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”Lo studio e la ricerca della verità e della bellezza rappresentano una

sfera di attività in cui è permesso di rimanere bambini per tutta la vita.”

— Albert Einstein





Sintesi della tesi in italiano

Le pompe centrifughe sono ampiamente diffuse in campo industriale e sono
caratterizzate da richieste molto diverse in termini di salto di pressione e
portata da elaborare. Questo ampio range di applicazioni rende il design di
una pompa complicato, per l’assenza di geometrie standard tra cui scegliere,
ma allo stesso tempo di grande importanza e utilità. Di fatto, le prestazioni
di una pompa sono influenzate da molti parametri geometrici, e ciò rende
la fase di design molto complessa e dispendiosa. E’ necessaria, quindi, una
procedura di design cha sia solida, automatica, analizzi i vari parametri in
modo esaustivo e che sia efficace nell’ottimizzazione delle performance. In-
oltre, il campo di moto interno ad una pompa è spesso caratterizzato da alta
instazionarietà e flusso distaccato. Ciò rende complessa anche la fase di valu-
tazione delle performance tramite simulazioni CFD. In particolare, approcci
tradizionali come le equazioni RANS, non sono adatti a predirre corretta-
mente le prestazioni in condizioni di forte off-design in cui spesso una pompa
è chiamata a lavorare. Approcci LES invece garantiscono accuratezza a dis-
capito di tempi computazionali non compatibili con ambiti industriali.

Per affrontare la tematica in modo esaustivo la tesi è divisa in due parti:

• nella prima parte viene presentato un tool di ottimizzazione per il de-
sign automatico delle pale di girante e diffusore di una pompa centrifuga
2D, con l’obiettivo di massimizzarne il rendimento. La parametriz-
zazione delle pale comprende la linea mediana e la funzione spessore
(solitamente non trattata) per un totale di 18 variabili di design. Infine,
viene presentato uno studio di propagazione dell’incertezza, finora mai
applicato all’ottimizzazione di pompe, per valutare la robustezza delle
prestazioni del design ottimizzato;

• nella seconda parte viene presentato, validato ad applicato ad una
pompa centrifuga un nuovo modello ibrido RANS-LES per la predi-
zione accurata di flussi fortemente distaccati con tempi computazionali
industrialmente accettabili.

La prima parte è suddivisa come segue:
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• Capitolo 1: vengono illustrate le più comuni strategie di ottimiz-
zazione in ambito turbomacchinistico. In particolare vengono descritte
strategie di ottimizzazione con surrogato, il modello di surrogato krig-
ing e gli algoritmi genetici, utilizzati nel tool di ottimizzazione presen-
tato in questa tesi.

• Capitolo 2: viene presentata la strategia di ottimizzazione adottata
e viene effettuato un confronto tra l’ottimizzazione dell’efficienza con
genetico e con approccio Efficient Global Optimizaion (EGO). Viene
mostrata la sua applicazione ad una pompa centrifuga 2D, di cui viene
ottimizzata la forma delle pale di girante e diffusore.

• Capitolo 3: viene condotto uno studio di propagazione dell’incertezza
per valutare la robustezza delle prestazioni del design originale e di
quello ottimizzato. Come sorgenti di incertezza vengono considerate le
incertezze sulle condizioni al contorno dovute al banco prova (velocità
di rotazione e portata) e le incertezze sulle grandezze turbolente usate
nelle simulazioni CFD. Lo studio conferma la validità dell’ottimizzazione
deterministica.

La seconda parte affronta i seguenti capitoli:

• Capitolo 4: vengono illustrate le formulazioni DNS, LES e RANS,
l’unione di questi due ultimi approcci nei modelli ibridi RANS-LES e i
vantaggi di questi ultimi.

• Capitolo 5: viene esposta la formulazione del nuovo modello ibrido
implementato, il Delayed X-LES (DX-LES), che unisce la formulazione
X-LES con un ben definito modello di sottogriglia al vantaggio dei
modelli delayed che superano il problema della riduzione degli sforzi
modellati e garantiscono una migliore risoluzione del campo di moto a
parete.

• Capitolo 6: il modello proposto viene valutato su tre casi test (il canale
turbolento a Re = 2000, il backward facing step e il flusso attorno a un
cilindro circolare a Re = 3900 e Re = 140 000. Tutti i casi confermano
che il modello DX-LES evita la riduzione degli sforzi modellati e ha un
comportamento a parete migliore rispetto al modello X-LES.

• Capitolo 7: il modello DX-LES viene applicato allo studio del flusso
in una pompa centrifuga in condizioni di design e off-design. Esso
mostra un buon accordo con i risultati LES, a differenza dei modelli
RANS che in condizioni di off-design non sono in grado di predirre il
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complesso fenomeno di vortici che si instaura nella pompa, con uno
sforzo computazionale moderato.
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Abstract

Centrifugal pumps are widely used in many industrial fields, such as agri-
culture, automotive, chemical, power generation and bio-engineering and are
characterized by considerable differences in the requested pressure ratio and
flow rate. Thus, the design and the accurate performance prediction of a
centrifugal pump is a challenging issue. In facts, the pump performance is
affected by a lot of free geometric parameters and consequently the design
phase can be very complex and time-consuming. Secondly, pumps often show
highly detached flows, which make the traditional CFD approach, based on
RANS equations, unsuitable to properly simulate their flow field. The thesis
is divided in two parts: in the first part, an advanced optimization technique
to design impeller and diffuser blades, in order to maximize the efficiency
of the pump, is presented; in the second part, a new implemented hybrid
RANS-LES model for the accurate prediction of highly detached flows is
presented, validated and finally applied to a centrifugal pump.
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Introduction

Centrifugal pumps are widely used in many industrial fields, such as agri-
culture, automotive, chemical, power generation and bio-engineering. The
design of a centrifugal pump can be very complex and time-consuming, be-
cause centrifugal pumps are characterized by considerable differences in the
requested pressure ratio and flow rate, and because the pump performance
is affected by a lot of free geometric parameters. For these reasons, a reliable
and automatic procedure is necessary for an efficient design strategy.

Moreover, pumps often show highly detached flows. In particular, this
phenomenon occurs as a result of two different circumstances: (i) the absence
of a design process aimed at maximizing the pump efficiency and, thus, at
minimizing flow detachment; (ii) the working condition far from the design
point considered in the optimization mentioned in point i, that can lead up
to rotating stall. Anyway, in these situations, the traditional CFD approach,
based on RANS equations, are unsuitable to properly simulate their flow
field. In fact, RANS simulation is not accurate in cases where the flow is
dominated by internal instabilities, as the flow field in a pump at strongly
off design conditions. Large Eddy Simulation (LES) approach, instead, is
accurate in most applications, but is rarely used in industry, due to the high
computational cost. There is therefore a need of an accurate but cost-effective
alternative.

To tackle the matter of the design and the accurate prediction of centrifu-
gal pump flow field in a comprehensive way the thesis is divided in two parts.
The first part is devoted to present an advanced optimization technique to
design impeller and diffuser blades in order to maximize the efficiency of
the pump. It involves surrogate-based optimization algorithms coupled with
CFD simulation. It allows a fast and effective design procedure avoiding nu-
merical or trial and error approaches, that can’t guarantee the better pump
performance. In literature, previous works have faced the shape optimiza-
tion of a centrifugal pump [1, 2, 3, 4, 5, 6, 7, 8, 9]. They focus mainly on a
single component, i.e. impeller or diffuser or volute, without considering the
effect of the coupling on the optimization, the geometric parameterization
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is always quite simple, and the thickness distribution is not considered. In
this thesis, an existing optimization approach is applied to a full centrifugal
pump with impeller and vaned diffuser and both the camber line and the
thickness function are parameterized.

Furthermore, geometries provided by deterministic optimization approaches
could show discrepancies between predicted and real performance, as they
can be very sensitive to uncertainties related to operating conditions or the
geometry. Thus, the robustness assessment of the baseline and the optimal
design through an uncertainty propagation study is presented. In fact, uncer-
tainties are present in most engineering applications such as turbomachines,
but an uncertainty quantification study has never been applied to assess the
suitability of optimization for pump automated design. In this perspective
a robust design optimization would be of interest if the level of variability
is judged too large. As a consequence, in this work an assessment of how
uncertainties on the pump test influence the variability of pump performance
is addressed, particularly in relation to the improvement of the performance
obtained with the optimization. This study confirmed the validity of the
deterministic optimization, without the necessity to conduct a robust opti-
mization.

The second part of this thesis provides a possible solution to the prediction
of pump performance in off design conditions. During the last twenty years,
several simulation approaches have been tested to predict the pump flow
fields in presence of large flow separations. Different studies showed as RANS
methods performs well only nearby the design condition, while at off design
conditions this methodology is unsuitable due to the highly unsteady nature
of the flow. Barrio et.al. [10, 11] applied 3D URANS with k − ǫ turbulence
model to study the flow in the near-tongue region of a centrifugal pump,
showing significant differences with experimental data at very low and high
flow rates, with respect to the nominal one. Braun [12] showed as the k − ω
SST turbulence model fails to predict the rotating stall in a pump-turbine.
Byskov [13] in 2003 stated the necessity of an eddy resolving techniques to
correctly predict the internal flow field of a centrifugal pump at off design
conditions. Wang and Wang [14] compared the predicted fluctuations of the
static pressure rise in a low specific speed centrifugal pump with LES and
RNG k−ǫ turbulence model. The results are comparable at design condition,
while at off design conditions LES predicts the unsteady characteristics of
the flow more accurately. Kato et. al. [15] used LES to study the inner
flow of a high specific speed mixed-flow pump at low flow rate conditions,
where stall takes place. LES shows a good agreement with measurements.
Posa et. al. [16, 17] applied LES approach to study strong secondary flows
at reduced loads with good agreement with PIV measurements. However,
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LES methods are not often manageable due to the high computational cost.
Hybrid models can be an effective alternative. Feng et. al. [18] applied
the detached-eddy simulation to investigate the flow in a centrifugal pump,
showing good agreement with the experiments on both velocity and turbulent
fields in predicting rotating vortex and back flow at reduced rate. Lucius
and Brenner [19, 20] used the scale adaptive simulation to predict the stall
phenomenon in a centrifugal pump.

The aim of the second part of this thesis is to implement a hybrid RANS-
LES method, that combines the SGS formulation of the X-LES model, rewrit-
ten on the k − ω SST turbulent model of Menter, with the advantages of a
delayed-DES version, which overcomes the modelled stress depletion and al-
lows to better solve the near wall region. This new model, denoted as delayed
X-LES (DX-LES), is implemented in the open-source software OpenFOAM
v.1812 and is tested on three different test-cases, commonly used to assess
turbulent models: the turbulent channel flow at Reτ = 2000, the backward
facing step at Re = 28 000 and the circular cylinder at Re = 3 900 and
Re = 140 000. Finally, DX-LES has been applied to the computation of the
flow through a centrifugal pump impeller [21] and results have been com-
pared with experimental results and LES and RANS simulations from the
literature. The DX-LES model shows a good agreement with the LES re-
sults both in design and off design condition, where RANS methods are not
able to predict the complex turbulent flow inside the pump, and the required
computational effort is moderate.
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Part I

Automated design of
centrifugal pumps
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Chapter 1

Deterministic shape
optimization overview

In this Chapter, the most common strategies for the optimization of tur-
bomachines and pump performance are presented and, in this context, the
optimization methods used in this thesis are introduced.

1.1 Design techniques

Many free geometric parameters can influence the performance of a cen-
trifugal pump, making the design phase very complex and time-consuming.
Traditional approaches are based on the experience of the engineer and re-
quires a continuous refinement of geometry components. An experimental
approach, where prototypes and previous models are modified with a trial-
and-error method, is a first strategy. Zhao et al. [22] modified a pipeline pump
through a manual adjustment. Shiyang et al. [23] proposed an investigation
of the effect of the thickness distribution on the performances of a centrifu-
gal pump testing different geometries. The study highlights a dependency
of the efficiency from the blade thickness, but the method cannot provide a
correlation between the two variables. In general, this design process can be
too expensive and the result depends on the ability of the user. Empirical
formula can be applied to improve the procedure. Wenguang [24] proposed
an optimization of the required net positive suction head (NPHSr) using
an experimental database for the impeller diameter, the radial equilibrium
equation and the 2D vortex element method for the blade. Kim et al. [25]
applied the velocity diagrams for a first design of the impeller blade and the
Stepanoff theory for the base volute. Then, the effects of the cross-section
distribution for the volute have been investigated on random geometries and
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an improvement of the impeller performance is achieved through a response
surface method (RSM) analysis. Anyway, the empirical correlations cannot
address exhaustively the design of a complex turbomachinary and allow only
the study of some spotted design, while a better solution can be ignored.

In the last years the exponential growth of the available computational
resources has paved the way to the automation of conventional design pro-
cesses by coupling CFD solvers and optimization algorithms. The idea is
to parameterize the geometry through some design variables and modify this
parameters according to an optimization algorithm able to find the best com-
bination in order to maximize or minimize some objectives. This methodol-
ogy results in a systematic design process, which allows to reduce time and
costs and ensures the best solution in the studied geometry range. In 2004
Burguburu et al. [26] optimized transonic compressor blades with a gradient
based optimization strategy. The algorithm achieved a raising of efficiency
but it can remain trapped in a local optimum. To avoid this risk a global
optimization technique is usually preferred. Oyama et al. [27] improved the
NASA 67-blade rotor by using a genetic algorithm. The procedure requires
huge computational resources. For this reason genetic algorithms are often
coupled with a surrogate model that approximates the correlation between
the geometries and the performances and drastically reduces the computa-
tional effort.

A surrogate-based optimization is employed by Pei et al. [28] to enhance
the efficiency of an impeller modifying the meridian channel. Wang et al. [29]
and Siddique et al. [30] optimized respectively a 2D and a 3D impeller blade
with a fixed thickness function. De Donno et al. [31] improved the efficiency
of a full centrifugal pump (impeller and vaned diffuser) applying a genetic
algorithm on a kriging surrogate. Derekhshan et al. [2] optimized the per-
formances of a 3D impeller with the artificial bee colony algorithm. Zhao et
al. [32] proposed a 2D optimization of a centrifugal pump with splitter-blades
parametrerizing the pressure side of the main blades. These works are mostly
based on a simple parameterization of a single component, without consider-
ing the effect of their coupling, and they do not include the parametrization
of the thickness distribution. In this thesis a surrogate-based optimization
of a 2D pump with impeller and vaned diffuser is presented and the perfor-
mance improvement is achieved by modifying both the camber line and the
thickness distribution of the blades.

The organization of this chapter is as follows. Sections 1.2 and 1.3 present
an insight respectively into the optimization algorithms and the surrogate
models mainly applied in literature for the optimization of the pump perfor-
mance, while Section 1.4 is focused on the generation of dataset.
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1.2 Optimization algorithms

An optimization problem, with a single objective and generally constrained
can be expressed as follows:

minimize: f(x),

subject to: gL ≤ g(x) ≤ gU ,

h(x) = ht,

xL ≤ x ≤ xU ,

(1.1)

where x is an N-dimensional vector and represents the design variables or
input variables. The N-dimensional vectors xL and xU are the lower and
upper bounds on x and define the design space. The scalar function f(x)
is the objective function and the goal of the optimization is to minimize (or
maximize) it while satisfying the nonlinear inequality constraint on g(x) and
the nonlinear equality constraint on h(x), if they are present. The objective
functions can be more than one, such as the constraints.

Different algorithms have been developed to solve an optimization prob-
lem. They can be classified in two main categories: the gradient-based meth-
ods and the stochastic methods. The gradient-based algorithms need an ini-
tial design, from which the searching direction is defined by the local gradient
of the objective functions with respect to the design variables. The derivative
can be calculated with a finite difference approximation, and in this case the
time cost is proportional to the number of design variables. In alternative,
the adjoint method analyses the influence of the input variables on the flow
field, which in turn affects the objective functions. Thus, the calculation
of the gradients is independent from the number of design variables, but it
requires complex adjoint equations. Adjoint method has been employed in
different works [33, 34]. Even if the gradient-based methods are efficient,
they are suitable for a local optimization, being the result depending on the
initial design and failing to ensure to find the global optimum.

In contrast, the stochastic methods search the optimum globally in the
defined design space. Often these algorithms are inspired on some natural
process or event. For example the Particle Swarm Optimization simulates
the animal behaviour of moving swarm like the bird flocking: it starts from
a population of design and it moves them in the search-space based on a
velocity that is a measure of the design fitness. This method is efficient but
it risks to trap into a local optimum. The Simulated Annealing refers to the
process of heating and slow cooling of metals. The algorithm decides between
accepting a new design or keeping the current one according to a probability
depending on the design fitness. It suits very complex optimization problems
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to achieve an approximate global optimum in limited time. A third method
commonly used in turbomachinery are the genetic algorithms (GA), applied
in this thesis.

GAs are based on the mechanism of natural selection and Darwin’s sur-
vival of the fittest concept. A starting population of a fixed number of indi-
viduals evolves by selection, crossover and mutation until a final individual.
The process is shown in Fig. 1.1. Each individual is characterized by a vec-
tor of the settled input variable, that represents a chromosome. Selection is
based on an individual’s fitness, evaluated on the related objective function
value. The best individuals are more probably selected to be copied in the
new generation. Starting from these selected individuals other two mecha-
nisms allow to evolve from the previous population to the offspring. First
the crossover obtains new individuals exchanging portions of chromosomes of
two parents. After, the mutation alters randomly part of the chromosomes
of some individuals. This avoids the algorithm to remain trapped in a local
optimum. Finally, if the offspring do not include the best individual of the
parents’ population, this best individual replaces one of the new generation
randomly. These steps are iterated until all the individuals of subsequent
populations converge to an optimum. The user has to select the crossover
and mutation rate, which determine the number of respective operations that
take place. If the crossover rate is set too low or too high the search becomes
very time consuming because the convergence is too slow or the search-space
too broad, respectively. If the mutation rate is too low the process can lead
to a local optimum, while for too high values the inheritance of the parents is
lost. The GAs are simple and robust optimization tools. Genetic algorithms
are widely used for the design of turbines [35, 36], compressors [37, 38, 39]
and pumps [32, 28, 29, 31], and have been used also in this thesis.

1.3 Surrogate models

As seen in the previous paragraph, the global optimization algorithms require
the evaluation of a huge quantity of design. Even if the computational ca-
pacity has grown rapidly in the last years, the computational cost of running
that number of CFD simulations is impractical. Replace the expansive simu-
lations by computing surrogate models is a widespread strategy to overcame
this issue. Surrogate models, also called metamodels, approximate the truth
model (CFD simulation) providing a more affordable function. They exploit
different principles, but the most common kind of surrogate is the data fit
type, that is based on the interpolation or regression of a dataset obtained
running the truth model.
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Figure 1.1: Flow chart of a single iteration for a genetic algorithm [40]

A surrogate-based optimization (SBO) problem can be formulated as fol-
lows. In general, it decomposes the main problem in a series of subproblems
solved in a constrained region ∆k. However, the objective function and the
constraints can be managed in different ways. A merit function can be de-
fined to combine the original objectives and the constraints:

minimize: Φ̂k(x),

subject to: ‖ x− xkc ‖≤ ∆k.
(1.2)

Otherwise, the approximate objective function is directly optimized and the
constraints are explicit:

minimize: f̂k(x),

subject to: gL ≤ ĝk(x) ≤ gU ,

ĥk(x) = ht,

‖ x− xkc ‖≤ ∆k.

(1.3)

Different surrogate models are used in optimization problems. The Poly-
nomial response surface method (RSM) uses low-order polynomial approxi-
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mation. The second order is commonly used and it can be written as follows:

y = β0 +
N
∑

i=1

βixi +
N
∑

i=1

βiix
2
i +

∑

N
∑

i!=j

βijxixj, (1.4)

where y is the predicted function and β are the regression coefficients.
The artificial neural network (ANN) model is inspired by the biological

neurons process in the animal brain. The ANN is based on neurons or nodes
arranged in layers. An input layer and an output layer are connected by
one or more hidden layers (see Fig. 1.2). The input layer receives the input
variables and transfers their value to the first hidden layer. Then this value
are weighted, combined and processed through a transfer function. For the
ith node of the first layer these operations are summarized in the following
function:

a1(i) = FTi

(

N
∑

j=1

(W1(i, j)xj) + b1(i)
)

, (1.5)

where FT is the transfer function and W the connection weight. The results
of the first hidden layer are the inputs for the second one, and the process
continues layer by layer, until the output.

