, those 
solutions tend to be less accurate than the marker-based one. In practice, 
the triangulation-based methods are largely adopted in building handheld 
scanners. Pros Nowadays handheld laser scanners can reach a metrology 
level accuracy when matched with targets (i.e. in the order of micrometers). 
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They can be also relatively lightweight (top class weight around 1kg) which 
is good enough for rapid scanning sessions. Cons In contrast with time-of-
fight scanners, their range is extremely short, even below 1m: in fact, it is 
necessary to work within a short range to keep the beam narrow enough to 
avoid sparkles and refections that could afect the accuracy of dot detec-
tion. Application Many applications are available with this system, as for 
instance shape inspection for quality assurance, reverse engineering, cultural 
heritage, etc.. Cost Their cost spans within a large range (from 10k up to 
70k euros). Such a large margin depends upon multiple aspects, such as the 
accuracy, the amount of scanning modes available (e.g. working with mark-
ers, without markers, providing additional texture information), the number 
of points that are processed per second, the weight, the connectivity, etc.. 

1.2.3 ToF cameras 

A common solution for depth sensing relies on time-of-fight (ToF) cam-
eras [45, 46]. The core idea is similar to LIDAR, meaning it is based on 
a time-delay algorithm. However, conversely to LIDAR, every pixel is a 
measurement point with ToF cameras, therefore the reconstruction is dense, 
regardless of scene texture. One very popular ToF camera is Kinect2 (see 
Fig. 1.6). Pros The advantages for ToF cameras comprise the dense and 

Figure 1.6: Kinect2 Time-of-Flight sensing camera (image taken from https: 
//developer.microsoft.com/it-it/windows/kinect/). 

instantaneous 3D reconstruction which is suited for real-time applications. 
They are cheap and robust due to the lack of moving parts. For these rea-
sons ToF cameras are easy to use also by non-expert users. Cons The main 
limitations are the fact that are susceptible to multi-echo returns distorting 
data and a relatively low resolution. Moreover, noisy input requires long 
integration time to cope with motion blur and resolve range ambiguity. Ap-

https://developer.microsoft.com/it-it/windows/kinect/
https://developer.microsoft.com/it-it/windows/kinect/


16 
3D scanning and reconstruction: traditional approaches and 

benchmark datasets 

plication They are generally used in indoor environments and address short 
range object scanning [47, 48] and gesture recognition [49, 50, 51]. 

1.2.4 Structured light-based 

Laser scanners are limited by the fact that the laser beam can scan only one 
point or one line of points at a time. Although fast movable mirrors are 
available, as well as line-arranged beams can be used to substitute the dot 
with a stripe, overall the set of points that is acquired tend to be more sparse 
compared to an ideal density for good 3D representation. The same is for 
contact-based scanners. All these methods are also inherently sensitive to 
the problem of distortion from motion, which is caused by non rigidity of the 
target throughout the single view acquisition. On the contrary, structured 
light 3D scanners perform a dense single view acquisition by scanning the 
entire feld of view (FOV) at once. In order to illuminate the scene these 
scanners do not use laser but LCD or infra-red (IR) projector instead. In 
Fig. 1.7 we report an example of the scanner mounted on a tripod with 
additional turntable to make the object spin around itself at a controlled 
angular intervals. Nevertheless, structured light scanners can also be con-
ceived in handheld confguration. In any case, the structure of the projected 

Figure 1.7: Example of structured light scanner with optional turntable. 

pattern is known a priori by the system which then estimates the geometry 
of the object surface by evaluating how such pattern is deformed (Fig. 1.8). 
In practice, to ensure the robustness of the method a pattern is projected 
either using a spatial or a temporal encoding [30]. An example of successful 
encoding pattern is Gray code [52]. 

Pros Structured light scanners are an accountable solution because of 
their speed (fast acquisitions especially when single projected patterns are 



17 1 3D Scanning Devices 

(a) (b) (c) 

Figure 1.8: Example of structured 3D reconstruction with structured light 
3D scanner. (a-b) Binary code projected (c) Final model. 

used) and resolution (dense acquisitions, especially when high resolution 
cameras are used). The accuracy spans from tens of micrometers to millime-
ters depending on the optics confguration and the context application. Ap-
plications Speaking of applications, they can be used for industrial metrol-
ogy, shape measurement for production control, body shape measurement 
but also simultaneous localization and mapping (SLAM) technologies, as we 
will see in the next section. Cons Similarly to other optical-based solutions, 
one of the most relevant problems is related to light refection and defec-
tion. The method sufers from scanning challenging surfaces such as metal 
and glass which are either highly specular or semi-transparent. Cost The 
cost range is again wide. However, optical scanners tends to be not too 
expensive with respect to other solutions. In particular, there are several 
scanners with a very low entry price, sharply below 1k euros. Indeed, in the 
next section we cover some of the most common scanners available in this 
cheap sector, since they are well known in the academic community and they 
are employed to create shared datasets for research purposes. In the next 
chapter we shift the attention on higher performance devices, which open to 
relevant but more demanding applications. 

1.3 Handheld optical scanners available on the market 

In the previous paragraph we introduced structured light scanners. We men-
tioned the fact that the hardware required to power such systems can be 
relatively low-cost. Indeed, in this section we overview some of the main 
devices available at consumer end. These scanners come in a very afordable 
price range, which makes them appealing for research activities. Moreover, 
the working pipeline that powers them, is very similar to the pipeline we frst 
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developed for our own case study device, which we will deepen in Chapter 2. 
Pictures of the most popular devices are given in Fig. 1.9 while in the fol-
lowing paragraphs we give some historical context and we describe in detail 
the technical sheet of each of them. Finally, in Tab. 1.1 we extend the list 
to few more meaningful models and we summarize the main specifcations 
to better organize such information for the reader. 

(a) Microsoft Kinect (b) Asus Xtion Pro 

(c) Intel RealSense d415 (d) Structure IO 

Figure 1.9: Examples of low cost optical devices. 

Microsoft Kinect It was presented in 2009 as an accessory of the Mi-
crosoft console gaming XBOX, making it the frst mainstream motion sens-
ing device for less than 200 euros. It has two cameras. The frst camera is 
an RGB camera working at 30 fps with a resolution of 640 × 480, while the 
other camera has lower resolution of 320 × 240 and a near-infra red band 
pass flter which is paired with an projector. This makes the device, in its 
frst confguration, a single pattern structured-light scanner (projector + IR 
camera) with the possibility to create colored point clouds (by the RGB cam-
era). The working distance spans from 0.4m to 4.5m, with a feld of view of 
57 and 43 degrees on horizontal and vertical plane respectively. Those num-
bers indicate that the Kinect has a relatively large feld of view. Microsoft 
released a second version of Kinect in 2013 even with a higher resolution for 
each the two cameras, but it also changed the core technology by shifting 
it to a time-of-fight scanner (see Section 1.2). While the Kinect group has 
dismissed the support for playing with the Microsoft console, the scanner 
has found new life in academia, especially after the introduction of seminal 
works such as KinectFusion [20, 53, 54]. 

Asus Xtion Pro Surfng the wave of marketing afordable sensors for 
motion tracking, other big tech companies besides Microsoft launched their 



19 1 3D Scanning Devices 

own devices. Asus for instance presented a scanner which is almost identical 
to the frst version of Kinect: same specifcations for the cameras, same 
infra red projector and similar feld of view but narrower working range 
(up to 3.5m). All these components are engineered into a smaller enclosure 
(18 × 3.5 × 5cm against 28 × 8 × 8cm dimension for Kinect) and sold for less 
than 150 euros. 

Intel RealSense Another very interesting option is the D series (where 
D stands for Depth) from Intel RealSense products. The lineup has several 
confgurations including rolling and global shutters, diferent baselines and 
additional Inertial Measurement Units (IMU). overall all the devices are 
incredibly lightweight and compact (D415 is 9.9 × 2.0 × 2.3cm) which is also 
the main diference with the other competitors from Microsoft and Asus. 
Besides the enclosure, the depth-sensing setup is similar to the former two 
scanners: a RGB camera for texture information and a IR camera paired with 
a infra red projector are used. The D415 is the most accurate scanner in the 
current lineup, since its depth camera sensor has a resolution up to 1280×720 
which makes it the preferable choice for high fdelity reconstruction, while 
other devices like D435i are preferable for other task such as object detection 
and fast tracking (having global shutter camera and IMU on board). Finally, 
Intel has made a lot of efort in the past few years for opening their system 
to the academic research: along with the scanner it ofers computer vision 
libraries and SDKs which are also supported by Open3D [55], a trend popular 
3D library maintained by Intel itself. 

Structure Sensor The scanner from Occipital, Inc. is a slightly diferent 
kind of device: originally meant for being mounted on iPad because of its 
compact form factor (10.9 × 1.8 × 2.4cm) now it can be fully integrated with 
other operating systems too. The scanner itself is very similar to RealSense 
devices and it ofers all the advanced features: a on-device processor, a high 
quality depth infra red camera (1280 × 960 running at 54 fps) with a large 
working range (from 30cm up to 5m), infra red class 1 projector (for eye 
safety), RGB camera (640 × 480 at 100 fps) and a 6-axes IMU. 

Scanner Type Technology RGB Res Depth Res Z range FOV (HxVxD) Size [mm] 
Kinect v1 active IR stereo 640 × 480 320 × 240 0.4 - 4.5m 57◦ × 43◦×? 289 × 73 × 71 
Kinect v2 active IR ToF 1920 × 1080 512 × 424 0.5 - 4.5m 70◦ × 60◦×? 249 × 66 × 67 

PrimeSense active IR stereo 1280 × 960 640 × 480 0.4 - 3.0m 58◦ × 45◦×? 180 × 25 × 35 
Xtion Pro active IR stereo 640 × 480 320 × 240 0.4 - 3.5m 58◦ × 45◦ × 70◦ 180 × 35 × 50 

RealSense R200 active IR stereo 1920 × 1080 640 × 480 0.3 - 3.5m 59◦ × 46◦ × 70◦ 130 × 20 × 7 
RealSense D415 active IR stereo 1920 × 1080 1280 × 720 0.3 - 3.5m 65◦ × 40◦ × 72◦ 99 × 20 × 23 

Structure IO active IR stereo 1920 × 1080 640 × 480 0.4 - 3.5m 58◦ × 45◦ × 70◦ 119 × 28 × 29 
Structure Core active IR stereo 640 × 480 1280 × 960 0.3 - 5.0m 59◦ × 46◦ × 70◦ 109 × 18 × 24 

MS Azure active IR stereo 1024 × 1024 4096 × 3072 0.3 - ?m 90◦ × 70◦×? 103 × 39 × 26 

Table 1.1: Main specifcations for the most popular low cost motion-sensing 
devices. Not found specifcations were replaced with "?". 
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2 Benchmarking 3D Datasets 

In order to evaluate new solutions and to create reference benchmarks for 
them, it is necessary to rely on common baseline datasets. If we take a 
look at the current proposal in literature, it is clear that 3D domain is not 
as forid as 2D in terms of research data production. However, the low 
price of 3D cameras has increased exponentially the interest in using depth 
information for solving vision tasks. In this section we highlight the most 
important datasets for addressing 3D vision related challenges. In particular, 
our investigation goal is to fnd a dataset which is close to the data type 
produced by our own device (see Chapter 2) and is suitable to represent the 
scenario of an accurate object reconstruction application, which is the main 
target of our study (Chapter 3 and 4). 

Most recent 3D reconstruction performance comparisons involve the fol-
lowing datasets, presented in decreasing order in terms of scene scale (or 
target size).: 

• KITTI [56], comprises either laser and RGB-D scans and contains large 
volume point clouds that can not be used in the context of rigid regis-
tration because to the presence of moving elements. Indeed it targets 
several applications related to autonomous driving, such as topology 
mapping, object detection, and pedestrian tracking and it is widely 
adopted in the research community. 

• 3DMatch [6] instead aims at providing examples of indoor scenes ac-
quired via optical handheld scanners. Such a dataset is also a standard 
in the feld of indoor reconstruction application and it is indeed the 
main benchmark dataset among most of the works we end up wanting 
to compare with. For this reason, it is one of the two datasets that are 
covered with more details below. 

• ModelNet, a subset of ShapeNet [7], is a rich object oriented dataset 
which includes a large dictionary of objects from a miscellaneous set 
of data, especially CAD models. Indeed ShapeNet is a benchmark 
dataset for several applications including object classifcation, seman-
tic segmentation, object detection, etc. but it is based primarily on 
synthetic data while we are more interested into evaluating real 3D 
scans for our study. 

• The fnal dataset, which is in theory the closest one to our working 
scenario and the second we deepen in the following paragraph, is the 
Redwood dataset [57], which ofers a collection of real object scanned 
with a low cost scanner as well as 3DMatch. 
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2.1 Indoor 3D scene reconstruction: 3DMatch dataset 

Figure 1.10: Collection of scenes in 3DMatch dataset [6]. 
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3DMatch [6] is a large collection of 3D point clouds used for indoor recon-
struction analysis, object detection and shape retrieval. Actually the dataset 
is a combination of several RGB-D datasets produced by the research group 
of Princeton. Each of these dataset is created using one of the low cost de-
vice presented above: 7Scenes dataset [58] and RGB-D Scenes v2 [59] created 
with Kinect; Sun3D dataset [60] created with Asus Xtion Pro; Analysis by 
Syntesis [61] and BundleFusion [19] created with Structure.IO. 

We discussed that the selected scanners output a sequence of noisy and 
low resolution RGB-D images. In order to weight the sensor noise, to have 
a more dense data and fnally a reliable 3D model with sufcient geometry 
information, each point cloud (blue one in Fig. 1.11) is created via volumetric 
integration [62] by merging 50 consecutive frames (4 of them are shown in 
green in Fig. 1.11). All the details and the code to recreate the training and 
testing set are available in the project repository1 . 

(a) (b) 

Figure 1.11: 3DMatch dataset, office3 scene: (a) example of single frames 
and (b) a point cloud in the scene, obtained by fusing 50 of such frames. 

# min max avg 
Scenes 64 - - -

RGB-D frames 130k - - -
Point Clouds (PC) 2601 - - -

Points per PC - 11k 640k 150k 
BBox Volume per PC - 0.35 m3 134 m3 20 m3 

Points Spacing - 6.5 mm 8.2 mm 7.10 mm 

Table 1.2: 3DMatch [6] main specifcations. BBox stands for Bounding Box. 
The oriented BBoxes are estimated using Open3d [55] as well as the average 
point inter-distances that have been used to defne the spacing. 

In practice, we have picked 3DMatch dataset because it is one the most 
referenced dataset in the research community. Specifcally, it is cross-referenced 
in most of the works we will end up evaluating in the following chapters. In 

1https://3dmatch.cs.princeton.edu/ 

https://3dmatch.cs.princeton.edu/
https://Structure.IO
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Tab. 1.2 we report the main specifcations of the dataset. Such specifcations 
have been estimated using Open3d [55], an open source library to deal with 
standard 3D data structures for multiple purposes. For each point cloud 
in 3DMatch we frst counted the original number of points (no down-sample 
was performed), then we evaluated the bounding box that contains the whole 
data to estimate the volume of the scan. Finally, for each point we computed 
the nearest neighbor distance, we sorted all of them and we fltered out the 
5% of the closest and furthest values. In particular, it is interesting to notice 
how on average each point cloud requires 150k points to represent a model 
with a volume as large as 20m3 . The 20 m3 bounding box is coherent with 
the fact that each PC is obtained after fusing 50 consecutive frames, so it is 
reasonable that it scan a space as 3.5 × 2 × 3m. Overall the average spatial 
resolution is around 7.5 mm. This is an acceptable value for such a large 
scale reconstruction, even considering the necessity of preserving meaningful 
geometry to address problems such as shape retrieval or object detection, 
which is accounted in the original work of 3DMatch. In Fig 1.12 a detail of 
the point cloud resolution is given for scene office3 [19]. Although overall 
the common objects are recognizable in the global context, the quality of the 
reconstruction is low and not adequate to represent the geometry properly 
when they are considered individually. 

(a) (b) 

Figure 1.12: Example of the point spacing in a point cloud of 3DMatch [6]: 
(a) full scene office3 (b) detail of the mouse and keyboard on the desk. 
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2.2 3D Object reconstruction: Redwood dataset 

Figure 1.13: Example of object scenes collected in the Redwood dataset [57]. 

Although 3DMatch is a very useful dataset, it addresses a data type which is 
certainly diferent from what we target for our scanner. Instead of working 
with large scale indoor scenes, we are more interested into fnding a dataset 
that targets object reconstruction. Choi et al. defnes their Redwood dataset 
[57] as a "large collection of object scans". The dataset is large indeed: the 
authors recruited 70 operators to acquire 10933 scans, by using low cost 
PrimeSense Carmine optical scanner (see Tab. 1.1 for specifcations). The 
scans were then categorized into 320 categories. Most of the scenes represent 
cars, furniture, sculptures and toys. Along with the RGB-D sequences, the 
authors ofer also the 3D meshes representing the reconstructed 3D models, 
obtained via combination of KinectFusion [20] and dense visual slam [63] so-
lutions. Actually, only a small fraction of the entire dataset is reconstructed. 
Indeed, most of the scenes are hard to deal with due to the lack of rigidity 
and the poor quality of the scan itself. Moreover, all of the meshes have 
been reconstructed with low space resolution and they still difer quite a lot 
from the kind of reconstruction quality we aim to perform with our scanner. 
In Fig. 1.14 we report some examples of the input video along with the 
fnal mesh for some of the most common scenes in the dataset. It is clear 
how also the camera feld of view is the same of the ones used for building 
3DMatch scene. Therefore, this type of dataset can be seen as particular 
case of 3DMatch where instead of the full indoor space, the focus is on a 
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smaller subset of the room but still with the same hardware and accuracy 
reconstruction level. In Chapter 2 we will see how the case study device 
difers from these scanners and how a novel dataset can be built by means 
of it. 

However, we are still interested into leveraging some of the scans proposed 
by Redwood dataset. We dug into the dataset to fnd some useful scene so 
that we can exploit them along with our own data for future tests on the 
reconstruction pipeline that we will discuss later in the last Chapter 4. More 
comments on this will be given in that section. 

(a) motorcycle (b) plant 

(c) chair (d) trash container 

(e) table (f) bench 

Figure 1.14: Examples of input RGB frames - reconstructed mesh pairs for 
diferent categories in the Redwood dataset [57]. 

3D Reconstruction Methods 

Many contributions have been given to this topic, which has been exten-
sively covered over the last 30 years exploiting several methods, renovating 
technology and specifc points of view to investigate the general problem. 
In essence, we want to build a 3D model by aligning a set of partial views. 
Our focus is on pairwise rigid alignment techniques (see Sec. 3.1 which can 
then support real-time multi-view reconstruction, starting from a collection 
of frames which resembles a video sequence in 3D domain, created via hand-
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held 3D scanning. Such an approach represents only a small sub-part of 
a wider family of solutions aimed to address multi-view 3D reconstruction. 
Real-time applications favor a fast and redundant kind of acquisition at the 
expense of a low quality single view. Indeed, choosing for a higher qual-
ity of the single view afects the standard workfow during acquisition but 
the multi-view solutions can leverage such a higher quality. We refer the 
reader to some of our research group previous works on the latter subject 
[64, 65, 66], as well to other meaningful research papers covering the topic 
of multi-view and global registration. Moreover, we do not cover non-rigid 
reconstruction solutions either, because they are out of the scope of our re-
search. Nevertheless, very interesting challenges and brilliant results can be 
addressed also in those situations [1, 67]. 

3.1 Rigid 3D registration techniques and workfow 

Generally speaking, estimating a pairwise rigid 3D registration means fnding 
the correspondences between the points in one set with respect to another 
and then to compute the rigid transformation T ∈ R4×4 that aligns the 
two point sets [68]. When no information is given beforehand regarding 
the relationships between the two sets, it is necessary to extract a set of 
features from both and then fnd the best matching point correspondences 
by exploiting the distances between the descriptors associated to the feature 
points. The type of transformation estimated by means of this investigation 
is usually called coarse because it relies on a sparse set of feature points only. 
After the coarse alignment is then possible to fnd the refned transformation 
based on a denser matching of the closest points in the two sets. In the 
following we review the workfow and the most popular methods to achieve 
a pairwise (i.e. between two 3D views) rigid registration by keeping in mind 
that the computational speed is almost as critical as the robustness and the 
accuracy when we want to fulfll the real-time requirement to run online 
reconstruction. 

3.1.1 Keypoint detection 

Feature-based methods rely on 3D keypoints to be extracted from a 3D 
surface to allow for efective description and matching and to be robust to 
the noise and point-of-view variation for achieving 3D reconstruction. For 
this reason, several 3D keypoints detectors have been proposed and discussed 
in surveys [69, 70]. 

The 3D detectors are generally divided in two categories: fxed-scale and 
scale-invariant. 

Fixed-scale detectors They fnd distinctive keypoints at a constant pre-
set scale by evaluating the distinctiveness of each point either in a point-
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wise fashion or in a region-wise one. The points that maximize a quality 
function in a scale-dependent spatial neighborhood are then promoted as 
keypoints. The Local Surface Patches (LSP) [71] is an example of fxed scale 
point-wise detectors which uses the Shape Index [72] as the quality mea-
surement for evaluation to represent the maximum or minimum principal 
curvature. A popular region-wise method is Intrinsic Shape Signatures (ISS) 
[73] which frst computes the eigenvalue decomposition of the scatter matrix 
of the points in the support region, then uses the magnitude of the smallest 
eigenvalue and the ratio of two successive eigenvalues as distinctive quality 
measurement. 

Scale-invariant detectors A quality measurement estimation at a fxed-
scale is repeated for multiple scales for this type of detectors. The fnal 
measurement is then maximized both spatially at specifc scale and across 
scales. Many of these methods works via 2D parametric representation of the 
lattice structure of the 3D mesh. For instance [74, 75] create a scale-space 
representation of the normal map of the mesh, then compute the eigenval-
ues of the Gram matrix of the support to estimate the cornerness of the 
point. Instead of cornerness, in [76] the quality measurement is represented 
by the mean and Gaussian curvatures which is then connected across similar 
regions. On the contrary MeshDoG [77] builds scale-spaces directly on the 
mesh by applying a Diference-of-Gaussians (DoG) flter to the mean curva-
ture, the Gaussian curvature or the photometric appearance of a vertex in a 
region. Bonarrigo et al. [64] propose a 3D extension of SIFT [78]. Starting 
from the work proposed by Castellani et al. [79] and a revised proposal made 
by Lee et al. [80], the method applies multiple Gaussian kernels G(r) where 
r ∈ [1,M ] is the scale used to produce one of the M fltered versions of the 
input range image. Then, the diference between consecutive flters G(r) is 
evaluated to create M − 1 saliency maps that are then combined to detect 
interesting points at the original scale. As stated in [64], in order to improve 
the performances on range images and point clouds is necessary recompute 
the normals for all the points at each scale. Finally, 3D SURF [81] works on 
a voxelized version of the mesh to build the scale-spaces to extract the qual-
ity measurement, which is the Hessian of Gaussian second-order derivatives 
computed at each grid bin and each octave. 

All these methods are useful to study the saliency of the points in a 3D 
model and to detect the most distinctive ones. However, for the sake of 
speed and lightweight computation, sometimes this step is omitted and a 
more rigid approach, like uniform sampling [82, 83], is adopted. 

3.1.2 Feature description 

Once located, feature points need to be qualifed by some descriptors. In 
literature we can distinguish between two families of methods, namely local 
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and global descriptors. 
3D global descriptors consider the entire geometry of an object, which is 

possibly segmented from a larger scene. Only one signature is then assigned 
to a cluster of points. In general these descriptors are employed in object 
recognition, model retrieval, pose estimation and shape analysis. Therefore, 
they are out of the scope of this review, which is more focused on the problem 
of local rigid registration. For the sake of completeness, we refer the reader 
to surveys that better cover this topic [84, 85, 86]. 

(a) (b) (c) 

Figure 1.15: Local reference frame (LRF) estimation. (a) Spherical support 
is extracted from anchor point p (b) then the LRF is estimated and (c) the 
support is transformed to its canonical representation. 

On the other side, local descriptors assign a distinct signature to each 
keypoint in the cluster under analysis [87, 88, 13]. Usually 3D geometry 
domain presents more challenges than its widely studied 2D color counter-
part: indeed, additional challenges derive from data occlusion, clutter areas 
and not homogeneous point distribution [64]. Moreover, since they are lo-
cal methods operating in the 3D domain, it is critical to provide robustness 
against afne transformations as rotation and scaling. On this regard, the 
developed approaches can either be based on intrinsically invariant features 
(similarly to what SIFT [78] does in 2D [64]) or they can exploit on the defni-
tion of a local reference frame (LRF) to transform each point into a canonical 
representation before evaluating its properties [89, 90] (Fig. 1.15). Moreover, 
highly expressive features like 3D SIFT [64], despite remaining only partially 
invariant to geometric transforms (they can be made equivalent up to a cir-
cular shift) can be pre-aligned (seeking their principal orientation) to obtain 
a a streamlined distance computation, similarly to what happens for LRF 
features [91]. 

Spatial relationship-based descriptors The support region around the 
anchor is then partitioned into several spatial bins, each of them containing a 
sub-part of the neighborhood points set. A simple measure as the amount of 



29 3 3D Reconstruction Methods 

(a) (b) (c) (d) 

(e) (f) 

(g) (h) (i) (j) 

Figure 1.16: Selection of 3D feature descriptors: (a) 3DSC [92], (b) USC 
[93], (c) Spin Image [94], (d) TriSI [95], (e) RoPS [96], (f) PFH [97], (g) 
FPFH [98], (h) SHOT [90], (i) 3D SIFT [64], (j) LSP [71]. 

points can be used to label each bin which is fnally stored into an histogram. 
Indeed, most of the common methods for 3D feature description leverage on 
histogram structure to represent their signature. The main diferences are 
related to the approach used to defne the measured geometric properties or 
the LRF and the partition of the support region. Examples of this kind are: 

• 3D Shape Context (3DSC) [92], which creates a 3D spherical grid 
around the anchor point p, aligned with respect to its normal n, then 
divide the grid into logarithmically spaced bins along radial dimension 
as shown in Fig. 1.16(a) and counts the weighted amount of points 
falling in each bin. A variant of this method is the Unique Shape 
Context (USC) [93] (Fig. 1.16(b)). 

• Spin-Image (SI) [94] constructs the LRF similarly to 3DSC by using 
the normal n of the anchor point p as its main direction. Instead of 
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a spherical grid, a plane containing the point is defned perpendicular 
to this normal. Then the two legs of the triangle that is given by the 
anchor, by a sample point in the neighborhood and by its projection 
onto the plane (Fig. Fig. 1.16(c)) are used as 2D parameters stored 
into an array. The descriptor is generated by accumulating the points 
in the support region into each bin of the 2D array. Variants of SI 
are Tri-Spin-Image (TriSI) [95, 99] (Fig. 1.16(d)) and Multi-resolution 
Spin-Image (MrSI) [100]. 

• Rotational Projection Statistics (RoPS) [96, 101] is generated by con-
catenating the statistics of distribution matrices created after multiple 
rotations around the three axis and projections onto the three coordi-
nates planes (one distribution for each plane), applied to all the points 
into the LRF (Fig. 1.16(e)). 

Geometric relationships-based descriptors This kind of descriptors 
focuses instead on attributes like point normals distribution and curvatures. 
As before, the support region is partitioned into bins that are then used 
to compute a histogram for representing the fnal descriptor. Among these 
methods there are: 

• Point Feature Histogram (PFH) [97] builds a multi-dimensional his-
togram investigating point pair features with pairs belonging to a Dar-
boux frame (Fig. 1.16(f)). Each pair gives exactly 4 features (based 
on points distance and normals relationships) and fnal PFH is gen-
erated by accumulating points in the 4-dimensional histogram bins. 
Therefore the dimension of the feature is d4 where d is the number of 
bins for each dimension. In order to speed up the description process, 
Fast Point Feature Histogram (FPFH) [98] calculates the relationships 
within a restricted neighborhood and stores them into three separated 
histograms that are then concatenated (Fig. 1.16(g)). This is a Simpli-
fed version of the original PFH (SPFH). FPFH also removes the frst 
feature (i.e. the distance between points) to improve the robustness to 
non homogeneous point distribution situations. The fnal descriptor is 
then generated as the weighted sum of the SPFHs of the points in the 
support region and the SPFH of the anchor point. Its dimension is 3d 
where d is again the dimension of bins along each dimension. 

• Signature of Histogram of Orientations (SHOT) [90] again starts from 
constructing an LRF, in this case by the eigenvalue decomposition of 
the input point p. It then segments the support region into several 
volumes along the 3 axes and generates a local histogram for each 
of them (Fig. 1.16(h)). The information stored in each bin is angle 
between the normal of p and the normals of the neighbors. This method 
is particularly robust to clutter. 
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• Extensions of 3D SIFT are proposed for descriptors as well. Bonarrigo 
et al. [64] propose to associate to each feature point extracted at scale 
r a descriptor which encodes information extrapolated from both the 
normal vectors and saliency data of the neighbor points confned in 
a polar grid which spans the tangent plane of the point and is com-
posed of angular and radial sectors (Fig. 1.16(i)). Other extension are 
proposed in [102] with a 2.5D version of SIFT that works with depth 
images and in SI-SIFT [103] which uses SIFT to extract descriptors 
from the shape index values. 

• Other methods are the aforementioned Local Surface Patch (LSP) [71, 
104] (Fig. 1.16(j)), which evaluates the shape index [72] of each point 
and it is robust to occlusion; THRIFT [105, 106], which stores similar 
content to SHOT but in a 1D histogram, it usually performs worse 
than others but it is also robust to clutter; Persistent Point Feature 
Histogram [107], another variant of PFH. Finally, in order to address 
non-rigid deformations, GFrames [108] computes the intrinsic gradient 
of a scalar feld within the LRF, while in [109] the wavelets are used 
for the localized space-frequency analysis. 

An extensive comparison is made in [87] for all the methods presented 
in Fig. 1.16 except 3D SIFT. The results of such an evaluation show that 
the family of descriptors based on PFH have the best performances, both 
considering descriptiveness and robustness to keypoint localization. In par-
ticular, FPFH seems to be well suited for 3D modeling and it is by far 
the most compact descriptor. This means that the computational overhead 
which is required for matching is marginal with respect to the competitors. 
Moreover, it is the fastest descriptor to compute, up to 10k points while it 
tends to have scalability problems with larger sets. 3D SIFT, instead, is 
tested by Pingi et al.[110] and Petrelli et al. [111]. Both the works evalu-
ate the computational cost, the robustness and determined the suitability of 
the method for the alignment of high-quality camera range images coming 
from metrologic static scanners. What emerges from these comparisons is 
that there is no absolute winner among the above kind of features for 3D 
data, and that the choice should be driven by the data characteristics and 
the application requirements. Overall, FPFH seems to be a good candidate 
for working in a object reconstruction framework with real-time constraints, 
due to the lighter computational cost and the higher compactness. We will 
cover more of this in the following chapters. 

3.1.3 Feature matching 

The goal of feature matching is to create a list of correspondences out of 
two or multiple sets of features. In practice, the euclidean distance between 
descriptors is the most common metric used for estimating the best match. 
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However, other metrics can be used, according to the type of feature sig-
nature, such as the Hamming distance. The problem can be generalized 
as: 

i x = arg min(∥xi − xj ∥ℓ)j 
xj ∈X1 

where X1 X2 are two sets of features and xj ∈ X1 and xi ∈ X2, so for each 
feature in the frst set we need to fnd the one closest to each feature in the 
second set. This is known as the Nearest-Neighbor (NN) Matching Problem 
on a high-dimensional data. In order to fnd the NN, a frst trivial solution is 
to perform a linear search. However this is O(n) problem which can be very 
expensive in terms of computational complexity when n is big. More efcient 
solutions are based on tree structures [112, 113] which are constructed by 
recursive binary splits that reduce the complexity to O(log(n)) on average. 

iAfter we found the closest feature xj ∈ X1 for each xi ∈ X2, we still 
need to reject wrong matches. The frst assumption we can made is that the 
matching should be unique. Therefore we can perform a mutual search and 
put in correspondence only those features that best match with each other. 
Another test we can perform is to consider ratios of relative distances (Fig. 
1.17). In this case the rejection rule is to discard a match if the ratio of 

i ithe distances between closest match x and second closest match x for xi isj k 
greater than a chosen threshold. In a such a way, we try to remove ambiguous 
matches that are prone to produce false alignments. Overall, these tests 
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(a) (b) 

iFigure 1.17: Ratio test for feature matching. (a) Clear closest match for xj . 
(b) Matches are ambiguous. The correspondence is rejected. 

does not guarantee the complete outliers removal. In order to get rid of 
remaining mismatches, a common practice is to use geometry constraints. 
In the following paragraph we see which solutions can be adopted to tackle 
the task. 

