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A B S T R A C T

A code  ⊆ {0, 1, 2}𝑛 is said to be trifferent with length 𝑛 when for any three distinct elements of  there exists
a coordinate in which they all differ. Defining  (𝑛) as the maximum cardinality of trifferent codes with length
𝑛,  (𝑛) is unknown for 𝑛 ≥ 5. In this note, we use an optimized search algorithm to show that  (5) = 10 and
 (6) = 13.
. Introduction

Let 𝑘 ≥ 3 and 𝑛 ≥ 1 be integers, and let  be a subset of
0, 1,… , 𝑘−1}𝑛 with the property that for any 𝑘 distinct elements there
xists a coordinate in which they all differ. A subset  with this property
s called perfect 𝑘-hash code with length 𝑛 (perfect 3-hash codes are

called trifferent codes). The problem of finding upper bounds for the
maximum size of perfect 𝑘-hash codes is a fundamental problem in the-
oretical computer science. An elementary double counting argument,
as shown in [1], gives the following bound on the cardinality of 𝑘-hash
codes:

|| ≤ (𝑘 − 1) ⋅
( 𝑘
𝑘 − 1

)𝑛
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑘 ≥ 3 . (1)

In 1984 Fredman and Komlós [2] improved the bound in (1) for
very 𝑘 ≥ 4 and sufficiently large 𝑛, obtaining the following result:

| ≤
(

2𝑘!∕𝑘
𝑘−1

)𝑛
. (2)

Additional refinements of this bound have been progressively
chieved over the years. See for example [3–5] for the case 𝑘 = 4, [6]
or the cases 𝑘 = 5, 6, and [1,7–9] for 𝑘 ≥ 5. For the sake of
ompleteness, we mention that some improvements on the asymptotic
robabilistic lower bounds on the maximum size of perfect 𝑘-hash codes
ave been recently obtained in [10] for both small values of 𝑘 and 𝑘
ufficiently large.

In contrast, no recent progress has been made to improve the simple
ound given in (1) for 𝑘 = 3. This bound has not been outperformed
y any algebraic technique, including the recent slice-rank method by
ao [11]. Indeed, Costa and Dalai showed in [12] that the slice-rank
ethod cannot be applied in a simple way in order to improve the

ound in (1). It is worth to mention that an improvement has been
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recently obtained in [13], however the authors restrict the codes to be
linear, i.e.,  ⊂ F𝑛

3 and  is a subspace of F𝑛
3.

As a consequence, particular attention is given to the case 𝑘 = 3.
Defining  (𝑛) as the maximum cardinality of trifferent codes with
length 𝑛, it is easy to verify that  (1) = 3,  (2) = 4 and  (3) = 6.
In addition, the authors in [1] showed that the so called tetra-code is
a trifferent code with length 4 and cardinality 9: this result leads to
 (4) = 9. To the best of our knowledge,  (𝑛) is currently unknown for
𝑛 ≥ 5. In this note, we show that  (5) = 10 and  (6) = 13 and we
use these results to refine the current best known upper bound on the
cardinality of trifferent codes with length 𝑛 ≥ 5 (Section 2). The exact
value is achieved by implementing an optimized algorithm in GAP
which exhibits the non-existence of trifferent codes with lengths 5 and
6 and cardinalities 11 and 14, respectively (the algorithm description is
given in Section 3).

2. Improved upper bound on  (𝒏) for 𝒏 ≥ 𝟓

The simple recursion used to obtain the bound in (1) for 𝑘 = 3 is:

 (𝑛) ≤
⌊3
2
⋅  (𝑛 − 1)

⌋

, (3)

for every 𝑛 ≥ 2, with  (1) = 3. Since  (4) = 9, then 10 ≤  (5) ≤
⌊

3
2 ⋅ 9

⌋

= 13. The upper bound is obtained using (3), while the lower
bound comes easily from the fact that  (𝑛) ≥  (𝑛 − 1) + 1, for every
𝑛 ≥ 2. Indeed, when a construction of a trifferent code with length
𝑛− 1 is known, then it is always possible to trivially add an element of
{0, 1, 2}𝑛 preserving the trifference property. In Example 2.1 we give
a construction of a trifferent code with length 5 and cardinality 10
that is built using the tetra-code, see [1] for the definition. The 10
elements of {0, 1, 2}5 are represented in columns. For 𝑛 = 6, we have
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that 13 ≤  (6) ≤ 19. A trifferent code with length 6 and cardinality 13
is given in Example 2.2.

Example 2.1 ( (5) ≥ 10).

0 0 0 0 1 1 1 2 2 2
0 0 1 2 0 1 2 0 1 2
0 0 1 2 2 0 1 1 2 0
0 0 1 2 1 2 0 2 0 1
0 1 2 2 2 2 2 2 2 2

Example 2.2 ( (6) ≥ 13).