The kriging (KRG) model uses a Gaussian process to approximate the
function:

y =
m
∑

i=1

βiFi(x) + Z(x). (1.6)

The predicted function is computed as the sum of trend basis functions (often
polynomials) that fit the dataset and a stochastic function Z(x) with mean
zero that fixes the function to interpolate the experiments. F (x) is the
vector of the basis functions and β is the vector of the generalized least
squares estimates of the basis function coefficients. Z(x) is a realization
of a stochastic process with mean zero, a process variance σ and a spatial
correlation function:

cov[Z(xi), Z(xj)] = σ2R(xi, xj), (1.7)

where R is the correlation.
There is no one metamodel superior to the others in absolute. Some

studies show as a model performs better than an other one for a particular
application. Jin et al. [42] illustrate as the success of a surrogate model
depends on multiple factors: on the non-linearity of the problem and the
dimension of the dataset. In this study, they show that the RSM is to
prefer for low-order non-linear problems and small scale dataset, the KRG
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Figure 1.2: Artificial neural network scheme [41]

for low-order non-linear problems and high scale dataset, while the ANN
for high-order non-linear problems. Bellary et al. [43] and Samad et al. [44]
applied multiple surrogates on the same dataset to ensure the fidelity of the
surrogate. The question is also what better means for a surrogate model in
an optimization process: of course the accuracy is the main parameter, but
the challenge is to provide the highest accuracy using the smallest possible
dataset. De Donno et al. [31] presented a comparison between the kriging and
the artificial neural network for a shape optimization of an impeller pump. In
this work the surrogate model approximates the dependency of the efficiency
and the total pressure head on 16 parameters defining the geometry. From
this analysis the error between the real and the predicted functions is lower
with the KRG, at least until 300 training points in the dataset. Being the
application of this thesis very similar, the KRG model is used in the following.

1.4 Filling dataset

The metamodel construction needs a dataset meaningful of the whole design
space. The Design of Experiments (DoE) refers to the systematic procedure
that aims to test and discover an unknown effect of introducing a change
in the preconditions. The challenge of a DoE is to provide the maximum
information with the minimum number of design experiments (also called
training points).

One of the most common algorithm to generate a DoE is the Latin Hy-
percube Sampling (LHS) [45]. It is suitable for computer experiments, which
are mainly characterized by system errors rather then random errors, since
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Figure 1.3: Example of the Latin Hypercube Sampling method in a 2D design
space for a dataset with 10 training points

the algorithm tends to fill the design space instead of focus on the boundary.
Requiring n training points, the LHS algorithm divides the range of each
design variables in n intervals and ensures that each variable is represented
in each interval. An example is shown in Fig. 1.3.

There is not a fixed rule to determine the minimum number of the train-
ing points to use. It depends on the surrogate model, on the non-linearity of
the functions and on the desired accuracy. For example a second order poly-
nomial model requires to set k = (N+1)(N+2)

2
coefficients, with N the number

of input variables. Kaufman:1996 et al. [46] suggested to use from 1.5k to
4.5k training points to obtain reasonable second order results, while Jin et
al. [42] proposed a dataset with 10N training points.
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Chapter 2

Surrogate based optimization
tool

The objective of this Chapter is to present a framework for a single objective
optimization to enhance the performance of a centrifugal pump. A surrogate-
based optimization algorithm based on the kriging model is shown and two
different strategies to find the optimum are compared.

2.1 The ERCOFTAC centrifugal pump

The tool is applied to the ERCOFTAC pump, taken as reference design to
optimize. The ERCOFTAC pump is the simplified model of a centrifugal
pump presented by Combès [47] in 1999. The geometry of the pump is
depicted in Fig. 2.1, while Tab. 2.1 reports the main geometric parameters
and operative conditions. Experimental [48] and numerical [49] data are
available in literature.

The optimization objective is represented by the hydraulic efficiency

η = Q∆pt/W, (2.1)

while an inequality constraint is applied to the total pressure rise coefficient

ψ = 2∆pt/ρU
2
2 , (2.2)

where Q [m3/s] is the volumetric flow rate, ∆pt [Pa] the total pressure rise
across the pump, W [W ] the power at the impeller, ρ [kg/m3] the density,
and U2 [m/s] the peripheral velocity at the impeller outlet. In particular,
the optimization algorithm maximizes η, while keeping ψ constrained to the
considered operating conditions. Usually, the pressure head is constrained, to
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Figure 2.1: ERCOFTAC centrifugal pump geometry
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Table 2.1: Main geometric parameters and operative condition of the ER-
COFTAC centrifugal pump

Impeller
inlet blade diameter D1 = 240 mm
outlet diameter D2 = 420 mm
blade span b = 40 mm
number of blades zi = 7

Diffuser
inlet vane diameter D3 = 444 mm
outlet vane diameter D4 = 664 mm
vane span b = 40 mm
number of vanes zd = 12

Operative conditions
rotational speed n = 2000 rpm
flow rate coefficient φ = 0.048
total pressure rise coefficient ψ = 0.65
Reynolds number Re = 6.5 105

Inlet air reference conditions
temperature T = 298 K
air density ρ = 1.2 kg/m3
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keep fixed the working condition for the baseline and optimized geometry. A
tolerance is added to the equality constraint to not discard potential optimum
and to make the process more robust. A preliminary numerical investigation
has shown that the maximum efficiency in this problem is reached for the
upper limit of the constraint. For this reason, the constraint for ψ is set
between −5% and 0%. The design variables that affect ψ and η are the
parameters that define the pump geometry.

In the following, Sec. 2.2 is devoted to the description of the geometric
parameterization algorithm, while Sec. 2.3 describes the CFD solver. Sec-
tions 2.4 and 2.5 present the deterministic optimization framework and the
respective results.

2.2 Geometric parameterization

The geometric parameterization is the first and fundamental step of the op-
timization process. The main requirements of a parameterization are:

1. minimize the number of design variable,

2. widen the design space, to include also non-conventional design,

3. prevent the occurrence of unfeasible geometries.

In this work, the shape of the impeller and diffuser blades and the outlet
diameter of the diffuser are parameterized. A total of 18 design variables
(DV) are used. They are reported in Tab. 2.2. The letter c is the chord length,
the subscripts i and d refer to the impeller and the diffuser, respectively, and
LE and TE to leading and trailing edge.

The generation of the design from the design variables is often controlled
by the use of Non-Uniform Rational Basis Spline (NURBS) [50], that offer
flexibility and precision. A subclass of NURBS are the Bézier curves, which
are parametric curves or surfaces based on the Bernstein polynomials. A
nth-degree Bézier curve is defined as

C(u) =
n
∑

i=0

Bi,n(u)Pi , u ∈ [0, 1], (2.3)

where C(u) is the Bézier curve of independent variable u, Pi are the control
points and Bi,n(u) are the nth-degree Bernstein polynomials given by

Bi,n(u) =
n!

i!(n− i)!
ui(1− u)n−i. (2.4)
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(a) Impeller (b) Vaned diffuser

Figure 2.2: Control points of the parameterized ERCOFTAC camber-lines

The blade geometry of the impeller and the vaned diffuser is defined by
the sum of the camber-line and the thickness distribution, which are both
generated through Bézier curves. The choice of the design variables is driven
by the criteria listed above but also by the need to reproduce the baseline
with the same parameterization in a sufficiently accurate way. Figures 2.2
and 2.3 show the layout of the camber lines and thickness function design
variables and how the ERCOFTAC camber line can be reproduced.

The main dimensions of the pump are fixed, i.e. inlet and outlet diameters
of the impeller and the vaned diffuser. As a consequence, also the vaneless
radial gap between impeller and diffuser is fixed. However, the diameter of
the diffuser blades trailing edge can be reduced. In facts, an analysis of the
effect of the absence of this parameter in the design space is carried out in
Sec. 2.5, where the need of the design variable D4 is stated.

The paramaterization is managed with the software Scilab [51].

2.2.1 Camber-line

The camber-lines of the impeller and the diffuser are described through a
Bézier curve. To define the most suitable number of control points associ-
ated with the order of the Bézier curve, curves of different orders (3rd, 4th

and 5th) are considered. The objectives are i) to minimize the number of
input variables, ii) find a parameterization able to reproduce faithfully the
camber-line of the ERCOFTAC pump blades (impeller and diffuser) and iii)
include some common blades profiles used to manufacture pump blades, i.e.
the NACA 6-series, the double circular arc (DCA) and the C4 airfoil. The
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(a) Impeller

(b) Vaned diffuser

Figure 2.3: Control points for the thickness function parametrization

Table 2.2: List of the design variables with the description, the baseline value,
and the minimum/maximum value during the optimization

Variable Description Baseline Min value Max value
γimp Stagger angle of the impeller [◦] -111.5 120 -90
β1 Inlet angle of the impeller [◦] -66.0 -76 -56
β2 Outlet angle of the impeller [◦] -70.9 -75 -60
γdif Stagger angle of the diffuser [◦] 101.4 90 105
α3 Inlet angle of the diffuser [◦] 72.8 65 85
α4 Outlet angle of the diffuser [◦] 67.8 60 75
xt LEi Position along the chord of point of maximum thick-

ness at leading edge of impeller [-]
0.1330 0.1 0.3

drLE,i Difference between xt LEi and the radius at leading
edge of the impeller [-]

0.06323 0.010 0.064

kt,i Curvature at the point of maximum thickness at
leading edge of the impeller [-]

-3.2591 -3.26 -1.00

xt TE,i Position along the chord of the point of maximum
thickness at trailing edge of the impeller [-]

0.9146 0.80 0.95

x3 TE,i Position along the chord of the third control point at
trailing edge of the impeller [-]

0.9323 0.92 1.00

αTE,i Slope at trailing edge of the impeller -0.9556 -1.2 -0.5
xt LE,d Position along the chord of the point of maximum

thickness at leading edge of the diffuser [-]
0.1424 0.1 0.3

drLE,d Difference between xt LEd and the radius at leading
edge of the diffuser [-]

0.01008 0.005 0.100

y1 LE,d Thickness at leading edge of the diffuser [-] 4.0129 2.0 5.0
αLE,d Slope at leading edge of the diffuser [-] 0.004266 0.003 0.075
xt TE,d Position along the chord of the point of maximum

thickness at trailing edge of the diffuser [-]
0.999 0.700 0.999

D4 Outlet diameter of the diffuser blade [mm] 664.0 554.0 664.0
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Table 2.3: Approximation error [%] for different reference camber-lines and
order of the Bezier curves

3rd 4th 5th

Impeller ERC 0.518 0.156 0.0650
Vaned diffuser ERC 0.210 0.0558 0.0457
NACA 63 0.853 0.266 0.105
NACA 64 0.440 0.0946 0.0640
NACA 65 0.127 0.0131 0.000993
DCA 0.182 0.0474 0.0104
C4 0.0115 0.00108 1.71E-05

camber-line is built leaving two degrees of freedom for each control point
inside the curve. The approximation error has been measured by evaluating
the distance (root mean square distance normalized with the chord length)
between the real and parameterized profiles, and is reported in Tab. 2.3 for
each considered reference camber-line.

A fourth-order Bézier curve has been chosen for the parameterization,
but with a number of degrees of freedom (DoF) equal to a third-order curve.
The DoF reduction is obtained by fixing the distance (equal to the corre-
sponding distance for the ERCOFTAC geometry) of the two internal control
points from the leading and trailing edge, while inlet and outlet angles of
the blade are free to change. This choice allows for a better approximation
of the ERCOFTAC camber-lines and higher geometrical flexibility than a
standard third-order curve, even if sharing the same number of variables.
The approximation error is comparable to a third-order curve and is at least
< 0.9% for every reference profile. In addition to inlet and outlet angles, the
parameterization algorithm can also vary the stagger angles.

2.2.2 Thickness function

The thickness function is parameterized in a different way for the impeller
and the diffuser. The objective is to find a parameterization able to reproduce
the thickness distributions of the ERCOFTAC blades. For this reason the
number of control points differs from the impeller to the diffuser. In both
cases, the leading (LE) and the trailing edge (TE) are described through a
Bézier curve, and they are joined with a constant thickness line (see Fig. 2.3).
The parameterization of the leading and the trailing edge is based on the
Bézier-PARSEC method [52], which exploits PARSEC variables, i.e. leading
edge radius, curvature, upper and lower crest location, etc., as parameters
for the Bézier curve.
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Both the leading edge are parameterized with third degree polynomials.
The diffuser has a positive thickness at the starting of the LE to fit the
ERCFTAC profile. The TE of the impeller is a polynomial with degree forth,
while in the diffuser TE only three control points are used to allow a rounded
profile. The control points are set according to Eqs. 2.5, 2.6, 2.7 and 2.8. The
hat symbol defines a fixed value. In particular, ŷt is the maximum thickness
of the blade, which is set equal to the thickness of the ERCOFTAC blade to
compare different profiles and to avoid the computation of too thin blades.

s1 LE = 0 t1 LE = 0

s2 LE = 0 t2 LE = 3kt,i
dr2LE,i
2

+ ŷt,i

s3 LE = xt LE,i − drLE,i t3 LE = ŷt,i

s4 LE = xt LE,i t4 LE = ŷt,i

(2.5)

Equation 2.5: Impeller leading edge

s1 TE = ci t1 TE = ŷTE,i

s2 TE = ci +
ŷ2 TE,i − ŷTE,i
tan(αTE,i)

t2 TE = ŷ2 TE,i

s3 TE = x3 TE,i t3 TE = ŷ3 TE,i

s4 TE = xt TE,i + drLE,i t4 TE = ŷt,i

s5 TE = xt TE,i t5 TE = ŷt,i

(2.6)

Equation 2.6: Impeller trailing edge

2.2.3 Range of the input variables

The baseline values of the DVs shown in Tab. 2.2 correspond to the ERCOF-
TAC geometry that is considered as the baseline configuration. The val-
ues are computed optimizing the position of the control points to minimize
the approximation error (root mean square distance between corresponding
points of the real and parameterized geometry). Figure 2.4 shows how the
ERCOFTAC thickness function of the impeller and diffuser are reproduced.
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s1 LE = 0 t1 LE = y1 LE,d

s2 LE = ˆx2 LE,d t2 LE =
x̂2 LE,d

tan(αLE,d)
+ y1 LE,d

s3 LE = xt LE,d − drLE,d t3 LE = ŷt,d

s4 LE = xt LE,d t4 LE = ŷt,d

(2.7)

Equation 2.7: Vaned diffuser leading edge

s1 TE = cd t1 TE = ŷ1 TE,d

s2 TE = cd t2 TE = ŷt,d

s3 TE = xt TE,d t3 TE = ŷt,d

(2.8)

Equation 2.8: Vaned diffuser trailing edge

Two constraints are satisfied for the definition of the input variables range
(see Tab. 2.2): i) baseline geometry is included, and ii) only feasible geome-
tries can be generated. A design is considered feasible if the thickness is
non-negative and is greater than a threshold value at the diffuser leading
edge.

The impeller inlet angle range has the baseline value as the midpoint,
while the range for the impeller outlet angle has been chosen according to
the literature. The range of the diffuser inlet angle is computed from the
impeller outlet angle, applying velocity diagrams, while the range for diffuser
outlet angle is calculated starting from the volute outlet velocity with the
free-vortex theory. The volute outlet velocity is estimated with the Stepanoff
theory [53].

2.3 CFD set-up and baseline design analysis

In this section, the set-up adopted for all simulations is presented, both in
terms of mesh and CFD solver. Moreover, the effect of the parameterization
algorithm on the pump flow field is investigated, comparing the performance
of the actual and modelled geometry predicted by the CFD analysis.
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(a) Impeller leading edge (b) Impeller trailing edge

(c) Vaned diffuser leading edge (d) Vaned diffuser trailing edge

Figure 2.4: Control points of the parameterized ERCOFTAC thickness func-
tion
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Table 2.4: Boundary conditions for the numerical simulation

Boundary Conditions
inlet velocity V1 11.64 m/s
inlet turbulent kinetic energy k1 0.496 m2/s2

inlet specific dissipation rate ω1 4962.2 s−1

outlet static pressure p4 0 Pa (average on area)
relative velocity at walls 0 m/s
turbulent kinetic energy at walls 0 m2/s2

2.3.1 CFD set-up

The 2D hybrid meshes of the geometries created during the optimization
process are generated with an in-house mesh generator [54]. Only one blade
passage is considered for the impeller and diffuser. The size of the elements
adjacent to the solid walls is equal to a non-dimensional distance y+ ≈ 1, to
compute the boundary layer accurately up to the wall.

The open-source CFD software OpenFOAM [55] is used to compute the
flow field through the pump. The incompressible Reynolds Averaged Navier-
Stokes (RANS) equations coupled with k-ω SST turbulence model [56] are
solved. The choice of the turbulence model is dictated by the SST capability
to predict correctly flow-fields characterized by the adverse pressure gradient
and detachment, i.e. the expected flow-field of a pump.

Based on previous studies [57, 58], which demonstrate the capability of 2D
simulations to predict reasonably well the ERCOFTAC pump flow-field, 2D
simulations have also been chosen for this work to reduce the computational
effort.

The operating conditions are summarized in Tab. 2.1. At the domain
inlet the velocity V1 (computed from φ), the turbulence intensity Tu1 = 4%
and the specific dissipation rate ω1 are prescribed, while at the outflow a
static pressure is set. Adiabatic wall boundary conditions are applied to all
blades. Details of the boundary conditions are listed in Tab. 2.4.

A steady-state formulation with the Multiple Reference Frame (MRF) ap-
proach is used; the impeller and diffuser are fixed with respect to each other,
but the momentum equation for the impeller domain is solved in the rotat-
ing reference frame. The impeller outflow and the diffuser inflow are coupled
with a mixing-plane interface. This approach, unlike the frozen rotor inter-
face, avoids the convection through the pump of non-physical wakes created
by the impeller blades. The use of the mixing plane interface allows reducing
the computational cost significantly, as the simulation of a single blade pas-
sage for both impeller and vaned diffuser regardless of their blades number
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Table 2.5: Predicted efficiency, η, and total pressure coefficient, ψ, of the
3D ERCOFTAC pump with different approaches (RANS+Mixing plane,
RANS+Frozen rotor, URANS). Errη and Errψ represent the deviation in
the prediction of η and ψ for Mixing plane and Frozen rotor approaches with
respect to the URANS values that are taken as reference

CFD approach ψ [-] η [%] Errη Errψ
URANS 0.748 87.3 - -
RANS + Frozen rotor 0.730 84.4 −2.41% −3.32%
RANS + Mixing plane 0.764 87.0 +2.13% −0.34%

is performed. Predicted ψ and η with mixing plane and frozen rotor inter-
faces have been compared with a URANS simulation for the 3D ERCOFTAC
pump. Table 2.5 summarizes the results and shows a good agreement be-
tween the mixing-plane and unsteady simulations, both in terms of efficiency
and total pressure coefficient.

The second-order upwind discretization scheme is applied to the diver-
gence of the velocity, while the first-order upwind scheme is applied to the tur-
bulent quantities. The Laplacian terms are evaluated using a linear second-
order bounded central scheme, while a central differencing method approxi-
mates the gradient term.

2.3.2 Performance of the original and parameterized
ERCOFTAC pump

The effect of the geometric parameterization in the prediction of the ER-
COFTAC pump performance is investigated. Specifically, both the original
and modelled geometries are simulated and the predicted η and ψ are com-
pared. A mesh convergence study has been performed for both geometries,
using three grids with the number of elements ranging from 25000 to 55000.
Finer meshes have been obtained refining uniformly the coarser mesh. The
grid convergence study (see Fig. 2.5) shows some differences in the predicted
results. As suggested by the convergence study, the grid with 37000 ele-
ments ensures a good compromise between computing time and accuracy of
the results, and, therefore, it is chosen for the optimization.

The discrepancy in the predicted performance of the two geometries can
be explained with an in-depth comparison. In particular, Fig. 2.6 shows the
velocity and pressure contours for the real (left column) and the parame-
terized (right column) geometries. The main differences are gathered near
the trailing edge of the impeller blade and the leading edge of the diffuser
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Figure 2.5: Grid convergence study for the original and modelled ERCOF-
TAC pump geometry

blade, where the parameterization smooths the edges of the original geome-
try. In fact, near the trailing edge of the parameterized impeller, the wake
is smaller. Moreover, at the leading edge of the real diffuser, flow separa-
tion can be observed, which is almost absent in the parameterized geometry.
These differences in the flow field of the parameterized geometry entail a
reduction of the losses, and, as a consequence, higher efficiency and total
pressure coefficient.