3.1.4 Coarse transformation matrix estimation 

In theory, if we assume that the outcome of the feature matching has no 
false positives, then the aligning matrix should be found straightforward. 
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However, in practice, the correspondence set is full of outliers that can afect 
the estimation. Robust techniques are then necessary to address the issue. 
This is analogous to a model ftting problem and the most popular technique 
in this feld is RANdom SAmple Consenus algorithm (RANSAC) [114]. In 
practice, a small sub-set of the input data is selected randomly to estimate a 
coarse transformation matrix via Horn’s method [115]. A threshold is given 
as input to the algorithm to defne the minimum distance to consider two 
points as aligned. Once the putative matrix is applied to align the source 
set to the target, the number of overlapping points is evaluated. Then the 
process is repeated in iterative fashion starting from a diferent sub-set. After 
kmax times, the algorithm stops and the best transformation is chosen as the 
matrix that obtained the higher value of overlaps. 

A visual example of a model ftting problem addressed with RANSAC is 
shown in Fig. 1.18. The frst two triples of points have a bad ft, even 
if some points are actually inliers. The last triple instead produces the 
best ft. Critical parameters to chose for this method are the number of 
maximum iterations, the point sampling strategy and the inlier threshold, 
while a degeneracy check [116] is still usually required. 

Through the years, many variants of RANSAC have been proposed in 
order to reduce the computational complexity [117, 118, 119, 120] or to 
improve the efectiveness [121]. Alternatively, other iterative methods inves-
tigate the use of branch-and-bound [122] or semi-defnite programming [123]. 
Nevertheless, in practice is still difcult to ensure one of the above methods 
to be fully compliant to real-time constraints therefore they are commonly 
employed in ofine applications only. 

3.1.5 Transformation matrix refnement 

Once a coarse registration is found or whether two sets of points are supposed 
to be close to each other (e.g. because they come from adjacent frames 
of a high frame-rate scanning as it happens with handheld scanners), it is 
possible to refne the alignment by considering the whole set instead of sparse 
correspondences only. Iterative Closest Point (ICP) [124, 125] is the de facto 
standard technique in this context. The name is self-explanatory: ICP aims 
to minimize an objective distance between the two sets by estimating a new 
correspondence set at each iteration. The most trivial objective is the point-
to-point distance, however it has been demonstrated that a point-to-plane 
distance is preferable because it is faster to converge [125]. In Fig. 1.19 we 
report a simple example of how ICP can converge to a valid alignment when 
two sets are well posed initially. 

Through the years, many variants of ICP have been proposed [126] and 
several papers addressed the convergence problem [125, 127] as well as its 
robustness to local minima [122, 128]. Fast Global Registration (FGR) [129] 
is another method which similarly to ICP uses a second-order optimization. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 1.18: Example of model (a circle) ftting using RANSAC [114]. (a, 
c) Triplets of putative inliers are selected in the distribution. (b, d) The 
corresponding square is ftted using these triplets but bad results are pro-
duced. (e) The best triplet is selected and (f) the resulting best ft is shown 
in green. Image is courtesy of Luca Magri from the course of Geometric 
Computer Vision (https://iecs.unitn.it/node/873). 

It is slower than ICP in good conditions but it is more robust to noise and 
local minima related problems. Finally, a less used but valid alternative is 
an iterative procedure to minimize correlation scores, proposed by Makadia 
et al [130]. 

3.2 Real-time 3D reconstruction pipelines 

3D reconstruction [1] was for a long time just an ofine process because of 
the computational complexity of the tasks asked to be solved. However, 
thanks to the increasing power of processors and by means of the computa-
tional gap gained with the advent of parallel programming on graphic cards, 
in the frst decade of 2000s research about live 3D reconstruction systems 
consistently started. In Sec. 1.3 we presented the devices that lead the rev-
olution of the 3D scanning on afordable systems. In particular, Kinect was 
the frst solution to become mainstream. By leveraging on this consumer 
technology, academic research started focusing on the problem of online 3D 

https://iecs.unitn.it/node/873
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(a) (b) (c) 

(d) (e) (f) 

Figure 1.19: Iterative Closest Point (point-to-point) algorithm. (a) Initial 
situation. Set of points P must be aligned to Q. (b) For each point in P 
a corresponding point in Q is found. (c) First alignment matrix based on 
previous set of correspondences. P is transformed to P1. (d) Repeat search 
of closest point between P1 and Q. (e) New transformation applied to P1, 
which becomes P2. (f) Final result after ICP converged to minimal. 

reconstruction. The power of the solution is that it allows the user to have 
a constant feedback of the growing 3D model while he scans. In order to 
achieve it, the systems needs to simultaneously update the model and local-
ize the sensing device with respect to it. This is a well established problem 
which goes under the umbrella of Simultaneous Localization and Mapping 
(SLAM) applications [131, 132, 133, 134, 135, 136, 137]. Such a topic cov-
ers a large number of sub-felds, from autonomous driving, unmanned aerial 
vehicles, robotics, etc. 

We start our review by deepening the frst outstanding solution proposed 
based on Kinect data, namely KinectFusion (KF) [20, 53, 54] and then we 
move on with BundleFusion (BF) [19], which is current state-of-the-art for 
robust real-time reconstruction method when a handheld optical scanners is 
in play. We review the core methods and we seek to understand the strength 
and the weaknesses of both. 

3.2.1 KinectFusion 

KinectFusion (KF) [20, 53, 54] (Fig. 1.20) is addressed as one of the mile-
stones for real-time 3D reconstruction. The key ideas in this seminal work 
are: 1) to leverage on a volumetric integration method [62] to average the 
contribution of all the incoming frames that are acquired at a high rate with 
stereo camera sensor; 2) to apply a frame-to-model registration to boost 
the robustness of the method and to reduce the drift problem that afects 
sequential registration-based frameworks. A scheme for the entire pipeline 
process is presented in Fig. 1.21. 
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Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison
is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).

ABSTRACT

We present a system for accurate real-time mapping of complex and
arbitrary indoor scenes in variable lighting conditions, using only a
moving low-cost depth camera and commodity graphics hardware.
We fuse all of the depth data streamed from a Kinect sensor into
a single global implicit surface model of the observed scene in
real-time. The current sensor pose is simultaneously obtained by
tracking the live depth frame relative to the global model using a
coarse-to-fine iterative closest point (ICP) algorithm, which uses
all of the observed depth data available. We demonstrate the advan-
tages of tracking against the growing full surface model compared
with frame-to-frame tracking, obtaining tracking and mapping re-
sults in constant time within room sized scenes with limited drift
and high accuracy. We also show both qualitative and quantitative
results relating to various aspects of our tracking and mapping sys-
tem. Modelling of natural scenes, in real-time with only commod-
ity sensor and GPU hardware, promises an exciting step forward
in augmented reality (AR), in particular, it allows dense surfaces to
be reconstructed in real-time, with a level of detail and robustness
beyond any solution yet presented using passive computer vision.

Keywords: Real-Time, Dense Reconstruction, Tracking, GPU,
SLAM, Depth Cameras, Volumetric Representation, AR

Index Terms: I.3.3 [Computer Graphics] Picture/Image Genera-
tion - Digitizing and Scanning; I.4.8 [Image Processing and Com-
puter Vision] Scene Analysis - Tracking, Surface Fitting; H.5.1
[Information Interfaces and Presentation]: Multimedia Information
Systems - Artificial, augmented, and virtual realities
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1 INTRODUCTION

Real-time infrastructure-free tracking of a handheld camera whilst
simultaneously mapping the physical scene in high-detail promises
new possibilities for augmented and mixed reality applications.

In computer vision, research on structure from motion (SFM)
and multi-view stereo (MVS) has produced many compelling re-
sults, in particular accurate camera tracking and sparse reconstruc-
tions (e.g. [10]), and increasingly reconstruction of dense surfaces
(e.g. [24]). However, much of this work was not motivated by real-
time applications.

Research on simultaneous localisation and mapping (SLAM) has
focused more on real-time markerless tracking and live scene re-
construction based on the input of a single commodity sensor—a
monocular RGB camera. Such ‘monocular SLAM’ systems such as
MonoSLAM [8] and the more accurate Parallel Tracking and Map-
ping (PTAM) system [17] allow researchers to investigate flexible
infrastructure- and marker-free AR applications. But while these
systems perform real-time mapping, they were optimised for ef-
ficient camera tracking, with the sparse point cloud models they
produce enabling only rudimentary scene reconstruction.

In the past year, systems have begun to emerge that combine
PTAM’s handheld camera tracking capability with dense surface
MVS-style reconstruction modules, enabling more sophisticated
occlusion prediction and surface interaction [19, 26]. Most recently
in this line of research, iterative image alignment against dense re-
constructions has also been used to replace point features for cam-
era tracking [20]. While this work is very promising for AR, dense
scene reconstruction in real-time remains a challenge for passive
monocular systems which assume the availability of the right type
of camera motion and suitable scene illumination.

But while algorithms for estimating camera pose and extract-
ing geometry from images have been evolving at pace, so have
the camera technologies themselves. New depth cameras based ei-
ther on time-of-flight (ToF) or structured light sensing offer dense
measurements of depth in an integrated device. With the arrival
of Microsoft’s Kinect, such sensing has suddenly reached wide
consumer-level accessibility. The opportunities for SLAM and AR

Figure 1.20: Example output from KinectFusion system. An incomplete, 
noisy data is acquired live with a Kinect (frst image). The normal maps 
(color images) and the Phong-shaded renderings [138] (gray scale images) 
are obtained from the dense reconstruction system. Image taken from [20]. 

Figure 1.21: 3D reconstruction pipeline for KinectFusion [20]. The input 
is a pair of images acquired in stereo confguration. A set of points and 
normals is extracted from the RGB-D image which is created via stereo 
triangulation. The working frame is then aligned with the growing model 
using ICP [125]. Via TSDF integration [62] the aligned data is integrated 
into the volume representing the reconstructed scene, which is then updated. 
In order to defne a model to align with and to provide a live feedback of the 
reconstruction, the volume is periodically ray cast. 

A raw depth map is estimated from the stereo triangulation of two cam-
eras, then a Measurement stage is in charge of estimating the vertices and 
the normals of the surface extracted from the input depth map, which de-
fnes the current frame F. The output model is obtained in the Update 
Reconstruction step by means of an implicit representation of the surface, 
via volumetric integration of the frames (as suggested by Curless and Levoy 
[62]). Then, in order to fuse each frame properly with respect to the volume, 
the camera coordinate system needs to be referred to the world one. In other 
words, it is necessary to keep track of the moving camera in the environment. 
To do that, a frst trivial solution would be to align consecutive frames. How-
ever, such a solution sufers from the accumulation of the errors inherent in 
each pairwise registration, especially when source raw data is noisy and quite 
sparse. Therefore, KF suggests to use a frame-to-model approach instead. 
In the Pose Estimation step ICP is run to align the incoming frame to a 
reference one M̂ deriving from the ray casting of the growing volume. M̂ is 
also known as key frame or anchor frame. In order to stay as close as possible 
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to the current location of the camera, such a key-frame is then updated on 
a regular basis in Surface Projection. The authors of KF opted for up-
dating the model every K = 10 frame according to an empirical evaluation. 
Finally, ray casting is also exploited to give a constant feedback to the user 
about the geometry of the scene under construction and the scanner position 
relative to it. 

KinectFusion issues The method is afected by three main problems. 
The frst is about memory management, which is inherently afected by 
the voxel grid data structure. Such a structure is inefcient since each voxel 
can either represent a surface point, or an empty space. In such a confgura-
tion, the complexity of the system that is required to access and to update 
a voxel value is linearly dependent on the number of voxels. Even when 
a smarter structure like octree [113] is in place, the complexity is reduced 
down to O(log(n)) only. In their work [139], Niessner et al. propose to use 
voxel hashing to hash occupied voxels only, which is capable of reducing the 
complexity to O(1), and it makes the pipeline robust to scaling with larger 
volumes. Indeed, all the methods successive to KF propose a certain hashing 
algorithm to deal with the problem of memory management. 

The second problem is the camera tracking loss. As we mentioned 
in Sec. 3.1.5, ICP requires the two set of points to be close to converge 
to optimal solution. If 1) there is no sufcient overlapping surface or 2) the 
geometry is ambiguous (e.g. planar regions), then the algorithm will fail and 
so the camera will not be tracked correctly. In the original implementation of 
KF, no solution is given when the tracking is lost. Indeed, in these situations 
usually the user is simply warned of the failure and asked to move back, 
in order to get closer to the latest known position and try to recover the 
track. In worst cases, the user fails to re-align properly and must stop 
the acquisition. To address such problem, Glocker et al. propose an image-
based camera relocalization solution [140] in which the low resolution images 
produced by the Kinect are encoded using randomized ferns [141] and binary 
feature tests. First a dissimilarity check is performed on each frame to choose 
whether a frame should be added to a key frame table or not. Then, whenever 
the track of a new frame fails, a block-wise hamming distance evaluation 
occurs to fnd the best alignment in the table and it retrieves the relative 
coarse camera pose. If the estimation is sufciently close to the optimal, 
then the ICP should converge again to a valid results. Overall, the solution 
is promising and it produces good results whenever the encoding can rely on 
a meaningful 2D texture. However it still lacks of a robust solution for those 
cases with poor texture information. 

The third problem is about false positive alignments. Indeed, ICP 
can converge to local minima in some challenging situations. The result of 
this issue is that the data is integrated into the volume with a wrong pose 
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and the fnal model is compromised. Although some specifc heuristics can 
be developed to make the system self aware of the wrong evaluation, they 
are usually hard to generalize. A more robust solution should then be put 
in place to compensate for these errors, and it should be necessary to work 
on-the-fy during model creation. 

3.2.2 BundleFusion 

Figure 1.22: Example output from BundleFusion system [19]. Reconstruc-
tion of copyroom. Normal map and RGB texture in color images with details 
of the model, and Phong-shaded rendering [138] in gray scale. 

The work presented by Dai et al., called BundleFusion (BF) [19], ad-
dresses all the problems we discussed above with KinectFusion. Since its 
focus is primarily on 3D scanning of large-scale scene, a voxel hashing tech-
nique [139] is adopted for managing the volume. Then there are three main 
novelties in the work: 1) use of a hierarchical data structure, 2) defnition 
a coarse-to-fne registration method based on sparse and dense informa-
tion, 3) development of an optimization pipeline to adjust the initial guess 
of a frame pose and to refne the model on-the-fy. A scheme of the working 
pipeline is provided in Fig 1.23. 

The hierarchical structure organizes the sequence of frames into buckets, 
or chunks. At local level, each chunk contains a fxed amount of frames 
(N = 10) where the frst of the list is the anchor. Moreover, the full sequence 
can be seen at global level as a cluster of chunks. Then, in order to be 
registered, a new frame goes through a two-steps registration stage. First, a 
set of 2D features based on SIFT [78]) is extracted from the image. A fast 
research against the table containing all the previously extracted key frames 
features is performed in order to fnd the best putative match. All the process 
is powered by a GPU card and multiple researches are performed in parallel, 
allowing for real-time performances. The main limitation is about the size 
of the table, which is kept lightweight by heavily sub-sampling each input 
image and it works with a maximum of 150 features per frame. Moreover, 
a dense matching evaluation is additionally performed by assessing dense 
photometric and geometric constraints. Overall, the alignment problem is 
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addressed as a variational non-linear least squares minimization problem. 
The objective of the minimization can be seen as a weighted composition of 
sparse and dense contributions in the unknown parameters χ which is the 
collection of unknown camera poses: 

Ealign(χ) = wsparseEsparse(χ) + wdenseEdense(χ) 

Such a minimization problem is then exploited using a parallel Gauss-Newton 
solver (GN), which is fast to converge and GPU compatible. Finally, the GN 
method can be used independently to solve a local alignment problem or a 
global one. The local alignment is an intra-chunk alignment: χ = {fi}, ∀fi ∈ 
C where C is a chunk and {fi} is the set of frames poses in it. On the 
contrary, the global alignment works at chunk level, i.e. it is an inter-chunk 
alignment: χ = {ki}, ∀ki ∈ S where S is the full sequence and {ki} is the set 
of key frames representing their chunks. 

Figure 1.23: 3D reconstruction pipeline for BundleFusion [19]. A pair of im-
ages in stereo confguration is used to retrieve the RGB-D data frame of the 
current view. A frst sparse correspondence search is made for the working 
frame with respect to the key frames already acquired. The pose is frst op-
timized locally using a Gauss-Newton solver to minimize the sparse matches 
distances and exploiting dense photometric and geometric consistencies. The 
second optimization is global, and evaluates only the chunks containing a 
bunch of frame each. A data cache is used to store the key frames for a fast 
global correspondence search. The model is grown by volumetric integration 
and eventually refned via re-integration after pose optimization. 

Since the frames are constantly re-evaluated in a multi-view alignment 
confguration, the original poses can be optimized during the scan. The fnal 
contribution of BF is to propose to revert the volumetric integration [62], 
which is actually possible because of the symmetry property of the TSDF. 
Therefore a re-integration stage is set: when the optimized pose popt of a 
frame difers from its current pose pcurr by a signifcant margin, the frame 
is removed and re-integrated back with popt. 

BundleFusion issues The method is signifcantly more robust than Kinect-
Fusion but it is also inherently more complex and it requires a lot of computa-
tional power to run. Specifcally in the original paper the system is powered 
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by two high-end graphic cards simultaneously. Moreover, the sparse registra-
tion method relies on 2D matches using SIFT descriptor. Such a descriptor 
is very solid and invariant to scale. However, using a 2D descriptor can 
be tricky in cases where the framed scene is homogeneous and the surface 
has a repetitive or featureless pattern. This is not the case for the typi-
cal type of input data in BundleFusion, where a large feld of view camera 
acquires scenes with several distinctive regions in it. For instance, in the 
reconstruction process of a room a single frame can contain partial view of 
the foor, a chair, a table, objects on the table, etc. On the contrary, it can 
become an issue when the target is a partial view of a single object, so that 
the frame represents a partially smooth surface with poor or no additional 
texture information. In this case, the frst step of the registration pipeline 
could be deceived several times, creating a bad model in the end or failing 
the reconstruction at all. 

4 Conclusion and Motivations 

Currently, a large selection of 3D scanners is available on the market, sorted 
by diferent geometric and metric characteristics, as well as price ranges, so 
that we can address a multitude of tasks in various application contexts. 
So far, Computer Vision and Computer Graphics communities have focused 
their efort on several problems in 3D domain by leveraging on afordable 
devices to produce a considerable amount of work and favoring a technolog-
ical progress in diferent areas. For instance, regarding 3D reconstruction 
and 3D registration, the most common choice is to rely on low cost handheld 
passive stereo systems which in general provide low resolution models. These 
devices were originally introduced as appealing solutions for gaming and ges-
ture motion tracking and they are suitable for non accurate reconstruction 
in indoor and outdoor environments. However, other applications, such as 
reverse engineering, industry quality control, cultural heritage and single ob-
ject modeling require a higher level of accuracy which is usually achieved by 
means of photogrammetric systems. Nevertheless, nowadays the continuous 
technological progress ofers the possibility to investigate higher-end hand-
held solutions to tackle the task of 3D reconstruction seeking for quality 
results closer to photogrammetric counterpart, but ofering also the advan-
tages of a real-time operating pipeline. Although the trend is promising for 
this kind of devices, which indeed are taking their spot in the consumer mar-
ket, the academic research still lacks of a proper deepening and a reference 
dataset to assess the algorithms of interest. 

In this chapter we saw how the state-of-the-art proposes a rich set of so-
lutions to deal with 3D reconstruction. In particular, feature-based registra-
tion systems ofer a robust approach to deal with some of the most common 
issues afecting classical scanning workfow, namely loss of the track, camera 
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relocation and bad alignments detection and correction. Even if the research 
comprises many valid examples, we can not consider it full-stacked. Indeed, 
most of the choices for feature design and pipeline development answer to 
specifc problems and requirements and explore several trade-ofs to achieve 
their goal (as e.g. in [111]). 

Moreover, 3D domain gained interest in deep learning research commu-
nity recently. Some modern data-driven solutions have been proposed to 
address specifc tasks of the reconstruction chain, such as the feature extrac-
tion [14, 15] and robust correspondence matching to regress 3D registration 
matrix for pairwise [16, 17, 142] and multiple-view alignment [18]. Such a 
novel branch of study is fascinating and promising and it seeks to revise the 
way we deal with classical problems related to 3D reconstruction. In addi-
tion, it opens to new exciting challenges specifcally related to the case of 
real-time robust reconstruction, exploiting high quality data derived from an 
handheld optical scanner. 

In order to better understand the context, in Chapter 2 we review the 
application scenario and we introduce all the technical details defning the 
instrument under study. Finally, we make up for the lack of reference data 
for further evaluations by introducing a novel dataset we created ad hoc with 
the aforementioned device. 

Then, in Chapter 3 we review the world of 3D deep learning by focusing 
on the latest techniques that have been proposed to address the challenging 
3D registration of point clouds and we compare them with a cross-domain 
assessment in which we consider both classical data and our own dataset 
form benchmark purpose. 

In the fnal Chapter 4 we present a novel pipeline which processes high 
resolution data by leveraging on a combination of handcrafted and data-
driven solutions in order to achieve a high quality, robust and real-time 
compliant 3D reconstruction of single object models. 





Chapter 2 

The InSight scanner and the 
DenseMatch dataset 

The InSight is a real-time handheld optical scanner which can be classifed 
as an active stereo-based scanner. It is a fully working pre-market hardware 
prototype with its own dedicated acquisition software which has been devel-
oped by OpenTechnologies - FARO (Rezzato, Brescia, Italy) the company 
where I worked during the PhD in apprenticeship period. Although not 
currently sold by the company it is well representative of a family of semi-
professional and professional products on the market with price ranging from 
few keuros to few tens of keuros. The active component of the InSight scan-
ner is the LED projector which emits infra red light to add texture to the 
object for ensuring depth sensing robustness enhancement. In order to re-
view the features of the scanner, we now take a look at its specifcations 
sheet. However, before diving into the technical description of the device, 
we would like to focus on its appearance. A render of the device is given in 
Fig. 2.1. Still being a prototype, the form factor is clearly less compact than 
what competitors sell on the market nowadays. Moreover, being a project 
started in 2014, some of the hardware solutions adopted here could sound 
a bit out of sync with respect to the current alternatives. Nevertheless, we 
actually do not stress the hardware perspective in this work, since our focus 
is more inclined to an algorithmic point of view. In practice, the most im-
portant aspect in the technical sheet is the optics confguration, because of 
its distinctiveness with respect to the competitors. 

That being said, we fnally review how the scanner works. We will start 
from the hardware specifcations and then we will move onto dissecting how 
algorithms perform in order to reconstruct a 3D model of the real world. 

When I frst started the PhD, my frst goal was to become familiar with 
the scanner, to study the properties, the qualities and the issues it came 
with. Since the beginning, the goal was to improve the usability of the 
product. In order to do this, I focused on the faws of the pipeline, I looked 
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Figure 2.1: Render of the InSight scanner. Red dot: IR projector. Blue 
dots: IR cameras in stereo confguration. Green dot: color camera. 

for the most critical aspects and I tried to solve them by exploiting the 
most recent solutions I learned through my studies and my research. In 
Sec. 2 we review the frst attempts I made in my frst year. However, 
the improvements were not conclusive. Because of this, we then started 
exploring a new path of research and we then focused on modern data-driven 
applications to address the problems related to robustness and computational 
efciency. Such an investigation will be the core and the objective of the 
discussion in the reminder of the work. The last section of this chapter is 
then preparatory for assessing the recent solutions based on neural networks 
we found promising. Indeed, in Sec. 3 we introduce a novel dataset we 
created by means of the InSight, DenseMatch [J2]. We will refer to this 
dataset for testing and benchmark purposes moving on with the research. 

1 How the InSight scanner works 

1.1 Hardware specifcations 

The key components in the scanner are the optics, the infra red pattern 
projector and a custom electronic board. We review them separately in the 
following paragraphs. 

1.1.1 Optics 

InSight has three cameras: two are used in stereo for depth sensing while 
the third is used for color information. The camera model is the same for 
all, specifcally a 1.3Mpx Basler Ace1 that runs up to 60fps (Fig. 2.2). The 

1https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/ 
aca1300-60gmnir/ 

https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-60gmnir/
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1300-60gmnir/
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C-mount camera focal length is equal to 16mm and the time exposure is 
fxed at 20ms per frame. A 850nm centered band-pass flter is then mounted 
on top of both the depth sensors to pair with the wavelength emitted by the 
projector. 

According to the technical sheet, the feld of view of the scanner has a 
nominal value equal to 150 < x < 500mm. However, in practice, the scanner 
works using a frame size close to 200×250mm and a working distance ranging 
from a minimum distance of 500mm up to 750mm. Overall, the working feld 
is narrow, which is meant to achieve high accuracy on closeups. We point 
out that the specifcations of the feld of view and the high resolution of the 
cameras are critical to understand how the fnal image we create with the 
InSight difers from the standard solutions available with low-cost scanners 
as the Kinect or the Structure, which instead have a wider frame and lower 
spatial and depth resolutions. 

Figure 2.2: Basler Ace camera mounted on InSight for depth sensing. 

1.1.2 Projector 

The projector is a OSTAR LED emitter made by OSRAM2 (Fig. 2.3). It has 
a nominal optical output power of 3.5 and a wavelength working range from 
850nm to 940nm, which belongs to the near infra red region. Collimating 
lens is used to direct the radiation. Moreover, in front of the projector is 
placed a glass which has a pattern printed via refective coating. Such a 
pattern has a pseudo-random distribution of points which is used to add a 
synthetic texture onto the target. The rationale is to help building the depth 
map by disambiguation of repetitive structures using a noisy and unique 
pixel distribution (Fig. 2.4). Since the pattern is pseudo-random and no 
exploitation of the point distribution is made, InSight can be considered an 
unstructured-light optical scanner. Such an approach is proved to be a valid 
alternative to standard structured light solutions since it can be efective 
against interrefection issues [143]. 

2https://www.osram.com/os/applications/ir-illumination/surveillance.jsp 

https://www.osram.com/os/applications/ir-illumination/surveillance.jsp
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Figure 2.3: Infra red emitter made by OSRAM. 

Figure 2.4: Pseudo random pattern projection for unstructured light scan-
ning. 

1.1.3 Electronic board 

The custom electronic board is used for several tasks: projector power con-
trol, cameras-projector synchronization, temperature monitoring and fan 
control (which are in place for cooling the system). In Fig. 2.5 we show 
a picture of the board. It is important to highlight here that the compu-
tation is made entirely of-board, while on board we have two connectors 
for interfacing with an host PC. In particular, a Gigabit Ethernet switch is 
used to connect all the cameras to the host by means of a single cable, while 
an USB2 connector is used for the control board instead. For the sake of 
completeness, we report that more recent alternatives can rely only on one 
USB3 protocol to drive all the information together. However, Ethernet is 
known for being an extremely robust protocol which also allows for longer 
cables, therefore it is a valid option still nowadays. 

Finally, on the back of the enclosure we can fnd two physical buttons 
(used for starting and stopping the scan) and an RGB LED that provides 
scan status information (blue light indicates that the scanner is in pause, 
green light is on during the scan and red light warns the user that the tracking 
is momentary lost). 
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Figure 2.5: Electronic control board mounted onto the InSight. 

1.2 3D Scanning Pipeline and Algorithms 

The workfow the InSight uses for scanning is very close to the one presented 
in KinectFusion project [20, 53, 54] we already discussed in Sec. 3.2.1. In Fig. 
2.6 we show a schematic representation of the main stages that compose the 
pipeline. In the following paragraph we explain how to obtain a 3D model 
with our stereo scanner. However, for readability sake we do not address 
again the elements of stereo vision in this section. Indeed, the reader can 
refer to the Appendices Sec. A for further details on the matter. 

Figure 2.6: InSight reconstruction pipeline main components. 

Each iteration of the pipeline starts from the acquisition of an image from 
both the two depth sensors. A disparity map is created by means of a multi-
scale sparse Census transform [144] (Fig. 2.7). At each scale, a Census string 
is associated to every pixel. The Hamming distance between the strings is 
the chosen matching cost used to fnd putative matches between the images. 
The disparity computed at the higher level of the pyramid is then propagated 
to the lower levels (we use 3 levels in total). Finally, a parabolic interpolation 
refnement is applied to fnd the sub-pixel 2D matching coordinates in the 
images. Once we have the disparity map, we can fnally create the depth 
map. We store all the information into a custom data structure, called range 
image (RI), which has the same domain of the input image - the pixels - but 
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a diferent co-domain. In fact each pixel is assigned with 3D coordinates and 
auxiliary information such as color, normal and confdence. 

(a) Census creation (b) From census to depth map 

Figure 2.7: Census transformation for depth map estimation. (a) Census 
creation: each pixel in the stereo images is compared against a fxed kernel 
neighborhood. For every pixel a binary signature is defned, in which a bit 
represent whether the neighbor has lower (0) or higher (1) value than the 
anchor pixel. (b) The two census Map are then evaluated using a Ham-
ming distance to estimate a Disparity Map. Using basic stereo triangulation 
mathematics the fnal Depth Map is derived from the Disparity Map. 

Similar to KinectFusion, we adopt a frame-to-model solution to track the 
camera. Every 10 frames we update our model by ray casting the volume 
we are building (we adopt a voxel hashing policy as in [139] to efciently 
manage the data) and we exploit ICP point-to-plane [124, 125] to align our 
working RI to the anchor RI. To speed up the alignment process, we apply 
a uniform sub-sampling of the working RI by selecting only one column out 
of 10 in the image. If the alignment is successful, we then integrate our RI 
into the volume by means of a TSDF [62]. Once the scan is complete, we 
can instantly recover the 3D model in the form of mesh by using a marching 
cubes algorithm [145] onto the volume. 

All the algorithms are implemented in C++ and CUDA [146, 147] to 
leverage on the GP-GPU capabilities provided by Nvidia graphic cards. The 
system can run up to 15 fps using low budget confguration with GeForce 
1050, Intel i5 7400 processor and 16 Gb of RAM. 
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2 Direct pipeline adjustments to improve 3D regis-
tration 

In Sec. 3.2.1 we discussed what issues afect the method of KinectFusion. 
In particular, we mentioned the frequent camera tracking loss and the lack 
of a robust solution for the relocalization. Indeed such issues afect also 
the InSight reconstruction pipeline, which adopts the same frame-to-model 
solution for tracking. Therefore we want to try to improve the robustness 
of the system by rethinking some of the classical approaches aimed for ro-
bust a tracking. In particular, we start by addressing two critical aspects 
in the KinectFusion pipeline, namely the decision policy for updating the 
key frame which is used as an anchor during the tracking, and the input 
sampling strategy adopted to prepare the alignment between the current 
frame and such anchor. The essence and results of these investigations was 
published in [C1]. The second attempt instead, replaces entirely the current 
pipeline with a more sophisticated one, i.e. BundleFusion, which we already 
introduced in the previous chapter in Sec. 3.2.2. We test this approach on 
the InSight generated data using the open source version of BundleFusion 
and we discuss the emerging issues, addressing the fact that some of the 
key strategies adopted in BundleFusion are not well suited for the typical 
application domain of the InSight scanner and similar ones. 

2.1 Replacing key frame selection method with an adaptive 
approach 

During the scan process, we must update the key frame many times in order 
to follow the camera movement. Until the sensed area matches with the 
reference model the two range images have a sufciently large overlapping 
region and so the ICP can successfully converge. Therefore it is crucial to 
determine the optimal moment to update the model. 

The frst trivial solution is to choose a uniform pattern to update the key 
frame every N iterations. In this case, when N = 1 we move back to the 
degenerate solution of a frame-to-frame model, which we already discussed 
to be non ideal because of the large drift it inherently produces. In practice, 
KinectFusion [20] suggests N = 10 as a valid trade-of for a scanner that 
runs at 20fps on average. 

We give a schematic representation of the approach in Fig. 2.8. The 
solution is trivial and efortless, however it is sub optimal and actually prone 
to fail quite frequently. Indeed, the lack of robustness for such a static 
method is due to the absence of any kind of evaluation regarding how fast 
the user actually moves the camera (i.e. the handheld scanner). Indeed, 
choosing N = 10 is a good value on average but it does not considers neither 
situations when the scanner stands almost still nor, on the opposite, when 
the user moves the scanner faster than appropriate. In the former case, the 
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Figure 2.8: Uniform key frame update policy which updates the model every 
N frames. We suggest to look at the picture in the electronic version. 

update should be unnecessary, while in the second case the scanner could 
rapidly end up framing an area with no sufcient overlap with respect to the 
model in use. Finally, in some cases it can happens that the update occurs 
at critical moment such that the ray casting traverses only a small subset 
of the occupied voxels in the volume. Since no dynamic policy is in place, 
the method is agnostic to the frame-model relationship and no update will 
be considered for the next N iterations. Unfortunately, it is highly probable 
that the track will be lost in the meantime. 

In order to be responsive, we need to defne a parameter to describe the 
diference between the range image and its key frame. A common strategy 
is to frst estimate the diference between the key frame pose and current 
camera pose and then update the model whenever such delta exceeds a fxed 
threshold [148]. Another solution is to set a threshold for the maximum 
deviation of the alignment error [149]. Although such approaches are more 
robust than the uniform update, they still relies upon a threshold selected a 
priori which can not be optimal with respect to runtime applications. 

Promising results are then presented by Kerl et al. in their work related 
to dense visual odometry (DVO) [63, 150]. We report in the following the 
main steps that lead to the adopted solution. However, in order to avoid an 
overhead of formalization we intentionally omit some lateral steps throughout 
the computation. We then invite the reader to refer to [150] for the complete 
overview of the method. 