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 1 2 2 0 1 1 2 1
0 1 1 0 2 2 1 2 2 0 1 1 2
0 1 1 1 0 2 2 2 2 2 0 1 1
0 1 2 1 1 0 2 2 1 2 2 0 1
0 1 1 2 1 1 0 2 2 1 2 2 0

We have designed an algorithm for searching trifferent codes with
engths 5 and 6 and cardinalities 11 and 14, respectively (see Section 3
or the description of the algorithm). The search ended without return-
ng any trifferent codes, thus proving that  (5) ≤ 10 and  (6) ≤ 13.

Hence, the following theorem holds:

Theorem 2.3.  (5) = 10 and  (6) = 13.

This result allows us to focus on the current best known bounds on
the maximum cardinality of trifferent codes, which can be expressed
as  (𝑛) ≤ 𝑐 ⋅ (3∕2)𝑛, where 𝑐 is a constant and 𝑛 is sufficiently large.
Since finding a better upper bound on the lim sup𝑛→∞

𝑛
√

 (𝑛) is a very
ard task, it becomes interesting to improve the constant 𝑐. The bound
hown in (1) gives us 𝑐 = 2, but a better constant can be obtained using
3) and the fact that  (4) = 9, that is 𝑐 = 9∕(3∕2)4 ≈ 1.78. We are able
o improve this constant using Theorem 2.3 and (3). These statements
irectly imply:

orollary 2.4.

(𝑛) ≤ 10
(3∕2)5

⋅
( 3
2

)𝑛
≈ 1.32 ⋅

( 3
2

)𝑛
for every 𝑛 ≥ 5,

(𝑛) ≤ 13
(3∕2)6

⋅
( 3
2

)𝑛
≈ 1.15 ⋅

( 3
2

)𝑛
for every 𝑛 ≥ 6.

Since the floor function is involved in the recursive formula (3), we
an improve the constant 𝑐 by iterating (3) 𝑚 times starting from a fixed
0 and a known upper bound on  (𝑛0). This results in the following

theorem.

Theorem 2.5.  (𝑛) ≤ 1.09 ⋅
(

3
2

)𝑛
for every 𝑛 ≥ 12.

Proof. Fix an integer 𝑛0 ≥ 1 and consider the following recursive
ormula that describes a sequence of achievable constants for  (𝑛) ≤
(𝑚) ⋅ (3∕2)𝑛 when 𝑛 ≥ 𝑛0 + 𝑚:

(𝑚) =
⌊

𝑙(𝑚 − 1) ⋅
( 3
2

)𝑛0+𝑚
⌋

⋅
(3
2

)−𝑛0−𝑚
𝑓𝑜𝑟 𝑚 ≥ 1, (4)

here 𝑙(0) =  (𝑛0) ⋅ (3∕2)−𝑛0 . Taking 𝑛0 = 6 and 𝑚 = 6, we obtain the
hesis. □

Since the sequence 𝑙(𝑚) is non-increasing, we are interested in the
im𝑚→∞ 𝑙(𝑚). Computing that limit is not trivial, so we use the following
ecursive relation to obtain a lower bound:

(𝑚) = 𝑑(𝑚 − 1) − 1
⋅
( 3)−𝑛0−𝑚

𝑓𝑜𝑟 𝑚 ≥ 1,

2 2

2

where 𝑑(0) =  (𝑛0) ⋅ (3∕2)−𝑛0 . It is easy to see that 𝑙(𝑚) ≥ 𝑑(𝑚) for every
≥ 0. Then we have:

lim
→∞

𝑑(𝑚) = lim
𝑚→∞

(

 (𝑛0) −
1
2
⋅

𝑚
∑

𝑖=1

(2
3

)𝑖
)

⋅
(3
2

)−𝑛0

=
(

 (𝑛0) − 1
)

⋅
( 3
2

)−𝑛0
. (5)

Remark 2.1. Since  (4) = 9, if we fix 𝑛0 = 4 then we can substitute
hem into (5) to get that lim𝑚→∞ 𝑙(𝑚) ≥ lim𝑚→∞ 𝑑(𝑚) = 8 ⋅(3∕2)−4 ≈ 1.59.
his lower bound is, in any case, greater than the constant that we have
ound in Theorem 2.5.

. Proof of Theorem 2.3—The algorithm

Computing a brute-force search for finding a trifferent code with
ength 𝑛 and cardinality 𝑀 would require to test

(3𝑛
𝑀

)

subsets, and for
ach of them compare

(𝑀
3

)

triplets: overall, for (𝑛,𝑀) = (5, 11) one
ould test ≈ 1020 triplets while for (𝑛,𝑀) = (6, 14) one would test
pproximately 1030 triplets. These numbers are prohibitively large.