2.4 Deterministic optimization strategy

Global optimization methods require a high number of evaluations, especially
with a large number of input variables. To reduce the computational cost, a
Surrogate Based Optimization (SBO) [59] is employed. The values of the cost
function are analytically computed using the surrogate model at a negligible
cost with respect to a CFD simulation (truth model). A kriging model is
used. The initial DoE is generated through an LHS method, and each design
is evaluated performing a CFD simulation.

In this work, two different strategies to compute the optimum of the
surrogates are compared: the Single Objective Genetic Algorithm (SOGA)
and the Efficient Global Optimization (EGO) [60]. The methods available in
the software Dakota [61] have been used.

The optimization strategy is summarized in Fig. 2.7 and the details of
the applied methods are illustrated in Chapter 1.

2.4.1 SOGA

Different types of surrogate, available in literature, can be used with SOGA.
Here the Gaussian process or kriging (KRG) model [62] is adopted for the
following reasons: i) it is suitable for both linear and non-linear objective
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(a) Real geometry (b) Parametrized geometry

Figure 2.6: Comparison between the velocity (top) and pressure (bottom)
contours for the real (left column) and parametrized (right column) ERCOF-
TAC pump geometry
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Figure 2.7: Optimization strategy
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function, ii) it reduces the number of model parameters if the data-set is
small [63], and iii) it is often adopted for turbomachinery optimization.

A genetic algorithm (GA) is chosen as a global optimization algorithm for
its flexibility and robustness. It has a low probability to remain trapped in a
local minimum, and it is often used in turbomachinery shape optimization.
The crossover rate used in this work is 0.8 and the mutation rate is 0.1.
The convergence is assumed to be reached when the objective function is not
improved after 100 loops of the strategy depicted in Fig. 2.7.

2.4.2 EGO

EGO algorithm exploits KRG to evaluate the error in the prediction of the
objective function. In particular, EGO exploits this feature to search the
optimum through the maximization of the Expected Improvement Function
(EIF), defined as follows:

E[I(x)] = (ŷ − fmax)Φ(
ŷ − fmax

s
) + s ω(

ŷ − fmax
s

),

where ŷ is the predicted function and s its standard error, Φ(·) and ω(·) are
the standard normal density and distribution function, respectively.

The EGO algorithm allows combining exploitation and exploration, so
that both zones of design space with good solutions and with lack of infor-
mation are tested. This feature could be advantageous in search of the global
optimum with respect to SBO with SOGA. In fact, the latter approach fo-
cuses the research only in the zone of good solution, depending on the initial
distribution of the data set, and can lead to a local optimum. This limitation
can be particularly dangerous when the accuracy of the response surface can
be limited for the considerable number of design variables. On the other
hand, the EGO algorithm finds the optimum of a more complex function.

For this algorithm, a different convergence criterion has been selected.
In particular, the convergence is assumed to be reached when the maximum
EIF value is lower than 0.1 throughout ten iterations.

2.5 Results

Initially, the outlet diameter of the diffuser blade D4 is not considered in the
parameterization, and the effects on the optimized geometry are investigated.
In the second part of the discussion, the result of the optimization process
performed including D4 is presented.
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Figure 2.8: Velocity contour and streamlines in the diffuser for the baseline
(left) and a random design of the DoE (right)

2.5.1 Influence of the diffuser outlet diameter

In this section a study is carried out with a fixed outlet diameter of the
diffuser blade. The DoE is created with 340 design (20 times the number of
design variables) obtained with a LHS technique. Each design is analyzed
with a CFD simulation and it is excluded from the DoE if the CFD calculation
does not converge. Surprisingly, it has been seen that all the design in the
DoE presented a vortex along the suction side of the diffuser blade: at the
leading edge like the baseline or at the trailing edge (see Fig. 2.8).

Generally, the vanishing of the vortex is expected with the increasing
of the efficiency, but this is not the correct interpretation. For a better
understanding, the phenomenon is deepened in the following.

The efficiency of the whole machine (see Eq. 2.1) can be splitted as

η =
∆pt,imp
W

−
∣

∣

∣

∣

∆pt,diff
W

∣

∣

∣

∣

= ηimp −
∣

∣

∣

∣

∆pt,diff
W

∣

∣

∣

∣

. (2.9)

To maximize the efficiency it is possible to increase the efficiency of the
impeller or to decrease the total pressure losses in the diffuser. The im-
peller efficiency is maximized by minimizing the power at the impeller W .
The decreasing of the diffuser losses, as the ∆pt is fixed with a tolerance,
is accompanied by an unloading of the impeller blade: a decreasing of W is
followed by a proportional decreasing of ∆pt,imp and a decreasing of the total
pressure losses in the diffuser (−∆pt,dif ). In Fig. 2.9 the first possibility is
represented by design (that respect the constraint) on a vertical line in the
graph, while the second one, by design, which are horizontally aligned.

However, improving the performance of the diffuser the vortex is not
removed. The issue concerns the role of the diffuser. It has the task of
conveying the flow to the outlet of the machine and transforming the kinetic
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Figure 2.9: Correlation of ∆pt,diff and ηimp for the design in the DoE

Figure 2.10: Static pressure contour in the diffuser for the baseline (left) and
a random design of the DoE (right)
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Figure 2.11: Correlation of ∆pdiff and ∆pt,diff for the design in the DoE

energy of the fluid at the impeller discharge into static pressure. The diffuser
pressure field for the baseline and a second design of the DoE is shown in
Figure 2.10. The relation between the static and the total pressure rise in
the diffuser for the design that respect the total pressure rise constraint is
almost linear (see Fig. 2.11), and can be expressed as follows:

∆pt,diff = ∆pdiff +
1

2
ρU2

4 − 1

2
ρU2

3 , (2.10)

where U3 and U4 are the absolute values of the velocity at the inlet and the
outlet of the diffuser. As shown in Fig. 2.11, decreasing the losses in the
diffuser leads to an increase of the static pressure at the outflow and, thus,
to an increase of adverse pressure gradient, that promotes the detachment of
the flow near the blade trailing edge.

Therefore, during the optimization, design with large detachments in the
rear part of the diffuser blade and a high efficiency can be found. However,
design without the presence of vortex are preferable, even if only for the
well-known limitations of RANS approaches in computing detached flows.
This results in the necessity to penalize the efficiency of these configurations
during the optimization process.

From this analysis, it is clear as the design space used in the DoE leads to
an excessive diffusion process in the diffuser. In the following, to overcome
the oversizing of the diffuser the diffuser outlet can be moved according to
the range of the diffuser outlet diameter D4 (see Tab. 2.2).
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Figure 2.12: Design of Experiment: ∆pt and η

2.5.2 Deterministic optimization

The DoE consists of 340 designs, distributed over the whole domain, and each
design is analysed with a CFD simulation. A design is excluded from the
DoE if the CFD calculation does not converge, or the solution is considered
not satisfactory (i.e. η < 70%). After this screening, only 298 feasible designs
are retained for the DoE. Fig. 2.12 shows the values of the objective function
and constraint for the design in the DoE. The design without a vortex along
the blade are highlighted. It can be seen as this new design space allows the
generation of geometries without vortex along the blade.

The surrogate built on the DoE brings to have a discrepancy between
the expected and the computed efficiency of the design from the first SOGA
iteration of 9.8% and a maximum expected improvement at the first EGO
iteration of 5.4%. The discrepancy between the total pressure coefficient
predicted by the kriging and the value computed by CFD is about the 5%
of the target value. SBO with a SOGA algorithm and EGO are applied
to the surrogate generated on this initial population to optimize the pump
efficiency. During the optimization process, the convergence can be affected
by the presence of designs with an not converged CFD solution. This issue
is addressed in a different manner for the two strategies. In the SOGA
optimization a dummy output is returned, characterized by η = 70% and ψ =
0.7. The efficiency value must be lower than the optimum; this value must be
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Figure 2.13: Convergence history for SBO with SOGA (left) and EGO (right)

chosen carefully because too small values can deteriorate the accuracy of the
surrogate model. The value of the pressure coefficient is selected just outside
the constraint. After a set of iterations, the designs that are unfeasible are
removed, and the process is reinitialized. For the EGO approach a dummy
output can not be used, as it always create instability issues. In this case
when an unfeasible design is encountered, it is replaced with a feasible one,
which is typically found in the neighbourhood, and then the optimization
process continues.

During the optimization, designs with detachments near the trailing edge
of the diffuser must be hindered, as explained in the previous paragraph. To
penalize these configurations and move the algorithm away from this area,
the efficiency of these design is limited to a maximum of η = 90%.

Figure 2.13 shows the convergence history for the SOGA and the EGO
strategy, and the maximum efficiency found by the algorithms at each iter-
ation is plotted. The SOGA approach is stopped after about 200 iterations
because the convergence is reached. Besides, the EGO strategy is ended after
about 350 iterations, even if the convergence is not yet reached. The SOGA
optimization converges in about 130 iterations and five reinitializations, with
maximum efficiency, ηS,max = 94.4%, and a ψS = 0.891. The EGO reaches,
in about 350 iterations, a pseudo-optimal point featuring ηE,max = 93.9%,
and a ψE = 0.883. Both strategies provide a performance improvement with
respect to the baseline (ηB = 91.5% and ψB = 0.891). In Fig. 2.14 the design
evaluated by the two strategies are depicted on the chart ψ − η, while in
Fig. 2.15 the same evaluations are represented in the input space. Notice
that the EGO algorithm scouts a larger space than the SOGA.

Figure 2.16 shows a comparison between the baseline and blades opti-
mized geometries for the impeller (left) and diffuser (right). In particular,
the SOGA optimal geometry features a lower wrap angle, a lower chord
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(a) SBO with SOGA (b) EGO

Figure 2.14: New designs during the optimization processes. The stars show
the position of the baseline and the optimum for the two strategies (green
star: SOGA, pink star: EGO)

Table 2.6: Values of the design variables for the two optima

Variable SBO with SOGA EGO
γimp -110.2 -105.0
β1 -68.6 -61.6
β2 -72.3 -74.2
γdif 90.9 92.5
α3 71.0 68.3
α4 64.6 62.5
xt LEi 0.2497 0.1333
drLE,i 0.06399 0.01900
kt,i -1.4515 -1.8789
xt TE,i 0.8402 0.8250
x3 TE,i 0.9201 0.9244
αTE,i -1.0884 -0.6945
xt LE,d 0.2319 0.1111
drLE,d 0.09570 0.07361
y1 LE,d 2.0014 2.1667
αLE,d 0.02251 0.01500
xt TE,d 0.9406 0.9824
D4 593.9 584.6
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Figure 2.15: Position of the new designs during the optimization processes.
Variable 1 is the stagger angle, Variable 2 is the inlet angle, Variables 3 is
the outlet angle, of the impeller blades. The stars show the position of the
baseline and the optimum for the two strategies (green star: SOGA, pink
star: EGO)
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(a) Impeller

(b) Vaned diffuser

Figure 2.16: Comparison between the baseline and the optimized geometry

length and rounded leading and trailing edges for the impeller blade. The
diffuser has a lower chord length, a smaller and rounded leading edge, and a
lower diffuser angle. The EGO optimum is characterized by the lowest wrap
angle and chord length and rounded leading and trailing edges. The diffuser
has a lower chord length, a smaller and rounded leading edge, similar to the
SOGA profile. Table 2.6 compares the design variables of the two optima.

The optimized geometries modifications described above allow a global re-
duction of the losses through the pump. Figure 2.17 shows the velocity (left
column) and the pressure (right column) contours for the base-line (top),
SOGA optimum (middle) and EGO optimum (bottom). The flow velocity
for the impeller near the trailing edge is lower for both optima, while a lower
velocity field on the pressure side is evident for the EGO optimum, as a
consequence of the greater reduction of the wrap angle. The trailing edge of
both optima is rounded and smaller to decrease the wake dimension and the
corresponding losses. The pressure field for the impeller has a smoother in-
crement inside the impeller channel, and the low-pressure zones near the end
of the blade are removed. The velocity field of the diffuser blade features the
absence of the recirculation zone for both optima, which allows a smoother
recover of the static pressure and, as a consequence, a reduction of the chord
length.
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Figure 2.17: Velocity (left column) and pressure (right column) contours for
the baseline (top), SOGA (middle) and EGO (bottom) geometry
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Chapter 3

Uncertainty quantification
assessment of the optimized
geometry

In this Chapter the robustness assessment of the baseline and the optimal
design through an uncertainty propagation study is presented. Two sources
of uncertainty are considered: i) equipment uncertainties, i.e. the rotational
speed of the pump shaft and the hydraulic system resistance, and ii) uncer-
tainties of the inlet turbulent quantities in the CFD simulations (turbulence
intensity and viscosity ratio).

3.1 Robust optimization and uncertainty quan-

tification overview

Geometries provided by deterministic optimization approaches could show
discrepancies between predicted and real performance, as they can be very
sensitive to uncertainties related to operating conditions or the geometry.
In facts, uncertainties are present in every engineering applications, such as
turbomachines, and their influence on performance should be assessed. In
Fig. 3.1 the possible effect of the uncertainty is shown. A deterministic op-
timization finds the configuration with the maximum value of the objective
function. However, a small variation in some operational condition or geo-
metric quantity can bring the performance down under an acceptable value.
Instead, it can be preferred a second configuration, with a lower determin-
istic objective function, but more robust under a variation of uncertainty
conditions.

In an uncertainty environment, the objective function and the constraint
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Figure 3.1: Comparison between deterministic and robust optima. Fig.
adapted from [64]

depend not only on the design variables x, as shown in Eq. 1.2, but also
on a vector ε of the uncertainties. These uncertain variables are of two
types: i) aleatory or statistical uncertainties if they are random unknowns
that differ every time the experiment takes place and cannot be reduced,
such as randomness in physical properties; ii) epistemic uncertainties if they
are systematic and, in principle, due to the lack of knowledge, such as the
inaccuracy of measurements or models.

In this context the formulation for a deterministic optimization, with a
single objective function and no constraints, is the following:

minimize: f(x, ε),

subject to: x ∈ ∆.
(3.1)

These approaches could provide geometries that are very sensitive to un-
certainties related to operating conditions or the geometry [65]. To overcome
this limitation, strategies to treat the uncertain variables ε during the op-
timization process have been developed in the last twenty years. Stochastic
optimization (SO) refers to the optimization under uncertainty when the
probability distribution P of the uncertain variables is known. The objective
is to minimize the expected value of the random objective function:

minimize: EP [f(x, ε)] ,

subject to: x ∈ ∆.
(3.2)
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If the probability distribution P is not known, the optimization is called
Robust optimization (RO). This method can minimize the worst expectation
of the objective function under all the possible distributions P and can be
expressed as

minimize: max
P

[f(x, ε)] ,

subject to: x ∈ ∆,

ε ∈ U.

(3.3)

In both RO and SO the expected value can be substituted with other statis-
tics, such as the third quartile or the 90th percentile, which are more mean-
ingful in several applications.

RO or SO allow to optimize the mean performance, while minimizing the
variation of performance caused by various uncertainties. However, the com-
putation of the output probability distribution P for every evaluation of the
optimization process can be onerous. Less expensive study can be based on
a deterministic optimization and a post-processing uncertainty propagation
analysis [66]. The uncertainty quantification refers to the assessment of the
impact of the input uncertainties ε on the objective function and constraint.
Given ε, these uncertainties are propagated through a computational model
and statistical assessments are evaluated on the resulting responses. If the
deterministic solution is robust enough, based on desired parameters, it is
accepted as optimum, otherwise a robust optimisation is necessary.

Despite the abundant literature in the field of uncertainty quantification
and robust optimization for wind or gas turbines and airfoils, the robust
design, at least to the author’s knowledge, was never applied to pump shape
optimization. In contrast, only Salehi et al. [67] applied the uncertainty
(geometrical and operational) propagation study to an existent centrifugal
pump. This analysis shows as the variation of performances, such as the
efficiency and the total pressure coefficient, of the proposed configuration,
due to the uncertainties in the operating conditions, e.g. the rotational speed,
and the geometry, e.g. manufacturing uncertainties, are negligible.

The objectives of the following section is to assess the robustness of the
optimal design presented in Section 2.5. In fact, after a preliminary design,
the pump is manufactured and tested in a test rig to verify the total pressure
head and the efficiency, but the boundary conditions applied to the pump
are subject to uncertainty. As a consequence, the effect of uncertainties on
the pump performance should be assessed.
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Table 3.1: Uncertain variables

Uncertain variable Deterministic value Uncertainty range
Rotational speed N 2000rpm ±5rpm
System resistance a 1.21 · 105Pa · s/m3 ±5%
Turbulent intensity I 5% 0.1− 10%
Viscosity ratio µT

µ 10 0.1− 50

3.2 Uncertainty characterization

After the deterministic optimization of the ERCOFTAC pump (see Chap-
ter 2), the robustness of the optimal profiles is assessed through an uncer-
tainty quantification study. The considered uncertainties are related to the
boundary condition of the test rig set-up that cannot be experimentally con-
trolled and measured. The pump rotates at the operating rotational speed
and is plugged in a hydraulic system, whose resistance is chosen to provide
the operating mass flow rate. Two primary sources of uncertainty are consid-
ered: i) equipment uncertainties, i.e. the rotational speed of the pump shaft
that also affects the flow rate, and ii) uncertainties of the inlet turbulent
quantities in the CFD simulations.

In this work, the range for the turbulence parameters is set according to
the literature best practice, while the range for the rotational speed and the
system resistance are set based on standard use of the test equipment. Ta-
ble 3.1 summarizes the range of uncertainty for the four uncertain variables.
A uniform Probability Density Function (PDF) is defined for each uncer-
tainty. Both optimal design found with SOGA and EGO are considered for
the robustness assessment.

The implementation of the CFD solver requires the boundary conditions
to be expressed in terms of rotational speed and flow rate. The flow rate is de-
rived by intersecting the pump and test-rig curves for a fixed rotational speed
and hydraulic resistance, respectively. The pump curves for the baseline and
the two optima are computed using CFD (see Fig. 3.2 for the baseline geom-
etry), while the system curve is estimated as ∆pt = a · Q2, i.e. a parabola
passing through the working point, where the parameter a is proportional to
the system resistance. This formulation allows to apply uncertainty to the
system resistance varying the parameter a. The intersection of the pump and
test-rig curves defines the minimum and the maximum value of the flow rate
given by the uncertainties of the rotational speed and the system resistance.
A uniform PDF is assumed for the flow rate, even if this is equivalent to con-
sider a broader uncertainty on the resistance (see Fig. 3.2). In fact, the grey
area corresponds to the uncertainty for the rotational speed and system resis-
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Figure 3.2: Pump curves of the baseline geometry for different rotational
speeds, system curves and area of uncertainty. Grey area: uncertainty given
by the rotational speed and the system resistance. Black area: uncertainty
for considering the flow rate instead of the system resistance

tance, while the black area corresponds to the uncertainty added considering
the flow rate instead of the system resistance. This assumption is acceptable
because i) it ensures higher safety, and ii) the error of the uncertainty is
small.

To assess the robustness of the optimal designs and the baseline, a Poly-
nomial Chaos Expansion (PCE) ([68]), which is a well-known technique for
propagating uncertainties at low computational cost, is employed. It is based
on a multidimensional orthogonal polynomial approximation in terms of stan-
dardized random variables. A one-to-one correspondence exists between the
choice of the stochastic variable and the polynomials. For instance, if a
normal/uniform variable is considered, the corresponding polynomials are
Hermite/Legendre polynomials. The random output R is given by a finite-
dimensional series expansion:

R(ξ) =
P
∑

i=0

αiΨi(ξ), (3.4)

where Ψi are the multidimensional orthogonal polynomials. They are de-
rived from the family of hyper-geometric orthogonal polynomials or Askey
scheme [69]. The αi are deterministic coefficients of the expansion, com-
puted through a multidimensional integration. A tensor product of a Gaus-
sian quadrature rule of fourth order is employed to obtain the expansion
coefficients and 625 evaluations are performed.

Statistics as mean and standard deviation can be computed analytically
from the expansion. The PDF of the output is evaluated with a Monte
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Table 3.2: Mean and standard deviation of the performance PDF for the
baseline and the optimal geometries

Geometry µψ [-] σψ [-] µη [%] ση [%]
Baseline 0.889 0.016 91.3 0.25
SBO with SOGA optimum 0.891 0.013 94.1 0.37
EGO optimum 0.883 0.011 93.8 0.25

Carlo sampling performed directly on the polynomial approximation, which
is a surrogate model of the function of interest with respect to the input
parameters.