∗DVO aims to estimate the camera motion g between two range images, 
parametrized by a six-dimensional vector ξ ∈ R6 that contains the three 
components of the linear velocity of the motion (v1, v2, v3), and the three 
components of its angular velocity (ω1, ω2, ω3). The estimate is done by 
minimizing the photometric and the geometric residuals, respectively rI and 
rZ , defned as: � � 

rI = I2 τ(xT) − I1(x) 
� � � � �� 

rZ = Z2 τ (xT) − Tπ−1 x, Z1(x) Z 

Here Ii(x) and Zi(x) represent the intensity and the depth values at pixel 
x for a generic frame i. T is the rigid body transformation, π−1 represents 
the inverse of the projection function π(p) which projects a 3D point p from 
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homogeneous coordinates space onto the pixel x, τ is the warping function 
that maps the location of a pixel from one image to the other and [·]Z returns 
the Z component of a point. Then, by assuming both the geometric and the 
photometric consistencies, the residuals difer from zero with a distribution 
that follows the probabilistic sensor model p(rI,Z |ξ). Moreover the noise 
is assumed to be independent and identically distributed (i.i.d.) for all n 
pixels. Under this not so mild assumptions, we can leverage the Bayes’ rule 
to determine the camera motion ξ∗ by maximizing such a probability given 
the pixel-wise error p(ξ|rI,Z ): 

p(rI,Z |ξ)p(ξ)
ξ ∗ = arg max (2.1) 

ξ p(rI,Z ) 

By assuming the noise to be i.i.d., dropping the ξ-non dependent elements 
and converting the maximization to a minimization of the negative log-
likelihood, Eq. 2.1 can then be written as: 

� nX � � � �� 
ξ ∗ = arg min − log p(r(I,Z)i 

|ξ) − log p(ξ) (2.2) 
ξ i 

� � 
From such equation, by dropping the motion prior log p(ξ) and setting the 
derivative of the log likelihood to zero we end up with the equation: 

∂ri 
w(ri)ri = 0 

∂ξ 

where ri is an easier to read notation for r(I,Z)i 
and w(ri) (wi in the follow-

ing) is the weight function defned as w(ri) = ∂ log(p(ri)/∂ri · 1/ri. 
In particular, according to Kenneth et al., such a distribution is better 

approximated by a t-distribution [151]. Specifcally a bivariate t-distribution, 
since the random variable rI,Z itself is bivariate. A bivariate t-distribution 
with 0 mean, scale matrix Σ and ν degrees of freedom can then be repre-
sented as i.e. pt(0, Σ, ν). In this context, the Eq. 2.2 now can be re-written 
as: � n �X 

Tξ ∗ = arg min − wiri Σ
−1 ri 

ξ i 

which is a non-linear problem in the motion parameter ξ. Kerl et al. [63, 150] 
use a frst order Taylor expansion for the linearization around the current 
estimate, which turns the non-linear least square problem into a normal 
equation A∆ξ = b in which: 

nX 
A = wiJT

i Σ
−1Ji (2.3) 

i 

nX 
b = − wiJT

i Σ
−1ri (2.4) 

i 
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Here J is a 2 × 6 Jacobian matrix containing the derivatives of ri with 
respect to ξ. The normal equations are iteratively solved for increments 
∆ξ. Moreover, A can be seen as an Hessian matrix, or, equivalently, as the 
negative of the observed Fisher information matrix. 

The fnal assumption is that the estimated parameters ξ are normally 
distributed as ξ ∼ N (ξ∗ , Σξ) (ξ∗ is the mean, while Σξ is the covariance). 
According to how the Fisher information matrix A is defned in Eq. 2.3, we 
have the lower bound to the variance of ξ, i.e. Σξ = A−1 . Moreover, the dif-
ferential entropy of a generic multivariate normal distribution x ∼ N (µ, Σ)� � � � 
with n dimensions is defned as H(x) = 0.5 · n 1 + ln(2π) + ln(|Σ|) . 
Dropping the constant terms, it results that the entropy is proportional 
to the natural logarithm of the determinant of the covariance matrix, i.e. 
H(x) ∝ ln(|Σ|), so the information about the uncertainty encoded in the 
covariance matrix is converted into a scalar value. In practice, we frst com-
pute the Hessian matrix A by solving the normal equations with an iterative 
increments of ∆ξ using a standard expectation maximization algorithm for 
the t-distribution, as suggested in [152]. Once we have the Hessian matrix, 
we can then compute H(ξ). 

Finally, the goal is to understand how the accuracy of the pose estimation 
degrades during the scan. Therefore we can leverage on the diferential 
entropy H(ξ) to have a hint of this quality measure. Indeed, the determinant 
of the covariance matrix will decrease for less accurate pose estimations and 
so the natural logarithm will tend towards −∞. We can then defne the 
entropy ratio α as: 

α = 
H(ξk,k+j ) 
H(ξk,k+1) 

(2.5) 

The numerator of Eq. 2.5 is the diferential entropy of motion ξk,k+j occurred 
between the key frame and the current frame j. At denominator instead 
we have the diferential entropy of the estimate of motion ξk,k+1 occurred 
between key frame k and the successive frame k + 1. Since the distance 
between the two frames is the smallest possible, the estimate is certainly the 
accurate, therefore it is set as the reference value. In principle, by worsening 
the accuracy of the pose estimation, H(ξk,k+j ) increases as well as the ratio 
α. It is now possible to set a threshold for this metric which is relative to 
the quality of ongoing camera pose estimation. 

In Fig. 2.9 we report the new workfow which is now adaptive and ofers 
a dynamic policy for updating the key frame in the InSight frame-to-model 
registration stage. 

2.1.1 Experimental results 

We now want to evaluate how the replacing adaptive method performs 
against the original uniform selection-based solution. In order to have a fair 
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Figure 2.9: Dynamic key frame update policy based on entropy ratio evalu-
ation [63, 150]. We suggest to look at the picture in the electronic version. 

comparison we need to work using a common benchmark dataset. There-
fore we use the InSight to acquire 6 scenes we want to test. These scenes 
are taken from real application scenarios where the InSight could be helpful. 
Specifcally we scan a piece of marble with solids on top (a technical object 
for quality inspection), a plastic dummy (for object modeling), a couple of 
faces (for body scanning) and two hands (for orthotics). We report the 3D 
model of each scene in Fig. 2.10 

(a) 85 frames (b) 161 frames (c) 239 frames 

(d) 208 frames (e) 102 frames (f) 145 frames 

Figure 2.10: InSight scenes acquired to test adaptive key frame solution. (a) 
marble (b) dummy (c) face 1 (d) face 2 (e) hand 1 (f) hand 2. 

In order to run the methods on the same benchmark dataset we need to 
test them ofine. Therefore we have to save the frames sequences of each 
scene: such an operation comes with a sensible overhead to our end because 
it needs to move the data from the GPU to the host PC and then save it on 
disk. For this reason the fnal frame rate is halved to 7 fps. Moreover, due to 
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the reduced frame rate we need to account for a wider motion of the camera 
between two consecutive frames. Therefore we decide to set to N = 5 the 
number of frames we align to the same KF in the uniform sampling. Such 
a parameter is chosen after evaluating a couple of reasonable values for N 
starting by the initial consideration that N = 10 is efective when the frame 
rate is doubled. The same evaluation is made for the entropy ratio that ends 
up being set to α = 1.1, meaning that the current diferential entropy can 
not be higher than ∼ 10% of the reference one. We use three metrics to 
evaluate the methods performance: 

• The total number of successfully integrated frames, which tells us which 
method is more robust and reduces or eliminates the critical situations 
where the ICP is prone to fail. 

• The total number of key frame updates required. 

• The average root mean square error during ICP registration (consider-
ing the successful alignment only). In principle, the optimal key frame 
should have the lowest registration error possible. We then investigate 
which method sets the best condition for the ICP alignment. 

Model # Frames # Frames Integrated # KF Updates ICP RMSE [mm] 
name Acquired Constant Adaptive Constant Adaptive Constant Adaptive 
Marble 
Dummy 
Face 1 
Face 2 
Hand 1 
Hand 2 

85 
161 
239 
208 
102 
145 

81 85 
134 145 
204 204 
119 119 
93 93 
145 145 

16 16 
26 9 
40 10 
23 7 
18 9 
28 6 

0.67 0.37 
1.05 0.88 
0.98 0.72 
0.27 0.29 
0.66 0.38 
0.21 0.21 

Table 2.1: Testing two key frame update policies on 6 scenes acquired with 
InSight. Constant means the old method using a uniform pace update in 
which we ray cast the new model every N = 5 frames. Adaptive refers to 
the DVO-based key frame update policy [63] leveraging a entropy ratio α 
defnition. 

In Tab. 2.1 we report the results of our experiment. Overall the adaptive 
method is the winner: in two cases out of six it is able to align a higher 
number of frames while in the reminder of the scenes it performs on par with 
the uniform alternative but using from 2 to 4 times less updates. Overall, 
the most signifcant gain is expressed in terms of residual error during ICP 
alignment which decreased in fve cases out of six. However, the improvement 
with respect to the original confguration seems to be non conclusive. Indeed, 
we still have cases in which the ICP was not conditioned well enough to 
succeed and the tracking was lost irrevocably. The novel updating strategy 
needs to be supported by an efective registration method but the current 
solution seems not robust enough. In the next section we investigate an 
alternative sampling strategy to try to improve the quality of the registration. 
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2.2 Using a tailored-random sampling strategy to prepare 
data for alignment 

Since the new key frame update alone is not enough to avoid drastic lost 
of the camera track, we try now to investigate another critical step in our 
pipeline to see if we can beneft from its remodeling. Specifcally, we are not 
happy with the current strategy adopted for sub-sampling the input range 
image before trying to align it to the key frame. 

In practice, the resolution of our system is 1280 × 1024 pixels and we 
typically produce around 500k-700K valid points per RI. If we use a reducing 
factor equal to 5 along the columns of the RI, we usually end up working 
with a set of 20K-30K valid points. We point out that we need to keep the 
sub-sampling factor low due to the risk we can incur by using such a uniform 
pattern for fltering. Indeed, given the possibly high geometric complexity of 
the scene, we could fall into many sectors mainly containing invalid points 
(i.e. empty space) and consequently fail the tracking. Leveraging on a fxed 
pattern is a poor choice when we need a good level of generalization and we 
do not have a priori information about the shape we are going to acquire. 
Moreover, also the data redundancy can be critical: when the underlying 
shape has a smooth surface or a repetitive geometry, the uniform sampling 
could extract a lot of non distinctive points that could cause drifts during 
the alignment. 

Ideally, a feature based approach should lead to the extraction of salient 
key points (see Sec. 3.1.1 for additional details on 3D detectors). However, 
this step involves a computational load which could be not sustainable in 
our real-time working scenario, therefore we need an alternative that is as 
fast and lightweight as the uniform sampling was. The solution is trivial but 
efective: we choose to extract the points according to a random distribution. 
A custom additional requirement takes the advantage of the properties of the 
range images that we have: the random sampling is performed only on the 
set of valid points after we split the 2D domain in 4 sectors. In Figure 2.11 
we show a qualitative example of both methods applied to a range image 
acquired with the InSight (we represent the structured RI using a 2D grid 
on top of the 3D data). 

The rationale behind this choice is that having points not belonging to a 
predefned regular grid we expect to cover a wider area with less redundancy 
in it, so that we should be more efective when solving ICP. Moreover, be-
cause of the reduced redundancy and the point validity constraint, we expect 
to be able to work with less points overall. 

2.2.1 Experimental results 

We repeat the same experiments we did for evaluating the KF update method. 
We set the maximum number of points to sample up to 150 for sector, i.e. up 
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(a) Uniform sampling (b) Random sampling 

Figure 2.11: Diferent approaches for sub-sampling input range image before 
running ICP. In light blue we highlight the points selected by sampling the 
input RI. 

to 600 points in total. This is an order of magnitude smaller on average with 
respect to the number of points we worked with using the uniform method. 
In Tab. 2.2 we report the results of the evaluation in comparison with what 
we obtained the previous run. In both cases we consider the better adaptive 
key frame selection strategy. 

Model # Frames # Frames Integrated # KF Updates ICP RMSE [mm] 
name Acquired Uniform Random Uniform Random Uniform Random 
Marble 
Dummy 
Face 1 
Face 2 
Hand 1 
Hand 2 

85 
161 
239 
208 
102 
145 

85 85 
145 161 
204 218 
119 205 
93 98 
145 145 

16 16 
9 23 
10 10 
7 26 
9 8 
6 6 

0.37 0.36 
0.88 0.34 
0.72 0.49 
0.29 0.31 
0.38 0.36 
0.21 0.21 

Table 2.2: Testing two ICP sampling strategies on 6 scenes acquired with 
InSight. Uniform refers to the original method we adopted for sampling, 
meaning picking one column out of 5 in the working range image. On the 
contrary, Random refers to method under evaluation were we split the RI in 
4 sectors and we took up to 150 random samples per sector from the pool of 
valid points. 

The table shows how the random sampling outperforms the previous 
uniform grid-based approach. In particular, we almost integrated all the 
frames in the testing scenes, overcoming the issues we had in the previous 
run when we drastically lost the tracking (especially for dummy and face 1 
scenes). Moreover, the residual error on ICP registration further decreased. 
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Figure 2.12: Point-to-point distances distribution after aligning frame 60 in 
Marble scene. (top) Alignment result obtained with a constant key frame 
update strategy and a uniform sampling of the input frame. (bottom) Align-
ment result obtained with an adaptive key frame update strategy and a ran-
dom sampling of the input frame. 

In Fig. 2.12 we also report a couple of examples for the outcome of ICP 
alignment on two frames expressed in terms of point distance distribution. 
In this case, the combination of the two new methods allowed ICP to converge 
to a better minimum than what it did with the original solution in place. 

In conclusion, the changes we applied seem to be efective to improve the 
overall robustness of the tracking system. However, the pipeline still sufers 
from the remaining problems KinectFusion is also afected by. In particular, 
up to now we just focused on strengthening the only pairwise registration step 
into the frame-to-model alignment mindset. Indeed we have not addressed 
the issues related to the increasing drift, which is not completely solved 
with frame-to-model registration, as well as the lack of strategies both for an 
efective recovery from tracking loss (or from intentional acquisition resuming 
from another vantage point), and for repairing the model after a misaligned 
frame integration. All of these challenges are tackled instead in the work of 
Dai et al., BundleFusion. In the following section we exploit such a complex 
solution to try to fnd a solution for these critical aspects. 
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2.3 Exploiting BundleFusion reconstruction pipeline 

Up to our knowledge, BundleFusion [19] is the most sophisticated and robust 
solution available in the academic research to address online 3D reconstruc-
tion. We already addressed the key novelties of the method in Sec. 3.2.2, so 
we review them here very briefy avoiding to be redundant: 

• A robust strategy for aligning frames based registration that leverages 
2D SIFT features [78] for sparse matching and geometric and photo-
metric consistencies for dense refnement. 

• A hierarchical structure to decompose the problem complexity by using 
a local-to-global optimization strategy 

• A re-integration strategy to enable on-the-fy model update and to 
recover from bad alignments situations. 

The pipeline scales well and it is suited for dealing with large dataset re-
construction. A benchmark dataset is provided in the same reference paper 
[19]. BundleFusion dataset contains 8 scenes (3 apartment rooms, 1 copy-
room and 4 ofces) scanned with Structure IO sensor (see Sec. 1.3 for more 
details) and reconstructed using the pipeline above. 

Because of the robustness and the promising model optimization feature 
the method presents, we then seek to evaluate the system performances when 
paired with the InSight data and its object reconstruction-oriented target 
application. 

2.3.1 Source code 

The code is available online 3 . Although the repository is not maintained 
anymore (last commit was pushed in 2018 and the code was originally devel-
oped using Visual Studio 2013), we were able to install it successfully on our 
PC running VS 2019 on a Intel i7-7820HQ with 64Gb or RAM. Most of the 
algorithms are developed using CUDA and the pipeline requires 2 GPUs to 
run the alignment and the integration processes in parallel. Our PC mounts a 
single NVidia GPU Quadro P5000 with 16Gb of dedicated memory, so it was 
possible to emulate the second GPU by splitting the memory in two distinct 
virtual instances of 8Gb each. We fnally tested the standard confguration 
by reconstructing the office3 scene from BundleFusion dataset itself. Our 
reconstructed model was indeed compatible with the result presented in the 
original paper when we set the voxel size equal to 1cm. However, we point 
out that we encountered some problems with smaller voxel v = 4mm. In 
such a case, the pipeline crashed during the process even by ensuring larger 
memory pre-allocation and reasonable estimation of the fnal number of vox-
els. The same problem is reported by other users on the repository, but 

3https://github.com/niessner/BundleFusion 

https://github.com/niessner/BundleFusion
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remained unanswered. Nevertheless, is fne enough for testing large indoor 
dataset, while we can still work with a smaller voxel size when dealing with 
InSight data, because our data have less frames and smaller volume in the 
end. We can then move on with our own evaluation. 

In practice, in order to post-process a sequence of frames acquired before-
hand with any kind of optical scanner, the pipeline accepts a specifc data 
structure called sens (indeed it has .sens extension). The authors provide 
a reader4 for the .sens data but no converter is given, up to our knowledge. 
However, we were able to develop a converter in Python by reverse engineer-
ing the original reader. After we extracted RGBs and Depth maps from our 
list of range images we converted them into a BF-compatible list of .sens 
fles. Moreover, we wanted to test how robust BF is with respect to some 
critical track losses. Therefore we altered the original frames fow by switch-
ing two blocks of 10 images in the middle of the sequence. We refer to this 
scenes as shufed. In front of the two blocks we also put a few void frames 
to simulate the scenario in which we voluntarily interrupt the scan, we point 
the camera into a slightly diferent area and we restart to scan again. The 
modifcation produces a drastic change of view during the reconstruction 
which can only be addressed by a robust registration technique. Although 
a misalignment could happen in this phase, we expect that the global op-
timization strategy can handle it and fx it on-the-fy as demonstrated in 
the original presentation during indoor reconstruction demos. Moreover, we 
also kept some of the original InSight data that we already tested in the 
previous section in order to evaluate the BF performance against the result 
we obtained with that confguration. 

2.3.2 Experimental results 

Before starting the evaluation, we properly tuned the settings via a confg-
uration fle. In Tab. 2.3 we report the main changes with respect to the 
standard confguration we used for reconstructing office3. First of all it 
has to be noticed that for our data we kept the original input image size for 
all the steps throughout the pipeline execution, except for the dense regis-
tration in which we down-sampled it by a factor 4. On the contrary, in the 
original implementation the authors decided to reduce the image by a factor 
2 before integration and by a factor 8 before dense registration. We decided 
to avoid drastic down-sampling factors because we preferred to work with 
higher accuracy at the expense of some performance. Another diference 
is related to volume resolution: the original voxel size was set to 1 cm for 
3DMatch, while we use 1.5 mm with the InSight. We can work with such 
a small voxel because the fnal volume will be much smaller as well and so 
we have no problem with the memory consumption (while with the original 

4https://github.com/ScanNet/ScanNet/tree/master/SensReader 

https://github.com/ScanNet/ScanNet/tree/master/SensReader
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BundleFusion Parameter Value per dataset 
parameter scope 3DMatch InSight 
image_res Input 640 × 480 1280 × 1024 
image_res Integration 320 × 240 1280 × 1024 
max_depth Integration 3.0 m 0.7 m 

sdf_voxel_size Integration 10 mm 1.5 mm 
image_res Matching 640 × 480 1280 × 1024 

min_area_corresp Matching 0.032 m2 0.01m2 

image_res Registration 80 × 60 320 × 256 
dense_dist_thresh Registration 150 mm 25 mm 
num_solves_final Optimization 30 50 

Table 2.3: Set of BundleFusion parameters: comparing the values we used 
to work with 3DMatch [6] against the values we used to work with the data 
produced by means of our scanner. 

3DMatch scene office3 the system crashed using 4 mm). Moreover, since 
the feld of view is also reduced with the InSight, we then change the min-
imum area the keypoints have to span. Such a criteria is evaluated during 
sparse registration to avoid degenerate cases in which all the features are 
centered around a single spot. Because of the higher accuracy we seek, we 
also reduce some critical parameters for dense registration. In particular, we 
change the minimum distance threshold for dense evaluation of valid corre-
spondences alignment from 15 mm to 2.5 mm. Finally, in order to address 
the fact that an artifcial tracking lost was introduced in few scenes, we also 
increase the number of iterations we run the global solver after the end of 
the sequence for a higher probability of having a good global optimization 
in the end. 
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(a) Dummy (b) Dummy shuffled (c) Dummy GT 

(d) Marble (e) Marble shuffled (f) Marble GT 

(g) Face (h) Face shuffled (i) Face GT 

(j) Hand (k) Hand shuffled (l) Hand GT 

Figure 2.13: BundleFusion [19] results with InSight scenes (shufed : varia-
tion of the original frames sequence, GT : ground truth). 
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In Fig. 2.13 we report the visual results we obtained reconstructing the 
InSight data with BundleFusion, compared against their ground truth mod-
els. Surprisingly, BF under-performed with respect to the initial expectation. 
Specifcally, most of the scene we tested end with one of these three types of 
errors. In the frst case, the track was lost after a while and never recovered 
back, so that the fnal model shows no misalignment but it remains partial, 
as for the dummy scene. On the contrary, dummy shuffled scene presents 
two distinct sub-volumes, indicating that after the artifcial track loss the 
reconstruction moved on recovering the track and restarted building on a 
misaligned chunk with respect to the reference system. Additionally, the 
fnal optimization did not help to solve the issue. Finally, in the last case 
the pose optimization failed to adjust several frames that were wrongly inte-
grated at frst, reasonably due to a drift in the pairwise registration during 
chunk creation. Moreover, it is interesting to notice that we failed to re-
construct not only the shufed cases but also the standard scenes having a 
regular fow for the frames in the sequence. 

Our assumption is that the main issues occurred during the sparse-to-
dense registration step. We point out that the errors happened regardless the 
confgurations we adopted for the reconstruction. Indeed, we performed a 
grid search on the most critical settings and the output we report is the best 
we got. Nevertheless, these parameters sounds reasonable to us, therefore 
we think the problems arose for specifc issues of the method with our data 
type. Specifcally, we think that the leverage of a 2D feature-based sparse 
matching on scenes like the ones the InSight produces can be tricky. In Fig. 
2.14 we show how the matching stage behaves on two very diferent data. In 
the frst row we report the case of the Office3 scene in 3DMatch dataset. 
The camera is framing a table with several objects on it. The initial set of 
raw matches is quite big. Such a set of putative correspondences needs then 
to pass through 3 fltering stages. We quickly review what kind of flters are 
adopted in BF: 

• A brute force flter, which works by the reiterated application of the 
Kabsch algorithm to estimate the matrix to align the two views. At 
each iteration, the estimated matrix is applied to the frame and the dis-
tance between all the putative correspondences frame-model are eval-
uated. The ones above a preset threshold are removed and the Kabsch 
algorithm is run again. The process goes on until no outliers remain in 
the list. If less than 4 correspondences remain, the frame is skipped. 

• A surface area flter that evaluates that a minimum area is spanned by 
the keypoints which survived to the previous flter. If not, the frame 
is skipped. 

• Finally, a dense verifcation flter controls that geometric (depth and 
normals) and photometric (color) consistencies are preserved on a dense 
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evaluation (i.e. pixel-wise). In order to guarantee a real-time perfor-
mance the input image is heavily down-sampled at this stage. 

In Fig. 2.14(b) we see that after the skimming of the raw matches between 
the two images of the table, a sufcient amount of matches survived. On 
the contrary, in the last row of the same fgure we have an example of the 
Dummy scene which shows much less raw matches at the beginning and no 
fnal result is reported because the brute force flter removed all of them. 
This is considered a failure in the pipeline and the frame is then skipped. 
This kind of failure occurred several times with our data throughout all the 
test we made. Even when a valid set of matches is found, as for the case 
shown the middle row of Fig. 2.14, the amount of matches is very poor. 

(a) Office3 raw (b) Office3 fnal 

(c) Dummy raw (d) Dummy fnal 

(e) Dummy raw (failed) 

Figure 2.14: Example of sparse matching using SIFT [78] in BundleFusion 
[19]. (a-b) Raw matches and fnal correspondences after fltering for two 
fragments from Office3 [6]. (c-d) Result on two fragments from Dummy [J2]. 
This case appears more challenging and very few matches are found indeed. 
(e) In this case the raw correspondences are mostly outliers and the fltering 
stage reject the pair. We suggest to look at the picture in the electronic 
version. 
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2.4 Conclusions 

In this section we discussed about the main faws of the current solution 
we employ to run the InSight 3D reconstruction pipeline. In particular, we 
focused on the issues related to the camera tracking frequent losses, the lack 
of a smart method to relocate the camera in a fast and robust manner after 
such loss and the possibility to have an optimization module to adjust the 
already integrated frames on-the-fy when a bad estimation occurred in the 
frst place, as well as to refne all the poses to solve the problem of the 
accumulated drift. 

In order to face these challenges, we dived into the classical solutions we 
can fnd in literature and we tried to take advantage from that to boost the 
quality of our reconstruction. Specifcally, to improve the tracking robustness 
we modifed two critical policies in the current registration pipeline. The frst 
one is the strategy we adopt to decide when the model needs to be updated. 
We moved from a trivial approach where the update occurs at a constant 
pace with a dynamic solution based on the evaluation of the ratio of the 
diferential entropies of the camera motion estimation. The method is more 
efective in understanding when the registration is sufering from a rapid 
change of the geometry of the current frame with respect to the model. The 
second policy we changed is the method we use to down-sample the working 
range image to speed up the ICP algorithm. Instead of a uniform sampling 
we adopted a custom random sampling which allows spanning all over the 
RI with less redundancy. By leveraging on a much smaller set of points 
we were still able to integrate a signifcantly higher number of frames with 
respect to the original solution, by also reducing the residual error of the 
alignment. Then, in order to address the problem of camera relocation and 
online model refnement, we exploited the potential of BundleFusion. The 
method is widely considered the state-of-the-art for real-time reconstruction 
of large scenes and theoretically ofers all the features we are interested into 
for our own device. However, the test we made highlighted the fact that 
leveraging solely on 2D feature extraction to address the sparse and coarse 
registration is critical with our data which are less informative when small 
regions with very poor texture are framed during the reconstruction of a 
single object. Although BundleFusion is very close to what we would like 
to achieve in the end, we still need to investigate an alternative solution to 
tackle the problems we encountered. 

Motivated by the lack of an incremental solution which can solve in a 
conclusive manner our problems with the InSight, we need to look else-
where to fnd new methods and new approaches to tackle the issues. Due 
to the success of recent data driven solutions addressing several computer 
vision-related tasks, we then decided to explore the deep learning research 
feld. However, before diving into the literature we wanted to have a reliable 
dataset to test the networks that we eventually would fnd promising. To do 
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3 DenseMatch: a novel benchmark dataset for dense scanner 
acquisitions 

that, we refned the initial set of scenes we acquired for the previous tests 
we made and released a rich collection of models specifcally acquired with 
the InSight. In the following section we present this collection. 

DenseMatch: a novel benchmark dataset for dense 
scanner acquisitions 

In the previous section we saw that we are far from having a perfect solution 
to solve all the issues we have with data generated by scanners such the In-
Sight. However, before moving on with other tests we decided to improve the 
quality of our benchmark. In the frst chapter we discussed about the type 
of datasets available online which address the problem of 3D reconstruction 
and we pointed out that we did not fnd anything similar to our own kind 
of data. Moreover, having a dataset tailored to a specifc target applica-
tion is nowadays more important than ever because of the large impact that 
data-driven research has on our feld. In the next chapter we will deepen the 
topic of deep learning applied to 3D related problems. In such a context, it is 
crucial to have a real reference dataset to test any kind of model to evaluate 
how well it behaves in our working scenario and eventually to be able to ft 
a specifc architecture to our own problems. 

Starting from these considerations, we decided to propose a collection of 
small-scale scenes acquired with the InSight, in order to provide good fresh 
accurate dense data to the community which could beneft for investigating 
dense 3D object reconstruction problems. We call this dataset DenseMatch. 
Finally, a publication [J2] was made out of this project. 

In the following paragraphs we try to answer to few specifc questions 
which are helpful to understand everything about DenseMatch. Basically 
the questions we want to answer are why is it useful?, what is it? and how 
did we create it? and how it can be used?. 

Why do we need this dataset? We summarize the contribution of our 
dataset in four bullet points. 

• It is useful to develop models and alignment strategies to automatically 
reconstruct 3D scenes from data acquired with high resolution optical 
scanners. 

• The high resolution optics mounted on the scanner provide a very dense 
3D data, which is not comparable with other data acquired with low 
cost optical scanners we can fnd in literature so far. From this density 
property we derived the name of DenseMatch. A visual example of it 
is reported in Fig. 2.15. 

• It can be used by computer scientists to perform quantitative analysis 
of 3D reconstruction and alignment methods. 



66 The InSight scanner and the DenseMatch dataset 

• By using these data it is possible to train or fne-tune AI models to cope 
with small-scale and dense 3D object acquisitions and reconstructions. 

(a) Pharaon dimension (b) Pharaon closeup 

Figure 2.15: Example of a scene in DenseMatch. The size of the object is 
relatively small (it represent a statue 18 cm long). The closeup shows the 
level of detail we can reach on the face of such a small statue. 

What is this dataset? The dataset comprises 19 scenes which are made 
by acquiring 10 diferent subjects using our scanner. Our collection of scans 
represents a realistic target application for the scanner we are developing, 
namely the acquisition of human bodies and faces, reproduction of artworks, 
and design objects. We depict these scenes in Fig. 2.16. Moreover, each 
scene is made of a sequence of RGB-D images that can be used to extract 
a list of point clouds with more than 500k points on average. In total we 
created 3140 of such point clouds. 

# min max avg 
Scenes 19 - - -

Point Clouds (PC) 3140 - - -
Points per PC - 60k 1M 500k 

BBox Volume per PC - 10−4 m3 10−2 m3 3 × 10−3 m3 

Points Spacing - 0.18 mm 0.35 mm 0.25 mm 

Table 2.4: DenseMatch main specifcations. BBox stands for Bounding Box. 
The oriented BBoxes are estimated using Open3d [55] as well as the average 
points inter-distances that have been used to defne the spacing. 

A report with all of these and additional information is also provided in 
Tab. 2.4. From the table we notice that the raw data streamed during the 
scan is remarkably dense. Indeed we already mentioned the fact that each 
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Figure 2.16: DenseMatch dataset scenes. 

depth map produces 500k points on average. Additionally, such a relevant 
amount of points is bounded into a small volume: the size of the bounding 
boxes on average gives a hint about how large each scan actually is and this 
value is in agreement with the small feld of view of the tracking system, 
which is equal to 250 × 200 mm. The number of points per frame, together 
with the spacing of the points, provides also a hint of the point cloud density. 

How the dataset was created? To create the dataset, we used the pre-
market prototype InSight we already introduced in the previous section of 
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this chapter. Our setup comprised a machine running Windows 10 with 
16GB of RAM and an Nvidia GTX 1080 Ti. We acquired multiple scenes by 
scanning diferent subjects. During the scanning we stored on disk the fow 
of frames the system was grabbing, both the valid ones (meaning the frames 
we tracked successfully and also integrated in the model under construction) 
and the non valid as well. 

Then, in post-processing we proceeded as follows: frst, we extracted a 
point cloud for each frame. We then performed a direct alignment for all 
the point clouds composing the scene, by following the implementation of 
[91], which is a feature-based pipeline that leverages ICP [124, 125] for 3D 
alignment. Moreover, aiming at creating a reference without loss, we fxed 
by hand the failed alignments that occurred during the process by running 
again the pipeline with user-selected control points for the critical point 
clouds. Finally, we refned the result in a global fashion by leveraging on an 
optimization-on-a-manifold framework [66]. Eventually, the fnal set of point 
clouds is properly aligned, thus constituting the ground truth for diferent 
kinds of tests on 3D object registration or for training/fne-tuning models to 
cope with small-scale 3D objects and dense acquisitions. 

How the dataset can be used? The dataset can be accessed from an 
open source repository5 . In practice, the repository contains two types of 
fle: 

• List of npz binary format fles (18.4Gb in totals) created using Python 
Numpy open source package [153]. Each fle refers to a scene and it 
contains all the point clouds (in standard ply format6) and additional 
information (frames names and poses).. 

• tar.gz is an archive (1.8Gb large) compressed using gzip algorithm, so 
that it can be unzipped with any standard decompression tool. Each 
folder contains the RGB-D images and the camera calibration param-
eters that were used to reconstruct the 3D data. These images are the 
original output produced by the 3D scanner that was used to generate 
the data. Specifcally, the color images have .jpg extension, while the 
depth images are 16 bit .png fles. 

In the dataset repository we also provided a link to an open source code7 

for a custom reader we implemented in Python. The reader is a command line 
application which allows to specify diferent settings. For instance the user 
can choose to read a point cloud directly or to re-create it from scratch using 
the RGB-D images of a specifc scene. Specifcally, each RGB-D is wrapped 
into a Frame structure that contains color and depth images, camera pose 

5https://doi.org/10.7910/DVN/CU4UXG 
6http://paulbourke.net/dataformats/ply/ 
7https://doi.org/10.5281/zenodo.5534851 

https://doi.org/10.7910/DVN/CU4UXG
http://paulbourke.net/dataformats/ply/
https://doi.org/10.5281/zenodo.5534851
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and point cloud members. Each frame can also be saved into a Sequence 
class which contains the camera parameters and additional metadata. Such 
a structure can be easily integrated with any research code the user intends 
to develop. Finally, the repository contains also a simple example to show 
how to load a sequence and visualize it. Everything is based on few popular 
Python packages and the code should run efortless on Windows, Linux and 
MacOS. 

We already used DenseMatch in two studies [C3], [J1] where we focused 
on DL-based 3D alignment and real-time 3D reconstruction (as we will see 
in Chapter 3). In these works, the point clouds were initially misaligned 
by means of a supervised random perturbation of the ground truth poses. 
In particular, the random rotations span the whole range of angles from 
0 to 2π onto the 3 axes. Additionally, a random translation is produced, 
spanning the the 3 axes again using a range of ±1 m. The misaligned data 
serves as input to 3D reconstruction pipelines addressing the problem of 3D 
registration where we perform a cross-domain assessment of deep learning-
based solutions. We point out that the set of transformations applied in the 
above-referenced works is also available as metadata in the provided dataset. 

Conclusion 

In this chapter we presented the InSight, a prototype of an handheld opti-
cal 3D scanner which is under development at FARO, the company where I 
worked during my PhD. This device is meant for specifc applications which 
require a high resolution acquisition, but still maintaining the fexibility of 
an handheld solution. We frst reviewed the technical aspects of the scan-
ner and we discussed about the issues that afect the current pipeline which 
follows closely the implementation proposed by the authors of KinectFusion 
[20]. In order to deal with these issues, we then proposed a couple of ap-
proaches to revise two elements which are critical in the current registration 
framework. Specifcally, we tried to improve the robustness of the tracking 
by replacing the current policy for key frame updating in our frame-to-model 
strategy by exploiting an adaptive solution based on the evaluation of the 
diferential entropy for the motion estimation of the camera. Moreover, we 
also revised the down-sampling method we adopt to extract a subset of 
points from the current range image to align with the model using ICP al-
gorithm. These modifcations produced a boost in terms of robustness and 
allowed to recover a signifcant amount of frames we initially lost with the 
original workfow. However, it is clear that these adjustments are non con-
clusive to provide a pipeline which is robust enough to deal with tracking 
loss. Some problems remained unsolved, therefore we tried to investigate 
a completely diferent pipeline with respect to our KinectFusion-based one. 
We then deepened BundleFusion [19], which is the current state-of-the-art 
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for real-time indoor reconstruction. Although the method sounds promising 
on paper, we experienced a lot of issues trying to cope this pipeline with our 
own data. 

In the end, we concluded that it could be helpful to search elsewhere 
to fnd suitable solutions for us. Indeed, we planned to explore the world of 
deep learning, encouraged by the successful results obtained with data-driven 
technologies and noticing their trends in moving towards the 3D domain. 

Finally, before diving into studying the topic, we decided to propose a 
new dataset, DenseMatch. This dataset targets the type of reconstruction of 
our interest, which was missing from the literature but represents a branch 
of applications of growing interest for the community. This dataset will be 
leveraged in the following chapters, while all the examinations we made so 
far remains valid for further discussion. 



Chapter 3 

Deep learning applied to point 
cloud 3D registration 

Although we already extensively discussed about 3D registration of views in 
Chapter 1 Sec. 3.1, we just reviewed the classical approaches so far, while 
we have not considered data-driven alternatives yet. However, the recent 
trend sees a collective efort in exploring the power of deep learning (DL) 
to make high-capacity models able to understand articulated tasks such as 
object detection [154, 155, 156], semantic segmentation [157, 158, 159], shape 
retrieval [160, 161], shape completion [162, 163, 164], as well as point cloud 
rigid and non rigid registration [16, 17, 18, 165, 166]. 

Two key aspects make these data-driven solutions extremely appealing 
in our context: 

• The deep understanding of complex problems allows to provide robust 
methods that can deal with the most critical challenges we can typically 
fnd when dealing with 3D domain tasks. Efective models can in theory 
generalize well hard problems and so they can ofer more robust results 
than their handcrafted counterparts. 

• Exploiting the parallel computation capability to activate millions of 
neurons simultaneously, some of these networks can process deep mod-
els at a very high speed, making them not only robust but extremely 
fast and possibly better than others in case of real-time constraints. 

Due to these reasons, we thought it was worth it to deepen the topic to 
understand whether we can leverage on these technologies. In particular, 
we aim to revise some of the methods we earlier adopted to develop the 
reconstruction pipeline of the scanner we introduced in the previous chapter. 

Therefore, we organize the chapter as follows: in the frst section we 
introduce the background of 3D deep learning (DL) by focusing on the ap-
proaches required to deal with point clouds, which are a natural choice for 
3D acquisition and reconstruction and are the data type we can extract from 
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the range images during the scan with the InSight (see Chapter 2 Sec. 1.2). 
We point out that for the sake of readability, some of the elements of 3D DL 
are omitted here. In order to fully understand the main concepts considered 
in this chapter, the reader should be familiar with the very basic concepts 
of DL. Nevertheless, we cover most of them in the Appendices Sec. B, so we 
suggest to take a look at it before continuing with this chapter if needed. 

Then, in the second and third section we review how DL deals with 
3D registration. We follow a pattern similar to the one we proposed for 
standard solutions in Chapter 1 Sec. 3.1, starting from feature detection up 
to fnal transformation matrix estimation, and we deepen some of the most 
promising methods in the process. 

Finally, in the last section we present a comparative assessment of some of 
main DL-based alignment solutions proposed in literature, considering a real-
time reconstruction framework. The assessment is cross-domain, meaning 
that we evaluate how these methods perform with both "standard" bench-
mark data (we leverage on the already mentioned 3DMatch to do that) and 
InSight data (by considering the novel DenseMatch dataset). We do not 
limit ourselves to a simple comparison, but we run performance tests and 
extended comparisons, with diferent system confgurations including model 
refnements, and we found solid evidence that the generalizability perfor-
mance of deep learning systems for 3D alignment is critically linked to data 
features. The results of this in-depth assessment ended up in two publica-
tions ([C3] and [J1]). 

All the considerations we make here are preparatory for the last chapter in 
which we will discuss our fnal real-time pipeline aiming at the improvement 
of the overall robustness and reconstruction performance of handheld 3D 
object scanning. 

1 Background 

Just recently, DL started being used to address tasks in 3D domain having 
point clouds as input for deep models. The work of Qi et al., PointNet 
[9] is referenced as the frst attempt to ft a deep model to deliver suitable 
applications with point clouds. Indeed, point clouds are critical because 
of their inherent unstructured (unordered structure) nature. In practice, a 
neural network should be able to produce consistent results with invariance 
to the order of the elements that compose its input. This means that the 
network needs to be permutation invariant. The problem is depicted in Fig. 
3.1. Moreover, similarly to what happens with handcrafted solutions, the 
network should also be invariant to any sort of afne transformation. To cope 
with this requirement, a trivial solution is to apply several transformations 
to the original dataset during training stage to allow the network to face all 
the possible scenarios. However, it is critical to exploit all of the possible 
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cases and so a more robust approach should be preferable. 

Figure 3.1: Visual representation of the permutation problem for neural 
network applications with unstructured input data. The network must be 
invariant to the order of the coordinates, because in the end the two list of 
coordinates represent the same model (here in 2D, but it applies to higher 
dimensions as well). 

Convolutional neural networks (CNNs) [167, 168] are a powerful alter-
native which are able to empirically achieve strong rotation invariance and 
usually require less data augmentation [12]. In the reminder of the section 
we review the two main strategies currently adopted in DL frameworks to 
deal with point clouds-related problems. 

1.1 PointNet: learning to manage point clouds using fully 
connected networks 

PointNet is meant to work with point clouds since it addresses the problem 
of both order and rigid transformation invariance efectively. In Fig. 3.2 we 
show the original architecture. Specifcally, the permutation invariance in 
PointNet is achieved since the model is able to represent a family of sym-
metric functions (i.e. producing the same result irrespectively of the order 
of factors). This is guaranteed by leveraging on a simple symmetric function 
(maxpooling) which acts on the output of a two-stage dimensionality aug-
mentation operated by multilayer perceptrons (MLP) where, at each stage, 
weights are shared among MLPs for every input element. The max pooling 
is used to extract global context from the dense set of points. Moreover, a 
transformation network (T-Net), which is basically a mini-PointNet, is used 
to align the input to its canonical space in order to be invariant to rigid 
transformations, similarly to what it is done for handcrafted solutions where 
the eigen-values are used to determine the principal components of local 
reference frame [89, 90]. 

PointNet is easy to generalize to any kind of problem in which a high 
dimensional unstructured input needs to be feed to a classifcation or seg-
mentation network. Indeed, since its proposal, it has been declined in several 
favors to tackle diferent tasks sharing one common denominator: the ne-
cessity to make a deep network to learn the information content the point 
cloud carries within its spatial and geometrical relationships and manage 
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it according to the application. In origin, PointNet has been proposed for 
tackling object classifcation and semantic segmentation of point clouds. The 
classifcation block receives a tensor of dimension N × 3 as input and then 
outputs a k-dimensional vector which represents a likelihood. Indeed, each 
element of the array refers to a predefned class and the value stored in it is 
the probability of the point cloud to belong to such class. The segmentation 
block instead takes as input the output of the second transformation network 
inside the classifcation block and it concatenates such tensor with the global 
feature used to represent the entire set. The output of this block is a N × M 
tensor which assigns to each point a M-dimensional vector score that can be 
used for clustering. 

Figure 3.2: PointNet architecture. Image taken from [9]. 

The main limitation of PointNet is known to be the lack of a local con-
text, which is lost when fully connected layers (FC) and max pooling are 
used to extract global information. A partial mitigation to this problem is 
given in PointNet++ [10], where the authors of PointNet address the lo-
cal information preservation by sampling and grouping cluster of points and 
recursively applies PointNet on these support regions (Fig. 3.3), combin-
ing their output with the global information. Therefore, PointNet++ is a 
hierarchical feature learning method. 

Although the network gained a huge success, it is not fawless. Indeed, 
since it adopts full connections, it cannot scale efortlessly. In order to deal 
with restrained sized input, a down-sampling policy or even a partitioning of 
the input usually takes place. However, this is a critical because it limits the 
spatial context. Moreover, inconsistent sampling density is common when 
dealing with partial point clouds, due to perspective efect, radial density 
variation and motion. Density variation afects hierarchy, which is sensitive 
to point uniformity. Finally, such a patch-based processing is inefcient 
because the network activations are not reused across adjacent patches within 
the intermediate layers. 
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Figure 3.3: PointNet++ grouping and sampling. Image taken from [10]. 

1.2 Convolutional neural networks applied to point clouds 

The introduction of convolutional neural networks [168] is considered a game 
changer for DL. In essence, convolutions allow building networks that are 
able of capturing broad context and are faster and more memory efcient 
than fully connected networks. Because of these reasons, they sound optimal 
to deal with 3D problems. Unfortunately, the main issue is that they need 
to work with a structured input, which point cloud is not. Therefore, in 
order to bring the advantages of CNNs in 3D, the initial attempts coped 
with alternative data types, such as 2D maps of 3D domain [2, 3, 4, 5] 
and volumetric representations of 3D space, using voxels-based regular grids 
[6, 7, 8]. However, the former tends to loose spatial relationship throughout 
the mapping while the second works with a dense grid which is also highly 
inefcient in terms of memory footprint. 

Figure 3.4: Example of sparse convolution with arbitrary in/out coordinates 
dimension. 

More recently the use of sparse convolutional layers has been proposed 
to deal with irregular structures such as point clouds and meshes [169, 12, 
11, 170]. These solutions exploit the local information of a point by means of 
sparse kernels defned via sparse tensors which are then applied during the 
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convolution process. We visualize a sparse convolution on a sparse tensor in 
Fig. 3.4. For the sake of an easy representation we keep the domain to 2D, 
but it can be easily extended to higher dimensions. Overall, the process is 
similar to the dense counterpart (see Appendix B), whereas in the sparse case 
the output is evaluated only on a few specifed points which are controlled 
in the generalized convolution. Specifcally, the conventional discrete dense 
convolution in D-dimension can be defned as: 

X 
out inxu = Wixu+i for u ∈ ZD (3.1) 

i∈VD (K) 

in/out ∈ RN in/outwhere xu is a N in/out-dimensional feature vector in a D-
dimensional space at D-dimensional coordinate u ∈ RD and W ∈ RKD×Nout×N in 

are the convolution kernel weights. In dense case VD(K) is the list of ofsets 
in D-dimensional hypercube centered at the origin (e.g. V1(3) = {−1, 0, 1}. 
We can then relax Eq. 3.1 to a general form: 

X 
out inx = Wix for u ∈ Cout (3.2)u u+i 

i∈N D (u,Cin) 

where N D(u, Cin) is the set of ofsets from the current center u that exists 
in the predefned input coordinates Cin of sparse tensors. It is interesting 

Cout ZDto notice that when Cin = = and N D = VD(K) then we have 
the conventional dense convolution again. Finally, in order to efciently 
compute the sparse convolution, it is necessary to determine how each non-
zero element in an input sparse tensor is mapped to the output sparse tensor. 
Since the output is mapped throughout a kernel the mapping process is called 
kernel map [12]. 

On top of this architecture novel methods have then been proposed in 
recent publications as alternatives to PointNet-based solutions to address 
several tasks: in the following sections we review the ones related to 3D 
point clouds registration, namely keypoints detection, feature description 
and transformation matrix estimation. 

2 Learning to extract features from point clouds 

Keypoint detection is a well established research topic in 2D and many suc-
cessful DL-based architectures have proved to be valid and capable of out-
performing handcrafted rivals [171, 172]. In 3D domain, conversely, the focus 
has been more on description than detection so far. The Unsupervised Stable 
Interest Point detector (USIP) [173] is one of the frst detectors to appear in 
literature. It provides an unsupervised feature proposal network to detect 
highly repeatable and accurately localized keypoints. Its proposal network 
is a PointNet-like architecture. Similar to USIP, 3DFeatNet [174] is a net-
work made of fully connected layers that performs a joint keypoint detection 
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and feature description, even if it focus largely on the latter. More recently 
D3Feat [14] also ofers a simultaneous detection and description but instead 
of relying on MLPs and max pooling it exploits KPConv [11], a solution for 
fexible and deformable convolution of point clouds, as backbone for sparse 
convolutions. 

Instead, we can fnd many solutions in literature to tackle the problem 
of 3D feature description [175]. A frst bunch try to embed the spatial re-
lationships of local neighborhoods by training a network to extract high 
dimensional descriptors from support regions. Diferent approaches can be 
used to encode the local information. For instance, ShapeNets [7], 3DMatch 
[6] and 3DSmoothNet [176] propose to use a uniform grid-based support 
to leverage standard 3D convolutions. In Fig. 3.5 we show how the input 
parametrization for 3DSmoothNet works. The output of such parametriza-
tion is a voxel grid which is passed to the actual network, shown in Fig. 3.6. 

(a) (b) (c) (d) 

Figure 3.5: Input parametrization for SmoothNet. (a) A spherical support is 
defned around an interest point p. (b) The neighborhood is used to estimate 
the local reference frame (inspired by TOLDI method [89]) and the support 
is transformed to its canonical representation. (c) The support is voxelized 
using a Gaussian Smoothing Kernel. (d) A smoothed density value is used 
to normalize the voxel grid which is passed as input to the network. Image 
from [176]. 

However, such methods hardly cope with real-time requirements because 
of the overhead that building the local voxel grid implies, as well as the esti-
mation of a local reference frame for each support. A diferent set of solutions 
avoid the inefcient volumetric structure and work with point cloud directly. 
In order to deal with such an unstructured data, we have seen already how 
the most frequent approach is to leverage a PointNet-like architecture. We 
mentioned earlier 3DFeatNet [174] which uses its method to detect keypoints 
and to extract features in outdoor scenes. Khoury et al. propose CGF, a 
very compact descriptor [177] extracted by mapping 3D oriented histograms 
to a low-dimensional feature space using MLPs. 

PPFNet [178] is another solution that leverages PointNet but it encodes 
precomputed features instead. The method requires a preliminary step to 
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Figure 3.6: 3DSmoothNet [176] architecture. The inputs are two mini-
batch of 3D SDV voxel grids. The network has a siamese architecture. 
Each sub-architecture consists of 3D dense convolutional (green rectan-
gle), batch-normalization (orange), ReLU activation function (blue) and ℓ2-
normalization (magenta) layers. LBH is the batch hard loss working with 
the anchor fθ(Xa) the positive fθ(Xp) and negative fθ(Xn) examples. Im-
age taken from paper. 

split the input point cloud in several local support regions containing a set of 
coordinates C ∈ RN×3 (including an anchor). After grouping, a set of point 
pair features (PPF) [97, 179] is extracted from each region which is now 
represented by F ∈ R(N−1)×4 . The choice of PPF is due to the fact that such 
a descriptor is invariant to rotation transformation, therefore it can skip 
the LRF estimation (see Chapter 1 Sec. 3.1.2 for further details). Then, 
instead of encoding these features into a histogram-based representation, as 
proposed by PFH and FPFH [97], PPFNet uses a PointNet-based encoder 
to extract the fnal 128-dimensional descriptor. A local-to-global approach 
is adopted during the encoding, by mixing concatenations and pooling of 
layers as shown in Fig. 3.7. 
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Figure 2. PPFNET, our inference network, consists of multiple PointNets, each responsible for a local patch. To capture the global context
across all local patches, we use a max-pooling aggregation and fusing the output back into the local description. This way we are able to
produce stronger and more discriminative local representations.

where xi and yi(P) are matched under P. We assume X
and Y are of equal cardinality (|X| = |Y| = n). In form of
homogenized matrices, the following is equivalent:

d(X,Y|T,P) =
1

n
‖X−PYTT ‖2 (2)

Two sets are ideally matching if d(X,Y|T,P) ≈ 0. This
view suggests that, to learn an effective representation, one
should preserve a similar distance in the embedded space:

df (X,Y|T,P) =
1

n
‖f(X)− f(PYTT )‖2 (3)

and df (X,Y|T,P) ≈ 0 also holds for matching points sets
under any action of (T,P). Thus, for invariance, it is desir-
able to have: f(Y) ≈ f(PYTT ). Ideally we would like to
learn f being invariant to permutations P and as intolerant
as possible to rigid transformations T. Therefore, in this
paper we choose to use a minimally handcrafted point set to
deeply learn the representation. This motivates us to exploit
PointNet architecture [31] which intrinsically accounts for
unordered sets and consumes sparse input. To boost the tol-
erance to transformations, we will benefit from point-pair-
features, the true invariants under Euclidean isometry.

Point Pair Features (PPF) Point pair features are anti-
symmetric 4D descriptors, describing the surface of a pair
of oriented 3D points x1 and x2, constructed as:

ψ12 = (‖d‖2,∠(n1,d),∠(n2,d),∠(n1,n2)) (4)

where d denotes the difference vector between points, n1

and n2 are the surface normals at x1 and x2. ‖·‖ is the
Euclidean distance and ∠ is the angle operator computed in
a numerically robust manner as in [2]:

∠(v1,v2) = atan2
(
‖v1 × v2‖ , v1 · v2

)
(5)

∠(v1,v2) is guaranteed to lie in the range [0, π). By con-
struction, this feature is invariant under Euclidean transfor-
mations and reflections as the distances and angles are pre-
served between every pair of points.

PointNet PointNet [31] is an inspiring pioneer address-
ing the issue of consuming point clouds within a network
architecture. It is composed of stacking independent MLPs
anchored on points up until the last layers where a high di-
mensional descriptor is synthesized. This descriptor is weak
and used in max-pooling in order to aggregate to a global in-
formation, which is then fed into task specific losses. Use of
the max-pooling function makes the network inconsiderate
of the input ordering and that way extends notions of deep
learning to point sets. It showed potential on tasks like 3D
model classification and segmentation. Yet, local features
of PointNet are only suitable for the tasks it targets and are
not generic. Moreover, the spatial transformer layer em-
ployed can bring only marginal improvement over the basic
architectures. It is one aspect of PPFNet to successfully
cure these drawbacks for the task of 3D matching. Note, in
our work, we use the vanilla version of PointNet.

4. PPFNet

Overview We will begin by explaining our input prepa-
ration to compute a set describing the local geometry of a
3D point cloud. We then elaborate on PPFNet architecture,
which is designed to process such data with merit. Finally,
we explain our training method with a new loss function to
solve the combinatorial correspondence problem in a global
manner. In the end, the output of our network is a local de-
scriptor per each sample point as shown in Fig. 2.

Figure 3.7: PPFNet [178] architecture. Image taken from paper. 

A variant of PPFNet, is PPF-FoldNet [180] an unsupervised learning 



79 2 Learning to extract features from point clouds 

method for 3D local descriptors based on the auto-encoding of point pair 
features by means of FoldingNet [181], a folding-based auto-encoder which 
encapsulates point pair features in an end-to-end trainable network. Cap-
suleNet [182] propose an auto-encoder designed to process sparse 3D point 
clouds while preserving spatial arrangements of the input data. The encoder 
is a capsule network using MLPs along with a dynamic routing scheme and 
the peculiar 2D latent space to approach several point cloud-related tasks, 
such as object classifcation, object reconstruction and part segmentation. 

Instead of using fully connected layers, D3Feat [14] employs fully con-
volutional ones, in the attempt to add the knowledge of the spatial locality 
and to combine the detection of points of interest with their description. On 
the contrary, Choy [15] leverages on a reduced computational complexity 
via the sparse convolutional layers [12] and suggests using sparse tensors to 
tackle the problem on the data as a whole. Other promising works have 
been recently presented. These exploit a complex cylindrical convolution for 
an advanced invariance to rotation [183], or an encoder-decoder attentive 
model [184]. These more sophisticated methods however come with a higher 
computational footprint. 

In the following we review two of the most promising solution in terms of 
robustness and low computational overhead which are suitable for real-time 
applications. 

2.1 Fully Convolutional Geometric Features (FCGF) 

The introduction of Minkowski Engine1 (ME) [12] opened the door to the 
possibility of implementing fully convolutional neural networks (FCNN) to 
address classical problems of 3D vision to apply convolutions to unordered 
point clouds. One of the frst methods to beneft from such a technologi-
cal leap was the Fully Convolutional Geometric Feature (FCGF) descriptor 
[15]. In Fig. 3.8 we depict its architecture, which is quite straightforward: 
a U-Net structure takes as input a point cloud having size N × 3, which is 
passed throughout a chain of 3D sparse convolutional layers aimed to encode 
the low dimension input into a higher dimensional space. Such a high di-
mensional description is then decoded by means of transposed convolutional 
layers [185] and the fnal output is a tensor of size N × M , where M is the 
dimension of the descriptor associated to each point. ResNet blocks are in 
place, interleaved with standard CNNs layers to increase the depth of the 
network, while skip connections are used to pass the frst layers information 
content to the decoding stage. In total we have 19 layers. The highest di-
mensional space the network reaches is 256D while in the end the descriptor 
has length 32, which is a good value to ensuring compactness. 

Two learning metric are proposed to train the network, namely the con-

1https://github.com/NVIDIA/MinkowskiEngine 

https://github.com/NVIDIA/MinkowskiEngine
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Figure 3.8: FCGF architecture. The kernel size, the stride and the output 
channel dimension are reported in each layer. Image taken from [15]. 

trastive loss and the triplet loss. The rationale is that two features (fi, fj ) 
should be close to each other when they are similar (i.e. they belong to a 
set of positive correspondences), whereas diferent features should difer at 
least by a certain margin (negative correspondences). The contrastive loss 
can then be defned as: 

L(fi, fj ) = Ip [di,j − mp]
2 + In [mn − di,j ]

2 (3.3) 

Here Ip[·] returns 1 when the two features are similar and 0 conversely, while 
In[·] does the opposite. Two margins mp and mn are used to control the 
maximum and minimum distances for positive and negative pairs respectively 
and di,j represent the distance between fi and fj in euclidean space. The 
triplet loss instead consider one feature fi and a positive (fp) and a negative 
(fn) pair of features simultaneously: 

L(fi, fp, fn) = (m + di,p − di,n)
2 (3.4) 

In practice, at runtime the pairs of features are picked randomly from positive 
and negative correspondence sets. In FCGF a hardest variant is proposed 
which impose the selection of the hardest negative sample [186] (Fig. 3.9). 
The experiments showed that the triplet loss is prune to collapse, so the 
contrastive loss is preferred in the end. 

Figure 3.9: Sampling and negative-mining strategy for diferent losses. Tra-
ditional contrastive and triplet losses use random sampling. Conversely, the 
hardest-contrastive and hardest-triplet losses use the hardest negatives. Im-
age taken from [15]. 
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Because of the fully convolutional architecture, the network mitigates 
the curse of dimensionality, so that no heavy quantization is required for 
the input (just for the sake of discretization and relaxation on neighborhood 
density variation) whereas the model can be fed with a dense point cloud and 
the local information is preserved. Moreover, running sparse convolutions is 
much faster than dense counterpart and no additional overhead is required 
to shift paradigm moving from original point cloud input to regular data 
structures. In Tab. 3.1 we report the results according to [15] obtained from 
the evaluation of the feature matching recall (FMR) on 3DMatch dataset [6] 
with τ1 = 0.05m and τ2 = 0.10m (see Appendices Sec. C for further details). 
The timing is reported per single feature extraction, so it is not particularly 
meaningful per se, however it is helpful to compare against other methods. 
Overall, FCGF is by far the fastest solution and it also has the best FMR, 
which means that most the valid matches are detected with it. Indeed, FMR 
is the most important parameter for ensuring a good registration because it 
allows to rely on valid correspondences in the fnal step of alignment matrix 
estimation (a low precision, conversely, can be tackled with ad hoc outliers 
rejection solutions [6]). 

Method 
3DMatch [6] Augm Feat 

Dim 
Time 
[ms]FMR STD FMR STD 

Spin [94] 22.7% 11.4% 22.7% 12.1% 153 0.133 
SHOT [90] 23.8% 10.9% 23.4% 9.5% 352 0.279 
FPFH [98] 35.9% 13.4% 36.4% 13.6% 33 0.032 
USC [93] 40.0% 12.5% - - 1980 3.712 

PointNet [9] 47.1% 12.7% - - 256 0.171 
CGF [177] 58.2% 14.2% 58.5% 14.0% 32 1.463 

3DMatch [6] 59.6% 8.8% 1.1% 1.2% 512 3.210 
Folding [181] 61.3% 8.7% 2.3% 1.0% 512 0.352 
PPFNet [178] 62.3% 10.8% 0.3% 0.5% 64 2.257 

PPF-FoldNet [180] 71.8% 10.5% 73.1% 10.4% 512 0.794 
CapsuleNet [182] 80.7% 6.2% 80.7% 6.2% 512 1.208 

3DSmoothNet [176] 94.7% 2.7% 94.9% 2.4% 32 5.515 
FCGF [15] 95.2% 2.9% 95.3% 3.3% 32 0.009 

Table 3.1: Feature match recall (FMR) and its standard deviation (STD) on 
3DMatch test set. Feat Dim shows the descriptor dimension of each method. 
Time refers to milliseconds consumed per feature. The table is reproposed 
from [15]. 

The network is trained to work not only with 3DMatch indoor but also 
with Kitti [56] outdoor scenes. Overall, the resulting geometric features seem 
robust to partial views and clutter as well as to scale size. In Fig. 3.10 a color-
coded representation of these features using a t-SNE [187] scalar mapping 
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is represented. This means that similar features in FCGF 32-dimensional 
space also have similar color here. It can be appreciated how the diferent 
regions of the fragments show efective distinction. 

(a) 3DMatch dataset [6]. (Left) Kitchen. (Right) Hotel 1. 

(b) Kitti dataset [56]. (Left) Pair 1. (Right) Pair 2. 

Figure 3.10: Color-coded features on fragments pairs for scenes in (a) indoor 
and (b) outdoor benchmark datasets. The FCGF features for each pair of 
point clouds are mapped to a scalar space using t-SNE [187] and colorized 
with spectral color map. 

2.2 D3Feat: Joint Learning of Dense Detection and Descrip-
tion of 3D Local Features 

The work by Bai et al. [14] shares many common points with the work 
of Choy in FCGF. In essence the network has a U-Net structure with skip 
connections which takes as input a dense point cloud N × 3 and outputs a 
higher dimensional tensor N × M (see Fig. 3.11). Diferently from FCGF, 
instead of ME, D3Feat uses a density normalized version of KPConv [11] as a 
backbone to defne the ResNet blocks that compose the layers of the U-Net. 
The density normalization is necessary to overcome the fact that KPConv 
is not point density invariant. The equation of the general convolution by 
kernel g at point x in the set P ∈ RN×3 associated with set of features 
Fin ∈ RN×Din is: 

X1 
(Fin ⋆ g) = g(xi − x)fi (3.5)|Nx| 

xi∈Nx 

where Nx is the radius neighborhood of point x and the kernel function is 
defned as: 

KX 
g(xi − x) = h(xi − x, x̂k)Wk 

k 
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Here h is the correlation function between the kernel point x̂k and supporting 
point xi, K is the number of kernel points and Wk is the weight matrix of 
x̂k. 

Figure 3.11: D3Feat architecture. Image taken from [14]. 

Moreover the output of D3Feat has additional information with respect 
to FCGF. Indeed, besides the descriptor which is again a 32-dim vector, 
D3Feat outputs also a 1-dim vector to assign a score to each point. Similarly 
to 3DFeatNet [174] in 3D or R2D2 [172] in 2D, the score represents the 
distinctiveness of a point, i.e. its saliency. It is then possible to sort them 
out according to the score and fnd the most reliable points, meaning the 
keypoints of the cloud. In Fig. 3.12 we report a colorized score map which 
highlights how the attention of the network prioritized the corners and the 
sharp edges of the dense point cloud. The method uses a combination of 

Figure 3.12: D3Feat [14] keypoint detection. 

two losses during training. The former is the descriptor loss, which is again 
the hardest contrastive as for FCGF. In addition there is need to defne a 
detector loss. The idea is then to encourage the network to predict higher 
scores for matchable correspondences and lower scores for non matchable 
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ones. The loss is then defned as: 
X1 

Ldet = [(di,p − di,n) (si + sp)] 
n 

i 

The rationale here is that when (di,p − di,n) < 0 the correspondence can 
be matched with nearest neighbor search and the two scores – si and a 
positive match sp – are encouraged to be high. On the contrary, when the 
two correspondences are ambiguous, the di,n is smaller than di,p and so the 
scores should be low. According to the authors, D3Feat ofers a comparable 
FMR on 3DMatch dataset and it is even faster to compute than FCGF since 
KPConv avoids the overhead of hashing to implement sparse convolutions, 
conversely to what happens with the Minkowski Engine. 

3 DL-based frameworks for rigid point cloud regis-
tration 

In Chapter 1 Sec. 3.1.4 we saw how important is to reject the false posi-
tive matches and to retrieve the good correspondences to estimate a coarse 
alignment based on sparse sub-sets of points. From a data-driven perspec-
tive, this problem has been treated as a classifcation task: the goal is to 
assign a weight for each putative correspondence in order to represent the 
likelihood of the match to be real. The frst work where we found this idea is 
[188], where Yi et al. address the problem for 2D domain. They propose to 
use a fully connected network to produce a score for each 2D correspondence. 
Moreover, the network regresses the fnal homography which aligns two views 
of the same outdoor scene. In a similar fashion, Zhang et al. present OANet 
[189], which again regresses the homography transformation to align two 
images using an ordered-aware network which clusters the unordered input 
correspondences into a canonical order. The clustering captures the local 
context, then the clusters are used to extrapolate the global context via spa-
tial correlation. Another interesting solution is SuperGlue [190], a graph 
neural network which leverages the spatial consistency to fnd the valid 2D 
matches in the wild. 

Recently, all these methods have been extended to 3D domain. The frst 
work to address the problem of point cloud pairwise rigid 3D registration 
was 3DRegNet [16] in 2019, which is an end-to-end trainable network based 
on [188] used to regress the alignment matrix receiving as input a set of 
3D corresponences. At the core of 3DRegNet there is a PointNet-like ar-
chitecture to deal with the unordered set of input correspondences. Other 
works exploit a similar solution: PointNetLK [165] unrolls PointNet and Lu-
cas and Kanade algorithm [191] into a single trainable recurrent deep neural 
network. Li et al. revisited PointNetLK to include an analytical Jacobian 
[192] to enhance the generalization. Then, Choy et al., the authors of FCGF, 
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leveraged again the Minkowski framework for tackling the new task and pre-
sented Deep Global Registration network (DGR) [17]. At the same time, 
the author of 3DSmoothNet, Gojcic et al., introduced their own solution 
[18] by leveraging on a 3D version of OANet and extended the problem to 
a multi-view domain. More recently, the authors of D3Feat also proposed 
PointDSC [142], a network which incorporates the spatial coherence to learn 
how to register a pair of point clouds. 