3.3 Results

A PCE-based Uncertainty Quantification study is performed for three de-
sign, i.e. the baseline and the two optima coming from the deterministic
optimization. The mean, µ, and the standard deviation, σ, of the total pres-
sure coefficient and the efficiency are calculated (see Tab. 3.2). Notice that
the mean efficiencies are slightly lower than the corresponding deterministic
values; the two optima efficiency means appear to be close each other, even
if the standard deviation of the SOGA optimum is greater (∼ 50%). These
values show a robust improvement of the optimum under uncertain operating
conditions since the EGO-based optimal design features high efficiency with
the same standard deviation of the baseline. This behaviour clearly shows
that a deterministic optimization enhances the performances, while the sensi-
tivity to some uncertain parameters remains the same as the baseline. Notice
that the coefficient of variation for the optimal performance (computed as
the standard deviation to mean ratio) is around 0.26%. In this perspective, a
robust design optimization would be of interest only if the level of variability
is judged too large.

The standard deviation of the pressure coefficient for the optima decreases
with respect to the baseline. Moreover, the baseline standard deviation of
the pressure coefficient is equal to 1.8% of the mean and cannot be ignored
when the working point is constrained.

The PDF, which are estimated through a Monte Carlo sampling on the
polynomial expansion and a Kernel Density Estimation (KDE), are also plot-
ted in Fig. 3.3. The remarks based on the previous statistical moments are
confirmed: i) the optimum distributions of the total pressure coefficient are
tighter than the baseline PDF, and ii) the efficiency of optimal designs is
always higher than the baseline efficiency, even if the SOGA optimum has a
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Figure 3.3: Comparison of the total pressure coefficient (left) and the effi-
ciency (right) PDF for the baseline and the optimal geometries

Figure 3.4: Comparison of the PDF shape for the baseline and the optimal
geometries

wider distribution. For the sake of clarity, the shape of the efficiency PDF
for the optimal and the baseline geometries are compared in Fig. 3.4, where
all the distributions have the mean values centred in zero. The baseline
and the EGO optimum show nearly the same distribution, while the SOGA
optimum has a greater variability. However, the latter features potential effi-
ciencies higher than 94.7%, which are very unlikely with the EGO design (see
Fig. 3.3). The change in the total pressure coefficient, even if not negligible,
does not break the constraint for all designs.

The influence of the four uncertain variables (rotational speed, test-rig
resistance, turbulent intensity and viscosity ratio) on the total pressure co-
efficient and the efficiency uncertainties are investigated by computing Sobol
indices, and the results are summarized in Tab. 3.3. The variability of the
total pressure coefficient is mainly affected by the system resistance for all
designs. The variance of the efficiency is explained primarily by the uncer-
tainty on the test rig set-up for the baseline geometry, while for the two
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Table 3.3: Total Sobol’ index

Uncertain variable ψ total Sobol’ index η total Sobol’ index
Baseline SOGA EGO Baseline SOGA EGO

optimum optimum optimum optimum
Rotational speed N 5.86e− 02 7.37e− 02 8.93e− 02 3.69e− 01 1.19e− 01 2.71e− 01
System resistance a 9.37e− 01 8.95e− 01 9.07e− 01 4.68e− 01 6.62e− 02 1.29e− 01
Turbulent intensity Tu 4.51e− 03 2.06e− 02 2.99e− 03 1.26e− 01 4.41e− 01 3.12e− 01
Viscosity ratio µT

µ
1.09e− 03 1.48e− 02 3.53e− 03 8.67e− 02 4.90e− 01 4.13e− 01

optima it is mainly influenced by the turbulent conditions, especially the
SOGA optimum geometry.
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Part II

Implementation, validation and
application of the new DX-LES

hybrid model
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Chapter 4

Hybrid RANS-LES methods

First, the general formulation of DNS, LES and RANS is described. Then,
their coupling in hybrid RANS-LES methods is shown and some specific
hybrid models are presented.

4.1 Advantages of Hybrid RANS-LES meth-

ods

Direct Numerical Simulation (DNS), numerically solving the Navier-Stokes
equations, is the most accurate tool to predict turbulent flows, but it is out of
reach for industrial applications. Reynolds Averaged Navier-Stokes (RANS)
models are widely used in industry, because they provide mean results, with
engineering accuracy and reasonable cost, for several applications. However,
a RANS simulation is not accurate in cases where the flow is dominated
by internal instabilities (for example a flow around a bluff body or strong
adverse pressure gradient). This is the case of the flow field in a pump at off-
design conditions. On the other hand, Large Eddy Simulation (LES) solves
the larger scale eddies and is accurate in most applications. However, LES is
rarely used in industry, due to the computational cost: it requires 10 or 100
times the computational resources of a RANS model.

Hybrid RANS-LES methods couple RANS and LES approaches in order
to exploit the advantages of both: on the one hand the affordability of the
RANS and on the other hand the accuracy of LES. The idea of hybrid meth-
ods is to resolve RANS equation in the boundary layer, where LES requires
a higher computational effort, and LES outside or where high detachment
show up, to avoid RANS inaccuracy. Good results are shown in literature
using this approach.
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In the following, DNS, LES, RANS and hybrid RANS-LES approaches
are presented more in detail.

4.2 Direct Numerical Simulation

In a turbulent flow, big eddies are generated by the interaction with walls
and by flow separations. They contain the majority of the kinetic energy and
transfer it to smaller scale by giving rise to gradually smaller and smaller
fluctuations. The kinetic energy is dissipated as heat by friction through the
smallest eddies. This process, called the energy cascade [70], is displayed
in Fig. 4.1, where the energy spectrum of turbulence E depending on the
wavenumber κ is shown. The dimension of the energetic big eddies can be
expressed as

Lt =
k3/2

ǫ
, (4.1)

where k is the turbulent kinetic energy and ε the dissipation rate. It is
comparable to the characteristic length L of the considered domain. The
smallest eddies can be compared to the Kolmogorov scale:

ηk =

(

ν3

ǫ

)1/4

, (4.2)

where ν is the kinematic viscosity.
A direct numerical simulation (DNS) [71] solves numerically the Navier-

Stokes equations, so that all the turbulence scales, down to the size of the
Kolmogorov scale, are resolved. The computational grid must have a number
of cells at least equals to

Nc = C
L3

η3k
, (4.3)

where C is a constant greater than 1. Defining the turbulence Reynolds
number Ret = Lt

√
k/ν and by substituting Eqs. 4.1 and 4.2 in Eq. 4.3 the

following relation is obtained [72]:

Nc = R
9/4
t . (4.4)

The time step ∆t of the simulation has to be less than ηk/U , where U is
a characteristic velocity. The total time to simulate is of the order L/U .
Hence, an estimation of the number of time step can be obtained as

Nt = R
3/4
t . (4.5)
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Figure 4.1: Production, energy cascade and dissipation in the energy spec-
trum of turbulence and modeled and resolved scales for the DNS, LES and
RANS approach [73]

It is assumed that the turbulent Reynolds number is proportional to the
Reynolds number Re through a constant close to 1/10. The total number of
unknowns to be computed in a simulation is as follows:

N = Nc ∗Nt = Re3. (4.6)

In practise DNS requires a too huge computational time, still beyond the
today available computing power, even for low Re flow problems.

4.3 Large Eddy Simulation

To overcome the practical difficulties related to the DNS the Large Eddy
Simulation (LES) [71, 74] was introduced. LES solves filtered Navier-Stokes
equations, resolves the larger energetic eddies and models the smallest and
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isotropic eddies. It is based on the idea of splitting the spectrum of tur-
bulent energy in correspondence of a cutoff wavenumber κcut placed in the
inertial subrange (see Fig. 4.1) in order to decompose any generic variable φ
as the sum of a resolved part and a modelled part associated to the largest
wavenumber:

φ = φ̄+ φ>. (4.7)

The filter operator is defined as the convolution on a variable φ and a filter
G in physical space [72]:

φ̄ = G ∗ φ. (4.8)

In practice the filter width ∆ is often related to the grid cell size and typical
expressions are the following:

∆cubeRoot = (∆x∆y∆z)
1/3 (4.9)

or
∆max = max(∆x,∆y,∆z), (4.10)

where ∆x,∆y,∆z are the cell sizes in the three directions. The former is
the cubic root of the cell volume, but it gives very low value in case of
strong anisotropy of the cell. The latter corresponds to the maximum edge
size and it is widely used. By applying the filter operator to Navier-Stokes
equations and assuming negligible the commutation terms, LES equations
can be written as

∂ūj
∂xj

= 0, (4.11)

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∂τSGS(ui, uj)

∂xj
, (4.12)

where the subgrid scale (SGS) stress tensor τ(ui, uj)SGS is equal to

τ(ui, uj)SGS = uiuj − ūiūj, (4.13)

and represents the effect of the turbulent scale smaller than Lcut on the
resolved field. A set of equations in the filtered variables is achieved, but
a model for the subgrid scale stress is needed to close the problem. As
recommended by Pope [74], at least the 80% of the turbulent kinetic energy
has to be resolved to retain sufficient accuracy of the method.

LES is less demanding than DNS, but in the boundary layer still requires
a high number of cells, since Nc has to be proportional to Re1.8, instead of
Re2.25 of a DNS [75, 76]. This constraint restricts the application of LES in
industrial applications.

50



4.4 Reynolds Averaged Navier-Stokes equa-

tions

The Reynolds Averaged Navier-Stokes equations are the averaged equations
in the statistical sense of the NS equations. They are based on the hypothesis
that any variable φ(x, t) can be decomposed into two components, i.e. a
Reynolds-average part 〈φ〉 and a fluctuation part φ′:

φ = 〈φ〉+ φ′, (4.14)

under the following hypothesis: 〈〈φ〉〉 = 〈φ〉 and 〈φ′〉 = 0. The average
operator should involve the ensemble average, but in practise it is defined
as the average on a time sufficiently large with respect to the characteristic
turbulent time-scale τ and sufficiently small with respect to the changing of
the boundary conditions [72]:

〈φ(x, t)〉 = 1

T

∫ T

0

φ(x, t, τ)dτ . (4.15)

The time-scale separation of t and τ is necessary for this average to be sen-
sible. This is obviously true for statistically steady flows, where φ depends
only on x and τ . It is true also for unsteady flows where the boundary condi-
tions vary much slower than the characteristic time of turbulent fluctuation,
so that the two time-scales are basically independent. When the flow is dom-
inated by internal instabilities (for example a flow around a bluff body) and
the boundary conditions changes in time, instead, the turbulent fluctuations
and the mean flow have comparable time-scale and the hypothesis at the
basis of RANS approach is not occurred [77]. However, under time-scale
separation assumption the Reynolds average operator can be applied to the
instantaneous Navier-Stokes equations, resulting in the following [72]:

∂〈uj〉
∂xj

= 0, (4.16)

∂〈ui〉
∂t

+
∂

∂xj
(〈ui〉〈uj〉) = −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

− ∂τR(ui, uj)

∂xj
, (4.17)

and τ(ui, uj)R is the Reynolds stress tensor defined as

τ(ui, uj)R = 〈uiuj〉 − 〈ui〉〈uj〉 = 〈ui〉〈uj〉+ 〈u′iu′j〉. (4.18)

It results from the average of the convection non-linear term and it is caused
by the influence of the fluctuation on the mean flow. Additional equations
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are necessary to model the 〈u′iu′j〉 term. The most widespread turbulence
models are based on the Boussinesq hypothesis:

τ(ui, uj)R = −2νt〈Sij〉+
2

3
kδij, (4.19)

where Sij is the strain deformation tensor

Sij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

, (4.20)

and νt is the turbulent viscosity. It requires a model, usually one or two
transport equation, to be computed.

The RANS approach is less demanding with respect to the LES: in partic-
ular RANS requires far fewer cells, as Nc is proportional to Re

0.4. However,
a RANS simulation is not accurate in cases where the mean flow is strongly
affected by large scales, for example bluff bodies with highly detached flows
or strong adverse pressure gradient. Furthermore, RANS approach provides
averages properties of the flow, whereas information about the fluctuation
are completely lost.

4.5 Hybrid RANS-LES approach

Even if LES and RANS equations are based on completely different foun-
dations, they appear in a very similar set of equations. In addition, it is
possible to find a physical relation between the filtering approach of LES
and the statistical average of RANS, by splitting the variable φ in three
different components:

φ = 〈φ〉+ φ< + φ>. (4.21)

In LES approach the mean field and the eddies till the cut-off wavenumber
are resolved and correspond to the filtered field φ̄ = 〈φ〉+φ<, while the effect
of the smallest eddies φ> is modelled. In the RANS approach, the mean field
〈φ〉 is resolved, while the effect of fluctuations φ′ = φ< + φ> is modelled.

Starting from this similarity the two approaches can be coupled in order
to exploit the advantages of both: on the one hand the affordability of the
RANS and on the other hand the accuracy of LES.

Lots of hybrid methods have been developed in the last decades. Based
on their characteristics, hybrid methods are classified in two main categories,
even if different classification have been proposed by various authors. The
standard classification distinguishes between zonal and non-zonal methods.
According to Hanjalic [78], zonal methods applies RANS and LES models
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in different domains divided by a sharp or a dynamic interface, whereas non-
zonal or global methods exploits a set of equations that gradually goes from
a RANS to a LES approach, based on some computed criteria. But this
classification is ambiguous since in both cases different models are used in
different zones. Some researchers use the term zonal referred only to model
in which the interface is fixed in time or is predefined by the user.

A second and arguably more appropriate classification is proposed by
Fröhlic [77], who divides between unified and segregated methods. Unified
models use a unique momentum equation, with a unique τmodel, which allows
to switch between RANS and LES resolving the velocity field continuously.
In unified models, blending and interfacing models can be distinguished, on
the base of the formulation of τmodel. The former use a blending function

τmodel = fRANSτRANS + fLESτLES, (4.22)

whereas in the latter τmodel allows to switch from a pure RANS to a pure LES
and an interface is generated. This kind of models result from the similarities
on the formulation of RANS and LES approach. The segregated models,
instead, present two different domains and the variables are not continuous
at the interface. In this case difficulties come from the boundary conditions
that are to impose at the interface.

In this thesis the focus is on the unified models, and in particular on the
Detached Eddy Simulation (DES) and derived models.

4.5.1 Detached Eddy Simulation

The first DES model was proposed by Spalart in 1997 [79]. It is based on the
Spalart-Allmaras (SA) turbulent model [80, 81], in which the νt is expressed
as a function of the effective turbulent viscosity ν̃ and the following transport
equation is resolved:

∂ν̃

∂t
+

∂

∂xj
(ν̃〈uj〉) = Cb1ν̃S̃+

1

σ

[

∂

∂xj

(

(ν + ν̃)
∂ν̃

∂xj

)

+ Cb2
∂ν̃

∂xj

∂ν̃

∂xj

]

− Cw1fw
ν̃2

d2w
.

(4.23)

S̃ is the vorticity magnitude and dw is the wall distance. The three terms on
the right hand side of this equation correspond to production, diffusion and
dissipation. A modification at the last term allows to cast the RANS model
in a hybrid model. By replacing dw with the following function

d̃ = min(dw, CDES∆), (4.24)
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Figure 4.2: Interface between RANS and LES approach for the Spalart-
Allmaras DES model, with ∆ equal to the maximum edge size [77]

the equation switches from the original RANS model to a LES model, de-
pending on the filter width ∆. In facts, this formulation provides the spectral
filtering of the turbulent equation that defines a LES approach. CDES is a
constant equal to 0.65. Near the wall the distance dw is lower than the filter
CDES∆, depending on the grid size, and the RANS model is applied, while
far from the wall it turns to be dw > CDES∆ and the LES is computed, as
shown in Fig. 4.2.

Similarly, other DES model have been developed based on other RANS
models. One of the most common version [82] derives from the shear stress
transport (k − ω SST) model of Menter [83, 84]. The eddy viscosity is a
function of the turbulent kinetic energy k and dissipation rate ω:

νt =
µt
ρ

=
a1k

max(a1ω, F2S)
, (4.25)

where S is the magnitude of the strain rate tensor. The k and ω are computed
with the following transport equations:

∂(ρk)

∂t
+
∂(ρ〈uj〉k)

∂xj
= Pk −Dk +

∂

∂xj

[

(µ+ σkµt)
∂k

∂xj

]

, (4.26)

∂(ρω)

∂t
+
∂(ρ〈uj〉ω)

∂xj
=
αω

k
Pk −Dω+

∂

∂xj

[

(µ+ σωµt)
∂ω

∂xj

]

+ 2(1− F1)ρ
σω2
ω

∂k

∂xj

∂ω

∂xj
.

(4.27)

The production term Pk [85, 86] and the dissipation terms Dk and Dω

are defined as
Pk = min

(

µtS
2, 10Cµkω

)

, (4.28)
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Dk = ρβk
k3/2

l
, (4.29)

Dω = ρβω2. (4.30)

l is the turbulent length scale equal to

l =

√
k

ω
. (4.31)

F1 and F2 are the SST blending functions. F1 is defined as:

F1 = tanh
(

arg41
)

, (4.32)

where

arg1 = min

(

max

( √
k

Cµωdw
,
500ν

d2wω

)

,
4ρσω2k

CDkωd2w

)

,

CDkω = max

(

2σω2
1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)

.

F2 is defined as:
F2 = tanh

(

arg22
)

, (4.33)

where

arg2 = max

( √
k

Cµωdw
,
500ν

d2wω

)

,

and dw is the distance from the wall.
The generic model constant Ψ without subscript 1 (inner state corre-

sponding to k − ω formulation) or 2 (outer state corresponding to the k − ǫ
formulation) is obtained as a blend, i.e. Ψ = Ψ1F1 + Ψ2 (1− F1). Model
constants are summarized in Tab. 4.1.

Table 4.1: Model constants [85]

Cµ = 0.09 a1 = 0.31
α1 = 5/9 β1 = 0.075 σk1 = 0.85 σω1 = 0.5
α2 = 0.44 β2 = 0.0828 σk2 = 1 σω2 = 0.856
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Starting from the k−ω SST turbulence model the hybrid model is defined
by substituting the length scale l with a composite length scale l̃

l̃ = min(l, CDES∆). (4.34)

The k−ω SST DES model allows to switch from a RANS to an LES approach
depending on the the length scale l and the grid density. If l < CDES∆ the
Eqs. 4.26 and 4.27 are solved in the original RANS approach, while where
l > CDES∆ the model behaves like a LES model. In this model the switch is
independent from the wall distance, but it depends on a physical quantity,
which is a local characteristic of the flow.

Kok et. al. in 2004 [87] proposed a new hybrid model, called eXtra Large
Eddy Simulation (X-LES), based on the k − ω TNT [88] turbulence model.
In this thesis the same model is implemented based on the k − ω SST. The
main difference with the k−ω SST DES model is in LES formulation, which
is based on a well defined SGS model: the k-equation SGS model. In facts,
the LES model of the k−ω SST DES model does not correspond to any SGS
model. The X-LES model is obtained by replacing both the length scales in
the dissipation term and the eddy viscosity (see Eqs. 4.26 and 4.5.1) by a
composite function f̃ , defined as

f̃ = min(f, fLES), (4.35)

where f̃ can be either the length scale l̃ or the eddy viscosity µ̃t. In RANS
and LES models, these quantities are defined as

l =

√
k

ω
,

µt = ρ
a1k

max(a1ω, F2S)
,

lLES = CDES∆,

µt,LES = CDES∆
√
k.

4.5.2 Delayed DES

DES models present the so called grey zone at the interface. Spalart et
al. [89] showed an unphysical behaviour of the original DES model in at-
tached boundary layer, when the spacing parallel to the wall was refined
lower than the boundary layer thickness δ. In general, at the switch the
LES model cannot start immediately to fully resolve the turbulence, due to
the insufficient flow instabilities from RANS. The Modeled Stress Depletion
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(MSD) refers to the reduction of eddy-viscosity switching from RANS to
LES without a corresponding increasing of resolved turbulent content. MSD
results in lower Reynolds stress levels compared to those provided by the
RANS model. In addition, the depleted stresses decrease the skin friction
coefficient and can lead to Grid-Induced Separation (GIS). Since this phe-
nomenon has a major impact if the interface is in the boundary layer and
since the grid affects the position of the switch, a refinement under critical
values of ∆ brings up the MSD.