Moreover, some methods exploit a combination of spatial coordinates and 
geometric features to guide full matching between points, such as MFG [193], 
which stands for multi features guidance network, or RMP-Net [194] which 
additionally uses a diferentiable Sinkhorn layer [195] for obtaining soft corre-
spondences. PR-Net [196] uses Gumbel-Softmax with gradient estimation to 
obtain a sharp and near-diferentiable mapping function. In DirectReg [197], 
Deng et al. expolits their PPF-FoldNet [180] for creating oriented-specifc 
poses with a siamese network confguration and then pass the encoded de-
scriptors to a RelativeNet which assigns correspondence-specifc orientation 
and retrieve the alignment pose. Finally Deep Closest Point (DCP) [198] 
utilizes a sub-network to address difculties in the classical ICP pipeline, by 
using DGCNN [199] to extract and merge local features, but it assumes to 
work with complete point clouds, which is rarely the case. 

In the following we review the most appealing solutions that promise 
to ofer robust registration at the expense of a very small computational 
overhead. Indeed, our hope is to fnd a solution which is suitable for real-
time applications. 

3.1 3DRegNet 

Pais et al. [16] present an extension in 3D of the work presented by Yi et 
al. [188] to estimate homographies in 2D. The main diference here is that 
the input of 3DRegNet is a set of correspondences of 3D coordinates (i.e. a 
N × 6-dimensional tensor) whereas the input of [188] was made of 2D corre-
spondences (so N × 4 tensor). In Fig. 3.13 we review the architecture of the 
network. The method comprises two sub-blocks which are devoted to reject 
the outliers within the initial set and to regress the transformation matrix 
to align them respectively. The rejection block is indeed a classifcation net-
work which uses a concatenation of 12 ResNets blocks [200] bounded by a 
couple of MLP layers to output a N-dimensional vector. Therefore the net-
work maps RN×6 → RN to assign to each correspondence a weight w ∈ [0, 1] 
which represents how reliable that correspondence is. Similarly to what it 
is done in other works [17, 18] such a weight vector could be exploited in a 
weighted least square algorithm to infer the transformation matrix. How-
ever, in the original version of 3DRegNet the authors preferred an end-to-end 
solution to train the network to infer the proper alignment automatically. 
The additional regression block aims to do that. While traversing the chain 
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of ResNets in the classifcation block, every mini-network returns a tempo-
rary N × 128 output that is passed both to the successive ResNet (either as 
direct input and as skip connection) and to a context normalization block 
[188]. The block normalizes with respect to mean and variance of the dis-
tribution and it uses max pooling to retrieve the global information of the 
inner relationships. At the output we have a (12 + 1) × 128 tensor which 
feds the regression block defned by 8 convolutional and 2 fully connected 
layers. The fnal output is a learned parametrization of the rigid transforma-
tion T̂ that aligns the two sets. The T̂ matrix consists of a rotation matrix 
R̂ and a translation vector t̂. Its size depends upon the desired represen-
tation of R̂ : in Lie algebra only three parameters are required, four when 
a quaternion-based representation is used and nine with linear algebra. Af-
ter the experiments run in the original paper, Lie algebra, is indicated as 
the best option due to its compactness and the reconstruction perfomance 
overall. 

N 

c 

Figure 3.13: 3DRegnet architecture. A set of input correspondences is passed 
to a classifcation block which outputs the corresponding weight representing 
an accuracy score for each match. At the same time, the output of the 
inner layers within the classifcation block (specifcally a chain of ResNets) 
is passed to a context normalization layer after a max pooling fltering. The 
normalized information coming from the classifcation block serves as input 
for the registration block, which is composed by a set of convolutional and 
fully connected layers. The fnal output is a parametric representation of the 
transformation matrix which aligns the matching sets. 

The learning is fully supervised: a loss for each block is defned, while 
a ground truth is required to reference the valid correspondences as well as 
the optimal pairwise registration matrix. The classifcation loss is defned 
as a cross-entropy function H(y, ŷ): 

X 
Lk �1 k
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which, for the k-th fragments pair, computes the mean of the cross-entropy 
over the N correspondences, evaluated for the ground truth label lki and the 
output of the classifcation block (oki ) activated with a sigmoid function σ. 
The registration loss instead is a simple formulation of the ℓ1 distance metric 
function in 3D space. An ℓ1 distance was experimentally chosen among other 
metrics because it produced best results in terms of stability and convergence 
properties. The loss is then defned as the point-wise distance between x and 
the transformed version of the corresponding one y after applying the learned 
transformation T̂ : 

Lk 

At training stage, a batch of correspondence lists of preset length is passed to 
the network. The fnal loss objective is a linear combination of the two losses 
we reported above, evaluated over the mean of K diferent pairs. Precisely 
the total loss is: 

L = αLc + βLr (3.8) 

where α and β are two hyper-parameters used to properly tune the impact 

r 

of each sub-loss the overall cost. on 
In practice, the FC network requires to have a restricted number of cor-

respondences to evaluate at runtime. The authors of 3DRegNet uses 2000 of 
such correspondences for their tests. 

3.2 Deep Global Registration 

Deep Global Registration (DGR) [17] is the proposal from Choy et al. to 
leverage sparse convolutional layers by means of their framework – Minkowski 
Engine – to reject bad matches in a correspondence set and retrieve the 
optimal transformation to align two point clouds. 

X 
= x 

N 

N
1 k

i − (R̂yki 
1 

i=1 

+ t̂) (3.7) 

Figure 3.14: DGR architecture. A set of corresponding point is passed as 
input to a U-shaped network which classifes the correspondences by as-
signing a confdence weight to each. These weights are used in a Weighted 
Procrustes-based registration block which infers the registration matrix. A 
refnement block is in place to further improve the accuracy of the estima-
tion. 

In Fig. 3.14 we report the main blocks of DGR. The frst component has 
a similar behavior to the classifcation block of 3DRegNet, i.e. it estimates 
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the accuracy of a 6-dimensional input set of putative correspondences, but 
instead of using MLPs to densely connect all correspondences information, it 
has a 6-dimensional convolutional network aimed to estimate the fnal weight 
tensor. The structure of this network is almost identical to the one proposed 
in FCGF: a U-Net with consecutive ResNet blocks containing a couple of 
sparse convolutional layers each and skip connections to connect the initial 
layers with the fnal ones that in the end returns the N -dimensional tensor. 
As for 3DRegNet, a cross entropy loss is used for training the model using 
the ground truth correspondences set as reference. 

The second block of this method is then a diferentiable Weighted Pro-
crustes solver. In general, the Procrusets method [201, 202] provides a closed-
form solution for rigid registration in the special euclidean group SE(3), 
which is defned as the linear combination of a rotation R ∈ R3×3 and a 
translation t ∈ R3 . In order to have a end-to-end diferentiable registration, 
the standard approach the method is to pass gradients through coordinates. 
The energy function to minimize is then the mean squared error between 
corresponding points: 

X 
E =

1 
xi − yj 

2 (3.9)
N 

(i,j)∈M 

where N is the number of keypoints and M is the set of correspondences. 
However, this solution is a O(N2) complex problem. On the contrary, 
weighted Procrustes method of DGR passes gradients through the weights 
associated with correspondences and it allows to reduce the burden of com-
putation and it exploits a dense correspondence set rather than sparse key-
points. The formulation is: 

X 
E2 = (yj − (Rxi + t))2 (3.10) 

(i,j)∈M 

In the end, the registration loss adopted for training this module is 

n � �X � � 
E(R, t) = ϕ w(i,Jj ) L yJi 

, Rxi + t (3.11) 
i 

where Ji is the j matching coordinate to i in the opposite set of points, ϕ is 
a prefltering function to threshold only correspondences with an estimated 
accuracy above τ = 0.5 and L is the Huber loss [203]. 

Finally, an optimization module is used to fne-tune the initial alignment 
and incorporates a failure detection module to evaluate whether the number 
of valid correspondences returned by the classifcation module is sufcient 
for running the Weighted Procrustes solver or not. Later in Sec. 4.4 we will 
discuss more about the contribution of this module for the pose refnement 
phase. 
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3.3 Learning Multi-view Point cloud Registration (LMVA) 

The work of Gojcic et al., LMVA [18], is a step forward with respect to the 
previous solutions we saw. It is again an end-to-end learnable 3D point cloud 
registration, however it does not limit to pairwise confguration but indeed it 
extends the approach to a multi-view reconstruction scenario. As the name 
suggests, multi-view registration considers the contribution from multiple 
agents to fnd a tight solution to align several point clouds all together si-
multaneously. Standard applications usually follows a two-stage pipeline: an 
initial pairwise alignment is evaluated for all the pairs involved and then a 
globally consistent refnement is performed. Such a global refnement aims at 
establishing the cyclic consistency across multiple scans and helps in resolv-
ing the ambiguous cases due to the ambiguity of certain pairwise alignment. 
Indeed, pairwise registration can be afected by the lacking of sufcient over-
lap between neighboring points, parts symmetries, or repetitive scene areas, 
and so on. 

In practice, the task of global refnement can be approached in several 
ways. One option is to exploit a brute force correspondence search along 
with ICP-based alignment to optimize the camera poses. Due to the in-
creased complexity of correspondence estimation, some methods have only 
the motion as objective for optimization. More recent solutions exploit the 
strategy of synchronization [204, 205, 206] as backbone for optimization. 
These methods creates a graph of interconnected poses initially established 
from pairwise registrations and then use the global cycle-consistency to syn-
chronize all the nodes simultaneously. DeepMapping [207] is one of the frst 
attempt to develop a neural network to tackle the problem. It proposes a 
global point cloud registration approach by frst estimating the pose with a 
registration network and then it uses a second network for estimating the oc-
cupancy status of global coordinates to model the scene structure. Huang et 
al. [206] instead propose to learn a weighting function to use for the edge in 
the graph during synchronization, similar to what also LMVA does, which in 
addition also learns the descriptor representation using FCGF and the pose 
estimation with a revisited version of OANet. In Fig. 3.15 the architecture 
of LMVA is illustrated. 

Figure 3.15: LMVA architecture. Image taken from [18]. 
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It is worth mentioning that the method ofers two distinct pipelines at 
implementation level. The frst one solve solely the pairwise registration 
problem, while the second one incorporates all the pairwise relationships 
into a global framework for multi-view refnement. Up to now, the authors 
provided only the code for the former solution. In 4.4 we review such imple-
mentation with more details. 

4 Cross-domain assessment of deep learning-based 
alignment solutions for real-time 3D reconstruc-
tion 

After reviewing the state-of-the-art for DL-based registration solution, we 
make a set of observations. First, the Most prominent DL-based contribu-
tions for 3D view alignment appeared very recently and almost concurrently, 
thus there is still the need for an in-depth comparison among them aimed at 
analyzing opportunities they ofer and possible limitations. Moreover, since 
these technologies have been proposed and tested on data from low-cost 
scanners and with medium-large scales (about 1 to 10 meters), there is the 
need to understand if the same solutions are equally efective when dealing 
with data acquired with hand-held scanners targeted for quality reconstruc-
tion of single objects/subjects rather than entire scenes/environments, and 
operating on smaller scales and ranges (from cm to few meters). Finally, 
beyond scale-related aspects, 3D alignment performance can be conditioned 
by other sensor-related and/or data-dependent aspects (e.g. point density, 
geometric features, noise, artifacts) and this may require due attention for 
design, an appropriate data collection and opportune adaptation strategies. 

Hereafter, we address the above points both singularly and jointly aiming 
at a better understanding and exploitation of DL-based technologies in the 
challenging context of real-time 3D reconstructions. This is done following a 
cross-domain assessment of the considered DL methods with the objective of 
verifying/refning their robustness and generalization properties. This work 
was part of two publication, [C3] and [J1]. 

4.1 Data 

Our goal is to evaluate the performances of novel 3D-DL models to perform 
a pairwise registration of point clouds created with the scanner which is 
currently under study. We already introduced the device in the previous 
chapter (Chapter 2 Sec. 1) and we explained the type of data it produces. In 
brief, the device targets the reconstruction of small scale objects by ensuring 
a high level of accuracy. The point clouds we extract from each frame during 
the scanning, represent a small area using a lot of points such that we refer 
to them as a dense data. Then, in order to benchmark new solutions, we 
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created a dataset, we called it DenseMatch and we presented it in Chapter 
2 Sec. 3. This is the frst dataset we aim to assess here. The second dataset 
is 3DMatch [6]. Indeed, we already introduced also this dataset so that the 
reader can refer to Chapter 1 Sec. 2.1 for additional details. Nevertheless, in 
Tab. 3.2 we summarize both the datasets by giving their main specifcation 
for the sake of a quick comparison. Moreover, in Fig. 3.16 we show again 
few examples extracted from both with an additional visualization of the 
diferent scales we are dealing with. 

Figure 3.16: Example of scenes for 3DMatch [6] (blue) and DenseMatch [J2] 
(yellow). On the right two scenes are represented together to highlight the 
scale diference of the two data. 

Dataset Num of Num of Data Scanner Scanner Camera Num Points BBox Volume Point 
name Scenes PC type used type Resolution per Frame (avg) per Frame (avg) Spacing 

3DMatch 
[6] 64 2601 

indoor 
reconstruction 

Kinect, Xtion Pro, 
Real Sense D 415 

All handheld 
optical scanners 

Stereo Cam 
(640x480) 

[11k - 640k] 
(150k) 

[0.35 - 134] 
(20) m3 

[6.5 - 8.2] 
(7.10) mm 

DenseMatch 
[J2] 19 3140 

object 
reconstruction 

InSight3 
(prototype) 

Handheld 
optical scanner 

Stereo Cam 
(1280x1024) 

[60k - 1M] 
(500k) 

[10−4 - 10−2] 
(3 × 10−3) m3 

[0.18 - 0.35] 
(0.25) mm 

Table 3.2: 3DMatch and DenseMatch main specifcations. BBox stands for 
Bounding Box. The oriented BBoxes are estimated using Open3d [55] as 
well as the average points inter-distances that have been used to defne the 
spacing. 

It is worth saying that we chose to pick 3DMatch because it was involved 
in almost all the novel methods we are going to assess, both for training the 
models and testing them. Since 3DMatch is basically an indoor reconstruc-
tion benchmark dataset, our goal is twofold: we want both to double-check 
the validity of the results each work proposed for it and to discuss about how 
each method can generalize in a cross-domain application scenario, since the 
input (i.e. pairs of point clouds) is the same. 

The idea is to test all potential point cloud pairs (i.e. PCi − PCj , i ̸= j) 
for each dataset. A minimum overlap between the two surfaces is required 
at this stage to defne valid matching pairs. Therefore we follow a common 
practice and we choose a threshold equal to the 30% of the smallest point 
cloud in the pair as the minimum overlapping amount of points. In order to 
determine whether a point has overlap or not, we set a maximum distance 
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threshold equal to 3 times the voxel size we use for sub-sampling. In addition, 
we do a further skimming in the DenseMatch dataset: indeed, most of its 
frames are redundant due to the high rate we used to acquire them which 
produce a large overlapping area between consecutive fragments. According 
to the above mentioned criteria the test set would have ∼70k trials (while 
3DMatch has 1623 of them). For this reason, we sample decimate the test 
pool by picking one out of 10 pairs. The fnal test set contains 7261 valid 
pairs. 

We now present the strategy we used for the assessment. 

4.2 Method 

Here we focus on recent architectures that start from a set of 3D point corre-
spondences that can be extracted either from traditional approaches (FPFH 
[98], presented in Chapter 1 Sec. 3.1.2) or even DL-based ones (FCGF [15] 
and D3Feat [14], presented in Sec. 2.1 and 2.2 respectively). A schematic 
overview of the selected solutions, showing how they are inserted into the 
comparative context, is presented in Fig. 3.17, while the principal aspects 
of each network involved in the process (including feature descriptors) are 
summarized in Tab. 3.3. 

Figure 3.17: Overview of the used testing pipeline and architectural difer-
ences of the considered methods. We evaluate two benchmark datasets. The 
preliminary step requires to down-sample and to describe via geometric de-
scriptors each point cloud. Then, on the descriptor space, we perform the 
matching of similar points between a couple of point clouds and we produce 
a set of putative correspondences pairwise. Moreover, we feed the networks 
with this set. Their output is the estimated transformation matrix that align 
the source point cloud with its target. Finally, given the ground truth poses 
of each point cloud in the dataset, we are able to evaluate the quality of the 
alignments. 
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Method Input Network Keypoint Feature Feature Pairwise Multi-View 
Name type type detection extraction dimension registration registration 

D3Feat 
[14] 

Point Cloud 
(N × 3) 

fully 
convolutional 
(KPConv [11]) 

✓ ✓ 32 - -

FCGF 
[15] 

Point Cloud 
(N × 3) 

fully 
convolutional 

U-shaped (ME [12]) 
- ✓ 32 - -

3DRegNet 
[16] 

Corresp List 
(N × 6) 

fully connected 
+ pooling + conv 

(PointNet [9], Yi [188]) 
- - - ✓ -

DGR 
[17] 

Corresp List 
(N × 6) 

fully conv U-shaped 
(ME [12]) + weighted 

Procrustes 
- - - ✓ -

LMVA 
[18] 

Corresp List 
(N × 6) 

fully connected 
(OANet [189]) + weighted 

Procrustes 
- - - ✓ ✓ 

Table 3.3: Summary of the considered DL methods. For each one, the type 
of required input data, the network structure and purposes are reported. 

4.2.1 Creation of the putative correspondences set 

Before starting the test, we point out that the networks are agnostic to the 
method used to create the putative correspondences. In the original articles, 
3DRegNet uses FPFH to evaluate correspondences, while LMVA chooses 
FCGF. DGR uses both: it picks FCGF for testing its own method while it 
uses FPFH for the handcrafted estimators. In order to maintain fairness in 
the way we formulate the tests, we decide to use a unique descriptor for all 
the methods instead. Moreover, since we are interested into investigating 
systems largely based on DL solutions, motivated by the promising results 
presented in the original works, we decide to leverage a data-driven approach 
also for feature extraction. Nevertheless, in the ablation study section 4.4 
we will also consider FPFH as an alternative solution and we will see how it 
performs in comparison. Overall, we follow the DGR policy to build the set 
of putative correspondences: frst, each point cloud is quantized according to 
a voxel size; secondly, a 32-dimensional FCGF descriptor is assigned to each 
point. It is worth to notice that we should not use the same parameters for 
both 3DMatch and DenseMatch, since the default voxel-size was 5 cm for the 
former. By using such value we would defnitely lose the geometric context 
in the latter case. Moreover, after we extracted the features we match them 
as follows: each feature in the source point cloud is paired with the closest 
one in the feature space of the target point cloud. In practice, if we extracted 
1000 and 2000 features from the source PC and the target respectively, we 
would end up with 1000 matches nevertheless. This means that some target 
points can be matched multiple times with diferent source points. Indeed we 
do not impose mutuality to speed up the matching process. Finally, we save 
the putative matches and we use them to feed all the registration methods 
without requiring to recompute them at runtime, so that we save time during 
training. 
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4.2.2 Evaluation metrics 

The metrics used to analyze the quality of the registration methods are 
in common with other works [6, 16, 17, 18]. In particular, we focus on 
the accuracy of the estimated pairwise transformations by T̂ ∈ R4×4 . In 
order to that, we frst split the matrix into its rotational and translational 
components, i.e. R̂ ∈ R3×3 and t̂ ∈ R3 respectively. Then we defne the 
rotation errors (RE) as: 

! 
−1RE = cos 

trace( ̂R−1Rgt) − 1 
2 

(3.12) 

where Rgt is the ground truth rotation. The main idea behind such defni-
tion is to represent the two rotation matrices in their axis-angle form (as a 
mapping from Lie group SO(3) to Lie algebra so(3)) and then to compute 
the angle between the two vectors. Therefore the RE value is expressed in 
degrees (deg). For further details the reader can refer to the book of Yi Ma 
et al. [208]. The translation error (TE) is instead defned as the distance in 
norm ℓ2 between the two translation vectors, expressed in mm: 

TE = tgt − ̂t (3.13) 

Finally, following Choy’s example [17], we choose to use two thresholds on 
these values to mark a test as positive when it satisfes the conditions RE < 
REthr and TE < TEthr. We compute the recall as the percentage of positive 
tests out of the total number of tests carried out. For all tests, TE and 
RE reported values are evaluated exclusively on the pool of results with a 
positive outcome. 

4.3 Experimental setup 

We start our test on 3DMatch dataset by using the default implementations 
as well as the models provided by the authors of-the-shelf. DGR and LMVA 
models are obtained after training their architectures using the 3DMatch 
training set [6], which contains 56 indoor scenes. The dataset also provides 8 
testing scenes. On the contrary, 3DRegNet, used a smaller training dataset. 
To cope with this discrepancy, we train the network from scratch using the 
full training set instead. Unfortunately, as mentioned also by Choy in [17], we 
have been experiencing problems with the last available 3DRegNet network 
implementation. In particular, even though we are able to reproduce the 
original results using its own test dataset, we obtain very bad results on the 
full test dataset we evaluate also for DGR and LMVA. Such bad results are 
independent from the type of model we use, either it is the original one or the 
one we trained from scratch. In the results section, we report more details 
about the test we performed on this network and our surmise about such 
faults. 
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Finally, although LMVA is designed for multi-view registration, so far 
the authors provided the code for pairwise registration only. Nevertheless, 
our main focus, for the moment, is related to pairwise rigid registration 
approaches evaluation, therefore this is not a limitation for us. In order 
to investigate how the diferent networks are able to generalize, we then 
repeat the same tests with the same models using the new DenseMatch 
dataset. After the frst round of experiments with default setups, we try to 
improve the obtained results. To this aim, we move in two directions: we frst 
took a deeper look at the network setups and we tweak their parameters to 
better understand their footprint on the performances. Secondly, we refne 
the pre-trained model: although the networks show already a good level of 
generalization, we assess the refnement by creating a training subset based 
on DenseMatch. With this, we want to investigate if the robustness of the 
models can be boosted by showing to the networks a new paradigm of data, 
which difers from the original set in terms of type of scene, reconstruction 
target and point density. To make the comparison as complete as possible, we 
try to apply the refnement stage to all the models under discussion. Apart 
from the already mentioned issues with the 3DRegNet implementation, we 
succeeded at refning FCGF and LMVA, while we did experience some issues 
with DGR (details are reported in Section 4.4). 

Hardware and software information All tests were performed on a 
Linux Ubuntu 18.04 machine with a Titan V video card, AMD Ryzen 1950x 
processor, and 64 GB of RAM (DGR and LMVA use the MinkowskiEngine li-
brary [12] which currently does not support Windows machines). For 3DReg-
Net the framework used is TensorFlow v1.14 while for DGR and LMVA we 
used PyTorch v1.5. For all the handcrafted algorithms instead, we used 
the implementations developed within the open-source library Open3d v0.10 
[55]. 

4.4 Results 

4.4.1 Methods comparison using 3DMatch dataset 

We compare the DL methods introduced in the Sec. 2 and 3 with the addi-
tion of classic baseline registration methods alternatives, namely RANSAC 
[114] and Fast Global Registration (FGR) [129]. Open3D ofers two imple-
mentations for RANSAC: the frst one is based on correspondences matching 
(we call it RANSAC C), which means that it works with the set of correspon-
dences we created, similarly to the other methods. By default, the number 
of points the algorithm considers simultaneously to infer a single transfor-
mation is set to 6. The other option is to use the RANSAC based on feature 
matching (therefore RANSAC F). In this case the function requires to com-
pute the correspondences at runtime. Actually there is no diference with the 
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strategy we chose to create such a set, however the default parameter for the 
number of points to use is set to 4 in this case. Since this is the method that 
Choy uses in DGR evaluation, we report the results also for this method. 
Indeed also the implementation of FGR requires additional correspondence 
creation at runtime, so we need to consider this aspect when we evaluate 
the timings for this solution. For the classic methods, we performed some 
tests on the fundamental parameter of the number of iterations but we did 
not fnd signifcant performance changes, as also confrmed by the authors of 
DGR. Moreover, in regards to DGR, we also assess the performance of the 
optimization block located at the end of the alignment chain. This test is 
done with the goal of evaluating the quality of the estimator model based on 
a Weighted Procrustes algorithm which could be sufcient in order to limit 
ourselves to an initial coarse recording. 

Finally, we remark that that other well-known methods, such as ICP and 
its recent DL-based counterpart, Deep Closest Point [198], have not been 
included, since both are based on assumptions not considered here, such as 
an initial favorable alignment for ICP (the models are instead signifcantly 
misaligned) or the matching between complete 3D models (i.e. with total 
overlap) for DCP [198], which is in contrast to partial overlap conditions in 
our setting. 

Tab. 3.4 (upper part) shows the global results related to all tests on 
3DMatch, along with the average alignment times (in ms) for the various 
techniques. We have chosen to keep the thresholds already selected in other 
methods (e.g. DGR): a TEthr value equal to 6 times the voxel size (thus 
30 cm) and 15 deg for REthr. These values are not cherry-picking since, as 
it can be seen, the mean error and std dev. remain far enough from these 
upper limits. 

A qualitative example of the reconstructions is provided in Fig. 3.18. 
Furthermore, we expand the results obtained with the diferent methods by 
reporting in Fig. 3.19 the recall obtained for each of the 8 test scenes of 
3DMatch. It can be seen how results are pretty much consistent across the 
sets, with some slight decrease of performance in Home 2 and Study. We will 
deepen these results in the ablation study section 4.4. Overall, we see that 
DGR and LMVA perform on par with RANSAC. It is interesting to notice 
how RANSAC F scored a higher recall in our test with respect to the one 
presented in the paper of DGR [17]. Since we used the same Open3d imple-
mentation, we assume we picked better settings on this function. RANSAC 
C instead was not considered originally and it seems to be even better on 
average. Nevertheless, LMVA is the method with the smallest mean errors 
and standard deviations, and it typically succeeded where the other solu-
tions struggled the most. DGR (in its version with no optimization module 
enabled) is close to this result and it is also 8 times faster than LMVA and 
20 times faster than the fastest handcrafted method. 
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Figure 3.18: Pairwise alignment examples on 3DMatch [6] dataset using 
RANSAC F [114], FGR [129], DGR (no optim) [17], LMVA [18] and pro-
viding the Ground Truth. 
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3DMatch dataset [6] - voxel size: 50 mm 

Method Recall TE [mm] RE [deg] Time [ms]Mean Std Mean Std 
RANSAC [114] C 85.58% 97.5 64.1 3.29 2.32 41.6 
RANSAC [114] F 85.99% 106.6 54.7 3.46 1.93 327.9 

FGR [129] 79.42% 85.0 66.7 2.89 2.42 547.0 
DGR [17] wo optim 81.52% 77.4 58.2 2.56 2.12 2.8 
DGR [17] w/ optim 86.57% 73.6 55.6 2.34 1.88 440.8 

LMVA [18] 88.90% 71.1 52.7 2.32 1.83 18.4 
3DRegNet [16] 6.16% 210.3 61.8 8.77 3.29 11.6 

DenseMatch dataset [J2] - voxel size: 5 mm 

Method Recall TE [mm] RE [deg] Time [ms]Mean Std Mean Std 
RANSAC [114] C 58.88% 13.04 7.52 2.64 1.67 19.4 
RANSAC [114] F 56.98% 14.41 7.71 3.04 1.83 161.9 

FGR [129] 56.75% 10.83 7.45 2.16 1.65 109.8 
DGR [17] wo optim 54.54% 10.26 7.27 1.93 1.44 2.1 
DGR [17] w/ optim 56.51 10.24 7.31 1.91 1.45 1674.4 

LMVA [18] 53.60% 10.88 7.31 2.18 1.58 15.9 
3DRegNet [16] failed - - - - 11.1 

Table 3.4: Results for the 3DMatch dataset and DenseMatch dataset. 

4.4.2 Direct extension of the methods comparison on a denser 
dataset for object reconstruction (DenseMatch) 

We are interested now in direct extension of the assessment of the same 
methods tested on 3DMatch on the new DenseMatch dataset at frst, with-
out changing or tuning the DL models. The one thing that is opportune doing 
before running the experiments on DenseMatch is to defne a suitable voxel 
size for the initial PC quantization. This value is crucial because it defnes 
both the quality of the FCGF descriptors and the number of correspondences 
to be treated. Thus, we must fnd a balance between spatial resolution (the 
larger the voxel and the coarser the data) and computational demand (the 
smaller the voxel the greater the complexity of the model, with consequent 
timings degradation). We used DGR and LMVA as a baseline for these tests 
and report the results in Tab. 3.5. As can be seen, in the case of a very small 
voxel size, i.e. at the level of the data resolution (1 mm), feature extraction 
time tends to rise signifcantly (almost half a second, making a real-time 
approach unfeasible), while the timing for recording is still satisfactory even 
if the performances are slightly worsened because the inlier ratio is probably 
lower (many more points, many more false positives). Conversely, with a 
voxel size of 1 cm, we have the best timings but the alignment performance 
collapses because we have too few points to work with, producing too coarse 
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Figure 3.19: Scene wise recalls for all the methods tested on 3DMatch 
dataset. 

Figure 3.20: Pairwise alignment examples on DenseMatch [J2] dataset using 
RANSAC F [114], FGR [129], DGR (no optim) [17], LMVA [18] and provid-
ing the Ground Truth. 

results. With the intermediate value of 5 mm, we obtain the best alignment 
performance results with very little computational penalty. As for 3DMatch, 
we set TEthr equal to 6 times the size of the voxel (i.e. 30 mm), while REthr 

is set to 10 degrees, aiming at being a little more stringent in an ICP re-
fnement perspective. The results are shown in Tab. 3.4 (lower part), while 
a qualitative example of the alignment results is given in Fig. 3.20. Again, 
RANSAC proved to be a valid solution, especially considering RANSAC C. 
However, its inherent randomness and iterative approach is critical for its 
real-time application. Nevertheless, DGR (without optimization) is still 9 
times faster with a fnal average error and standard deviation that is smaller 
both for rotation and translation. Moreover, because of the voxel quanti-
zation performed in preprocessing, the average number of points per point 
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DGR [17] LMVA [18] 
Voxel Feat Extr. T Recall Registr. T Recall Registr. T 
1 mm 457.60 ms 49.46% 7.68 ms 48.15% 41.50 ms 
5 mm 61.20 ms 54.54% 2.07 ms 53.60% 15.85 ms 
10 mm 46.40 ms 23.01% 1.81 ms 25.40% 8.40 ms 

Table 3.5: Study on voxel size for the DL methods. 

cloud drops to less than 5k. With a slightly smaller voxel size (3mm instead 
of 5mm) this number increases nearly by a factor of 4 and we experimented 
that the average running time by RANSAC C goes up to above 100 ms, while 
neural network-based solutions increase their memory consumption but they 
keep almost the same timings. That being said, we think that the considered 
DL-based solutions indeed represent a very interesting alternative to classic 
reference ones, especially considering runtime speed. 

In Fig. 3.21 we report the recall obtained on the test scenes for Dense-
Match (DGR refers to the solution without optimizer). As we have already 
discussed, the recall is lower on average for such a dataset. We attach this fact 
mainly to three aspects: 1) in these tests the DL-based methods were trained 
on 3DMatch training dataset, 2) each scene reconstruction in 3DMatch is 
typically easier to handle due to the presence of highly varied geometry, 3) 
we set more rigid error thresholds for the DenseMatch dataset. In this case, 
there is a larger variation between each test scene and we see that all the 
methods struggled signifcantly with some particular objects, as the Helmet, 
or human body reconstruction, as Body 3. Additional tests and observations 
are given in the following section. 

Figure 3.21: Scene wise recalls for all the methods tested on the DenseMatch 
dataset. 
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4.4.3 Main issues and failures 

We here extend the analysis on the use of DL-based architectures. In the frst 
two paragraphs, we investigate the criticalities that occurred, with a focus on 
3DRegNet in the former and the evidence of failure cases for the two consid-
ered datasets in the latter. Then, we experiment variations and adaptations 
of the key elements of the original solutions. First, we evaluate how diferent 
methods for feature description perform against FCGF. Then in the next 
two paragraphs we revise the settings of the two registration networks, DGR 
and LMVA. We discuss how diferent confgurations can alter each method 
and how these changes ft in the context of an online reconstruction scenario 
with our type of data. Finally, we fne-tune the models using DenseMatch 
aiming at improving the quality of the fnal registration. This will enable us 
to draw some conclusions about cross-domain generalization aptitudes. 

Analysis of 3DRegNet issues As anticipated, we were not able to achieve 
satisfactory results with 3DRegNet. We found other authors, such as Choy 
in [17] to have similar issues. In practice, the path we followed for both 
datasets was initially identical: frst, we tested the datasets against the orig-
inal implementation provided by the authors together with the trained model 
that they used to present their results. It’s interesting to notice that the au-
thors used the Sun3D dataset [60] for training and testing (together with 
synthetic data), which is actually a sub-part of 3DMatch. Nevertheless, the 
results with such confguration failed the test. Then we decided to train 
again the network using the training data from 3DMatch as described in the 
test design section 4.2. In this phase, we tried all the available confgurations 
for the Rotation Matrix parametrization, all the reconstruction losses pro-
posed, we performed a grid search on the learning rate and we even extended 
the maximum rotation for data augmentation, from 50 to 180 degrees. How-
ever, none of these trials gave us something on par with the other solutions. 
Furthermore, we tried a diferent reconstruction loss, which focuses more on 
the quality of the rotation matrix inference (expressed with quaternions): 

q̂ 
Lk = qgt −q ∥q̂∥ 

With such a solution, we doubled the previous recall, by getting a fnal 
12.93% overall on 3DMatch. However, this is still not enough. Finally, we 
also investigated the test dataset used by the authors in their original work. 
In Tab. 3.6 we report the comparison between the Sun3D dataset, used in 
3DRegNet as test data, with respect to the 3DMatch and DenseMatch test 
datasets. As we can see, not only the average inlier ratio is doubled in the 
test set for 3DRegNet (on average, two-thirds of the correspondences are 
valid), but also the average transformation to infer is much less challenging. 
Based on all these facts, we assume that the actual version of the 3DRegNet 
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architecture, despite being interesting and inspiring, is still below its com-
petitors in terms of the ability to perform well with generic and possibly 
heavily misaligned data. 