Different way to overcome this issue as been proposed. A possible solution
is to add a stochastic forcing to the momentum equations at the interface in
LES region to accelerate the development of resolved turbulence [90]. Spalart
et al. [89], instead, proposed a Delayed DES (DDES) version to avoid the
MSD phenomenon. A shielding function fd is introduced to delayed the LES
approach outside the boundary layer independently from the grid resolution.
The function d̃ is redefined as follows:

d̃ = d− fdmax (0, d− CDES∆) (4.36)

and
fd = 1− tanh

[

(8rd)
3] , (4.37)

rd =
ν̃

κ2d2wS
, (4.38)

where κ = 0.41 the Von Karman constant. The model has been tested with
satisfactory results, so that the Delayed version has been implemented in a
similar manner also for the k−ω SST DES model by Gritskevich et al. [91].
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Chapter 5

A New Model: the Delayed
X-LES (DX-LES)

In this Chapter, the formulation of the delayed X-LES (DX-LES) model,
implemented in the open-source software OpenFOAM v.1812, is presented.

5.1 Theoretical formulation

Among the different interfacing hybrid approaches proposed in literature the
X-LES composite RANS-LES model of Kok et al. [87] has an attractive fea-
ture, i.e. a clearly defined subgrid-scale (SGS) model (the k-equation SGS
model) for the LES formulation. The set of governing equations formally
solved for X-LES consists in RANS equations closed by the k − ω TNT,
where the k-equation dynamically reduces to the k-equation of the RANS
turbulence model or to a LES subgrid-scale (SGS) model. However, X-LES
and, in general, all DES models introduce the so called grey area, where the
solution is neither pure RANS nor pure LES, since the switch from RANS to
LES does not imply an instantaneous change of the resolution level. In this
zone, where the model needs to convert from fully modelled turbulence (at-
tached boundary layer) to mostly resolved turbulence (massive separation),
the so called Modeled Stress Depletion (MSD) can appear. An ambiguous
definition of the mesh in the boundary layer zone could prevent the correct
behaviour, inducing the switch to the LES model in the boundary layer where
RANS should be used (see paragraph 4.5.2).

The aim of this work is to revisit the X-LES approach, substituting its
standard turbulence model with the SST and shielding the RANS from the
DES formulation with the function proposed by Spalart [89] and adapted by
Gritskevich [91].
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The function f̃ is redefined as

f̃ = f − fdmax (0, f − fLES) , (5.1)

where f̃ can be the turbulent length scale l or the eddy viscosity µt. The
shielding function is defined as

fd = 1− tanh
[

(Cd1rd)
Cd2
]

, (5.2)

and

rd =
ν + νt

κ2d2w
√

0.5(S2 + Ω2)
, (5.3)

where Ω is the magnitude of the vorticity tensor. Notice that νt in Eq. 5.3
corresponds only to the RANS definition (see Eq. 4.25). Similarly to SA-
DDES [89], the X-LES model is preserved if in LES zone the shielding func-
tion fd is 1, indicating that the region is well outside the boundary layer or
that a massive separation occurs. Otherwise, fd tends to zero and LES mode
is delayed.

5.2 Calibration of the model

The values of Cd1 and Cd2 constants have to be chosen empirically so that
MSD is avoided but the switch from RANS to LES is not excessively delayed.
Changing the RANS turbulence model, the rd profile varies according to the
turbulent eddy viscosity. Therefore, to balance this change, different values
for Cd1 are set in SA-DDES and SST-DDES. At first the values of Cd1 and
Cd2 in the DX-LES model are chosen equal to the values of the SST-DDES
implementation of Gritskevich et al. [91], sharing the same RANS turbulence
model.

To validate the performance of DX-LES model with respect to the MSD,
a zero-pressure gradient boundary layer flow is investigated. The flow is
assumed to be incompressible. The turbulent flat plate case with a unit
Reynolds number Rex = 5 × 106 is computed with different grid resolution.
The maximum grid spacing at the wall changes abruptly from δ to a fraction
r of δ at Rex = 5.2× 106, with δ the boundary layer thickness at Rex = 107,
similarly to Gritskevich [91]. Four grids, with different grid resolution, are
tested (see Fig. 5.1). For all the grids, in wall normal direction 80 cells are
used to cover the domain with a length of 1 and the height of the first cell near
the wall guarantees y+ a slightly less than 1. The domain is two-dimensional
with a single cell in spanwise direction and ∆x = ∆z. The flow is computed
in RANS mode with the DDES option activated.
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Figure 5.1: Turbulent flat plane. Computational grids with different r value:
0.5 (top-left), 0.2 (top-right), 0.1 (bottom-left) and 0.05 (bottom-right)
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Figure 5.2: Turbulent Flat Plate. r = 0.5: fd and rd functions (left) and
turbulent eddy viscosity νt/ν (right)
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Figure 5.3: Turbulent Flat Plate. r = 0.2: fd and rd functions (left) and
turbulent eddy viscosity νt/ν (right)
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Figure 5.4: Turbulent Flat Plate. r = 0.1: fd and rd functions (left) and
turbulent eddy viscosity νt/ν (right)
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Figure 5.5: Turbulent Flat Plate. r = 0.05: fd and rd functions (left) and
turbulent eddy viscosity νt/ν (right)

Spalart [89] and Zhou [92] show how SA-DES and SST-DES models are
strongly sensitive to the grid spacing, while the delayed models are not af-
fected by this issue, at least till a certain refinement. To test the grid sensi-
tivity of the DX-LES, the factor r is set equal to 0.5, 0.2, 0.1 and 0.05 in the
four grid. All the results are shown at Rex = 107.

In Fig. 5.2 the functions rd and fd are shown for the grid with r = 0.5,
together with the computed turbulent eddy viscosity. The fd function starts
to rise at y/δ = 0.5. A decrease is clearly visible around y/δ = 1 for low values
of strain rate magnitude. Anyway the shielding function reaches the 1 just
outside the boundary layer at y/δ = 1.2, as expected. The turbulent eddy
viscosity in the boundary layer correctly fits the RANS profile. In Fig. 5.3 the
results are shown for the grid with r = 0.2. This condition corresponds to an
ambiguous grid, which causes a drop in the turbulent eddy viscosity in DES
models. In this case the shielding is a bit premature (around y/δ = 0.8) and
the eddy viscosity is slightly reduced at the end of the boundary layer, even
if the profile is still acceptable. In Fig. 5.4 where the grid spacing is equal
to r = 0.1, the switch is inside the boundary layer and the νt/ν profile is
completely wrong. The shielding early occurs at y/δ = 0.5 and the predicted
peak of turbulent eddy viscosity is about three quarters of the RANS peak.
The same phenomenon is shown for r = 0.05 (see Fig. 5.5).

The effect of different values of the constants Cd1 and Cd2 is assessed on
the grid with r = 0.5. Figure 5.6 shows the effect of Cd1 equal to 8, 15 and
20 for Cd2 = 3, while Figure 5.7 shows the result for Cd2 = 2, 3 and 4 for
Cd1 = 20. Cd1 = 8 results in a early shielding inside the boundary layer.
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Figure 5.6: Turbulent flat plane. fd and rd functions (left) and and turbulent
eddy viscosity νt/ν (right) with Cd2 = 3 and different values of Cd1 in the
DX-LES model and r= 0.5
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Figure 5.7: Turbulent flat plane. fd and rd functions (left) and and turbulent
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DX-LES model and r= 0.5
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Figure 5.8: Turbulent flat plane. fd and rd functions (left) and and turbulent
eddy viscosity νt/ν (right) with different filer ∆ and r= 0.5

Instead, the effect of Cd2 is negligible in the turbulent eddy viscosity profile.
In the following Cd1 = 20 and Cd2 = 3 are set as constants of the model.

Finally, two different filter ∆ are compared. The filter ∆max (see Eq. 4.10)
is compared with a mixed filter, which combines ∆max with ∆cubeRoot (Eq. 4.9)
defined as follows [93]:

∆mix = fd∆max + (1− fd)∆cubeRoot. (5.4)

This filter (used also in the previous computation) uses the ∆cubeRoot filter
in LES zone, while ∆max is activated in the boundary layer. In fact, Breuer
et al. [94] show as ∆cubeRoot gives better results than ∆max in eddy zone. On
the other hand, ∆cubeRoot returns too low values in anisotropic grids, like near
the wall, and hence too low values of turbulent eddy viscosity. The blending
filter allows to address both issues. In Fig. 5.8 the comparison is shown. The
filter ∆mix results in a early shielding and slightly affects the turbulent eddy
viscosity profile in the final part of the boundary layer. The two filter are
tested also in the turbulent channel flow and backward facing step test cases,
to fully assess their performance.

In summary, from the turbulent flat plate case analysis the following
findings are deduced: i) the DX-LES model performs well and avoids the
MSD phenomenon up to a wall grid spacing equal to 0.2 δ, ii) the best
values of Cd1 and Cd2 are equals to 3 and 20 respectively, iii) both the ∆max

and ∆mix filters give acceptable eddy viscosity profile and further comparison
are shown in the following Chapter.
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5.3 Implementation in OpenFOAM

The proposed hybrid model has been implemented in the open-source CFD
software OpenFOAM (v1812) [95]. The SST-DES and SST-DDES models
are taken as starting point for the implementation of the X-LES and DX-
LES, respectively. The k − ω SST turbulence model in OpenFOAM is the
model decribed in [84] with the updated coefficient in [85] 1, as described in
Section 4.5.1. The optional F3 term for the rough walls and decay control are
disabled. The X-LES model is obtained by modifying the following function
in the kOmegaSSTDES.C file: i) the definition of the turbulent eddy viscosity
in the correctNut adding the switch operator,

1 template <class BasicTurbulenceModel >

2 void XLES <BasicTurbulenceModel >:: correctNut(const

volScalarField& S2)

3 {

4 const volScalarField& k = this ->k_;

5 const volScalarField& omega = this ->omega_;

6 const volVectorField& U = this ->U_;

7

8 const volScalarField nutRAS(this ->a1_*k/max(this ->a1_*

omega , this ->b1_*this ->F23()*sqrt(S2)));

9 const volScalarField nutLES(sqrt(this ->k_)*CXLES_*this ->

delta ());

10

11 // Correct the turbulence viscosity

12 this ->nut_ = min(nutRAS , nutLES);

13 this ->nut_.correctBoundaryConditions ();

14 fv:: options ::New(this ->mesh_).correct(this ->nut_);

15

16 // Correct the turbulence thermal diffusivity

17 BasicTurbulenceModel :: correctNut ();

18 }

ii) the composite function for the turbulent length scale dTilda

1 template <class BasicTurbulenceModel >

2 tmp <volScalarField > XLES <BasicTurbulenceModel >:: dTilda

3 (

4 const volScalarField& magGradU ,

5 const dimensionedScalar& CXLES

6 ) const

7 {

8 const volScalarField& k = this ->k_;

9 const volScalarField& omega = this ->omega_;

10

1Note that the formulation of the production term in [85] is a typo; the correct form is
reported in [86]
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11 return min(CXLES*this ->delta(), sqrt(k)/( omega));

12 }

and iii) the production term in epsilonByk since the constant Cµ (betaStar
in the code) is included in dTilda in the SST-DES model, but not in the
X-LES.

1 template <class BasicTurbulenceModel >

2 tmp <volScalarField ::Internal > XLES <BasicTurbulenceModel >::

epsilonByk

3 (

4 const volScalarField& F1 ,

5 const volTensorField& gradU

6 ) const

7 {

8 return sqrt(this ->k_())*this ->betaStar_/dTilda(mag(gradU)

, this ->CXLES_)()();

9 }

Then starting from the kOmegaSSTDDES.C file, the new DXLES.C file is
obtained by modifying the composite function with the shielding i) in the
turbulence eddy viscosity

1 template <class BasicTurbulenceModel >

2 void DXLES <BasicTurbulenceModel >:: correctNut(const

volScalarField& S2)

3 {

4 const volScalarField& k = this ->k_;

5 const volScalarField& omega = this ->omega_;

6 const volVectorField& U = this ->U_;

7

8 const volScalarField nutRAS(this ->a1_*k/max(this ->a1_*

omega , this ->b1_*this ->F23()*sqrt(S2)));

9 const volScalarField nutLES(sqrt(k)*this ->CXLES_ *((1- fd(

mag(fvc::grad(U))))*this ->delta()+( fd(mag(fvc::grad(U))))

*this ->delta1 ()));

10

11 // Correct the turbulence viscosity

12 this ->nut_ = nutRAS - fd(mag(fvc::grad(U))) * max(nutRAS -

nutLES , dimensionedScalar(dimViscosity , Zero));

13 this ->nut_.correctBoundaryConditions ();

14 fv:: options ::New(this ->mesh_).correct(this ->nut_);

15

16 // Correct the turbulence thermal diffusivity

17 BasicTurbulenceModel :: correctNut ();

18 }

and ii) in the turbulent length scale.

1 template <class BasicTurbulenceModel >

2 tmp <volScalarField > DXLES <BasicTurbulenceModel >:: dTilda
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3 (

4 const volScalarField& magGradU ,

5 const dimensionedScalar& CXLES

6 ) const

7 {

8 const volScalarField& k = this ->k_;

9 const volScalarField& omega = this ->omega_;

10 // const volScalarField& fd = this ->fd(magGradU);

11

12 const volScalarField lRAS(sqrt(k)/(omega));

13 const volScalarField lLES(CXLES *((1-fd(magGradU))*this ->

delta ()+(fd(magGradU))*this ->delta1 ()));

14

15 return max

16 (

17 lRAS

18 - fd(magGradU)

19 *max

20 (

21 lRAS - lLES ,

22 dimensionedScalar(dimLength , Zero)

23 ),

24 dimensionedScalar("small", dimLength , SMALL)

25 );

26 }

Moreover, the magnitude of the vorticity tensor Ω is added in the rd function.
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Chapter 6

Validation of the DX-LES
model

In this Chapter, the proposed hybrid model has been validated on three test
cases: i) the turbulent channel flow at Reynolds number Reτ = 2000, based
on the skin friction velocity uτ and the channel height; ii) the turbulent
flow over a backward facing step; iii) the flow around a circular cylinder
for different Reynolds numbers, i.e. Re = 3 900 and Re = 140 000, based
on the cylinder diameter and free-stream conditions. The predicted results
are compared with available experimental data and reference numerical re-
sults. All the simulations have been run with the open-source CFD software
OpenFOAM (v1812).

6.1 Turbulent channel flow

The accuracy of the proposed DX-LES model is first verified on a fully de-
veloped turbulent plane channel flow at Reynolds number Reτ = 2000. The
calculation of Re is based on the half channel height h and the skin friction
velocity uτ . The turbulent channel flow is a challenging test case because in
the boundary layer LES requires a mesh resolution scaling with Re1.8 [75],
which can be prohibitive for high Reynolds numbers; hybrid methods can
represent a possible solution to alleviate LES computational cost. However,
hybrid RANS-LES simulations of the channel flow can show the MSD. In
fact, depending in the position of the RANS-LES interface, the model can
fail the prediction of the log-law region. In this context, the proposed delayed
version allows to improve the velocity profile estimation.

The simulation involves a channel section of dimensions 2πh × 2h × πh
in streamwise, wall normal and spanwise directions, where h is equal to 1. A
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Figure 6.1: Turbulent channel flow at Re = 2000. Time- and spanwise-
averaged velocity profiles u+ (left) and time- and spanwise-averaged modelled
viscosity profiles νt/ν (right)

periodic condition is imposed in streamwise and spanwise direction, while at
the wall a no-slip boundary condition is set and the mean wall shear stress
is enforced to keep the flux constant. The computational grid is generated
according to the Temmerman grid [76]. It consists of Nx × Ny × Nz =
64×64×32 elements, where N is the number of cells in streamwise (x), wall
normal (y) and spanwise (z) directions. The ∆y+ goes from 0.7 at the wall
to 199 at the centre of the channel. The aspect ratio ∆x+/∆z+ is equal to
1. The time step is set to guarantee a Courant number less than one. The
results are compared to the DNS of Hoyas and Jiménez [96, 97] and the LES
and the Spalart-Almaras DES results of Temmerman [76]. Both the ∆max

and ∆mix filter are evaluated.
The DX-LES velocity profile in Fig. 6.1 is in good agreement with the LES

of Temmerman [76], while the X-LES model overpredicts the mean velocity
in the core region. This behaviour is caused by the MSD. The DX-LES
modelled eddy viscosity (see Fig. 6.1) is higher than the X-LES viscosity near
the wall, because of the deeper RANS layer, and it decreases smoothly after
transition to LES region. The values of viscosity for the X-LES calculation
in the RANS region are more than three times lower, so that at the switching
to LES the resolved turbulence is too low. This leads to a lack of the shear
stress at the interface in the X-LES field. This poorly prediction is visible in
Fig. 6.2 (left) in the convex shape at around y/h = 0.05 of the total stress.
As a consequence, the velocity gradient is overestimated in this zone. This
is confirmed by the X-LES total turbulence kinetic energy (right), which is
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Figure 6.2: Turbulent channel flow at Re = 2000. Time- and spanwise-
averaged shear-stress profile profiles −u′xu′y/u2τ (left) and time- and spanwise-
averaged turbulent kinetic energy profiles k/U2

b (right)

Figure 6.3: Turbulent channel flow at Re = 2000. Contours of streamwise
velocity in planes normal to the flow with X-LES (left) and DX-LES (right)
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overrated near the wall and then decreases in the LES core region. Also the
DX-LES overrates the k profile with respect to the experimental values and
can’t predict the peak near the wall, but the overestimation is significantly
reduced.

It is obvious that the amount of the modelled quantities for the DX-
LES are higher than for the X-LES model, and vice-versa for the resolved
quantities, because the delayed model shifts the RANS-LES interface more
inside the channel. In Fig. 6.3 the different size of the RANS layer is evident:
in the X-LES velocity field the stretched contour area is shallower than for the
DX-LES computation (with ∆max filter). The greater amount of modelled
quantities in DX-LES solution does not represent a loss of information but it
is typical of a hybrid RANS-LES model, which ideally should model all the
boundary layer. The presence in the boundary layer of LES deteriorates the
prediction accuracy, because the mesh density is not sufficient.

Comparing the results of DX-LES with the two different filters, ∆mix

provides a earlier shielding, evident for a lower profile of νt, but it has no effect
on the velocity profile. However, the total shear stress is better predicted, in
accordance with the DNS profile.

6.2 Backward facing step

The second test case is the backward facing step (BFS) at Re = 28 000,
based on the inlet bulk velocity and the step height h. It is commonly used
to test the capability of the model to avoid the MSD and it has been used
to validate the delayed version of Spalart [89] and of the k − ω SST DDES
from Gritskevich [91]. The computational grid (see Fig. 6.4) used in [89, 91]
has been reproduced in order to compare the results. The domain extends
from −4h to 20h in streawise direction, the step is located at x = 0 and the
inlet channel height is 4h. In the spanwise direction the channel width is 4h
and it is discretized with 80 cells. The height of the first cell near the wall
is about 0.0001 that corresponds to y+ < 1. The grid consists of about 2.2
million hexahedral cells. The maximum Courant number is 0.1, equivalent
to a non-dimensional timestep of about 0.002, and the data are averaged in
time over 160 000 timesteps. A periodic condition is imposed in spanwise
direction and a no-slip boundary condition at the walls. At the outlet a fixed
pressure is set. At the inlet the velocity and the turbulent quantities profiles
are imposed. These profiles have been obtained by the simulation of the
channel flow at the same Re, averaging the profile in the spanwise direction.

Fig. 6.5 highlights the RANS and the LES regions in the DX-LES com-
putation, obtained with ∆max and ∆mix filters. As expected the RANS ap-
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Figure 6.4: Backward facing step atRe = 28 000. Detail of the computational
grid

Figure 6.5: Backward facing step at Re = 28 000. 1 − fd function, DX-LES
with ∆max(left) and DX-LES with ∆mix (right)

Figure 6.6: Backward facing step at Re = 28 000. Eddy viscosity ratio
with X-LES (top), DX-LES with ∆max(bottom-left) and DX-LES with ∆mix

(bottom-right)

72



Figure 6.7: Backward facing step at Re = 28 000. Isosurfaces of Q-criterion
coloured with the velocity magnitude contours with X-LES (top), DX-LES
with ∆max(middle) and DX-LES with ∆mix (bottom)
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Figure 6.8: Backward facing step at Re = 28 000. Time- and spanwise-
averaged skin friction coefficient cf , step side (above), opposite side (below)

proach (red zone) is enabled in the attached boundary layers upstream the
step and at the upper wall, while near the wall just downstream the step,
where the separation occurs, the model switches to LES (blue zone). Differ-
ences, caused by the filter, are visible downstream of the recirculation zone,
where the use of the filter ∆mix provides a thinner RANS layer. The same
difference is evident in Fig. 6.6, where a higher value of eddy viscosity νt
means a higher level of modelled turbulence that corresponds mainly to the
RANS region. The level of turbulent eddy viscosity with ∆max downstream
of the recirculation zone is higher than in the boundary layer because the
resolved component is drastically suppressed. This is confirmed in Fig. 6.7,
where isosurfaces of the Q-criterion are displayed: smaller turbulent struc-
tures develop near the step and especially towards the outlet with ∆mix.

It is noteworthy also the behaviour of the X-LES model. The RANS layer
is extremely narrow along the walls with attached flow. In Fig. 6.6 the level
of νt shows as the LES approach for the X-LES model gets into the boundary
layer and the MSD phenomenon appears. The MSD is evident for X-LES
in Fig. 6.8 (right), where the skin friction on the upper wall is shown. The
DX-LES model instead, delaying the switch to LES, avoids the MSD and
ensures a better estimation of the friction coefficient cf . At the upper wall
RANS solution is taken as reference, because the flow is completely attached.

In the zone downstream the step, where the separation is induced by
the step itself, both the models perform well, especially with respect to the
RANS. The effect of different filters is also analysed and a better behaviour
can be observed with the ∆mix. In particular, this filter allows to better
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Figure 6.9: Backward facing step at Re = 28 000. Time-
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x = 3.0

predict the position of the adverse peak in the friction coefficient along the
streamwise coordinate and better fit the experimental profile.

A comparison between the SA-DDES of Spalart [89] is also performed in
Fig. 6.8. At the bottom wall downstream of the step, the SA-DDES model
better predicts the magnitude of adverse peak in the friction coefficient, while
the DX-LES (with ∆mix) correctly estimates the streamwise position of the
peak. At the outflow, bottom wall, the SA-DDES underpredicts the cf value,
while the DX-LES overpredicts it. At the opposite side the DX-LES model
better matches the coefficient untill x/h = 7, but underestimates the profile
after that point, while the SA-DDES cf has all over the wall higher values
than the DX-LES and correctly overlaps the curve at the outlet.

In Fig. 6.9 and 6.10 the streamwise velocity and the velocity fluctuations
profiles downstream of the step are plotted and compared with the SST-
DDES results of Gritskevich [91]. Both the models well predict the velocity
profiles with minor differences. Again, the advantage in using the ∆mix is
evident: it results in a better prediction of the velocity profile, at x/h =
2.2, 3.0 and 3.7 around y/h = 0.8, and a better estimation of the peak of the
velocity fluctuations at the same streamwise position.

In summary, the advantages of the DX-LES with respect to the X-LES
model lies in the capability to accurately predict the skin friction coefficient.
Moreover, the benefit in using the blend filter ∆mix is evident in the near
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wall region after the step. The blend filter avoids the growth of the RANS
zone after the flow reattachment. For this reason, only the filter ∆mix will
be used in the following computations.

6.3 Turbulent flow around a circular cylinder

at Re = 3 900

Finally, a common case study for external flows is chosen to validate the
DXLES model. In particular, the turbulent flow around a circular cylinder
is investigated at two different Reynolds number. In this paragraph the sub-
critical Reynolds number Re = 3 900, based on the cylinder diameter and
free-stream conditions, is selected. In sub-critical flow regime, the boundary
layer is laminar until the separation where the transition takes place in the
separated shear layer. The phenomenology of the flow field in the wake of
the cylinder is largely driven by the laminar-turbulent transition of the shear
layer with the creation of Kelvin-Helmholtz instabilities, the break-up of the
shear layer and an asymmetric Von Kármán vortex shedding. Hybrid models
can be expected to provide results comparable to LES.

Literature reports a considerable amount of information on this testcase,
which can be considered as a benchmark for turbulent flows. Reference data
provide values for the most important integral quantities, such as the forces
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on the wall (pressure coefficient and vorticity) and the wake dynamics behind
the cylinder (velocity profiles, first- and second-order statistics profiles). For
the integrals on the wall, Norberg [99] described pressure measurements on
the cylinder for Re = 3 000 while Son and Hanratty [100] the wall vorticity
for Re = 5 000. For the first-order statistics, Ong and Wallace [101] managed
to accurately measure velocity and vorticity vectors in the near wake outside
the recirculation bubble and proposed turbulence profiles and power spectra
of the components of the velocity at several locations between 4 ≤ x/D ≤ 10.
Lourenco and Shih [102] described measurements also in the recirculation re-
gion of the flow (1.06 ≤ x/D ≤ 10) where statistical quantities were assessed
even though this particle image velocimetry (PIV) experiment was not de-
signed for this purpose. Nevertheless, these results were used as reference of
several numerical simulations, e.g. Mittal and Moin [103] and Wissink and
Rodi [104]. Recently, the flow around a circular cylinder at Re = 3 900 was
studied both numerically, with LES, and experimentally, with PIV and hot-
wire anemometry (HWA) methods, by Parnaudeau et al. [105]. The PIV data
of Parnaudeau et al. [105] differs from Lourenco and Shih [102], while they
are at the same time similar with the HWA data of Ong and Wallace [101].

Several high-fidelity LES, or implicit LES, and DNS were carried out
during the last two decades. The first to perform a numerical analysis with
a LES for this test case was Beaudan and Moin [103]. In recent years the
work by Lysenko et al. [106] is of particular interest in the OpenFOAM
community. Simulations were carried out to understand the accuracy of two
different sub-grid scale models for LES, a conventional Smagorinsky and a
dynamic k-equation eddy viscosity. Wissink and Rodi [104] performed a DNS
at Re = 3 300 in order to study the influence of the spanwise length of the
computational domain with results perfectly consistent with the experiments
of Parnaudeau et al. [105].

Three different computational meshes have been used with the same rect-
angular domain (H-type) but different number of elements in each direction,
in order to prove a convergence of the results with DX-LES. The meshes
have 395 920 (coarse), 1 088 958 (medium) and 3 110 200 (fine) elements. Fig-
ure 6.11 shows a detail near the cylinder of the meshes. The cylinder is
discretized with 160, 240 and 320 elements along circumferential direction,
while the spanwise direction has 28, 42 and 56 elements. The mesh has a
spanwise extension Lz = 2D, and a streamwise extension Lx = 40D, 10D
upstream and 30D downtream, and a crosswise extension Ly = 20D with
a periodic condition. It can be seen that the elements of the meshes near
the cylinder, in the O-type part of the mesh, have been only stretched in
the radial direction to avoid the occurrence of numerical inaccuracies due to
unfavorable mesh aspect ratios. In fact, the elements have a quasi-cubic as-
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Figure 6.11: Circular cylinder at Re = 3900. Detail near the cylinder of the
different mesh, coarse (top,left), medium (top,right) and fine (bottom) with
395 920, 1 088 958 and 3 110 200 elements, respectively

pect ratio in the whole region. In literature the most popular mesh types are
C- and O-type, e.g. Lysenko et al. [106] with a resolution of 300× 300× 64
(5.7×106) elements. Only a few simulations were carried out using structured
and unstructured H-type meshes, e.g. Parnaudeau et al. [105] with a maxi-
mum resolution of 961×960×48 (45×106). Several researchers [105] pointed
out that the aspect ratio in the crosswise Ly and spanwise Lz direction may
be considered as the most important parameters in the construction of the
mesh, because they have significant impact on the main flow parameters, e.g.
the recirculation bubble length. In the most cases the following values are
used: Ly = 15D − 70D and Lz = πD. Wissink and Rodi [104] used O-type
meshes with a maximum resolution of 1206×406×1024 (501×106) and var-
ied the spanwise dimension from 2D to 8D describing that only marginally
this dimension affects the time-averaged statistics in the cylinder wake.

The characteristic integration time for sampling average data has been
performed over about 200 shedding periods, with a time-step ∆t = 10−3D/u∞
in order to guarantee a Courant number of 0.1. The initial and boundary
conditions of all the simulations are the free-stream pressure and velocity
u∞, based on the cylinder diameter and the Reynolds number, and

k=
3

2
(u∞ I)2, ω =

k

ν

(

µt
µ

)

−1

, (6.1)

where I = 0% (laminar flow) is the free-stream turbulent intensity and µt/µ
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is the ratio between the turbulent viscosity and the dynamic viscosity. Here
νt = 3.15× 10−6, k = 0m

2

s2
and ω = 01

s
.

Figure 6.12 shows the comparison between the different meshes, in terms
of the distribution of the time- and spanwise-averaged pressure coefficient
cp and normalized wall vorticity magnitude Ω/2Re0.5 on the cylinder, while
Figs. 6.13 and 6.14 compare the time- and spanwise-averaged streamwise
ux/u∞ and crosswise uy/u∞ velocity profiles and streamwise u′xu

′

x/u
2
∞

and
cross-wise u′yu

′

y/u
2
∞

velocity fluctuations profiles at different locations x/D =
{1.06, 1.54, 2.02} in the wake of the cylinder. Figure 6.15 compares the time-
and spanwise-averaged streamwise velocity ux/u∞ and the streamwise veloc-
ity fluctuations u′xu

′

x/u
2
∞
profiles along the centreline in the wake of the cylin-

der. The results by Parnaudeau et al. [105] are characterized by the presence
of a U-shaped x-component velocity profile while Lourenco and Shih [102]
show a V-shaped profile. High-fidelity simulations confirm that a U-shaped
x-component velocity profile seems to be correct. In fact, it reflects the pres-
ence of two-virtually two-dimensional-free shear layers at y/D ∼ ±0.5 [106],
corresponding to the two detached non-turbulent boundary layers from the
top and bottom of the cylinder. The V-shaped profiles can be considered
an ill-resolved shear layers due to an earlier transition, loss of coherence and
more fluctuations penetrating the region behind the cylinder. In fact, in
Fig. 6.13, solution predicted with X-LES and the coarse mesh describes a
V-shaped x-component velocity profile, while the medium and fine meshes
guarantee enough accuracy to switch to the U-shaped solution. Figure 6.16
shows the isosurfaces of the Q-criterion coloured with the vorticity magnitude
contours with coarse and fine mesh, where the Kelvin-Helmhotz instabilities
with the breaks-up of the shear layer occurs more upstream with the coarse
mesh. Figure 6.13 shows also the influence of the SGS model of LES on
the results. As pointed by Lysenko et al. [106] the conventional Smagorin-
sky model leads to a V-shape, while the dynamic k-equation model leads
to a U-shape; the different accuracy can be ascribed to the different viscos-
ity introduced by the SGS model. In the streamwise velocity fluctuations
the magnitude of the peaks is systematically overestimated for the coarser
meshes. In fact, for the coarse mesh higher values of u′xu

′

x/u
2
∞
in each location

respect to the reference data are observed. This is probably a consequence
of the under-prediction of the recirculation zone length. All the simulations
are able to predict the two peaks of the streamwise velocity fluctuations but
only the fine mesh is also able to predict the peaks magnitude. In general an
underestimation of the Reynolds stresses u′xu

′

x/u
2
∞

and u′yu
′

y/u
2
∞

means that
the shear layer break-up and the laminar-turbulent transition occur more
downstream of the cylinder, which leads to a longer recirculation bubble,
and viceversa.
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Figure 6.12: Circular cylinder at Re = 3900. Time- and spanwise-averaged
pressure coefficient cp (left) and normalized vorticity magnitude Ω/2Re0.5

(right) distribution on the cylinder with different meshes, DX-LES. x = −0.5
is the stagnation point

Table 6.1 compares the results of all the simulations, with the the refer-
ence data expressed in terms of the root-mean-square lift coefficient cLrms,
the time-averaged drag coefficient cD, the Strouhal number St, the time-
averaged separation angles θsep, the time-averaged base suction coefficient
−cp b, the time-averaged peak of the streamwise velocity in the wake −umin/uinf
and the time-averaged recirculation zone length Lr/D. The time-averaged
separation angle θsep is calculated from the condition of vanishing wall-shear
stress in the time-averaged field around the cylinder, while the time-averaged
base suction coefficient −cp b as the time-averaged pressure coefficient on
the cylinder’s surface at θ = 180◦. The time-averaged suction coefficient
is strongly related to the drag coefficient. The time-averaged recirculation
length Lr/D corresponds to the distance between the surface of the cylinder
and the sign change of the time-averaged streamwise velocity profile along
the centreline in the wake of the cylinder (Figs. 6.15 and 6.21). The Strouhal
number is defined as St = fsheddingD/u∞, where fshedding is the frequency of
the vortex shedding instability. About cLrms Norberg [99] describes a com-
prehensive analysis, from the experimental point of view, of the dispersion of
the values. In particular for Re = {3000− 5000} the cLrms varies from 0.03
to 0.1. As pointed out by Lysenko [106], higher viscosity, due to a coarser
mesh, causes an early laminar-turbulent transition and, as a consequence, a
shorter recirculation bubble, and a higher amplitude of the lift and the drag
coefficients. In fact, cLrms = {0.18, 0.12, 0.13} and Lr/D = {1.34, 1.58,
1.66} with coarse, medium and fine mesh. This behaviour on coarser meshes
can be found also in the results of Lysenko et al. [106] with Smagorinsky SGS
model. The time-averaged length of the recirculation bubble Lr/D predic-
tion can be considered as the most important parameter for the agreement
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Figure 6.13: Circular cylinder at Re = 3900. Time- and spanwise-averaged
streamwise ux/u∞ (top) and crosswise uy/u∞ (bottom) velocity profiles at
different locations x/D = {1.06, 1.54, 2.02} in the wake of the cylinder with
different meshes, DX-LES
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Figure 6.14: Circular cylinder at Re = 3900. Time- and spanwise-averaged
streamwise u′xu
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′

y/u
2
∞

(bottom) velocity fluctu-
ations profiles at different locations x/D = {1.06, 1.54, 2.02} in the wake of
the cylinder with different meshes, DX-LES
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Figure 6.15: Circular cylinder at Re = 3900. Time- and spanwise-
averaged streamwise velocity ux/u∞ (left) and streamwise velocity fluctua-
tions u′xu
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(right) profiles along the centreline in the wake of the cylinder
with different meshes, DX-LES

Figure 6.16: Circular cylinder at Re = 3 900. Isosurfaces of Q-criterion
coloured with the vorticity magnitude contours with coarse (left) and fine
(right) mesh, X-LES
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Figure 6.17: Circular cylinder at Re = 3 900. Isosurfaces of Q-criterion
coloured with the vorticity magnitude contours with X-LES (left) and DX-
LES (right), fine mesh

between numerical and experimental results. In fact, it is due to the position
of the shear-layer break-up and the transition. DX-LES with Lr/D = 1.66
shows a good agreement with reference results, in particular DX-LES is in
very good agreement with the LES k-eq by Lysenko et al. [106] while X-LES
slightly overestimates the result. In fact, X-LES introduces a lower eddy
viscosity due to MSD in comparison with DX-LES and overestimates of re-
circulation bubble and the amplitude of the lift and the drag coefficients.
Figure 6.17 shows the isosurfaces of the Q-criterion coloured with the vor-
ticity magnitude contours obtained with X-LES and DX-LES and using the
fine mesh, where the Kelvin-Helmhotz instabilities with the break-up of the
shear layer occur more downstream with X-LES.

Figure 6.18 shows the distribution of the time- and spanwise-averaged
pressure coefficient cp and normalized wall vorticity magnitude Ω/2Re0.5 on
the cylinder with X-LES and DX-LES. Figures 6.19 and 6.20 shows the time-
and spanwise-averaged streamwise ux/u∞ and crosswise uy/u∞ velocity pro-
files and streamwise u′xu

′

x/u
2
∞

and crosswise u′yu
′

y/u
2
∞

velocity fluctuations
profiles at different locations x/D = {1.06, 1.54, 2.02} in the wake of the
cylinder with X-LES and DX-LES. Finally, Figure 6.21 shows the time- and
spanwise-averaged streamwise velocity ux/u∞ and the streamwise velocity
fluctuations u′xu

′

x/u
2
∞

profiles along the centreline in the wake of the cylinder
with X-LES and DX-LES. Both the models shows similar velocity profiles, in
agreement with the reference, while X-LES slightly underestimates the peaks
magnitude of the u′xu

′

x/u
2
∞

profile. Figure 6.22 shows the time-averaged
velocity and velocity fluctuation contours near the cylinder with both the
models, where the extent of the recirculation bubble is slightly shorter with
DX-LES.

84



Table 6.1: Circular cylinder at Re = 3900. Comparison of the root-
mean-square lift coefficient cLrms, the time-averaged drag coefficient cD,
the Strouhal number St, the time-averaged separation angles θsep, the time-
averaged base suction coefficient −cp b, the time-averaged peak of the stream-
wise velocity in the wake −umin/uinf and the time-averaged recirculation zone
length Lr/D, between literature and results for the different spatial accuracy
and models

cD cLrms St −cp b Lr/D −umin/u∞ θsep
Lourenco and Shih exp. [102] 0.99 - 0.22 - 1.19 0.24 86◦

Norberg exp. [99] 0.98 0.04-0.15 - 0.9 - - -
Ong and Wallace exp. [101] - - 0.21 - - - -
Ma et al DNS [107] 0.84 - 0.22 - 1.59 - -
Parnaudeau et al. exp. [105] - - 0.21 - 1.51 0.34 -
Parnaudeau et al. LES [105] - - 0.21 - 1.56 0.28 -
Wissink and Rodi DNS [104] - - 0.22 - 1.588 0.33 87◦

Breuer LES [108] 1.04 - 0.2 0.94 1.35 0.37 88◦

Lysenko LES Smag. [106] 1.18 0.44 0.19 0.8 0.9 0.26 89◦

Lysenko LES k-eq. [106] 0.97 0.09 0.209 0.91 1.67 0.27 88◦

coarse mesh 1.05 0.18 0.21 0.90 1.34 0.30 88.51
medium mesh 1.00 0.12 0.22 0.87 1.58 0.27 88.45
fine mesh 1.00 0.13 0.21 0.84 1.66 0.28 86.45

−0.4 −0.2 0 0.2 0.4

−1

−0.5

0

0.5

1

x

c p

Norberg exp Re = 3000 [99]

Lysenko et al. LES k-eq. [106]

Lysenko et al. LES Smag. [106]

Ma et al. DNS [107]

X-LES

DX-LES

−0.4 −0.2 0 0.2 0.4

0

0.5

1

1.5

x

Ω
/2
R
e0
.5

Norberg exp Re = 3000 [99]

Lysenko et al. LES k-eq. [106]

Lysenko et al. LES Smag. [106]

Ma et al. DNS [107]

X-LES

DX-LES

Figure 6.18: Circular cylinder at Re = 3900. Time- and spanwise-averaged
pressure coefficient cp (left) and normalized vorticity magnitude Ω/2Re0.5

(right) distribution on the cylinder, fine mesh. x = −0.5 is the stagnation
point
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Figure 6.22: Circular cylinder at Re = 3 900. Time-averaged velocity (left)
and velocity fluctuation (right) contours near the cylinder with X-LES (up)
and DX-LES (bottom), fine mesh
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6.4 Turbulent flow around a circular cylinder

at Re = 140 000

The turbulent flow around a circular cylinder at high sub-critical Reynolds
number Re = 140 000, based on the cylinder diameter and free-stream con-
ditions, has been investigated. The flow is near the critical Reynolds number
and for this reason is a challenging problem of fluid mechanics, both from an
experimental and a numerical point of view. As in the previous case of the
turbulent flow around a circular cylinder at Reynolds number Re = 3 900, the
boundary layer is still laminar until the separation, but the laminar-turbulent
transition of the shear layer takes place very shortly after separation, with
the creation of Kelvin-Helmholtz instabilities, the break-up of the shear layer
and an asymmetric Von Kármán vortex shedding. For slightly higher val-
ues of the Reynolds number, i.e. Re = 200 000 − 300 000, the (attached)
boundary layer becomes turbulent, the Strouhal number increases and the
well-known drag crisis is observed.

The accuracy of any numerical model is dependent on the ability to pre-
dict the location of the separation and the laminar-turbulent transition. In
fact, the location of these phenomena is determined by the magnitude of the
Reynolds number and near the critical values separation and transition hap-
pen very close one each other. In this case, the well recognized limitations
of standard turbulence models that are used in hybrid RANS-LES models to
deal with transition onset cause the premature laminar-turbulent transition,
which happens in the (attached) boundary layer [109]. Shur et al. in [110]
introduced the trip-less turbulent separation (TS) case, which is compared
with the laminar separation (LS) case. In this case reference data are those
obtained at higher Reynolds number, i.e. Re > 200 000 [111, 112], in order
to have a comparison with acceptable error margins.