Dataset Inlier Ratio RE [deg] TE [m] 
Sun3D - 3DRegnet 68.64% 5.55 0.10 

3DMatch 35.11% 36.07 0.99 
DenseMatch 37.78% 107.13 0.50 

Table 3.6: 3DRegNet results on diferent datasets: Sun3D [60] originally used 
in [16], 3DMatch [6] and our DenseMatch. Values of Inlier Ratio, Rotation 
Error and Translation Error are averaged for each dataset. For DenseMatch 
the average rotation error is higher due to the random 3D rotations we 
applied from 0 to 2π. 

Figure 3.22: Failure examples pairwise on 3DMatch [6] (top) and Dense-
Match [J2] (bottom) dataset using RANSAC F [114], FGR [129], DGR (no 
optim) [17], LMVA [18] and providing the Ground Truth. 

Failure Cases We previously saw that not all the test scenes proposed 
the same difculty level. Indeed, both in 3DMatch and in DenseMatch cases 
all the methods under test struggled with some scenes, especially for Dense-
Match. In Fig.3.22 we show an example for each dataset. In both, we see 
that the two fragments under test present large areas without texture and a 
lot of redundancy in geometric features. The difculty the matching block 
has encountered is corroborated by the values of the inlier ratio in both, 
which are 11% for 3DMatch and 9% for DenseMatch, whilst on average they 
are close to 35%. Therefore, the features were less informative than usual 
for these cases. Under these circumstances, we failed to register whatever 
the selected method. We think that combining an improved saliency-based 
system to detect the key points as D3Feat with a highly descriptive method 
as FCGF, with the addition of 2D textures, could help to improve the per-
formance even in these complex scenarios. 



103 
4 Cross-domain assessment of deep learning-based alignment 
solutions for real-time 3D reconstruction 

3DMatch dataset [6] - voxel size: 50 mm 

Method Recall TE [mm] RE [deg] Time [ms]Mean Std Mean Std 
RANSAC [114] F 73.75% 113.51 61.72 3.81 2.34 306.7 

FGR [129] 37.40% 112.03 72.61 4.37 3.22 148.4 
DGR [17] wo optim 39.75% 77.09 57.68 2.58 2.28 2.6 
DGR [17] w/ optim 40.30% 78.24 60.33 2.51 2.12 1037.7 

LMVA [18] 75.00% 74.87 63.89 2.67 1.72 21.0 

DenseMatch dataset [J2] - voxel size: 5 mm 

Method Recall TE [mm] RE [deg] Time [ms]Mean Std Mean Std 
RANSAC [114] F 56.29% 14.57 7.58 3.11 1.87 240.3 

FGR [129] 42.77% 11.04 7.68 2.28 1.74 37.6 
DGR [17] wo optim 20.68% 8.49 6.55 1.69 1.35 2.0 
DGR [17] w/ optim 20.74% 8.50 6.60 1.68 1.36 1212.6 

LMVA [18] 23.50% 10.93 8.75 2.26 1.81 15.2 

Table 3.7: Results for the 3DMatch dataset and DenseMatch dataset using 
FPFH [98] as feature descriptor. 

4.4.4 Alternatives to FCGF 

Alternative to FCGF: handcrafted features FPFH Feature descrip-
tion is clearly crucial to create a good set of putative correspondences. Since 
we wanted to investigate how the novel DL solutions can contribute to our 
case study, we initially concentrated on a data-driven solution, i.e. FCGF 
[15], which we chose because of its promising results. To confrm this choice, 
we extend our analysis by also considering one of the most common hand-
crafted descriptors, FPFH [98]. According to [87], this type of descriptor 
is well suited for 3D modeling, it is highly descriptive and it has higher 
performances with high-resolution datasets. Moreover, it is the handcrafted 
descriptor used in [17] and [16]. We leverage the FPFH implementation 
available in Open3D [55] and we report the results in Tab. 3.7. If we com-
pare them with the original set of results obtained with FCGF in Tab. 3.4 
we can see that the data-driven solution is indeed signifcantly preferable. In 
fact, consistent with what observed in [15], the DL descriptor provides better 
initial guesses for the transformation estimators allowing an improvement in 
terms of registration recall. On the sidelines of this, in Tab. 3.7 we see how 
RANSAC F and FGR perform similarly to the results presented in [17] for 
3DMatch. This is due to the fact that also there FPFH was used as a feature 
descriptor for these methods. 
Now we have a full comparison for the considered methods with both de-
scriptors, and we derive that FCGF remains a preferable solution also for 
DenseMatch, even though the model was not trained on this type of data. 
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3DMatch DenseMatch 
Method Recall Time Recall Time 

FCGF [15] 83.00% 89 ms 69.11% 60 ms 
3DFeat [14] 69.87% 85 ms 46.61% 15 ms 

Table 3.8: Comparison between two DL methods for learning pointwise de-
scriptors. Recall refers to successful registration after running RANSAC with 
the learned descriptors. 

These results prove the quality of this DL-based descriptor, which allows 
for better registration performance with similar computational efciency. In 
fact, both descriptor extractions took around 60 ms on DenseMatch with a 
voxel size of 5 mm. 

Alternative to FCGF: DL-based features D3Feat We also wondered 
whether there is a valid alternative to FCGF among deep learning solutions. 
Here we focus on D3Feat [14], which exploits fully convolutional layers too 
but it uses a variant of KPConv [11] instead of sparse tensors. This approach 
is interesting because it also addresses the problem of key-point selection. 
The comparison we made leverages the pre-computed weights provided by 
the authors. Similar to FCGF, this model is trained on the 3DMatch dataset. 
We exploit the full test set for 3DMatch and a subset for DenseMatch. After 
computing the descriptors (both types are vectors of length 32), we pass 
them through the Open3D RANSAC implementation for a fair comparison. 
As shown in Tab. 3.8, 3DFeat proves to be faster than FCGF at computing 
descriptors (as already pointed out in the original article), however, FCGF 
seems to be better at giving informative content for geometry context. In 
fact, the latter outperforms 3DFeat at the registration stage, with a remark-
ably higher recall on both datasets. We point out that we tried to refne the 
training on 3DFeat using the remaining scenes in DenseMatch, but without 
success. It seems that a deeper study on this specifc network would be 
needed to possibly improve its performance, especially on data like ours. 

4.4.5 Additional confgurations 

Additional Confgurations for DGR Previously, we discussed the op-
timization module adopted by DGR [17] at the end of the registration chain 
and we presented the results we obtained either by using this block (with 
default settings) or by removing it. Now we deepen the analysis on that, 
by tuning the parameters that determine the convergence of the optimizer. 
There are four parameters involved: the maximum number of iterations, the 
loss minimum value, the breaking threshold ratio, and the max break counter. 
The optimization is then performed by minimizing the distance between the 
points of the (transformed) source and the target point clouds. The opti-
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Algorithm 1: Loss Optimizer in DGR [17] 
ˆResult: T 

(x1, x2) source and target points; 
Weighted Procrustes → Tinit; 
trxx1 = Tinit(x1); 

trx Linit = loss func(x1 , x2); 
iter = 0; 
break_counter = 0; 
T̂ = Tinit; 
L = Linit; 
while iter < max_iter do 

trxx = T(x1);1 
trx Lnew = loss func(x , x2);1 

if Lnew < Lmin then 
break; 

else 
update T̂ ← SGD(Lnew); 

end 
if |L − Lnew| < L ∗ break_thresh_ratio then 

break_counter ++; 
if break_counter > max_break_counter then 

break; 
end 

end 
L = Lnew; 

end 

mization is performed via Stochastic Gradient Descent (SGD) with Adam. 

For the sake of clarity, we report the pseudo-code in Algorithm 1 while, for 
more details please refer to [17]. The default parameters provided by the au-
thors, presumably tuned according to 3DMatch data, are: max_iter = 1000, 
Lmin = 10−7; break_thresh_ratio = 10−4; max_break_counter = 20. 
The optimizer uses learning_rate = 10−1 . We tried diferent confgura-
tions on DenseMatch dataset, especially by working on the max_iter and 
break_thresh_ratio because of their predominant impact as convergence 
criteria on the whole algorithm. Tab. 3.9 presents the results of these tests. 
At the top of the table, we see that the default learning rate provides the 
best recall on an extended set of iterations. However, such a confguration 
is the most time-consuming because it tends to exploit all the available it-
erations. Moreover, when we reduce the number of maximum iterations to 
10, it happens to be far from the optimal solution and so the recall drops 
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drastically. As expected, this does not happen with a very small learning 
rate, for which the result stays close to the initial guess (the result without 
optimizer is reported in Tab. 3.4). By looking at the last column in the table, 
we see that a smaller learning rate than the default one seems to be a reason-
able choice since it does not deviate too much from the initial guess and it 
converges to a good result much faster. The break_thresh_ratio is another 
key factor for the efciency of the process: as expected the timing increases 
inversely to this parameter value, which still provides a good recall when it 
is relaxed up to 0.01. Overall, besides few extreme cases, the performances 
are quite similar for all the confgurations. For this reason, we presume that 
we reached the upper limit of the model for the selected quantization step of 
5 mm. Therefore, we also tested another confguration with a smaller voxel 
size, by hoping to improve the contribution of the optimization step. Indeed, 
as reported in Tab. 3.10, we can see that both recall and timings increase 
when we halve the voxel size. In the end, the user will need to choose the 
best trade-of according to the requirements. When the time constraint is 
crucial, it is probably preferable to have a faster solution even if it drops 
the performance a bit. According to all the tests we made, our choice is to 
leverage the fastest solution, i.e. the DGR without its optimization block. 
This method becomes the preferred confguration when we need to provide 
on-the-fy tracking recovery for our handheld scanning device. 

BT= 10−4 / LR= 10−1 BT= 10−4 / LR= 10−4 

MI Recall [%] Time [ms] MI Recall [%] Time [ms] 
101 

102 

103 

4.89 
43.56 
56.51 

24.61 
201.71 
1674.45 

101 

102 

103 

54.56 
54.80 
54.90 

18.06 
94.20 
483.94 

MI= 103 / LR= 10−1 BT= 10−4 / MI= 103 

BT Recall [%] Time [ms] LR Recall [%] Time [ms] 
10−3 

10−2 

10−1 

55.74 
54.26 
44.83 

1123.64 
898.42 
632.21 

10−4 

10−3 

10−2 

54.89 
55.64 
56.28 

483.94 
531.28 
583.30 

Table 3.9: Recalls and timings on DenseMatch for diferent confgura-
tions within the optimization block of DGR [17]. Here "BT" stands for 
break_thresh_ratio, "MI" refers to max_iter in Algorithm 1 and "LR" 
refers to learning_rate. In each test we fxed two parameters and we tested 
the pipeline by varying the other one. 

Iterative block on LMVA As for DGR, LMVA ofers the opportunity 
to refne the pose estimation through an iterative block that leverages the 
weights extracted from the set of correspondences. In this case, the itera-
tive component is part of a wider context in which an end-to-end learned 
multiview alignment is performed via the Iterative Reweighted Least Squares 
approach. Nevertheless, the code for the multiview algorithm is not available 



107 
4 Cross-domain assessment of deep learning-based alignment 
solutions for real-time 3D reconstruction 

Voxel Size BT Ratio Recall [%] Time [ms] 
5.0 mm 10−1 44.83 632.21 
5.0 mm 10−3 56.51 1674.45 
2.5 mm 10−1 47.12 650.22 
2.5 mm 10−3 65.91 2559.66 

Table 3.10: Results on DenseMatch using multiple confgurations for DGR 
[17] optimization block and diferent quantization voxel sizes. BT Ratio 
stands for break_thresh_ratio. 

yet and we have only the local pairwise functional block. The authors set to 
4 the number of iterations proposed in the paper but then they halved this 
value in the best model they provided. Nevertheless, we study how the drop 
of the iterative-based refnement can impact the performance. In Tab. 3.11 
we report the test we performed on both the datasets using LMVA without 
the refnement and we compare them with the results already presented in 
the previous section. Again, we can see that the refnement was helpful only 
in few cases since the recalls did not increase signifcantly for any of the two 
datasets. As expected, in both tests the timings are halved, getting LMVA 
even closer to DGR in such terms. 

Confguration Recall TE [mm] RE [deg] Time [ms] 
3DMatch w/o IR 88.10% 76.67 2.53 9.6 
3DMatch with IR 88.90% 71.10 1.83 18.4 

DenseMatch w/o IR 48.20% 9.95 2.45 9.3 
DenseMatch with IR 53.60% 10.88 2.18 15.8 

Table 3.11: Results for LMVA on the 3DMatch and DenseMatch datasets, 
either by using or not the iterative refnement (IR) 

4.4.6 DenseMatch model fne-tunings 

With the same spirit as the previous paragraph, we refne the FCGF model 
(pre-trained on 3DMatch data only), by splitting DenseMatch into two sets. 
In particular, we keep 4 scenes, acquired onto two signifcantly diferent 
subjects (i.e. dummies and geoms) for testing. The remaining data is used 
for training, excepting the helmet scene, which is used for the validation. 
The learning rate is set to 10−2, while the batch size is equal to 4. We 
stop the training after 100 epochs. In Tab. 3.12 we report the results of the 
renewed tests with the resulting model: the recall increases in all cases for 
dummies scene (a data that lacks of complex geometry) and proves to be 
solid also with the geoms case. A better understanding can be drawn from 
tSNE, as shown in Fig. 3.23. The refned model presents a better distinction 
with respect to the previous one in terms of the diferent geometric features 
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contained in two frames of dummy 01 (especially the chin and the right ear). 

RANSAC F [114] DGR [17] LMVA [18] LMVA ref 
Scene FCGF [15] FCGF ref FCGF [15] FCGF ref FCGF [15] FCGF ref FCGF ref 
dummy 1 74.00% 76.50% 62.50% 85.80% 62.80% 71.70% 74.80% 
dummy 2 80.40% 82.40% 62.50% 81.10% 66.20% 73.60% 77.70% 
geom 1 94.0% 95.60% 89.10% 83.10% 84.20% 81.40% 83.60% 
geom 2 74.3% 79.20|% 74.60% 74.30% 62.10% 63.00% 64.70% 

Table 3.12: Comparison between registration results with default and refned 
(marked with ref ) FCGF model. The last column reports also the result after 
refning the LMVA model. The refnement has been performed on a subset 
of scenes from DenseMatch. The remaining scenes were used for testing. 

(a) Frame 65 (b) Frame 70 (c) Frame 65 (d) Frame 70 

Figure 3.23: Color-coded features on fragments pairs in scene Dummy from 
DenseMatch [J2]. Point clouds are mapped to a scalar space using t-SNE 
[187] and colorized with spectral color map. (a-b) FCGF pre model used to 
describe each point. (c-d) FCGF ref used instead. 

Moreover, we perform a fne-tuning of the registration models. For DGR 
we made several attempts but unfortunately, we were not able to refne the 
model due to an unsolved bug in the code (we attribute the problem to the 
instability across diferent versions of the MinkowskiEngine, which is the 
back-end developed by the same author of DGR). We also tried to retrain 
the network from scratch. However, in this case, the process was unfeasible 
due to the too slow training time (it took 3 days for 20 epochs only). We saw 
that the problem is already raised in the project repository by other users, 
however, it still results as open. Diferently, we succeeded to improve LMVA. 
For its fne-tuning, we use the same training set we used for FCGF. We train 
the network for 150 epochs, we set the batch size equal to 4, the learning rate 
equal to 10−4 while the weight of the transformation loss has been set equal 
to 4 times the classifcation loss. All the other parameters are kept default, 
except for the distance threshold to defne ground-truth labels. This was a 
hard-coded value into the original code and caused some pain in debugging. 
It is indeed critical to defne ground-truth correspondences between aligned 



109 

5 

5 Conclusions 

pairs. We set this value to as 3 times the used voxel size, which is again 5 mm. 
In the last column of Tab. 3.12 we report the new recall values for the scenes 
of dummies and geoms. As sought, also in this case the refnement helped the 
network to learn to manage better this diferent (denser and smaller) kind 
of data. 

Overall, by refning the models we obtained signifcant improvements. 
This justifes our comparative work and the provision of the new DenseMatch 
dataset to allow more comprehensive benchmarks. The fact that fne-tuning 
is more efective on the dummies scene rather than on the geoms ones is 
not surprising since the former is more representative of the diferences with 
respect to 3DMatch carried by the new kind of acquisitions. However, this 
also evidences that data variability remains a critical factor. This is why we 
remain committed to future updates of the DenseMatch dataset with new 
acquisitions. 

Conclusions 

Aiming at fnding new approaches to solve critical aspects afecting real-
time reconstruction systems, we reviewed the current state-of-the-art for DL-
based solutions addressing the problem of 3D registration, including 3D local 
feature extraction and robust correspondence matching for coarse alignment 
estimation. 

Then we analyzed and compared, for the frst time, very recent DL-based 
contributions in the feld of 3D view alignment, specifcally for the key ac-
tivities aforementioned. To extensively challenge these methods, other than 
using a popular benchmark dataset (3DMatch), we introduced a compari-
son with the new set of data DenseMatch. This dataset contains a series 
of scans coming from a handheld device that targets object reconstruction 
with a high level of detail and produces much more dense data than the 
counterpart in 3DMatch, which targets indoor reconstruction instead. 

From our evaluation, two networks have emerged as valid alternatives for 
coarse registration against the well-established handcrafted solutions, specif-
ically DGR [17] and LMVA [18]. These networks proved to ofer a fairly 
good registration recall in the evaluation of alignment performance. The 
former proved to be the fastest method and outscored, by a large margin, 
the handcrafted baseline used for comparison. The computational speed is 
indeed a critical parameter if we want to deal with real-time working con-
straints, and novel deep-learning solutions ofer a signifcant boost in terms 
of speed, remaining at least on par with widely difused methods for robust 
registration, such as RANSAC. 

We then fne-tuned and improved the performance of original DL mod-
els by leveraging on the newly introduced dataset. This demonstrates the 
benefts of the introduction and adaptation to novel datasets to better cope 
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with a wider range of real use cases. 
Overall, the assessment has been revealing to understand we can leverage 

on this technology to develop a real-time working pipeline which can beneft 
from the advantages we highlighted in our examination. In the last chapter 
of this work we are then going to explore how we can develop a deep learning 
framework to provide a tangible improvement for the user experience and 
for fnal reconstruction quality of the scanner under study. 



Chapter 4 

Real-time 3D reconstruction 
pipeline in a DL framework 

In the previous chapter we evaluated new DL-based technologies to address 
critical tasks for 3D registration. Our assessment highlighted how such meth-
ods can ofer a robust solution to deal with complex conditions and proved to 
achieve high-end performances thanks to the efcient implementation which 
is powered by GPU-based parallel computation. The efectiveness of these 
solutions can be helpful to design a new product that can target very com-
pelling and challenging tasks as the reverse engineering [25], the object mod-
eling in industrial applications [24] and even in the bio-medical feld, where 
for instance it should be highly appreciated to rely on an afordable yet accu-
rate and easy-to-use device to address the task of human body scanning for 
orthotics [209]. Therefore, in the last part of this thesis, our goal is to leverage 
the know-how we acquired to develop a new pipeline for our scanner. Such 
a new pipeline has to guarantee high standards in 3D reconstruction, both 
for accuracy and robustness and also to comply with the real-time require-
ment. Overall, in our framework we mix DL-based solutions with revisited 
classical methods to tackle the critical tasks of robust camera tracking, pose 
optimization and dynamic reconstruction. A careful combination of the two 
worlds produces our fnal result, which we arrive at in two steps. 

At frst, in Sec. 1, we present a module which ofers a safeguard system 
for rapid and robust camera relocation by exploiting the DL methods we 
analyzed earlier. The system is meant to be activated whenever is necessary 
to align a frame to the model with no a priori information regarding the 
camera pose, that is when ICP alone is no longer reliable. The two common 
scenarios in which this happens are when we restart the scanning after a 
pause or when we lose tracking (typically due to too fast movement) in 
the middle of a scan. In particular, the current pipeline, which is based 
on KinectFusion [20], does not ofer a solution to the former failure cause 
while it adopts a naive approach for the latter, by simply notifying the user 
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about the tracking loss and asking to come back to get closer to the last 
valid camera pose. However is difcult to do this properly in practice, and 
the user experience sufers from the frequent high difculty of recovering 
the scan after losing tracking. We evaluate the positive impact of the new 
safeguard module on the reconstruction pipeline while keeping KinectFusion 
for reference. 

Finally, in the 2 we make a decisive step forward to complete our pipeline. 
Indeed, the safeguard module is helpful to solve tracking loss but it does not 
account for other issues. Specifcally, the workfow still needs a solution to 
adjust the poses after a global evaluation. The adjustment is crucial to fx an 
eventual misalignment or to refne the model. Therefore, partially inspired 
by how these issues are tackled in BundleFusion [19], we propose a new 
framework which exploits global adjustment of frame chunks (derived from 
a 2-level hierarchical structuring of the 3D frame sequence) and uses mod-
ern data-driven methods for the geometry-based inter-chunk coarse align-
ment. The proposed system is also conceived to overcome some limitations 
of BundleFusion that arise in the context of Real-Time 3D object scanning. 
Due to its properties, we call this framework Deep-BundleFusion. Moreover, 
along with the method explanation, we provide the results of several tests we 
run to show how our solution can deal with specifc applications that revealed 
to be challenging for BundleFusion. A discussion about the results completes 
the chapter and opens to considerations about future possible works. 

1 DL-based safeguard module for fast tracking re-
covery 

The original pipeline designed for our scanner – the InSight – was introduced 
and analyzed in Chapter 2 Sec. 1.2. Such a pipeline is basically an adaptation 
of the one proposed by Newcombe et al. in KinectFusion [20] (for the sake of 
clarity reference we depict it once again in Fig. 4.1). The method is known 
to lack of a non-trivial solution for addressing the episodically tracking loss, 
since the only strategy available is to ask the user to move back the camera 
nearby the last valid pose hopefully to recover the track and continuing the 
scanning. 

In this section, we propose a frst DL-based workfow revision by adding 
a safeguard module which is silent through the regular scanning and it is 
activated whenever a tracking loss is detected. We start by describing the 
method, especially the new block and the implementation setup. Then we 
explain the tests we performed and fnally we comment the results of the 
analysis. 

The core of this solution has been presented as part of the publication 
[J1]. 
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Figure 4.1: InSight scanner starting pipeline for 3D reconstruction. 

1.1 Method 

Figure 4.2: Revised pipeline for 3D reconstruction. With respect to the 
original one, we add two blocks at the bottom, aimed to provide a safeguard 
solution with robust 3D registration to address ICP failure cases (meaning 
that tracking is temporarily lost). The two blocks exploit DL-based method 
for 1) extracting geometric features (FCGF [15]) from the dense sets of points 
of the frame-model pair and 2) computing the coarse registration matrix 
(DGR [17]) to re-establish a good estimate of the camera pose. 

Firstly, we initialize a volume with preset values for voxel size and sdf 
trunc for SDF truncation length [62]. Then we load the frst RGB-D frame 
and we integrate it into the volume. The coordinate system of the frst frame 
is then used as reference moving on. We then ray cast the volume to extract 
the frst key frame which is used to align the next frame. From these two 
RGB-D images we extract the surface vertices FV and normals FN and we 
use ICP point-to-plane as aligning algorithm. We repeat the operation for the 
frst 10 frames, by ray-casting a new model after every integration to ensure 
to have a reliable model at the beginning of the construction. At each new 
frame we exploit the previous alignment to transform the current view. Such 
a pre-alignment is useful to put ourselves in the known closest camera pose so 
that ICP is theoretically well conditioned. Obviously, the assumption does 
not hold when we lose the track temporarily or when we restart the scanning 
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after an interruption. Starting from the tenth frame we move forward by 
following the workfow presented in Fig. 4.2. Diferently from the previous 
approach (Fig. 4.1), when we detect an ICP failure we do not just warn 
the user but we also try to solve the next ill-conditioned registration using 
a coarse registration method, implementend in the safeguard module. 

1.1.1 Safeguard module 

At the Pose Estimation stage we make a sanity check of the ICP result by 
setting two thresholds: the frst one refers to the minimum ftness, which 
indicates the percentage of closest points having distance below a preset 
value (see icp dist in Tab. 4.1), referenced as overlapping points from now 
on. The amount of overlapping points O is evaluated for a set of closest 
points C as: X 

O = I [dij < icp dist] (4.1) 
(i,j)∈C 

where I[·] is 1 when · is true and 0 elsewhere, while dij is the point distance. 
We set the minimum ftness – τfit – to be 50% for the source point cloud. In 
practice, for a source point clouds having N total points and O overlapping 
points, the check on ftness is: 

( 
OValid if > τfit,N (4.2)

Invalid elsewhere 

This is a reasonable value in our scenario since the furthest point cloud to 
align is at most K = 10 frames apart from the key frame, and in practice we 
found ourselves well above the threshold when no error occurs. The second 
threshold is for the Root Mean Squared Error (RMSE), estimated over the 
overlapping points only. If the value is extremely close to the minimum 
acceptable distance for ICP icp dist, it should be possible that we are 
converging to a local minima, so that a false alignment is more plausible 
than the case in which RMSE is well below that value. We set the threshold 
τrmse such that the ratio between the current RMSE and maximum expected 
one is below 90%. The check on RMSE is: 

( 
RMSEcurr Valid if < τrmse,RMSEmax (4.3)

Invalid elsewhere 

When the sanity check returns an invalid alignment, the volumetric integra-
tion is skipped and, instead, a warning about the tracking problem is printed 
on screen. Then, the next frame is passed to the coarse registration module: 
a set of geometric features is extracted both from the working fragment and 
the current model, the set of putative matches is created by means of the 
nearest neighbor search in the euclidean space of the descriptors and then 
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it feeds the registration block, which outputs the estimated registration ma-
trix T̂  in the end. Due to the combination of reliable and fast computation 
emerged from our assessment (see Chapter 3 Sec. 4.4), we select FCGF 
[15] for extracting the features and DGR [17] for the coarse registration. 
Regarding DGR, we opt to remove the optimization block, since a coarse 
estimation is sufcient at this stage and, according to the examination we 
just mentioned, we can trade the incremental accuracy we could gain with 
the optimization for a much faster solution without it. 

1.1.2 Development and Settings 

To develop our pipeline we relied on Open3D [55] (v11.0) as the main frame-
work for running registration algorithms (ICP and RANSAC), managing 
RGB-D images, point clouds and TSDF volume with hashing voxels [139] 
and visualization. In order to align the point clouds in a feasible time-
frame, we down-sample them using voxel_down_sample() built-in function 
in Open3D PointCloud class. A higher down-sampling factor is then used 
to quantize the input for coarse registration, chosen to be 5 mm accordingly 
with the evaluation we performed in Chapter 3 Sec. 4.4. In Tab. 4.1 we 
report the main settings used to run our tests. 

Name Scope Value Note 
sdf voxel size Integration 1 mm Resolution of the building volume 

sdf trunc Integration 6×voxel size Truncation distance for TSDF (see [62]) 
z min Integration 0.5 m Min. depth in RGB-D for volume integration 
z max Integration 0.7 m Max. depth in RGB-D for volume integration 

z min rayc Ray Cast 0.5 m Starting distance from camera for ray casting 
z max rayc Ray Cast 2.0 m Maximum distance from camera for ray casting 
chunk size Ray Cast 10 Number of frame to align to same model before updating 

fine sampling Registration 2.5 mm Sampling size to apply before fne registration 
coarse sampling Registration 5.0 mm Sampling size to apply before coarse registration 

icp dist Registration 1.5×voxel size Max. distance to consider two points as overlapping 
τfit Registration 50% Min. ftness for valid ICP (see Eq. 4.2) 
τrmse Registration 90% Min. RMSE ratio for valid ICP (see Eq. 4.3 ) 

Table 4.1: Settings used to run 3D reconstruction pipeline during safeguard 
module evaluation. 

1.2 Experimental setup 

Overall, we test 5 diferent setups: 

• w/o Safeguard refers to the original solution (Fig. 4.1), which we can 
reference also as our own implementation of KinectFusion. 

• w/o Safeguard X means that ICP alignment algorithm is replaced 
with method X. We try both a classical approach (RANSAC) and a 
DL-based one (DGR). 
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• w/ Safeguard (X ) is the new proposal with the additional module for 
a safe camera relocation. As before, we test RANSAC and DGR (this 
time for coarse registration only, while ICP is maintained as standard 
registration approach during the regular fow). 

Regarding RANSAC, we adopt the solution implemented in Open3D [55] 
using correspondences directly. 

1.2.1 Data 

In order to evaluate the performance of the new system, we rely on the 
DenseMatch dataset (Chapter 2 Sec. 3 [J2]). We select a bunch of scenes 
from the whole collection (Fig. 4.3), by picking the best representatives for 
diferent challenges we can encounter in real applications: we use the bike 
helmet and the column because of their intricate but repetitive patterns, 
the dummy and the statue due to the lack of reliable geometric features over 
most of their surfaces and fnally the geom piece of marble as counterexample. 
Moreover, we try a new expedient to simulate a complex scenario: instead of 
scrambling the sequence of one scanning session, we stick together a pair of 
session of the same scene. In such a way, we introduce a hard transition from 
one session to the next, which will produce an ICP failure for sure. This is not 
strange, indeed it is totally plausible, in a real context:: a scanner can have 
such a big jump if we voluntarily interrupt the acquisition for any reason 
or if we simply miss the target object with the active feld of view of the 
scanner for a moment and then re-frame it from a diferent position. 

Figure 4.3: 3D models from DenseMatch [J2] we use for testing the pipeline 
with the safeguard module. 
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1.2.2 Evaluation Metrics 

The metrics we analyze are: 

• The percentage of integrated frames with respect to the total per scene. 

• The average closest-point distance between the estimated 3D model 
and the ground truth we provide in DenseMatch, in order to determine 
whether particular errors occurred during the reconstruction process. 

• The timings to run the main steps in the safeguard mode, to evaluate 
the real-time feasibility. 

1.3 Results 

1.3.1 3D Reconstruction performance and robustness 

In Table 4.2 we report the results of our tests related to the 5 confgurations 
described previously. Initially we focus on the reconstruction performance of 
the frst and the last two columns, namely on the original pipeline and the 
one with the DL-driven safeguard module, in the two analyzed confgurations 
for the coarse registration module. A frst interesting case is the one referring 
to the two scenes of dummy. In both cases, using the original pipeline, we 
completely failed to recover the track after the frst failure. The fnal distance 
from the ground truth is low but yet it refers to a sub-part of the whole 
model and so it is incomplete. In these cases, the safeguard methods solved 
the issue completely by registering the next frame after the failure (actually 
RANSAC failed the frst attempt but succeeded at the second). The resulting 
models are indeed almost complete and the distance from the ground truth 
shows that no false alignments occurred after the breaking point. This is 
evident, in Fig. 4.4(top), since the safeguard-based method reconstructed 
dummy 02 (in green) properly whereas the original solution (baseline, yellow) 
lost the alignment moving from the face towards the neck and reconstructed 
the scene partially. In general, the DL-based method has been always on 
par or incrementally better than RANSAC from a performance standpoint. 
This fact already justifes the choice of adopting DGR over RANSAC, but 
such decision will be further strengthen by looking at the timings analysis 
we perform below. 

Another very interesting case is statue 01+02: this test scene comes 
from merging two scans of a statue object. In the frst acquisition, we 
covered almost all the statue from left to right, and in the second run we 
flled the holes by acquiring in the opposite direction. In particular, we 
started a new session from a diferent angle with respect to where we ended 
before, and then we moved around the object also by revisiting some spots. 
With the traditional method, we aligned correctly all the frames from the 
frst scene. However, as expected, during the transition to the new starting 
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(a) W/out Safe (44) (b) With Safe (122) (c) Comparison 

(d) W/out Safe (260) (e) With Safe (337) (f) Comparison 

Figure 4.4: 3D reconstruction comparison between the method with the 
baseline pipeline (in yellow) and the new solution with DL-based safeguard 
(in green). (top): the dummy 02 model. (bottom): the statue 01+02 model. 
Between the brackets is reported the number of integrated frames. The 
third column shows the two reconstructions overlapped, to highlight the 
diferences. 

position we lost track and we did not recover it until we re-framed the scene – 
later in the sequence – from a position close to the latest valid one. In total, 
with the baseline setup, we lost 78 frames over a total of 338. In addition, 
we got a false positive alignment (we ascribe the error to a sub-optimal 
ICP failure detector), so that the fnal reconstruction presents two distinct 
reconstructions of the statue fused in one volume (see Fig. 4.4(bottom)). On 
the contrary, the new setup recovered the track immediately after detecting 
the frst error (due to the transition). The coarse alignment was good enough 
to help ICP to converge again to a valid solution and the scanning continued 
smoothly. 

For further comparison, we also try to replace the fne registration (ICP) 
with coarse methods only. In the central columns of Table 4.2 we then re-
port the results of reconstruction using either DGR or RANSAC instead of 
ICP as frst alignment choice. We remind that we are allowed to use a fne 
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Scene (frames) 
w/o Safeguard 

ICP 
w/o Safeguard 

RANSAC 
w/o Safeguard 

DGR (with opt) 
with Safeguard 

RANSAC 
with Safeguard 
DGR (w/o opt) 

Integr. Dist. Integr. Dist. Integr. Dist. Integr. Dist. Integr. Dist. 
bike helmet (168) 100% 0.1 50% 4.1 38.7% 3.2 100% 0.1 100% 0.1 
column 01 (232) 96.5% 0.2 17.2% 6.3 18.1% 6.9 99.1% 0.2 99.6% 0.2 
dummy 01 (139) 43.2% 0.1 100% 8.0 99.3% 7.4 99.3% 0.2 99.3% 0.1 
dummy 02 (146) 30.1% 0.1 95.9% 6.4 59.6% 6.4 75.3% 0.2 83.6% 0.1 
geom 01 (80) 100% 0.1 26.3% 4.3 100% 2.9 100% 0.1 100% 0.1 
geom 02 (132) 87.9% 0.1 14.2% 7.0 31.8% 7.1 97.7% 0.1 97.7% 0.1 

statue 01+02 (338) 76.9% 5.7 15.4% 34.2 14.2% 29.7 99.7% 0.1 99.7% 0.1 

Table 4.2: Multiple pipeline confgurations comparison for 3D reconstruction 
with the handheld InSight scanner. Integr. is the percentage of integrated 
frames, with respect to the total contained in each scene. Dist. is the average 
closest-points distance (in mm) between estimated model and ground truth. 

registration method straightforward because we assume the local proximity 
between the model and the frame we want to align. This is valid only (and 
not always) in particular conditions such as the case of high rate acquisition 
with an handheld scanner. However, other situation does not consider such 
local property, therefore we try to evaluate also the case in which we can-
not rely on it. For DGR we reintroduce the optimization block, aiming at 
improving the accuracy of the fnal registration. We keep the same sanity 
check on the registration as we did for fne registration, but the minimum 
distance to defne overlap (Eq. 4.1)is scaled with the same ratio as we scaled 
coarse sampling with respect to fine in Tab. 4.1. In these scenarios, it 
is interesting to notice that we did not just get worse quality results for the 
fnal estimation, but we also had lower percentage of integrated frames with 
respect to the ICP-based case. This is easily explained by the fact that our 
model is growing by means of a volumetric integration: whenever the data 
is sub-optimally aligned to the model and consequently integrated into it, it 
then creates artifacts which refects in the next model update. In practice, 
this is caused by noise accumulation derived from each alignment indepen-
dently. After a certain amount of badly frames is accumulated, it can happen 
that the model is too noisy and the alignment fails. Indeed we could increase 
the quantization level to compensate the noise during the integration, but 
we do not want to loose too much resolution in this context. A warning 
signal is the result we obtained with dummy dataset in the RANSAC only 
confguration: even if the reconstruction is wrong, the method continued to 
pass the ICP failure detection until the end. 

Overall, this is just a trivial test aimed to highlight the fact that we 
cannot rely exclusively on DGR to fulfll the reconstruction. Moreover the 
decision of reintroducing the optimization for DGR has cost in terms of 
computational speed, as we already deepened when evaluated the method 
in Chapter 3 Sec. 4.4. On average, in fact, it is slower than ICP and it 
can not be considered as a valid alternative for a fne alignment on-the-fy. 
Such a problem stands true also for RANSAC. Moreover, if we used the non 
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Scene 
Feat. Extr. 

(FCGF) [ms] 
Feature 

Match. [ms] 
Registr. 

RANSAC [ms] 
Registr. 

DGR [ms] 
Safe (FCGF) 
Total [ms] 

Safe (DGR) 
Total [ms] 

bike helmet 27.3 9.5 82.4 2.8 119.2 39.6 
column 01 31.4 9.3 70.0 3.1 110.7 43.8 
dummy 01 24.1 8.5 72,5 2.4 105.1 35.0 
dummy 02 25.9 9.2 64.2 2.7 99.3 37.8 
geom 01 27.5 9.1 94.6 2.4 131.2 39.0 
geom 02 27.7 9.3 88.9 2.6 125.9 39.6 

statue 01+02 40.2 12.4 131.1 3.4 183.7 56.0 
Avg 29.1 9.6 86.2 2.8 125.0 41.5 

Table 4.3: Average timings for the coarse registration algorithm, comprising 
feature extraction (FCGF [15]), matching and registration (RANSAC [114] 
and DGR [17]). 

optimized version of DGR, we would end up with an even more rough result, 
which again brings the above mentioned problems regarding the noisy model. 

1.3.2 Timings and real-time operation 

Finally, in Tab. 4.3 we report the average timings for the coarse registration 
modules. We point out that the estimate of the frame-rate of the system 
heavily depends on the amount of interventions we need from the safeguard 
module. Indeed, if we consider a regular iteration (comprising frame acqui-
sition, ICP registration, volumetric integration and visualization), we esti-
mated that it takes 150 ms on average when running solely on CPU, which 
means we get close to 7 fps. In our experience, such a value is borderline 
to get a real-time feedback. Then, every time we need to run the coarse 
registration we inherently worsen such value. In particular, when we uses 
the data-driven approach, we were able to perform the coarse registration 
task taking 41.5 ms on average (in such evaluation we consider all the nec-
essary steps, namely feature extraction, feature matching, and registration 
estimation). Overall, this value sounds reasonable since we need to apply 
it sporadically. Indeed, during our tests the only case which required more 
than two coarse registration attempts was dummy 02, which failed 7 distinct 
times the fne registration alone throughout the scanning (probably due to 
the critically fat area of the abdomen in which ICP drifted consistently). 
Since we lost a total of 24 frames, in such a case, it means that the safeguard 
added nearly 0.9 seconds to the total processing. Therefore, on average, we 
dropped from 6.7 to 6.5 fps, which is marginal. On the other hand, RANSAC 
took considerably much time for processing with respect to DGR. Specif-
cally, the solely RANSAC registration accounts for 64 ms on average which 
means almost 100 ms for the entire coarse registration. For instance, in the 
example of dummy 02 we add 2.4 seconds in total. Such an overhead produces 
a drop of more than half frame per second, moving to 6 fps, which is a 10% 
worsening. In the hardest case, i.e. the statue 01+02 scene (a small statue 
of a pharaon is placed onto a table and a portion of it around the statue is 
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also scanned, so the fnal RGB-D is almost full of valid points), this timing 
goes up to 180 ms. Such an overhead, even though it is sporadic, it produces 
a visible delay in the operation and it impacts on the user experience overall. 

1.4 Conclusion 

To conclude, the proposed pipeline shows how a robust data-driven method 
can help the workfow also in the context of an additional acquisition from a 
new vantage point. We think that the results we obtained are already highly 
signifcant and clearly indicative of how to fully exploit the concurrent good 
accuracy and timing performance of DL-solutions for 3D view alignment, in 
real-time 3D reconstruction systems. 

However, some questions remained open: thus far we just addressed the 
problem of robust tracking, but we did not cover the topic of model refne-
ment. Moreover, we tested the performance of the coarse registration module 
but we did not propose any real sort of application yet. Therefore, in the 
fnal section of the thesis we fnally try to deal also with these topics. 

2 Deep-BundleFusion (DBF) 

Having a system to rapidly recover the camera pose after an interruption 
(whether it is accidental or intentional) it is certainly critical to guarantee 
the fow of the scanning to be smooth, so that the user experience is valuable 
and the scanner results easy to use. In the previous section we saw that 
we can leverage advanced models to handle the problem of pairwise coarse 
registration in a robust fashion. However, such a solution addresses only 
the local registration of a fragment to the model which is usable at the 
moment. It is then a partial contribution which does not account for the 
whole information of the model. As expressed by Dai et al. in BundleFusion 
(BF) [19], ensuring the global model consistency is necessary to overcome the 
issues related to local error accumulation and compensate for drift, which 
inherently afects also the frame-to-model registration approach. 

Inspired by their work, we then try to rethink our workfow to achieve a 
similar sophistication in order to reach the higher global model consistency, 
while concurrently exploiting the solutions that qualify our pipeline targeted 
to the devices and application scenarios of interest in this work. The three 
critical components we address in our fnal solution are: 1) the camera track-
ing, once again (but without wanting to overturn it, as explained below); 2) 
the pose optimization, which is crucial to the global consistency; 3) the dy-
namic reconstruction to refne the model on-the-fy, which creates a better 
user experience and still helps the frame-to-model registration, by constantly 
adjusting the model we rely on. 

In the following section, we review these components by introducing the 
new framework, which we rename Deep-BundleFusion (DBF) to mix the 
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nature of the two "fusing" approaches. Moreover, in Sec. 2.2 we detail 
the software we developed to replicate the reconstruction pipeline of the 
scanner. We aim to release it in the near future. Then, after reviewing the 
pipeline we set the ground for a fnal test: in in Sec. 2.3 we talk about the 
experimental goals and setup, and we describe the data. Our attention is 
primarily focused on covering the problem of object reconstruction, although 
we will not overlook a direct comparison between technologies on indoor 
scene reconstruction scenarios. In Sec. 2.4 we report the results of our 
tests, where we extensively analyze our method and fairly compare it with 
the reference BundleFusion implementation. We conclude with a discussions 
about strengths and residual limitations of our proposal. 

2.1 Method 

Figure 4.5: DBF pipeline. With respect to the previous proposal, containing 
the safeguard module for fast and robust coarse registration, we add an op-
timization module to adjust the poses and re-integrating them dynamically. 
The optimization of the poses is evaluated globally by grouping chunks of 
poses together. 

First of all, we point out that we already tried to run the straight im-
plementation of BF on our data. However, the results of such tests showed 
us the limitation of the approach in our working feld. In fact, recalling the 
discussion we made in Chapter 2 Sec. 2.3, the nature of the data and the 
acquisition process we target are, in some aspects, quite far from the ones BF 
was developed for. In our context, relying on a repetitive sparse-then-dense 
alignment method for every new frame it seems not just an over-complication 
but, in the end, it appears to be also detrimental to the fnal reconstruction. 
During our tests, we recognized in the extensive research of 2D correspon-
dences (based on SIFT feature matching) the main point of failure for us. 
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Indeed, BF targets the reconstruction of large-scale indoor scenes, where 
most of the frames have a wide area flled with multiple objects to hook 
on. Our scanner, conversely, is meant for smaller scale operation and object 
reconstruction, therefore most of our frames focus on small areas which are 
defned over the single object/subject surface we want to reconstruct. Fi-
nally, these areas are also smooth, possibly lacking of variegate texture to 
rely on or having repetitive patterns hard to disambiguate. 

This is why our strategy is conservative with respect to the framework we 
designed for camera tracking. In Sec. 1 we saw that the standard alignment, 
complemented properly with the safeguard module based on DL architecture 
for sporadic robust camera relocation, produces good results already. Then 
we do not revise it from scratch but instead we ground on it by strength-
ening the baseline. Our main interest is then to extend the capabilities of 
our approach by adding a pose optimization module and by allowing the re-
construction to be dynamic and efective by means of a refning stage which 
adjusts the frames on-the-fy, similarly to what BF does. In Fig. 4.5 we 
depict a schematic representation of the new pipeline. 

2.1.1 Camera tracking 

As we said, the solution we presented at the beginning of the chapter remains 
a valid approach for our purposes. Indeed, from the practical standpoint, we 
are satisfed with an application that works at a real-time pace (thanks to 
an efcient ICP implementation), producing few blunders during the align-
ment (thanks to an handcrafted failure detector), which sporadically looses a 
frame. However, since the tracking loss remains critical for the application, 
after introducing the safeguard module (see Fig. 4.2) that we gained the 
possibility to recover from it without impacting the user experience in a sig-
nifcant way. The results we derived in Sec. 1.3 indicates that the DL models 
we exploit for coarse registration are valid and fast enough for re-aligning 
the track to the model, even in complex scenarios. Moreover, the nature of 
the scanner – a handheld device with live feedback during 3D reconstruction 
– allows to warn the user to behave accordingly to help the system whenever 
a problem occurs. 

For these reasons, we do not intend to overturn our method here. Over-
all, the main concern remains detecting false alignments efectively. In fact, 
in Sec. 1.3 we saw at least a couple of situations in which the reconstruc-
tion moved forward by aligning all the frames, even if the model was poorly 
defned (especially the cases for dummy scene based on RANSAC only regis-
tration). These results warns us about the fact that the registration failure 
detector did not handle them correctly. Therefore, we try to strengthen the 
method by adding a couple of additional rejection criteria which are efortless 
to compute but can be efective to detect critical alignments. 

The frst new criterion is based on ftness ratio. In standard mode (so 
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without safeguard module) we evaluate the ratio between the current ftness 
of ICP and the previous one: if such ratio is below a threshold, we assume 
either that the scene changed signifcantly in just one frame (which is suspi-
cious since we assume we are scanning at a high rate) or that a misalignment 
occurred (more likely). In any case, it is better to skip the suspicious frame 
and try a more robust registration by passing through the safeguard module. 
We formulate this rejection criterion as: 

( 
F itnesscurr Valid if F itnessprev 

< τfit_ratio, (4.4)
Invalid elsewhere 

Since this rejection accounts for particular cases, we set the threshold τfit_ratio 

equal to 70% in order to be sensitive only to extreme situations (in practice, 
this results in a gap from a previous ftness equal to 90% (which is roughly 
the value we get in good situations) to a new one equal to 60% (which is still 
10% above the τfit threshold we set on the minimum valid ftness. 

The second criterion is very similar but works in the metric space of the 
camera movement. It evaluates two thresholds: the frst one is about the 
maximum rotation the camera is meant to have from one frame to the other, 
and the second is indeed for the translation. The rationale again is that if 
we have either a delta rotation ∆rot or a delta translation ∆transl out of the 
expected range, we do probably have a bad alignment or the camera moved 
too fast nonetheless, therefore it is better to skip the frame and try to use 
a safer registration at the next iteration. In particular, ∆rot and ∆transl are 
evaluated using equations from Chapter 3 (3.12) and (3.13) respectively and 
the rejection criterion is as follow: 

(
Valid if ∆rot < τrot and ∆transl < τtransl, (4.5)
Invalid elsewhere 

Obviously, the optimal value for these thresholds depends on the type of 
scanner, since we expect to be allowed to move it faster or slower according 
to its maximum frame rate. In Tab. 4.4 we report the values we chose based 
on empirical evaluations for the diferent datasets. 

Indeed, referring one more time to Tab. 4.2 we test again the RANSAC 
only confguration on dummy 01 scene with the additional checks on ftness 
ratio and transformation ratio. In this case the percentage of the integrated 
frames drops to 23.9%, meaning that the failure detector helped to recognized 
the non accurate registration. Conversely, the percentage remains 100% for 
geom 01 and the standard ICP registration method (i.e. the KinectFusion 
confguration), meaning that the two novel criteria did non afect the recon-
struction. 



125 2 Deep-BundleFusion (DBF) 

2.1.2 Pose optimization 

BF seeks the global model consistency by proposing a hierarchical subdivi-
sion of the frames composing the reconstructing sequence. The new structure 
of the sequence has 2 levels in its hierarchy: the local and the global global 
level. In Fig. 4.6 we see the main components. 

Figure 4.6: Intra-chunk and inter-chunk pose alignment for BundleFusion. 
Multi-view registration is computed via Gauss Newton (GN) solver. 

Locally, a new frame is acquired and aligned with respect to a key frame 
(similarly to what we did so far). However, in BF the registration is always 
multi-view. When a new frame arrives, it is matched against the other frames 
in the bucket. Its pose is estimated from scratch by means of a Gauss Newton 
(GN) solver which minimizes the set of interconnected distances across the 
views. These distances refer to sparse correspondence matching (on top of 
2D SIFT [78] feature extraction) and dense consistencies evaluation (both 
photometric and geometric). We refer the reader to Chapter 2 Sec. 3.2.2 for 
further details on the subject. In this scenario, along with the new estimated 
pose, also the other frames are adjusted at the end of the registration by 
exploiting the incremental information provided by the new view. Since the 
frames involved belongs to the same bucket, the local registration is called 
intra-chunk. 

Then, at global level – i.e. at the top of the hierarchy – the pipeline 
sees only the key frames contained in the chunks representing a cluster of 
frames each. The same process adopted locally for registering is extended at 
higher level using solely the key frames. Moreover, when a pose of a chunk 
is optimized, all the frames associated to that chunk are rigidly transformed 
as well. Such an inter-chunk refnement is critical to the purpose of global 
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consistency, and this is why we wanted to adopt such a hierarchy also in 
our solution. Similarly to BF we split the volume into chunks but we skip 
the intra-chunk refnement step. Indeed, experimentally we observed that 
almost all the time the optimized poses were identical to the originals. In 
fact, since we are using a fne method as ICP for registering such a dense set 
of points, we end up with a set of alignments that are already sufciently 
accurate. Moreover, the failure detection module ensures a higher robustness 
to false alignments, so that we reduce the risk of having ill conditioned 
chunks. Conversely, BF uses a sparse-then-dense registration as well, but in 
order to achieve acceptable computational performance it drastically down-
samples the input data, therefore the dense alignment is less accurate by 
default and it is easier to have cases in which an intra-chunk refnement is 
necessary. 

Nevertheless, these two diferent philosophies converge on the global re-
fnement. As for BF, in fact, we also perform it by using the chunks as atomic 
elements composing the model. In our case, however, instead of using a key 
frame as the representative of its chunk, we create an additional small vol-
ume in which we integrate the frames in parallel to the whole volume we are 
constructing. Once we close a chunk then we extract the surface from this 
small volume and we use such a 3D point cloud as the fnal representative of 
the chunk at the pose optimization stage. Such a solution has the beneft of 
describing entirely the chunk, instead of using a partial representative (the 
key frame is just the frst frame in the bucket, but the remaining frames give 
a marginal contribution as explained in BF [19], with the concrete risk that 
two keyframes fnd themselves too far apart). Surely, chunk-based surface 
extraction might not be extremely efcient (due to the repetitive integration 
and the additional memory consumption) but we keep its impact tolerable 
by cleaning the supplementary volume every time a new chunk is created 
(only the point cloud is preserved) and by leveraging on a fast integration 
via GPU implementation which keeps the time consumption below 2 ms per 
integration. 

Finally, for the multi-view alignment, we exploit the solution proposed by 
Choi et al. [210] which is also implemented in Open3D. In brief, the method 
constructs a pose graph, the nodes of the graph being the single views, and 
each view i is associated with a pose matrix Ti while the edges connecting 
the nodes are associated with the transformation matrices that aligns the 
nodes at the ends of the edge (e.g. Ti,j is the transformation on the edge 
connecting node i and j. The set of pose matrices {Ti} are the unknown 
to estimate, via graph optimization [210]. In order to defne the edges of 
our graph, we perform a set of pairwise registrations across all the chunks 
we collected and for each of these pairwise registration we use the safeguard 
module in order to align from scratch distant views in a proper way (similar 
to what BF does with the sparse-then-dense registration). 

Unfortunately, this solution has a current limitation, due to the compu-
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Figure 4.7: Inter-chunk refnement for Deep-BundleFusion. Pairwise regis-
tration are performed using the safeguard module and ICP. The multi-view 
is exploited via graph optimization [210]. A divide et impera solution is 
adopted for reducing the computational complexity. 

tational burden derived from the set of multiple pairwise registrations. For 
instance, assuming 50 chunks (representatives of 500 frames, a more than 
reasonable value for our acquisitions), the combination produces C(50) = 

50! = 1225 pairwise registration in total. Such an amount of coarse reg-2∗(n−2)!
istrations take on average take 0.040s×1225 = 49 s if computed sequentially. 
Obviously this is not feasible for our real-time constraint. Due to this limita-
tion, we currently follow a divide et impera approach (Fig. 4.7): frst, we set 
the maximum number of chunks to be equal to 50, then we separate them 

10!in 5 macro containers and we perform the C(10) = = 45 pairwise2∗(n−2)!
registrations in each of them. Finally we aggregate the point clouds repre-
senting these containers and we repeat the multi-view alignment at macro 
level. In total we have 45 × 5 + C(5) = 225 + 10 = 235 registrations instead 
of 1225. Moreover, we exploit the nature of our networks by passing batches 
of 4 point clouds to extract the features in parallel, as well as batches of 2 set 
of correspondences to register in order to further reduce the computational 
impact. Overall, this can be put in a parallel thread so that after few seconds 
we get a refned model associated to those 50 chunks and in the meantime we 
can move forward with the scanning, starting a new volume. Following this 
approach, in principle we are able to recover a real-time compliant solution. 

At the end of the reconstruction, we will then have a set of point clouds 
that we need to align. Once again we can leverage the graph optimization but 
also other methods, such as the work of Bonarrigo et al. [64], are valid. Ac-
tually, there is no scene in our dataset with more than 1500 frames, therefore 
the maximum number of macro chunks we get in the end is three. However, 
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usually this is not the case for other datasets, as for instance Redwood, that 
has scenes with almost 4000 frames. Nevertheless, we tackle this datasets by 
increasing the size of a regular chunk. In practice, a good value for chunk 
size with this kind of dataset is 20. 

Overall, this approach remains efective but sub-optimal. We will discuss 
more about it in the results section, while we seek for future improvements to 
leverage on a more efective method to deal with the multi-view registration. 
The work of Gojcic et al. [18] is indeed a good candidate for the job but 
unfortunately the source code for the multi-view part has never been released. 

2.1.3 Dynamic reconstruction 

As we can see in Fig. 4.5, the output of the pose estimation now goes into 
a dynamic reconstruction module. Indeed, the poses which are currently 
estimated are temporary, and an optimized version could be found after the 
global evaluation. In order to refne the model after the pose optimization, 
we need to de-integrate and re-integrate the frames we want to adjust. As 
explained in BF, the volumetric integration via Truncated Signed Distance 
Function (TSDF) [62] is a symmetric operation which can be reversed. In 
fact, during the straight integration of a frame Fi, each voxel v in the volume 
is updated by: ( D(v)W(v) + wi(v)di(v)D′ (v) = W(v) + wi(v) (4.6)

W′ (v) = W(v) + wi(v) 

where D(v) is the signed distance of the voxel, W (v) is the voxel weight, 
di(v) is projective distance (along the z axis) between a voxel and Fi, and 
wi(v) is the integration weight for a sample of Fi. On the opposite, to 
update a voxel after removing such frame Fi it is possible to revert the sign 
of summation and change it to a subtraction: 

( D(v)W(v) − wi(v)di(v)D′ (v) = W(v) − wi(v) (4.7)
W′ (v) = W(v) − wi(v) 

In practice, we adjust frames in the model only if the refned pose difers 
from the current by a signifcant margin, to ensure to minimize the amount 
of operations and to avoid burdening the user experience with unnecessary 
latencies. 

2.2 Implementation 

2.2.1 Source Code dependencies 

We mentioned earlier that we exploited Open3D [55] to handle the 3D pro-
cessing for all the steps in the pipeline. This is a very useful library, which 
is currently followed by a large community with interests in developing soft-
ware for 3D data, and that is constantly improved and updated by the Intel 
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research group. With the release of version 0.11.0 at the end of 2020, a new 
engine has been added besides the legacy one, which ofers CUDA capa-
bilities to leverage GPU computation for fast parallel computing. Such an 
engine is based on open3D tensor, a data structure which is compatible with 
Numpy and PyTorch, two standard libraries for array processing. Once a 
stable version of the new engine was released in the library, I refactored the 
code to move most of the computation on GPU. This migration enhanced 
drastically the performance of the system (the gain was measured near 6× 
the CPU version). Such a boost ofered the possibility to extend the work-
ing domain of our pipeline to an actual real-time 3D reconstruction. More 
details about the impact of this will be provided in the next section, when 
discussing about experimental timings. 

Moreover, in the previous section we said that we need to de-integrate our 
data at runtime to refne the model. Actually, the Open3D data structure we 
use to defne the TSDF Volume does not support the de-integration (up to 
the current version 14.1). Because of this, we had to implement by ourselves 
the method, by editing the open source code. We then wrote the function 
in C++ – both for the legacy1 and for the new tensor-based data structure2 

– and then bind it to python. 
Finally, we used MinkowskiEngine (ME) as backend for sparse CNNs 

operations, along with PyTorch as main framework for architectural imple-
mentation. Currently ME is the most unstable library of the pool, due to its 
very recent development. We migrated the code to the most recent version 
of the library 0.5 (released in December 2020) and we add a couple of fxes 
avoid useless data conversions from PyTorch to Numpy to speedup the pro-
cessing. Unfortunately, ME does not support Windows at the moment and 
this is the main reason why we preferred to work under Linux. 

The fnal product is a 99% Python code with an additional 1% of bash 
for scripting the tests, therefore a Docker container could be created for an 
easier distribution. A paper describing this last part of our work is under 
preparation and will include a release of our code. 

2.2.2 Graphical User Interface 

Earlier implementations of the pipeline were command line executables, op-
tionally run via scripts. However, we aimed to move forward to a software 
design which is closer to a real 3D scanning application. At the same time, 
we needed a development visual tool to better understand the functioning 
and keep track, also visually, of the main internal state parameters and 
performance indicators of the method under development. Therefore we in-

1http://www.open3d.org/docs/release/python_api/open3d.pipelines. 
integration.TSDFVolume.html

2http://www.open3d.org/docs/release/python_api/open3d.t.geometry. 
TSDFVoxelGrid.html 

http://www.open3d.org/docs/release/python_api/open3d.pipelines.integration.TSDFVolume.html
http://www.open3d.org/docs/release/python_api/open3d.pipelines.integration.TSDFVolume.html
http://www.open3d.org/docs/release/python_api/open3d.t.geometry.TSDFVoxelGrid.html
http://www.open3d.org/docs/release/python_api/open3d.t.geometry.TSDFVoxelGrid.html
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Figure 4.8: Our application GUI on startup. 

troduced a Graphical User Interface (GUI) for our application. In Fig. 4.8 
we show how it appears on startup. A panel on the left of the screen allows 
the user to modify on-the-fy some critical settings, such as the voxel size, 
the fine sampling, the registration method, etc. From the same panel we 
can specify the working directory containing the confguration fles and run 
and stop the reconstruction using a toggle. In the lower part of the panel we 
have some useful information from logging and a live feedback of the camera 
frame, both RGB and Depth. The remainder of the windows is for rendering 
the 3D scene while it is reconstructed. 

In Fig. 4.9 we show how a regular run looks like. The scene keeps growing 
while a yellow frustum representing the scanner moves in the feld. We can 
also navigate the scene during the reconstruction in order to inspect the 
model from diferent views. 

Finally, in Fig. 4.10 we show another feature for the reconstruction 
feedback. Each new fragment is depicted using a color scheme to indicate 
the quality of the alignment: based on the ICP ftness, the color will be 
closer to light green for higher ftness values and more reddish for lower values 
conversely. Ideally, in a real reconstruction scenario this kind of feedback can 
help the user understanding whether the system is struggling to reconstruct 
the model or not, and to adapt his/her movement consequently. 

2.3 Experimental setup 

DBF has been designed to simulate the working pipeline for our 3D scanner 
prototype, the InSight. Therefore, the main targets for the pipeline are 
the small and medium scale objects reconstruction. We already thoroughly 
discussed the key features of such an application scenario throughout the 
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Figure 4.9: Example of reconstruction with our application. A yellow frus-
tum shows the location of the camera in the 3D space. While the model is 
growing, we can move around to inspection the scene. 

Figure 4.10: Example of reconstruction in our application. Detail of the 
color-coded representation of the currently framed area. When the color 
tends to the red, it means we are getting worse results for the registration. 

entire document so we do not reiterate the discussion here. The reader can 
refer to Chapter 1 Sec. 2 for an introduction to the topic, to Chapter 2 
Sec. 3 for more details on the type of data we produce with the InSight and 
fnally to Chapter 3 Sec. 4.1 for an additional comparison of our dataset 
with 3DMatch, the indoor reconstruction dataset containing the data that 
was used to test BF originally. 
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Since we already know that BF struggles with our data, we decide to ex-
tend our tests to another publicly available 3D object dataset: the Redwood 
object collection [57]. Such a dataset is the closest we found to our Dense-
Match, but it has been created by means of PrimeSense, a sensor which is 
very similar to the scanner that the author of BF used to test their own 
method. In the following paragraph we review very briefy the datasets we 
use to conduct our test. We then provide the details of the settings we chose 
for each dataset and we fnally review the tests design for this experimental 
section. 

2.3.1 Data 

As anticipated, we use the two best datasets up to our knowledge to test 
an object reconstruction oriented pipeline: our DenseMatch dataset [J2] and 
the Redwood Object dataset [57]. 

Figure 4.11: DenseMatch test scenes. From left to right: column, statue, 
shoes, toolbox, helmet and shoes. 

Object reconstruction using the InSight: DenseMatch dataset Once 
again we evaluate the dataset we created using our prototype scanner. Ac-
tually, with respect to the original collection, we added few more scenes for 
having a set of fresh new tests. In Fig. 4.11 we show the scenes we evalu-
ated. In particular, each scene comprises a set of independent acquisitions 
(from two to four) which we aggregated and passed to the pipeline as a 
whole. Similar to what we did in Sec. 1.2, we combine multiple sessions 
to automatically introduce some hard transitions to test the robustness of 
the method to tracking failures and to implement a real scenario in which 
the user interrupts the acquisition several times. In the end, a single session 
covers the object partially, but the whole covers (almost) the entire object 
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indeed. Therefore, often happens that we revisit the same spot multiple 
times under diferent vantage points and coming from diferent directions 
(loop closures)., closing loops. 

Figure 4.12: DenseMatch test scenes. From left to right: body, pig, angel, 
knight, gargoyle and lion. 

Object reconstruction using the PrimeSense (low-cost scanner): 
Redwood dataset Before introducing DenseMatch in Chapter 2, in Chap-
ter 1 Sec. 2 we highlighted the lacking of a proper benchmark dataset solely 
focused on object reconstruction with high quality real scenes. In this con-
text, the Redwood dataset [57] was the closest option, up to our knowledge. 
We already stated our concerns for this dataset when we introduced it in 
Chapter 1 and in fact we had a hard time to fnd any reliable sequence to 
use for our evaluation. We ended up hand-picking a bunch of scenes we con-
sidered valid for our test. In particular we explored the classes of statues and 
toys, which ofered rigid scenes and a reasonable volume size and targets an 
application similar to what we addressed with the InSight. We depict such 
scenes in Fig. 4.12. 

Unfortunately, the authors did not provide any ground truth for these 
models (what we reported in fgure were our best results), therefore we can 
not leverage a reference for computing the deviation of the estimated surface. 
Nevertheless, we will see that a qualitative analysis is sufcient to evaluate 
the efectiveness of DBF and to compare it against BF. 

2.3.2 Settings 

In Tab. 4.4 we report the main settings we used to test the method, ac-
cording to each benchmark dataset. We point out that even if application 
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target is similar for Redwood and DenseMatch, the parameters of the former 
overlap much more with 3DMatch (indoor reconstruction) instead, because 
of the similar scanner device confguration they share. The only meaning-
ful diferences between the two datasets are the maximum depth we use for 
data integration and voxel size of the volume. Indeed the scenes we picked 
for testing Redwood dataset do not require a depth of feld higher than 2.0 
m since we are scanning small and medium size objects. Such a constraint 
reduces the background noise and make the acquisitions closer to a stan-
dard approach for object reconstruction. Moreover, the size of the volume is 
subsequently much smaller for Redwood dataset. That is why we can use a 
smaller voxel-size and push the reconstruction accuracy to the upper limit of 
the original sensor. In 3DMatch scenes this value (i.e. 4 mm) is not feasible 
due to memory limitations, so we had to use a larger voxel. Finally, for 
all the settings that are in common with BF, such as the voxel size of the 
volume or the SDF truncation, we used a unique value, which is reported 
in Tab. 4.4 and marked with an asterisk. The remaining BF-specifc pa-
rameters conversely, have been kept as we presented them in Chapter 2 2.3. 

Name Scope 
Value Note3DMatch Redwood DenseMatch 

sdf voxel size Integration 1 cm 4 mm 1 mm Resolution of the building volume 
sdf trunc Integration 6× voxel size Truncation distance for TSDF ([62]) 

z min Integration 0.3 m 0.4 m 0.5 m Min. depth in RGB-D for volume integration 
z max Integration 4.0 m 2.0 m 0.7 m Max. depth in RGB-D for volume integration 

z min rayc Ray Cast 0.3 m 0.4 m 0.5 m Starting distance from camera for ray casting 
z max rayc Ray Cast 5.0 m 2.0 m Maximum distance from camera for ray casting 
chunk size Ray Cast 20 10 Num. of frames to align before model update 

fine sampling Registration 2.5 cm 1.0 cm 2.5 mm Sampling size to apply before registration 
coarse sampling Registration 5.0 cm 2.0 cm 5.0 mm Sampling size to apply before registration 

icp dist Registration 1.5× voxel size Max. dist. to consider two points as overlapping 
τfit Registration 30% 50% Min. ftness for valid ICP (see Eq. 4.2) 

τfit_ratio Registration 75% Min. ftness ratio of consec. frames (see Eq. 4.4)) 
τrmse Registration 90% Min. RMSE ratio for valid ICP (see Eq. 4.3)) 
τrot Registration 15◦ Max. rot. between consec. frames (see Eq. 4.5)) 

τtransl Registration 10 cm Max. transl. between consec. frames (see Eq. 4.5) 

Table 4.4: Settings used to run 3D reconstruction with DBF pipeline on 
respectively 3DMatch [6], Redwood [57] and DenseMatch [J2] datasets. 