Hybrid models can suffer the limitations of turbulence models, with the
premature occurrence the laminar-turbulent transition due to RANS in the
near-wall region, in contrast to a LES-like behaviour, characterized by a sub-
critical flow regime and laminar separation. All the hybrid turbulence models
experienced similar challenges, but MSD can lead to an underestimation of
the eddy viscosity and turbulence intensity with a laminar separation.

As shown in literature, at these high-Reynolds numbers measurements
are very sensitive to free-stream turbulent fluctuations, surface roughness
and in general boundary conditions and, as a consequence, the scattering of
the measurements is very high. Experiments of Cantwell and Coles [113],
Norberg [113], Achenbach (Re = 100 000) [112] are taken as reference for
LS, while Roshko [111] and Achenbach (Re = 210 000) [112] are taken as
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reference for TS.
A limited number of high-fidelity LES, implicit LES, and hybrid RANS-

LES simulations was carried out during the last two decades. Frohlich et
al. [114, 115], Karabelas [116] and Breuer [108] performed LES with different
subgrid scale models and investigated on the influence of the parameter of
the subgrid scale model on the results. Hybrid RANS-LES simulations have
been performed by Travin et al. [117] (SA-DES), Islam and Thornber [118]
(RANS-ILES), and Zheng et al. [119] (SST-DES). Travin et al. [117] spotlight
the different behaviour of the turbulence model in the near-wall region with
the distinction between LS and TS. The Spalart-Allmaras turbulence model
allows to predict both laminar, by imposing a zero eddy viscosity inflow until
separation, and turbulent separation. The results used for comparison are
LS8 and TS5.

Three different computational meshes have been used with the same rect-
angular domain (H-type), but different number of elements in each direction,
in order to assess a convergence of the results with DX-LES. The meshes
have 624 624 (coarse), 1 827 840 (medium) and 4 996 992 (fine) elements. Fig-
ure 6.23 shows a detail near the cylinder of the meshes. The cylinder is
discretized with 170, 255 and 340 elements along circumferential direction,
and the spanwise direction with 33, 48 and 66 elements. The mesh has a
spanwise extension Lz = 2D, and a streamwise extension Lx = 40D, 10D
upstream and 30D downstream, and a crosswise extension Ly = 20D with
a periodic condition. It can be seen that the elements of the meshes near
the cylinder, in the O-type part of the mesh, have been only stretched in
the radial direction to avoid the occurrence of numerical inaccuracies due
to unfavorable mesh aspect ratios. In fact, in the whole region the elements
have a quasi-cubic aspect ratio. The resolution of the mesh used by Travin et
al. [117] is 150× 109× 52 (850 000 elements), by Islam and Thornber [118]
is 136 × 160 × 30, 171 × 160 × 30 and 211 × 160 × 30 (653 000, 821 000
and 1.01 × 106 elements), and by Zheng et al. [119] is 171 × 136 × 30 and
211× 136× 30 (697 680 and 860 880 elements). Numerical results from liter-
ature suggest that the influence of the spanwise length on the wake structure
is much greater at lower Reynolds numbers and based on the investigation
of Kravchenko and Moin [103] at Re = 3 900 the differences in the statistics
in the near wake were insignificant for πD and π/2D.

The characteristic integration time for sampling average data has been
performed over about 100 shedding periods, with a time-step ∆t = 10−3D/u∞
in order to guarantee a Courant number of 0.1. The boundary conditions for
all the simulations are the free-stream pressure and velocity u∞, the turbulent
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Figure 6.23: Circular cylinder Re = 140 000. Detail near the cylinder of the
different mesh, coarse (top,left), medium (top,right) and fine (bottom) with
624 624, 1 827 840 and 4 996 992 elements

kinetic energy and specific dissipation rate

k=
3

2
(u∞ I)2, ω =

k

ν

(

µt
µ

)

−1

, (6.2)

where I = 0% (laminar flow) is the free-stream turbulent intensity and µt/µ
is the ratio between the turbulent viscosity and the dynamic viscosity (νt =
3.15 × 10−6, k = 0m

2

s2
and ω = 01

s
). Low Reynolds version of turbulence

model has been used.
Table 6.2 compares the results for X-LES and DX-LES, with the ref-

erences in terms of the root-mean-square lift coefficient cLrms, the time-
averaged drag coefficient cD, the Strouhal number St, the time-averaged
separation angles θsep, the time-averaged base suction coefficient −cp b, the
time-averaged peak of the streamwise velocity in the wake −umin/uinf and
the time-averaged recirculation zone length Lr/D. Both experimental and
numerical studies in literature demonstrated that there was a non-linear rela-
tionship between the separation angle, the recirculation zone length, and the
Reynolds number. Experimental results confirm the presence of a laminar
boundary layer and turbulent flow in the shear layers, while most of the com-
putational approaches based on turbulence models over-predicted the angle
of separation, with a separations point more downstream. In fact, if the
laminar to turbulent transition occurs in the (attached) boundary layer, the
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Table 6.2: Circular cylinder at Re = 140 000. Comparison of the root-
mean-square lift coefficient cLrms, the time-averaged drag coefficient cD, the
Strouhal number St, the time-averaged separation angles θsep, the time-
averaged base suction coefficient −cp b, the time-averaged peak of the stream-
wise velocity in the wake −umin/uinf and the time-averaged recirculation zone
length Lr/D, between literature and results for the different spatial accuracy
and models

cD cLrms St −cp b Lr/D −umin/u∞ θsep
Cantwell and Coles exp. [113] 1.237 - 0.179 1.21 0.44 - -
Roshko exp. [111] 0.7 - 0.27 0.8 - - -
Islam and Thornber RANS-ILES [118] 0.869 - 0.271 0.767 1.26 0.367 96.38◦

Zheng et al. SST-DES [119] 0.84 - 0.247 0.93 0.81 0.311 93.9 ◦

Frohlich et al.LES [115] 1.147 - 0.217 1.33 0.42 0.145 79◦

Travin et al. SA-DES LS8 [117] 1.08 0.29 0.21 1.04 1.1 0.261 77◦

Travin et al. SA-DES TS5 [117] 0.65 0.06 0.28 0.70 1.4 - 93◦

X-LES 0.95 0.14 0.21 0.60 1.61 0.28 83.11◦

DX-LES 0.66 0.042 0.28 0.69 1.43 0.33 88.93◦

Figure 6.24: Circular cylinder at Re = 140 000. Isosurfaces of Q-criterion
coloured with the vorticity magnitude contours with X-LES (left) and DX-
LES (right), fine mesh

higher diffusivity of the turbulent regime delays the separation. Figure 6.24
shows the isosurfaces of the Q-criterion coloured with the vorticity magni-
tude contours with X-LES and DX-LES and fine mesh, where the separation
of the boundary layer occur more upstream with X-LES. The time-averaged
separation angles θsep is 83.11

◦ for X-LES and 88.93◦ for DX-LES: a separa-
tion point more upstream means a longer recirculation bubble, and a higher
amplitude of the lift and the drag coefficients.

Figure 6.25 shows the distribution of the time- and spanwise-averaged
pressure cp and skin friction cf coefficient on the cylinder with X-LES and
DX-LES. Figure 6.26 shows the time- and spanwise-averaged streamwise ve-
locity ux/u∞ and the streamwise velocity fluctuations u′xu

′

x/u
2
∞

profiles at
x/D = 1 in the wake of the cylinder with X-LES and DX-LES. Finally Fig-
ure 6.27 shows the time- and spanwise-averaged streamwise velocity ux/u∞
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and the streamwise velocity fluctuations u′xu
′

x/u
2
∞

profiles along the centre-
line in the wake of the cylinder with X-LES and DX-LES.DX-LES is in good
agreement with the results presented by Islam and Thornber [118], Zheng et
al. [119] and Travin et al. (SA-DES TS5 [117]). The results predicted by X-
LES seems closer to the experiments. However, this behaviour is motivated
by MSD phenomenon due to the presence of the LES in the boundary layer.

In fact, X-LES introduces a lower turbulent intensity, in comparison with
DX-LES, that means the break-down to high intensity turbulence with the
laminar to turbulent transition more downstream in the separated shear
layer, while in DX-LES occurs in the attached boundary layer.

The free-stream turbulence and the boundary layer turbulence upstream
of the point of separation are important factors to understand the flow dy-
namics around the cylinder. Therefore, a closer analysis of the near-wall tur-
bulent kinetic energy reveals a potential source of the discrepancies between
X-LES and the DX-LES. Figure 6.28 shows the instantaneous turbulent ki-
netic energy k and the turbulence intensity Tu =

√

2/3k/u contours near
the cylinder with both the methods, where X-LES underestimates the turbu-
lence intensity in the boundary. Figure 6.29 shows the time-averaged velocity
and velocity fluctuation contours near the cylinder: both the models show
similar velocity profiles, in a better agreement with the reference respect to
the hybrid results by Islam and Thornber [118] and Zheng et al. [119], while
underestimate the peaks magnitude of the u′xu

′

x/u
2
∞

profile. Similar to the
streamwise velocity variation, the Reynolds stresses in the experiment had
a wider profile due to more diffused shear layers around the sides of the
cylinder.

6.5 Remarks

The new DX-LES hybrid model has been validated on three test cases. In
general, each test case proves that the proposed delayed version allows to
avoid the MSD phenomenon and improve the near wall behaviour with re-
spect to the X-LES model:

1. in the first two test cases, the turbulent channel flow at Re = 2000
and the backward facing step, the improvement of the near-wall be-
haviour with the proposed delayed model, in comparison with X-LES,
is evident. In particular, on the backward facing step the skin friction
coefficient distribution and the eddy viscosity contours demonstrate the
better behaviour of DX-LES. In the X-LES model the switch to LES
happens in the boundary layer and the MSD phenomenon appears.
Moreover, benefits in using the blend filter ∆mix are shown.
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Figure 6.25: Circular cylinder at Re = 140 000. Time- and spanwise-averaged
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cylinder, fine mesh. x = −0.5 is the stagnation point
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Figure 6.28: Circular cylinder at Re = 140 000. Instantaneous turbulent ki-
netic energy k (left) and turbulence intensity Tu =

√

2/3k/u (right) contours
near the cylinder with X-LES (up) and DX-LES (bottom), fine mesh

Figure 6.29: Circular cylinder at Re = 140 000. Time-averaged velocity (left)
and velocity fluctuation (right) contours near the cylinder with X-LES (up)
and DX-LES (bottom), fine mesh
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2. In the circular cylinder at Re = 3900 the X-LES model slightly overes-
timates the recirculation bubble due to a lower eddy viscosity caused by
the MSD, while the DX-LES model better predicts the velocity fluctua-
tions, the time-averaged separation angle and the time-averaged length
of the recirculation bubble.

3. In the circular cylinder at Re = 140 000 the laminar to turbulent transi-
tion of the shear layer takes place just after the separation and standard
RANS model adopted in hybrid approach cannot predict correctly the
transition onset. This behaviour is confirmed by the DX-LES model.
The X-LES model seems to predict better only because the presence of
the LES in the boundary layer decreases the eddy viscosity, preventing
the onset of the transition.
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Chapter 7

DX-LES simulation of the
flow-field of a centrifugal pump

The aim of this Chapter is to present the results of the computation of the
flow through a centrifugal pump impeller with the DX-LES model. Results
are compared with experimental results, LES and RANS simulations from
the literature.

7.1 Centrifugal pump

The flow field in a centrifugal pump is characterized by boundary layer sepa-
ration, interaction between fixed and rotating components, vortex dynamics
and, in general, by unsteady phenomena. In particular, at strongly off de-
sign conditions large separations lead to efficiency loss, vibrations and even
to fatigue failure. Moreover, centrifugal pumps are often required to work
in a wide range of conditions, not only in the best efficient point or design
conditions.

Simulations with a steady-state approach are obviously not suitable to
these problems, but also unsteady RANS are not able to capture the typical
complex structures. LES models have been tested in industrial applications,
like pumps, turbines or propellers [120, 121, 122, 15, 123, 13] and a good
agreement with experimental results has always been reported. However, as
seen in the introduction (see Chapter 4), LES for the simulation of complex
flow in turbomachinary is not always affordable, due to the high Reynolds
Number.

Hybrid models show a good accuracy in case of large separation and are
less computational demanding than LES. In this chapter the capability of
the implemented DX-LES hybrid model (see Chapter 5) is assessed for the
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Figure 7.1: Impeller geometry [21]

simulation of the flow field through a centrifugal pump working at design
and off design conditions.

The test case used for this analysis is the impeller of Pedersen et al. [21].
It is a shrouded, low specific-speed centrifugal impeller working with dem-
ineralized water at atmospheric conditions. The complete pump consists of
a multi-stage pump for water distribution and pressure boosting used in in-
dustry and agriculture. The impeller is shown in Fig. 7.1, while the details
of the geometry and the operative conditions are summarized in Tab. 7.1.
PIV and LDV measurements of the velocity field are available. Byskov et
al. [13] presented a related study, where RANS and LES results are shown
and compared to the experimental data. Other studies have been conducted
in the last years at design [124, 125] and off design conditions [126, 125] with
LS approaches.

In the following the results of the DX-LES model are presented and com-
pared to the RANS and LES simulations and to the experiments available in
the literature.

7.2 CFD set-up

The set-up adopted for the simulation both in terms of mesh and CFD solver
is presented in this section.
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Table 7.1: Main geometric parameters and operative condition of the impeller
pump [21]

Geometry
inlet diameter D1 = 71.0 mm
outlet diameter D2 = 190.0 mm
inlet height b1 = 13.8 mm
outlet height b2 = 5.8 mm
number of blades Z = 6
blade thickness t = 3.0 mm
inlet angle β1 = 19.7◦

outlet angle β2 = 18.4◦

blade curvature radius Rb = 70.0 mm

Operative conditions Design Off design
flow rate Q 3.06 l/s 0.76 l/s
flow rate ratio 1 0.25
rotational speed n 725 rpm 725 rpm
specific speed Ns 26.3 26.3
Head H 1.75 m 2.4 m
Reynolds number Re 1.4× 106 1.4× 106
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Table 7.2: Characteristic of coarse, medium and fine grid

Mesh coarse Mesh medium Mesh fine

Number of cells [×106] 5.5 8.6 11.3
Max cell size [mm] 1.5 0.8 0.4

The whole impeller is simulated and an extension of the inlet pipe is
added to reduce possible disturbance due to the inflow at the blade leading
edge. A diffuser is also added to avoid recirculation at the outflow. Three
unstructured meshes with a structured boundary layer are generated for a
grid independence study. The height of the first cell near the wall is of
0.015 mm, for all meshes, which guarantees an average y+ less than 1 with
a maximum of 5, and the expansion ratio at the wall is 1.2. Starting from a
coarse grid of 5.5 millions of cells, the grid is refined up to 11.3 millions cells
for the fine grid (see Table 7.2). The aim is to assess the resolution of mesh
in the LES zone. In Figs. 7.2 and 7.3 details of the grids are shown.

The flow is assumed incompressible and isothermal. The DX-LES hybrid
model implemented in the open-source CFD software OpenFOAM [55] is
used to compute the flow field through the pump.

At the domain inlet the flow rate Q is prescribed, while at the outflow a
static pressure is fixed. The no-slip condition is applied to the blade walls,
hub and shroud. The rotational speed n (counterclockwise sense) is imposed
at the impeller, while the diffuser is a stationary domain. The impeller
outflow and the diffuser inflow are coupled with a sliding mesh approach
(arbitrary mesh interface, AMI, in OpenFOAM). The values of the tur-
bulent quantities at the inflow and at the walls are set as follows [83]:

ωinflow = 5
Uinflow
D2

, kinflow = 10−3Uinflow
Re

,

ωwall = 10
6ν

0.075(∆d1)2
, kwall = 0,

where ∆d1 is the height of the first cell at the wall. A steady-state solution
with the Multiple Reference Frame (MRF) approach is used to initialize the
unsteady simulation. The real movement of the mesh is taken into account
considering the Navier-Stokes equations in the relative reference frame and
adding a source term in the momentum equation. The interface between the
stationary and rotating region is treated with a frozen rotor approach.

The solver pimpleFoam is used. The physical time-step is set to 1.5×10−5

for the design condition and to 2.3×10−5 for the off design condition, ensuring
a maximum CFL of 5 and an average value less than 0.1. The time-average
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(a) coarse

(b) fine

Figure 7.2: Particular of the coarse and fine grids at the leading edge

(a) coarse (b) fine

Figure 7.3: Particular of the coarse and fine grids in the meridional channel
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Table 7.3: Static pressure head predicted by means of the DX-LES model
and fine grid

Design Off design

Pump performance 1.75 m 2.40 m
CFD prediction 1.87 m 2.29 m

Table 7.4: Computational cost of simulations at off design condition with the
three grids. Each compute node contains two 18-cores Intel Xeon E5-2697
v4 (Broadwell) at 2.30 GHz

Grid Number of cores Computational time [days]

Coarse 72 14
Medium 72 18
Fine 108 23

is computed for 3 and 6 revolutions for the design and off design condition
respectively, after an initial period of 4 and 6 revolutions that allows to have
a statistically stable flow.

The second order backward scheme is used for the time-integration. The
second-order Gauss linearUpwind discretization scheme is applied to the
divergence of the velocity, while a mixed second-order unbounded is applied
to the turbulent quantities. The Laplacian terms are evaluated using a linear
second-order bounded central scheme, while the central differencing Gauss

linear method approximates the gradient term.

7.3 Results

In the following, the results of the DX-LES model are discussed in detail
and compared with the literature. First the time-averaged velocity field is
analysed, the grid independence study is presented and the flow physical
behavior is examined. Then turbulent statistics are shown. In Tab. 7.3 the
predicted static pressure head (fine grid) is displayed for both the working
conditions. In Tab. 7.4 informations about the computational cost of the
simulations are summarized. All the simulations have been run on 36-core
compute nodes, each with two 18-cores Intel Xeon E5-2697 v4 (Broadwell)
at 2.30 GHz.
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Figure 7.4: Time-averaged relative velocity field at design (left) and off design
(right) conditions, grid coarse

Figure 7.5: Time-averaged relative velocity field at design (left) and off design
(right) conditions, grid medium

Figure 7.6: Time-averaged relative velocity field at design (left) and off design
(right) conditions, grid fine
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Figure 7.7: Streamlines of the time-averaged relative velocity at design (left)
and off design (right) conditions, grid coarse

Figure 7.8: Streamlines of the time-averaged relative velocity at design (left)
and off design (right) conditions, grid medium

Figure 7.9: Streamlines of the time-averaged relative velocity at design (left)
and off design (right) conditions, grid fine
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Figure 7.10: Time-averaged relative velocity at z/z2 = 0.5 and de-
sign condition: contour from PIV (left) and vector plot at R/R2 =
{0.65, 0.75, 0.90, 1.01} from LDV measurements [21] (right)

7.3.1 Design condition

No relevant separations take place at design load and the flow field is the
same in all the blade passages. Figure 7.6 shows the time-averaged velocity
field for the fine grid in the rotational reference frame. At the entrance the
flow is skewed towards the suction side due to the dominant effect of the
blade curvature. Along the suction side of the blade a low velocity zone is
evident. It corresponds to the development phase of a jet-wake structure. At
the impeller outlet the unloading of the blade occurs and the flow is more
uniform. The flow field on the coarse and the medium grid (see Figs. 7.4 and
7.5 respectively) is similar, but with a coarser grid the low velocity zone is
wider and the outflow is less uniform due to the higher dissipation induced
by the grid. In Fig. 7.10 the PIV measurements of Pedersen et al. [21] of the
time-averaged velocity field is reported. The DX-LES model with fine grid
shows a good agreement with the PIV, even if in this case the low velocity
zone is less pronounced.

In Figs. 7.11 and 7.12 the time-averaged velocity profiles (the radial and
tangential component respectively) at R/R2 = 0.5 and 0.9 are plotted for
the DX-LES model, the PIV measuraments [21] and the LES and RANS
from Byskov et al. [13]. The good agreement of the DX-LES model with the
PIV profiles is confirmed and the phenomena discussed above are evident: at
R/R2 = 0.5 (see Fig. 7.11) the velocity profile is displaced toward the suction
side, while at R/R2 = 0.9 the velocity rise along the pressure side due to the
unloading of the blade. Moreover, the final part of the low velocity zone is
visible by looking the radial velocity near the suction side. The graph shows
that this phenomenon is more pronounced with the coarse gird. Comparing
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Figure 7.11: Time averaged radial velocity at z/z2 = 0.5 and R/R2 = 0.5
(left), R/R2 = 0.9 (right) at design condition

the profiles predicted with the three grids, the convergence is assumed to be
reached, observing negligible the differences between the computation with
the medium and the fine grid. However, the finer mesh seems necessary to
better predict the low-velocity zone.

The trend is accurately predicted also by the LES simulation of reference.
Both the RANS models correctly predict the flow field, even if a flatter radial
velocity profile is evident at the entrance and an overestimation of the velocity
magnitude on the pressure side at the outflow is predicted.

7.3.2 Off design condition

Figure 7.9 shows the time-averaged velocity streamlines for the fine grid. The
so called two channel phenomenon is well predicted by the DX-LES model.
In the following, letter A refers to the unstalled passage, while letter B to the
stalled one. The velocity streamlines shows that in channel A the zone of low
velocity at the design condition becomes a zone of recircuilation at a quarter
load condition. At the entrance the flow follows the blade curvature and the
vortex starts at R/R2 = 0.55, where the rotational effects are dominant with
respect to the centrifugal force. At the impeller outflow the flow becomes
uniform in the blade-to-blade section. The coarse and medium grids (see
Figs. 7.7 and 7.8) are fine enough to be able to capture the alternation of a
stalled and an unstalled passage, but the vortex in the channel A with the
coarse grid is wider and starts at the leading edge.

At the entrance of the channel B (fine grid), instead, a vortex develops
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Figure 7.13: Scheme of the recirculation zones in channel B, fine grid
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Figure 7.14: Vector plot of at Time-averaged relative velocity at z/z2 = 0.5,
off design condition and R/R2 = {0.5, 0.65, 0.75, 0.90}, from LDV measure-
ments [21]

along the suction side until R/R2 = 0.7 and blocks the flow, consequently
unblocking the channel A. The stall is stationary. Along the pressure side
and across the major part of the channel there is a wide zone of recirculation,
with three eddies. Figure 7.13 shows the flow-pattern of the complex turbu-
lent phenomenon in the channel B. The rotational sense of the vortex β is
opposite compared to the vortex α. Therefore, the flow that passes through
the channel enters from the pressure side, but it flows along the suction side.
The sense of rotation of δ is in accordance with β and induces reverse flow
at the impeller outflow. On the coarse grid the block in channel B is less
evident: the recirculation zone in the channel A is wider, due to the higher
dissipation of the grid; as a consequence, a bigger flow rate passes through
the channel B and the vortex at the entrance is smaller and the eddies along
the pressure side are limited.

Figure 7.14 shows the flow field measured with LDV [21]. In channel
B only two vortexes are present: the stall at the entrance of the passages
and one vortex in the central and outer part of the channel along the pres-
sure side. Huang et al. presented an analysis in [125] of the flow field with
two different LES models: the dynamic Smagorinsky model (DSM) and the
dynamic cubic non-linear model (DCNM). Only the latter was able to repro-
duce the two vortex structure found in the experiment. The DSM predicted
an additional recirculation zone, which occupy the whole passages, similarly
to the DX-LES model. This can be caused by a better capability of the
DCNM in predicting the rotation effect. DX-LES model gives satisfactory
results, showing a behaviour comparable to the DSM and predicting the stall
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phenomenon and the reverse flow at the outflow.
In Figs. 7.15 and 7.16 the time-averaged velocity profiles (the radial and

tangential component respectively) at R/R2 = 0.5 and 0.9 are plotted for the
DX-LES model, the PIV measuraments [21] and the LES and RANS from
Byskov et al. [13]. The graphs confirm that the DX-LES model is able to
predict the main turbulent phenomena in the impeller. Moreover, the velocity
profiles are comparable with LES results. However, some differences appear
with the PIV profiles. First, at R/R2 = 0.5 in channel A the DX-LES and
the LES of Byskov predict a velocity profile skewed towards the pressure side,
while the PIV profile is skewed toward the suction side. This discrepancy can
be ascribed to the different prerotation at the inflow which causes a different
swirl between the experiment and simulations. On the coarse grid a wider
and anticipate recirculation zone is predicted with respect to the fine grid
and the LES, along the suction side. As seen before, at the outlet the radial
velocity becomes more uniform and the DX-LES model is very accurate. In
channel B, it is evident from radial and tangential velocity as the DX-LES,
according with the LES, predicts a greater vortex at R/R2 = 0.5 along the
pressure side. Notice that the sign of the tangential velocity is opposite
between DX-LES and LES. At the suction side instead, both the value and
the position of the peak of negative radial velocity are accurately predicted.
Similarly the reverse flow at R/R2 = 0.9 is well reproduced by the DX-LES
model.

Also in this case the grid independence always shows an asymptotic con-
vergence of the results for the fine mesh. In the following, only the results
with the fine grid are reported.

It is noteworthy as the RANS models cannot predict the complex two
channel phenomenon. Both the model employed by Byskov reveal identical
and not-separated velocity profiles at the entrance of the two channels and
a single zone of recirculation is reported at the outflow.

In Figs. 7.17 and 7.18 the time-averaged velocity profiles are plotted for
the DX-LES model, the PIV measuraments and two different LES models:
the localized dynamic Smagorinsky model used by Byskov et al. [13] seen
above and the dynamic mixed non-linear model tested by Zhou et al. [126].
The DX-LES model shows comparable behaviour with the LES and a high
accuracy.

7.3.3 Turbulence statistics

An analysis of the turbulent quantities is finally presented. In Fig. 7.19
the time-averaged turbulent kinetic energy k at z/z2 = 0.5 is shown. High
values of k suggest a propensity of the flow to become unstable. At design
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Figure 7.15: Time averaged radial velocity at z/z2 = 0.5 and R/R2 = 0.5
(left), R/R2 = 0.9 (right) at off design condition
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Figure 7.17: Time averaged radial velocity at z/z2 = 0.5 and R/R2 = 0.5
(left), R/R2 = 0.9 (right) at off design condition
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Figure 7.19: Time-averaged turbulent kinetic energy at design (left) and off
design condition (right), grid fine

condition an enhance of the turbulent kinetic energy is visible at the leading
edge pressure side, along the blade suction side and in correspondence of
the low velocity zone. The middle part of the passage, the entrance and
the outflow are characterized, instead, by low values of turbulence, which
indicate a stable zone. At off design condition the stall is denoted by an
increase of the turbulent kinetic energy. In particular, high values of k across
all the blade-to-blade section reflect the block at the entrance of the channel
B. Also the flow deviation in channel A due to the recuirculation zone is
characterized by high turbulent kinetic energy, as well as the reverse flow at
the outflow of channel B.

Figure 7.20 shows the time-averaged vorticity at z/z2 = 0.5. It is clear as
higher values characterize the off design condition with respect to the design
condition. In particular the stall in channel B corresponds to an increase of
the vorticity, while the rest of the passage, although the wide recirculation
zone, has a lower vorticity, also with respect to the channel A. This is due to
the low energy of the flow downstream the stall.
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Figure 7.20: Time-averaged vorticity at design (left) and off design condition
(right), grid fine
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Conclusions

In the first part of this thesis an advanced optimization technique to design
impeller and diffuser blades and maximize the efficiency of the pump is pre-
sented. The study is complemented by an assessment of the robustness for
the optimal design under uncertainty.

The deterministic optimization is carried out through two different surrogate-
based optimization strategies in order to maximize the efficiency, while keep-
ing constant, with a tolerance, the total pressure coefficient. The two strate-
gies are a Surrogate-Based Optimization with Single Objective Genetic Al-
gorithm (SOGA) and the Efficient Global Optimization (EGO). The former
has given the best result, improving the efficiency of about 3% with respect
to the baseline, while the EGO has provided an improvement of about 2.5%.

Then, an uncertainty quantification study is performed to compare the
robustness of the optimal design with respect to the baseline. The focus is on
the uncertainties of the boundary conditions associated with the experimental
tests and inlet turbulent quantities for the CFD simulations. A polynomial
chaos expansion is employed to assess the influence on the efficiency and the
total pressure coefficient. The SOGA-based optimum has a higher efficiency
but is less robust with respect to the EGO-based optimum. The latter allows
enhancing the performances, while retaining the same level of variance of the
baseline.

The findings of the optimization study can be summarized as follows:

• the presented strategy provides good results in the automated design
of a centrifugal pump, improving the baseline design.

• the EGO scouts a larger space than the SOGA, but the SOGA performs
better for this optimization problem, returning a design with a better
performance in a lower number of CFD evaluations.

• the deterministic optimization enhances the performance by retaining
a good level of robustness. In fact, the observed level of variability
with respect to the considered uncertainties is quite low for both the
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optimization strategies. In this case the robust optimization seems to
be needed only if the level of variance is judged too high and a specific
engineering constraint should be respected.

Future studies will include other potential sources of uncertainties, such as
geometric tolerances, and if necessary, a subsequent robust optimization.
Moreover, a sensitivity analysis to deepen the influence of each design variable
on the performance would be helpful to understand if all the 18 variables are
necessary in the parametrization.

After having provided an optimization tool for the design of a centrifugal
pump, the second part of this thesis is dedicated to the implementation of
a hybrid RANS-LES method for the accurate performance prediction of the
pump in off design conditions. In facts, centrifugal pumps work in a wide
range of conditions, not only in the design or best efficient point, and they are
often characterized by vortex dynamics and, in general, unsteady phenomena.
The X-LES approach is revisited by substituting its standard turbulence
model with SST k−ω and shielding the RANS from the DES formulation,
with the function proposed by Spalart [89], to avoid the Modelled Stress
Depletion (MSD) typical of DES-like hybrid models.

This new model, delayed X-LES or DX-LES, is implemented in the open-
source software OpenFOAM v.1812 and is tested first on three different test-
cases, commonly used to assess turbulent models: the turbulent channel flow
at Reτ = 2 000, the backward facing step at Re = 28 000 and the circular
cylinder at Re = 3 900 and Re = 140 000.

The DX-LES model is then applied to the computation on the flow
through the centrifugal pump impeller of Pedersen et al. [21] and the results
are compared with experimental results and LES and RANS simulations from
the literature. At design condition the flow is mainly attached. At a quarter
load the flow is highly distorted with a two channel phenomenon, consisting
in an alternation of a stalled and a unstalled channel. The flow in the chan-
nel A is dominated by rotational effects and resembles the well-behaved flow,
while in passage B a stationary inlet stall cell blocks the inlet section and
gives rise to a relative eddy dominating the remaining parts of the passage.

The novel hybrid model

• has demonstrated to overcome the well known problem of the MSD.
In this context, the delayed version of the X-LES approach allows to
improve the velocity profile estimation near wall, as shown in the tur-
bulent plane channel. The improved wall shear stress is confirmed also
in the turbulent flow over a backward facing step case. In general,
each test case proves that the LES region for the X-LES model gets
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into the boundary layer and results in the MSD phenomenon, while the
proposed delayed version allows to improve the near wall behaviour.

• shows a good trade-off between the required computational effort com-
pared to the LES approach and the accuracy with the respect to the
RANS methods, in simulating the flow field in a centrifugal pump. In
the off design conditions, DX-LES predicts the complex phenomena in
good agreement with experiment, while RANS models do not reproduce
the stall phenomenon observed at a quarter-load.

To conclude, the new DX-LES model is suitable to be used in industry to
simulate the flow field in centrifugal pump at off design conditions. Future
works will be devoted to define a new shielding function, exploiting a machine
learning based approach, and to assess the DX-LES model in other industrial
fields, e.g. automotive.
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centre, Professor Pietro Marco Congedo, for enabling me to visit in his of-
fice and for his valuable guidance throughout my research. I also wish to
acknowledge my colleagues from my period in Paris.

Finally I would like to thank the Industrie Saleri Italo S.p.A. for funding
this project. I wish thank my tutor in Saleri, Dr. Remo De Donno, for his
relentless assistance and the opportunity to further my research being part
of his team, and my colleagues for their collaboration.

117



Bibliography

[1] W. Wang, S. Yuan, J. Pei, and J. Zhang. “Optimization of the dif-
fuser in a centrifugal pump by combining response surface method
with multi-island genetic algorithm”. In: Proceedings of the Institu-
tion of Mechanical Engineers, Part E: Journal of Process Mechanical
Engineering 231 (May 2015). doi: 10.1177/0954408915586310.

[2] S. Derakhshan, M. Pourmahdavi, E. Abdolahnejad, A. Reihani, and
A. Ojaghi. “Numerical shape optimization of a centrifugal pump im-
peller using artificial bee colony algorithm”. In: Computers & Fluids
81 (July 2013), pp. 145–151. doi: 10.1016/j.compfluid.2013.04.
018.

[3] Y. Xu, L. Tan, S. Cao, and W. Qu. “Multiparameter and multiob-
jective optimization design of centrifugal pump based on orthogonal
method”. In: Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science 231 (July 2017),
pp. 2569–2579. doi: 10.1177/0954406216640303.

[4] S. Derakhshan and M. Bashiri. “Investigation of an efficient shape op-
timization procedure for centrifugal pump impeller using eagle strat-
egy algorithm and ANN (case study: slurry flow)”. In: Structural and
Multidisciplinary Optimization 58 (Jan. 2018), pp. 1–15. doi: 10.
1007/s00158-018-1897-3.

[5] B. Ghadimi, A. Nejat, S. Nourbakhsh, and N. Naderi. “Multi Ob-
jective Genetic Algorithm Assisted by ANN Metamodel for Shape
Optimization of a Centrifugal Blood Pump”. In: Artificial organs 43
(Oct. 2018). doi: 10.1111/aor.13366.

[6] X. Han, Y. Kang, J. Sheng, Y. Hu, and W. Zhao. “Centrifugal pump
impeller and volute shape optimization via combined NUMECA, ge-
netic algorithm, and back propagation neural network”. In: Structural
and Multidisciplinary Optimization 61 (Sept. 2019). doi: 10.1007/
s00158-019-02367-8.

118

https://doi.org/10.1177/0954408915586310
https://doi.org/10.1016/j.compfluid.2013.04.018
https://doi.org/10.1016/j.compfluid.2013.04.018
https://doi.org/10.1177/0954406216640303
https://doi.org/10.1007/s00158-018-1897-3
https://doi.org/10.1007/s00158-018-1897-3
https://doi.org/10.1111/aor.13366
https://doi.org/10.1007/s00158-019-02367-8
https://doi.org/10.1007/s00158-019-02367-8


[7] H.-S. Shim, K.-Y. Kim, and Y.-S. Choi. “Three-Objective Optimiza-
tion of a Centrifugal Pump to Reduce Flow Recirculation and Cav-
itation”. In: Journal of Fluids Engineering 140 (Sept. 2018), 091202
(14 pages). doi: 10.1115/1.4039511.

[8] J. Pei, W. Wang, M. Osman, and X. Gan. “Multiparameter optimiza-
tion for the nonlinear performance improvement of centrifugal pumps
using a multilayer neural network”. In: Journal of Mechanical Science
and Technology 33 (June 2019). doi: 10.1007/s12206-019-0516-6.

[9] A. Nourbakhsh, H. Safikhani, and S. Derakhshan. “The comparison of
multi-objective particle swarm optimization and NSGA II algorithm:
Applications in centrifugal pumps”. In: Engineering Optimization 43
(Oct. 2011), pp. 1095–1113. doi: 10.1080/0305215X.2010.542811.

[10] R. Barrio, E. Blanco, J. Parrondo, J. González, and J. Fernandez.
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[96] S. Hoyas and J. Jiménez. “Scaling of the velocity fluctuations in tur-
bulent channels up to Re = 2003”. In: Physics of Fluids - PHYS
FLUIDS 18 (Jan. 2006). doi: 10.1063/1.2162185.

[97] S. Hoyas and J. Send́ın. “Reynolds number effects on the Reynolds-
stress budgets in turbulent channels”. In: Physics of Fluids 20 (Oct.
2008). doi: 10.1063/1.3005862.

127

https://doi.org/10.2514/2.1101
https://doi.org/https://doi.org/10.1007/s00162-006-0015-0
https://doi.org/https://doi.org/10.1007/s00162-006-0015-0
https://doi.org/10.1007/s10494-017-9809-y
https://doi.org/10.1007/s10494-011-9378-4
https://doi.org/10.1016/j.ast.2018.01.005
https://doi.org/10.1016/j.ast.2018.01.005
https://doi.org/10.1016/j.ijheatfluidflow.2014.06.002
https://doi.org/10.1002/fld.445
https://doi.org/10.1063/1.2162185
https://doi.org/10.1063/1.3005862


[98] J. C. Vogel and J. K. Eaton. “Combined Heat Transfer and Fluid
Dynamic Measurements Downstream of a Backward-Facing Step”. In:
Journal of Heat Transfer 107.4 (Nov. 1985), pp. 922–929. issn: 0022-
1481. doi: 10.1115/1.3247522. url: https://doi.org/10.1115/
1.3247522.

[99] C. Norberg. “FLOWAROUNDA CIRCULAR CYLINDER: ASPECTS
OF FLUCTUATING LIFT”. In: Journal of Fluids and Structures 15.3
(2001), pp. 459–469.

[100] J. S. Son and T. J. Hanratty. “Velocity gradients at the wall for flow
around a cylinder at Reynolds numbers from 5 × 103 to 105”. In:
Journal of Fluid Mechanics 35.2 (1969), pp. 353–368. doi: 10.1017/
S0022112069001157.

[101] L. Ong and J. Wallace. “The velocity field of the turbulent very near
wake of a circular cylinder”. In: Experiments in Fluids 20.6 (Apr.
1996), pp. 441–453. doi: 10.1007/BF00189383. url: https://doi.
org/10.1007/BF00189383.

[102] L. Lourenco and C. Shih. “Characteristics of the plane turbulent near
wake of a circular cylinder”. In: A particle image velocimetry study
(1993).

[103] A. G. Kravchenko and P. Moin. “Numerical studies of flow over a
circular cylinder at ReD=3900”. In: Physics of Fluids 12.2 (2000),
pp. 403–417. doi: 10.1063/1.870318. url: https://doi.org/10.
1063/1.870318.

[104] J. Wissink and W. Rodi. “Numerical study of the near wake of a
circular cylinder”. In: International Journal of Heat and Fluid Flow
29 (Aug. 2008), pp. 1060–1070. doi: 10.1016/j.ijheatfluidflow.
2008.04.001.

[105] P. Parnaudeau, J. Carlier, D. Heitz, and E. Lamballais. “Experimental
and numerical studies of the flow over a circular cylinder at Reynolds
number 3900”. In: Physics of Fluids 20.8 (2008), p. 085101. doi: 10.
1063/1.2957018. eprint: https://doi.org/10.1063/1.2957018.
url: https://doi.org/10.1063/1.2957018.

[106] D. A. Lysenko, I. S. Ertesv̊ag, and K. E. Rian. “Large-Eddy Simula-
tion of the Flow Over a Circular Cylinder at Reynolds Number 3900
Using the OpenFOAM Toolbox”. In: Flow, Turbulence and Combus-
tion 89.4 (Dec. 2012), pp. 491–518. issn: 1573-1987. doi: 10.1007/
s10494-012-9405-0. url: https://doi.org/10.1007/s10494-
012-9405-0.

128

https://doi.org/10.1115/1.3247522
https://doi.org/10.1115/1.3247522
https://doi.org/10.1115/1.3247522
https://doi.org/10.1017/S0022112069001157
https://doi.org/10.1017/S0022112069001157
https://doi.org/10.1007/BF00189383
https://doi.org/10.1007/BF00189383
https://doi.org/10.1007/BF00189383
https://doi.org/10.1063/1.870318
https://doi.org/10.1063/1.870318
https://doi.org/10.1063/1.870318
https://doi.org/10.1016/j.ijheatfluidflow.2008.04.001
https://doi.org/10.1016/j.ijheatfluidflow.2008.04.001
https://doi.org/10.1063/1.2957018
https://doi.org/10.1063/1.2957018
https://doi.org/10.1063/1.2957018
https://doi.org/10.1063/1.2957018
https://doi.org/10.1007/s10494-012-9405-0
https://doi.org/10.1007/s10494-012-9405-0
https://doi.org/10.1007/s10494-012-9405-0
https://doi.org/10.1007/s10494-012-9405-0


[107] X. Ma, G.-S. Karamanos, and G. Karniadakis. “Dynamics and Low-
Dimensionality of a Turbulent Near Wake”. In: Journal of Fluid Me-
chanics 410 (May 2000), pp. 29–65. doi: 10.1017/S0022112099007934.

[108] M. Breuer. “Large eddy simulation of the subcritical flow past a circu-
lar cylinder: numerical and modeling aspects”. In: International Jour-
nal for Numerical Methods in Fluids 28.9 (1998), pp. 1281–1302.

[109] D. C. Wilcox. Turbulence modelling for CFD. DCW Industries, La
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