Hardware specifcations All tests are performed on a Linux Ubuntu 
18.04 machine with a NVIDIA Titan V video card, AMD Ryzen 1950x pro-
cessor, and 64 GB of RAM. 

2.4 Results 

2.4.1 Tests design 

We want to compare DBF with BF when employed for object reconstruction 
but at the same time we are interested to understand whether the renewed 
pipeline can ofer additional advantages with respect to the frst solution 
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solely implementing the safeguard mechanism. Therefore we frst compare 
our method against BF by testing the two distinct collection of objects we 
presented above. This evaluation can only be qualitative with respect to 
the Redwood dataset because as we said we do not have a ground truth 
reference for it. In this extended evaluation we also consider the timings 
of our application, in order to understand whether it can fulfll the real-
time requirement or not. Moreover, we add an ablation study on the pose 
optimization module to analyze its contribution. Finally, we review the 
most critical cases, together with some examples from the diferent working 
addressed by BundleFusion dataset, in order to build a discussion about the 
open issues and the future improvements we can seek. 

2.4.2 Comparison with BundleFusion 

A visual comparison of the reconstruction results obtained by using BF and 
DBF are reported in Figures 4.14 and 4.13, which refers to the DenseMatch 
and the Redwood datasets respectively. The frst clear outcome from our 
evaluation is that DBF signifcantly outperformed BF on reconstructing the 
objects in both the test datasets. 

Actually, this fact could be no surprise for DenseMatch evaluation: BF 
already struggled in the earlier evaluation we made in Chapter 2 Sec. 2.3 
and we here we are fnding confrmations on new data of the same kind. 
For instance, in the scenes representing one shoe and the pharaon statue, 
BF lost the track after few frames into the elaboration and then recovered 
it later in the sequence but badly, such that the reconstructed model com-
prises two distinct misaligned sub-portions. The column also was partially 
reconstructed, and presents evident misalignment in the middle. Marginally 
better is the result with two shoes: the additional object in the scene helped 
to disambiguate the matching so that no misalignments occurred. However, 
the tracking was lost again quite soon and the model is highly uncomplete. 
Another relatively good result is obtained with the helmet, but again clearly 
it is sub-par with respect to DBF reconstruction. 

Then, likely even more interesting is to notice how DBF still performed 
better than BF also with the Redwood data. Overall, we observe that the 
DenseMatch dataset is more challenging for BF than the latter. Our as-
sumption is that, diferently from the InSight, the PrimeSense scanner has a 
relatively large feld of view and it is used at a working distance of above 1 m 
most of the time. On average, these two aspects are together responsible for 
a larger area of the object surface which is framed at each shot, which favors 
the search of 2D correspondences across the views. For instance, body, lion 
and especially angel reconstructions are on-par with our result. Neverthe-
less, the method failed to reconstruct the model correctly in some of the 
Redwood scenes as well. In particular, the gargoyle and the knight scenes 
were very challenging for BF, which repeatedly lost the tracking, especially 
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Figure 4.13: Redwood objects test scenes results. For all the reconstructed 
scenes both textured and shaded mesh is shown. In blue: results for Bundle-
Fusion. In green: results for Deep-BundleFusion. 

when transitioning from the front of the statues to their back. In these cases 
the background is not helpful, since the statue stands in the middle of the 
room with nothing else within the working volume, whereas the surface is 
seen from a critical angle and does not provide sufcient information to the 
2D-based tracking system. 

In Fig. 4.15 we show two views of the gargoyle result to highlight how 
the back of the wings have not been reconstructed. We do the same for the 
right side of the knight, which is completely missing. This is critical for 
an handheld solution since it needs to be able to track the object even in a 
challenging situation such as the change of side. For the latter case we also 
show that the problem does not seem to be related to an unnecessarily strict 
threshold on the maximum reprojection error: indeed in Fig. 4.16 we report 
the result for varying this threshold and we show that there is no value we 
can use to solve the issues. Indeed, if a larger threshold is allowed, BF tends 
to align badly the frames and a lot of noise is introduced in the volume, up 
to the point that the reconstructed model is almost unrecognizable. This 
problem is due to the fact that it is easy to mistake a real corresponding 
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Figure 4.14: DenseMatch test scenes results. For all the reconstructed scenes 
both textured and shaded mesh is shown. In blue: results for BundleFusion. 
In green: results for Deep-BundleFusion. 

3D point when matching sparse points extracted using SIFT on 2D images 
pair. Such a local misalignments is due to sensor noise and potential sub-
optimal key point detection and in the end it can translate into signifcant 
displacement of points in 3D, with subsequent errors at registration level. 
On the contrary, DBF performed smoothly on these two scenes, and on the 
rest of the test set too (apart from a couple of noticeable cases that we will 
comment below). 

Moreover, in Tab. 4.5 we report the number of frames integrated using 
the two methods, as well as the average distance of closest points between 
the estimated model and the ground truth for DenseMatch, as we already did 
in the frst test we made in Sec. 1.3. Our method integrated a remarkable 
98% of the total frames for DenseMatch and the 99.7% for Redwood. In 
contrast, BF scored 86.9% of integrated frames with Redwood and just 19.9% 
with DenseMatch. Finally, the average point-to-point distances between 
the reconstructed surfaces and by-hand aligned ground-truth ones shows a 
optimal result for our method, whereas in some cases for BF such result is 
heavily afected by the data partition due to the bad alignments. 
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Figure 4.15: Scenes from Redwood dataset (gargoyle on top and knight at 
the bottom). In blue, reconstructed using BF: moving behind the statues the 
method lost the track. We show that the meshes are partial, and they miss 
one side of the model (front and back are shown). In green, reconstructed 
using DBF: also the back was recovered correctly, by rapidly recover the 
alignment using the safeguard module based on 3D geometry features. 

Figure 4.16: Results for 3D reconstruction of knight scene from Redwood 
dataset using BF and varying maximum reprojection distance thresholds 
(RDT). 

2.4.3 Timings 

In Tab. 4.6 we report the reconstruction time performance of the system we 
got on average with our data from DenseMatch. The result indicates that 
on average our system runs slightly below 20 fps if GPU support is on. In 
practice, we never got down under 10 fps with such a solution. When using 
CPU only, instead, the average reconstruction rate is near 7 fps, but it can 
also drop to 5 in worst situations. However, such cases are rare and the 7 
fps average speed is a borderline yet acceptable frame rate for a real-time 
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DenseMatch [J2] Redwood Objects [57] 

Scene # Frames 
Integrated Dist [mm] Scene # Frames 

Integrated 
BF DBF BF DBF BF DBF 

column 1292 472 1256 1.6 0.2 angel 1542 1533 1540 
helmet 460 258 452 0.2 0.1 body 863 833 863 
shoe 1059 102 1041 fail 0.1 gargoyle 1856 900 1855 
shoes 1007 149 976 0.8 0.2 knight 3885 3283 3875 
statue 704 86 709 fail 0.0 lion 1281 1265 1271 
toolbox 1504 134 1477 0.7 0.4 pig 2905 2905 2900 

Tot. 6026 1201 (19.9%) 5911 (98.0%) Tot. 12332 10719 (86.9%) 12304 (99.7%) 

Table 4.5: Comparison between BF and our method, by evaluating Dense-
Match and Redwood test scenes. We report the number of frames for each 
scene and the total frames integrated by each method (the percentage in 
brackets) We also add the average point-to-point distance between the re-
constructed model and the ground-truth for DenseMatch, while we do not 
have a reference for the scenes we picked from Redwood. 

application, even though it requires the user to move more carefully to not 
lose track too frequently. In contrast, the standard approach with GPU is full 
supported and it is reliable for a real-time application. Just for reference, BF 
demands two GPUs (physical or virtual) in order to start the processing. We 
tested it on a slightly diferent but yet powerful confguration using a Intel i7-
7820HQ with 64Gb or RAM and a GPU NVIDIA Quadro P5000 with 16Gb 
of dedicated memory (split in 2 virtual GPUs with 8Gbs each) and we got 
a frame-rate near to 22 fps when running our data. An additional comment 
is for the coarse registration method: DGR remains faster than RANSAC 
(based on correspondences) even when running on CPU. Moreover, RANSAC 
has only the CPU timing reported since at the moment there is no available 
GPU implementation in Open3D. Although ICP has the two options, in our 
experiments we always had better results using legacy ICP (CPU-based), 
therefore, for our pipeline we preferred to keep the legacy version, which is 
remarkably fast anyhow. However, this probably indicates that we can still 
improve the GPU implementation and timings of ICP, and we consider this 
as a near future task. 

2.4.4 Pose optimization contribution 

Now we investigate the contribution of the pose optimization module in our 
method. We repeat the test removing this block from our pipeline, therefore 
we go back to the workfow we presented at the beginning of the chapter 
(see Fig. 4.2). In Fig. 4.17 we show a comparison of the two solutions for 
diferent examples on both datasets. It can be appreciated that in these 
particular cases, the optimization module helped to solve minor and major 
issues, depending on each scene. Surely the worst cases is the helmet scene 
that, similarly to what happened a couple of times with BF, was afected by 
a bad misalignment (probably due to the repetitive pattern on the surface 
of the helmet) which caused a partition of the data in two distinct sub-
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Operation Scope 
Every 

Iteration? 
CPU GPU 

T Avg [ms] T Std [ms] T Avg [ms] T Std [ms] 
Frame creation Input yes 42.1 5.6 

69.6 2.4 
11.1 2.4 
119.2 4.2 
183.2 5.2 
37.5 1.0 
12.8 1.1 
78.4 6.5 

24.4 3.2 
2.1 0.8 
- -

34.7 2.8 
35.7 4.6 
9.9 1.1 
2.4 0.7 
- -

Frame integration [62, 139] Integration yes 
Fine reg (ICP pt2plane) [125] Registration yes 

Ray casting Model update no 
Feat extr (FCGF) [15] Registration no 

Feature matching Registration no 
Coarse reg (DGR w/o opt) [17] Registration no 

Coarse reg (RANSAC) [114] Registration no 
Total time for one iteration (fps in brackets {·}) 150.1 {6.66} 8.5 55.2 {18.2} 6.3 

Table 4.6: DBF timings with DenseMatch data. In the third column we 
highlight which operations are involved at each iteration. The total time 
additionally considers some miscellaneous which are not tracked specifcally 
(for instance data transfer, chunks initialization, data sample and other mi-
nor computations). 

models. In such a case, the optimization module saved the reconstruction 
by re-evaluating all the chunks globally and easily found and corrected the 
two partitions. The other errors are milder: the optimization module helped 
to refne the model by adjusting few frames that drifted throughout the 
alignment. Overall, the analysis shows that this module is helpful both to 
improve the quality and also to correct for some critical errors that can occur 
during the free-hand scanning. 

Figure 4.17: Results of DBF on diferent scenes from DenseMatch (top) 
and Redwood (bottom). Each model shows both the texture and a shaded 
uniform color. In green the results with pose optimization module active, 
in purple when it is turned of instead. In the red circles we aligned the 
reconstruction errors that occurred due to misalignemnt problems. 
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2.4.5 Critical cases 

To conclude, we review the worst results we got using our method, in order 
to open a critical discussion about residual limitations and what it can be 
done better. In Fig. 4.18 we present a detail of the angel and the toolbox 
scenes, from Redwood and DenseMatch dataset respectively. The former 
estimated model shows that a misalignment afected the reconstruction. We 
can see how the angel has two faces, so it means that we have a partitioned 
set of frames that have been integrated with a drift with respect to the 
starting point. It is interesting to notice that this problem is almost entirely 
compensated if we remove the global adjustment. Indeed, this is the only 
case in which the optimization module worsen the reconstruction overall. We 
address this problem to be related to the chunks subdivision we performed 
to reduce the computational burden. A full exploitation of the whole set of 
pairwise alignments between all chunks should be more efective, however 
we are currently limited by the amount of computational time required, as 
discussed in Sec. 2.1. 

Figure 4.18: Examples of errors for DBF on angel and toolbox scenes. We 
highlight for the former case the two partitions of the model (two faces are 
visible) and the bad registration of the back of the box on the front side for 
the latter. 

In the toolbox case instead, we have a problem of a diferent nature. The 
object has a shape close to a parallelepiped, it is almost perfectly symmetric, 
and we can distinguish the front from the back solely thanks to the locking 
system. During the scanning, we performed three distinct acquisition ses-
sions to get the full set of view from all possible angles. In particular, we 
started from the front and we moved to the right, until we reached the end 
of the right short side, then we paused the system. After a while, we started 
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again scanning from a spot close to where we left, we went on the back of 
the box and we stopped again. We fnally completed the acquisition with a 
third session, moving from the back to the front from the left side of the box. 
In Fig. 4.19 we review these steps and we highlight the problem we faced. 
During the transition from the frst session to the second, we temporarily 
lose the track and we ask the safeguard module to help to retrieve a coarse 
estimation of the camera pose. However, the registration is misled by the 
symmetry of the object and then the back of the toolbox (which has never 
been seen before) has been aligned with the front. The diference between 
the two point clouds is marginal and our failure detector was deceived. 

Figure 4.19: Detail on the error occurred with the toolbox scene. (top) we 
show the path we follow to acquire the model (split in 3 distinct sessions). 
(bottom) the new point cloud from the second session is framing the back 
of the box (not reconstructed yet), which is wrongly aligned with the front 
side that we previously reconstructed. 

2.4.6 Evaluation on indoor reconstruction dataset 

Finally, we add a last comparison by evaluating how our method performs 
in a diferent application context. We then try to reconstruct a scene from 
BF dataset [19]. This is an indoor 3D reconstruction task, which is mainly 
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characterized by a longer sequence of frames and spans a much larger volume 
with respect to our previous tests. In Fig. 4.20 we show our result compared 

Figure 4.20: Reconstruction result for copyroom scene in BundleFusion 
dataset [19]. (top): reconstructed with original method by BF. (bottom): 
reconstructed with DBF. 

with the original model. From the fgure, it is clear that BF is particularly 
well suited for this kind of task: being able to compare a large set of frames all 
together and simultaneously, using a lightweight 2D feature-based solution 
allows to achieve a very robust result. The accuracy of the reconstruction, 
conversely is sacrifced a little, since we had to use 1 cm voxel size in order 
to run the code which crashed otherwise. Indeed, such a voxel size does 
not fully exploit the spatial resolution that can be ofered by the scanner 
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they used, namely the Structure by Occipital (in Chapter 1 Sec. 1.3 we 
reported the main specifcations). Nevertheless, the result is remarkably 
good for several application felds. On the contrary, in this case, our method 
under-performed. The main issue we encountered was due to the lack of 
a full extensive evaluation of the whole set of chunks, which conversely we 
need to split in order to keep the performance of the system within the 
requirement of a real-time application. Indeed, our system is on par with 
BF at local level and it actually allows to use even a higher resolution for the 
fnal volume since it does not need to keep all the frames stored in memory. 
In Fig. 4.21 we report some sub-parts of few scenes we reconstructed using 
DBF and a voxel size of 4 mm. The result of these reconstruction is good 
and in theory we can use multiple sub-parts to re-align the fnal model in 
post processing. However, the real-time processing for this kind of scene 

Figure 4.21: Examples of indoor reconstruction. Partial reconstruction (both 
textured and shaded mesh) of scenes copyroom, apt0 and office3 from 
BundleFusion dataset using DBF. 

is still under analysis for our method, which is currently limited by the 
computational time it requires to process such a high amount of chunks 
simultaneously. Many ideas are in place, starting with the creation of a 
feature table to leverage a confguration which is similar to what Bonarrigo 
et al. proposed in [64]. Another interesting research topic is certainly the 
investigation of a more efcient way to compute the multi-view registration. 
In particular, in the future we would like to evaluate whether we can extend 
the DL-based pairwise registration to a multi-view application, in order to 
leverage once again the robustness of a data-driven method along with the 
high level of parallel computation it can ofer on modern GPUs. 

3 Conclusion 

In this chapter we presented a novel framework to address the problem of 
real-time 3D reconstruction by focusing on the application of a high resolu-
tion handheld optical scanner (the InSight). We started from the considera-
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tion that the pipeline that was originally designed for the InSight was afected 
by a series of issues: in particular it was lacking both a robust method for 
fast and accurate camera tracking recovery and a solution to refne the model 
on-the-fy, in order to deal with drift and sporadic misalignments. Therefore 
we tried to exploit the novel DL-based solutions that have been objective of 
a deep analysis in the Chapter 3. The frst attempt we made was focused on 
designing a safeguard module to address the problem of tracking loss. We 
then developed a solution which uses data-driven methods to register a new 
frame to the model. The method starts with FCGF to extract the geometric 
features from the two set of points and then it feeds DGR model with the 
putative correspondences we get from the feature matching, in order to in-
fer the coarse registration. We tested the method with DenseMatch dataset 
and we show how the new framework is robust to several cases of tracking. 
Moreover we found that the DL based solution maintains sustainable the 
computational overhead of the safeguard module such that we are able to 
use it in a real-time workfow. Finally, we focused on the possibility to re-
fne dynamically our model in real-time. We proposed a solution that we 
called Deep-BundleFusion which ofers the same powerful camera relocation 
module based on DL and, in addition, it allows to globally optimize over 
the frames in the sequence by exploiting a hierarchical data structure and 
by performing a multi-view registration over a collection of frames aggre-
gated into chunks. The resulting pipeline showed remarkable results for an 
object reconstruction pipeline and it outperformed the previous methods, in-
cluding the state-of-the-art in real-time reconstruction BundleFusion, when 
evaluated on the DenseMatch and Redwood 3D object datasets. 





Conclusion 

At the beginning of the work, our goal was to revise the 3D reconstruction 
workfow of the InSight, an handheld optical scanner which sufered from the 
irreversible loss of tracking and it was somehow difcult to use due to the 
suboptimal user experience it ofered overall. 

Although the target was very specifc, we soon realized that the issues 
afecting the considered instrument are not limited to this specifc device but 
they extend to the entire category of handheld optical scanners, which is a 
large and growing family that is getting more relevant every day because of 
the advantages it can ofer in such a digital-centric world. Moreover, despite 
the increasing interest this kind of solution is getting, we found the litera-
ture to be still lacking of a well centered analysis regarding typical data and 
requirements of handheld object scanning, being more focused on a related 
but diferent set of applications and low-cost devices. The 3D reconstruction 
requirements we target are increasingly relevant nowadays, they refer to com-
mon needs shared across several applications (such as reverse engineering, 
quality inspection and accurate 3D modeling) declined into several domains 
(such as entertainment, industrial, cultural, and bio-medical). However, they 
remain challenging with respect to the available solutions. For instance, the 
medical sector is seeking for an accurate, comfortable to use and afordable 
device to address the task of human body scanning for orthotics related ap-
plications and the prototype of scanner we are designing wants to embrace 
such needs to fll some gaps existing in the literature and in the market. 

Our early work involved the analysis of the state-of-the-art in diferent 
ways to approach real-time 3D reconstructions, in order to leverage on stan-
dard handcrafted solutions to improve critical parts of the original pipeline, 
such as the key frame update policy. However, while these initial attempts 
were non conclusive to solve all the issues, they helped us to better un-
derstand the nature of the challenges we had. Then, at the end of this 
preliminary evaluation, we restricted the search of solutions around two key 
concepts: improving the robustness of the local registration and ofering an 
efective global refnement to adjust the model on-the-fy. 

At this stage of the research, we moved our attention toward novel so-
lutions, which are based on the most recent and appealing technology in 
the feld of Computer Vision, i.e. Deep Learning. Indeed, as my PhD 
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work progressed, the research community was proposing novel techniques 
to build complex and efective models to deal with 3D processing-related 
tasksng some interesting works on 3D viwe registration. A pool of similar 
and promising solutions was presented at the same conference (CVPR 2020) 
during the second year of my PhD and since then we started analyzing, 
implementing, revising, comparing them and, ultimately, we tried to adapt 
them to our needs. 

In order to analyze and to assess these new methods, we created and 
shared our own 3D object dataset, which is meant to provide a reference to 
the researchers that need to work with real and high-quality data in the feld 
of object reconstruction. Then, we made the frst cross-domain assessment 
of these contemporary methods and we fnally proposed a frst confguration 
that was suitable for real-time applications. 

Grounding the result of our experiments, we fnally conceived a new de-
sign of a 3D reconstruction pipeline suitable to the InSight, as well as to 
scanners producing similar data fows. At its core, a DL-based module guar-
antees a quick and robust 3D registration thanks to its capability to achieve 
a fast and efective camera relocation, even in complex scenarios. Moreover, 
the DL-based module is also fundamental to provide reliable registrations 
into a pose optimization block, which builds a pose graph to adjust the poses 
and to refne the models by means of a dynamic reconstruction approach. 

Our fnal product is a software with a graphical user interface which 
wants to reproduce a real 3D scanning application. We will soon be working 
on a fnal scientifc contribution whereby releasing an open repository of the 
software, along with an extended version of our dataset – DenseMatch – in 
order to provide an easy-to-use framework for fast and robust 3D reconstruc-
tion to the research community. Our plan is to initially make it possible the 
use of the reconstruction software on post-acquisition sequenced of common 
RGB-D frames, but later we aim to leverage the Open3D library to extend 
the compatibility to the drivers of Intel scanners. In this way, we intend 
to provide an alternative solution for real-time scanning which can exploit 
DL-based methods for robust reconstruction. 

In conclusion, although the InSight is still a prototype and it is not sure 
if it will be released or not, the study of this device have ofered us many 
insights to understand real and complex problems that we tried to address, 
hoping that our solutions can be helpful to the largest possible research 
community. 
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Appendices 

A Stereo Vision 

Here, we briefy review the elements of 3D reconstruction from images in 
order to provide context to discussion we made throughout the entire work. 
Such a review does not mean to be exhaustive at all, therefore we suggest 
the reader to refer to the books [30, 211] for a more complete reference. 

A.1 Camera calibration 

Our starting point is an optical sensor (e.g. a digital camera) which can be 
used to the describe the geometry of the world in a relative coordinate system 
by means of a projective model. Given a 3D point XC = {xC , yC , zC } ∈ R3 , 
where C indicates that X is in the camera coordinate system, this can be 
mapped to a 2D point x onto a plane, i.e. a pixel into an image. The 2D 
point can be represented using the homogeneous coordinate system, such 
that x = {u, v, 1} ∈ Z2 . Then we can defne K ∈ R4×3 as the matrix that 
maps XC to x: 

x = KXC (1) 

In the ideal condition of having a pinehole camera model (i.e. the light rays 
travel in straight lines and the lenses are either distortion-free or compen-
sated), K can be defned as: 

K 

 
fx 
= 0 
0 

s 
fy 

0 

 
pu 
pv (2) 
1 

where f , s and p are the focal length, a scale factor and the principal point of 
the camera respectively. In general, estimating these parameters is referred 
to the process of internal calibration. Moreover, in order to map a point 
from the global reference system of the world W into the local reference 
system of the camera C ∈ R3×4 , it is necessary also to perform an external 
calibration. The extrinsic parameters composing the external calibration 
matrix C basically describe the pose of the camera in 3D world. The model 
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is defned by means of a rotation matrix R ∈ R3×3 and a translation vector 
t ∈ R3 , such that 

C = [R|t] (3) 

where C maps a homogeneous 3D point in the world XW into a homogeneous 
3D point in the camera system XC : 

XC = CXW (4) 

By combining the internal and the external matrices we fnally get the pro-
jection matrix P : 

x = KCXW = PXW (5) 

We started by assuming to have the ideal confguration of a pinhole 
camera, which is not afected by distortions. In practice, the lens distortion 
is always critical and so we need to estimate it through camera calibration. 
In literature we can fnd many proposal for camera calibration, either by 
computer vision and photogrammetry researchers. Some popular examples 
are the plane reference calibration by Zhang [212], the 3D reference object-
based calibration by Faugeras [213], the self-calibration from Fraser and from 
Gruen [214, 215] and the calibration using vanishing point for orthogonal 
direction bu Liebowitz et al. [216]. 

A.2 Range image generation 

A rigid pair of sensors can be used to defne a stereoscopic system [30]. At 
its core, we have two cameras looking at the same point in 3D space. If 
we know how to calibrate these cameras, then by exploiting the positions 
in 2D on the two image planes of such a point we can retrieve its distance 
from the system. In general, mapping each pixel of the image plane with the 
additional information of depth returns a so-called Depth Map. In practice, 
many algorithms have been developed through the years in order to compute 
depth maps from stereo images [217]. Actually, most of them do not compute 
depth directly but rather via a preliminary dense disparity feld estimation. 
With the term disparity we mean here the horizontal displacement of the 
pixels from the two images. Indeed, depth z and disparity d are strictly 
related in such a stereo confguration. Specifcally, the depth is inversely 
proportional to disparity: 

bf 
z = (6)

d 
Here b and f represents the baseline (i.e. the distance between the two 
cameras) and the focal length (assuming they are the same for both the 
cameras). We refer for such a confguration to Fig. 1. 

However, computing the disparity it is not straightforward since it means 
to solve the correspondence points problem frst. This is a fundamental 
problem in Computer Vision, which for stereo matching has been tackled by 
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Figure 1: Stereo vision of a point P which is seen from a pair of cameras 
centered in O1 and O2 on a baseline b, having focal length f . Image taken 
from [218]. 

using the epipolar geometry. Referring to Fig. 2 we see that the 3D point M 
is mapped on the two image planes in m1 and m2 for the left and the right 
camera respectively. The geometric relationship between these two point is 
given by the Fundamental matrix [30] F ∈ R3×3: 

m2 
TFm1 = 0 (7) 

Figure 2: Epipolar geometry elements for a stereo system. The two camera 
centers C1 and C2 and the world point M form the epipolar plane. The 
epipolar line l2 = e2m2 defned by the image point m1 is given by l2 = Fm1 

while the epipole e is the projection of the camera center C2 into the frst 
image. The epipolar constraint is then m2 

TFm1 = 0. Image from [219]. 

Therefore, in a calibrated stereo confguration it is possible to apply the 
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Fundamental matrix to reduce the search space for a corresponding point 
m2 in right image with respect to m1 in left image to lie on the epipolar 
line. 

B Deep Learning 

In this section we want to give a gentle introduction to Deep Learning 
(DL). Again, this is meant just to give context to what we discussed in 
the manuscript, but for extender references we refer the reader to [220] and 
to the book [221]. 

In general, a neural network (NN) can be seen as a complex structure 
comprising a multitude of layers that receive input data at an entry point 
and produce the expected outcome at the output. The relationship between 
input and output is in general complex and nonlinear by construction. The 
rationale is that most of the problems we want to solve have an inherently 
complex nature, therefore it is necessary to exploit a complex solution. 

In order to understand how to solve complex problems, the network has 
to learn how to do it. Learning is a very complex task itself, that is fulflled 
by means of training. 

B.1 Training a model 

In order to react to a new information and then, in another way, to learn 
from a new example, each layer in the architecture has to be diferentiable. 
Usually the learning policy most used in DL is gradient descent with back-
propagation. Such a policy aim to tune the parameters of the network such 
that the objective of a loss function is minimized. Such a loss function is 
a key element of DL to measure the quality of the proposed output in a 
diferentiable manner. In order to minimize its objective, an optimizer is 
then leveraged by the system. It is clear then that the choice of a proper 
cost function is a fundamental step in the process of network design. In 
this manuscript, we mentioned for instance the cross-entropy function as 
designed loss to learn how to classify an input data. In practice, in order to 
optimize the loss it can be used the principle of maximum likelihood. The 
cross-entropy function can then be described as: 

L(θ) = −E[log pmodel(y|x)] (8) 

Where, θ are the parameters we want to estimate (such that the cost func-
tion is as lower as possible), x is the input, y is the expected output, and 
pmodel is the model distribution. Overall, the design process needs to account 
for several aspect, regarding the reliability of the source input, the level of 
difculty of the task to learn, the putative contamination of outliers, etc.. 

As we said, the loss minimization goes through the gradient descent which 
exploits the frst derivative of the function to fnd the best direction towards 
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a minimum. The size of the steps used to descend are expressed by the 
learning rate. In general there is no guarantee of reach a global minimum. 
Nevertheless, the use of specifc layers as batch normalization and dropout 
in conjunction with gradient descent, produces a fairly robust training pro-
cedure. 

B.2 Elements 

Finally we review the elements of DL by introducing the most important 
type of data structure to us, namely the feed-forward NN. Such a network 
is so-called because of the method it uses to learn, i.e. to feed the layers 
and adjust the values of the internal parameters throughout training. Many 
of these type of NN have been proposed through the years [221]. We now 
review the two key ones, which are also recurrently adopted in the solutions 
we discussed in the thesis. 

B.2.1 Fully-connected 

In a fully-connected (FC) network (or a set of layers of a network) each 
node of a layer is connected to all the nodes in the following one. In this, 
each neuron sums the all the inputs it receives from the previous layer and 
eventually adds a non-linear activation function – typically a Rectifed Linear 
Unit, (ReLu) – to produce its output (see Fig. 3). FC is the most trivial 
form of NN and it is known to be sensitive to the burden of complexity, 
due to the explosion of parameters that grows exponentially with network 
increasing depth. 

Figure 3: Example of feed forward NN with fully connected layers. Source: 
https://becominghuman.ai/. 

https://becominghuman.ai/
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B.2.2 Convolutional Neural Networks 

Convolutional neural networks (CNNs) [168] are particular types of deep 
feed-forward networks which gained a lot of success since its introduction due 
to the efectiveness, the ease of training and the lower memory consumption 
with respect to FC layers. Such properties are derived by the number of pa-
rameters reduction that occurs due to the introduction of spatial constraints 
in the hypothesis space. The constraints is produced by local connections, 
shared weights and the use of pooling layers. The combination of these ele-
ments enforces a structure which creates features that are spatially invariant 
and robust to rotation and deformations. 

Figure 4: Example of 2D CNN on image for object classifcation. Source: 
https://towardsdatascience.com/. 

In origin, CNNs were designed to process 2D matrices or tensors, espe-
cially referring to color images (Fig. 4). However, many other data sources 
are available to be processed with CNNs. The only requirement is that the 
input data needs to have a regular structure. In 3D, we can see this as a 
volumetric CNN with 3D kernels spanning over a grid of voxels (Fig. 5). 

Figure 5: Example of 3D CNN on volumetric grid. The 3D kernel strides 
in 3 direction. The remainder of processing and elements is identical to 2D. 
Source: https://towardsdatascience.com/. 

https://towardsdatascience.com/
https://towardsdatascience.com/
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C Glossary and Acronyms 

C.1 General 

AI Artifcial intelligence. 
DL Deep Learning. 
NN Neural Network. 
CNN a Convolutional Neural Network is a DL model which uses convolution 

layers in it. 
MLP a Multi Layer Perceptron is a DL model which uses full connected 

layers in it. 
t-SNE is a non-linear dimensionality reduction technique well-suited for em-

bedding high-dimensional data for visualization in a low-dimensional 
space. It models each high-dimensional object so that objects are pro-
jected trying to keep their distance with high probability. 

C.2 3D Reconstruction 

RI Range Image. Is a 2D image with additional 3D coordinate information 
associated to each pixel. 

PC Point Cloud. 
Voxel A 3D pixel defned over a structured volumetric grid. 
TSDF Truncated Signed Distance Function is used for a parametric def-

nition of the volume, in which a surface is derived from a structured 
voxel grid by extracting the zero-crossing of the TSDF from each voxel. 

KF KinectFusion. 
BF BundleFusion. 

C.3 Metrics 

False Negative (FN) the number of wrongly predicted real negative cases 
in the data. 

False Positive (FP) the number of wrongly predicted real positive cases 
in the data. 

True Positive (TP) the number of correctly predicted real positive cases 
in the data. 

True Negative (TN) the number of correctly predicted real negative cases 
in the data. 

Accuracy measures the proportion of correctly classifed elements. 

tp + tn 
Accuracy = (9)

tp + tn + fp + fn 

Precision measures the proportion of actual positives with respect to the 
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predicted positives. 
tp

P recision = (10)
tp + fp 

Recall or Sensitivity measures the proportion of actual positives that are 
correctly identifed as such. 

tp
Recall = (11)

tp + fn 

Feature Match Recall (FMR) measures the proportion of actual posi-
tives results, evaluated as the correct identifcation of a minimum per-
centage τ2 of matches that are correctly detected as such in a set of Ωs 

correspondences. A match is defned positive if the distance between 
the associated points is below a threshold τ1. 

    
MX X1 1 ˆ FMR = 1 1( Txi − yj < τ1) > τ2 (12)

M |Ωs|s=1 (i,j)∈Ωs 

Rotation Error (RE) measures the distance in degrees between a ground 
truth rotation matrix and an estimated version of it. 

! 
trace(R̂ −1Rgt) − 1−1RE = cos (13)

2 

Translation Error (TE) measures the distance in meters between a ground 
truth translation vector and an estimated version of it. 

TE = tgt − ̂t (14) 
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