Our algorithm dramatically reduces the number of operations, with-
ut missing any potential trifferent code. First, we list the elements of
𝑛 = {0, 1, 2}𝑛 in lexicographic order and fix (𝑖1, 𝑖2,… , 𝑖𝑀 ) as the indices

representing the 𝑀 elements to test, requiring that 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑀 .
Then, let 𝑚

𝑛 be the code containing the elements associated to the first
𝑚 indices. Starting from 𝑚 = 3, we check if 𝑚

𝑛 is trifferent: based on
the output, the variable 𝑚 and the indices are updated accordingly to
the pseudocode reported in Algorithm 1.

Algorithm 1 Check if  (𝑛) ≥ 𝑀 .
Require: (𝑐(1),… , 𝑐(3𝑛)) = {0, 1, 2}𝑛 ordered lexicographically,
(

𝑖1,… , 𝑖𝑀
)

← (1,… ,𝑀), 𝑚 ← 3
repeat

if
{

𝑐(𝑖1),… , 𝑐(𝑖𝑚)
}

is trifferent or 𝑚 < 3 then
if 𝑚 = 𝑀 then return True end if
𝑚 ← 𝑚 + 1

else
𝑚′ ← min

{

𝑚′′ ∶ 𝑖𝑚′′ ≥ 3𝑛 −𝑀 + 𝑚′′}

if 𝑚′ exists then
𝑚 ← 𝑚′ − 1, 𝑖𝑚 ← 𝑖𝑚 + 1
𝑖𝑡+1 ← 𝑖𝑡 + 1, for every 𝑚 ≤ 𝑡 ≤ 𝑀 − 1

else
𝑖𝑡 ← 𝑖𝑡 + 1, for every 𝑚 ≤ 𝑡 ≤ 𝑀

end if
end if

until 𝑖1 ≥ 2
return False

At each update, 𝑚
𝑛 is tested: however, only the triplets containing

the 𝑖𝑚-th element have to be examined, since all the other triplets have
been already verified by construction. This is the first key point of our
algorithm.

In addition, we are able to force some restrictions on the set of the
indices. Two codes 𝐶,𝐷 ⊆ F𝑛

3 are called equivalent if 𝐷 be obtained from
𝐶 by subsequently applying permutations to the coordinate positions
and to the symbols {0, 1, 2} in each coordinate. Given a trifferent code,
by symmetry we can find an equivalent code containing the zero vector
and a vector of the form (0,… , 0, 1,… , 1), and not containing nonzero
words lexicographically smaller than this vector. As a consequence,
our algorithm stops the search of trifferent codes immediately when
𝑖1 = 2, and limits the set of values that the second index can assume,
namely, 𝑖2 ∈ { 3𝑖+1

2 ∶ 𝑖 = 1,… , 𝑛}. Furthermore, suppose there exists a
trifferent code  with length 𝑛 and cardinality 𝑀 . Let 𝑠0, 𝑠1, 𝑠2 be the
number of elements in  with symbols 0, 1 and 2, respectively, at the
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first coordinate. It is easy to see that 𝑠𝑖 + 𝑠𝑗 ≤  (𝑛 − 1) for 𝑖 ≠ 𝑗, so
𝑠0, 𝑠1, 𝑠2 ≥ 𝑀 −  (𝑛− 1). It means that we should have for each symbol
0, 1 and 2 at least 𝑀 −  (𝑛 − 1) elements in  with that symbol in the
first coordinate. As a consequence, recalling that we list the elements
of 𝑛 in lexicographic order, we can force:

• 𝑖𝑀− (𝑛−1) ≤ 3𝑛−1 (first coordinate equal to 0);
• 𝑖2(𝑀− (𝑛−1)) ≤ 2 ⋅ 3𝑛−1 (first coordinate equal to 1);
• 𝑖2 (𝑛−1)−𝑀+1 > 3𝑛−1 (first coordinate equal to 1);
• 𝑖 (𝑛−1)+1 > 2 ⋅ 3𝑛−1 (first coordinate equal to 2).

For the sake of readability, the pseudocode reported in Algorithm 1
does not include the restrictions on the set of the indices. However,
the code associated to the final version of the algorithm is publicly
available and can be found at [14].

We have executed our program for (𝑛,𝑀) = (5, 11) and (𝑛,𝑀) =
(6, 14), and no trifferent code has been found. The total number of tested
triplets is ≈ 107 for (𝑛,𝑀) = (5, 11) and ≈ 1011 for (𝑛,𝑀) = (6, 14), thus
saving a factor of ≈ 1013 and ≈ 1019, respectively, compared to the full
brute-force strategy.

As a side note: inspired by a semidefinite programming upper bound
for cap sets [15], we could alternatively obtain the upper bound  (5) ≤
10 using the method from [16], in which all extra constraints from Eq.
(3) of [16] were included to obtain the bound.

Remark 3.1. For (𝑛,𝑀) = (6, 13), the search returned a set 𝑆 of 1046
trifferent codes up to symmetry choices explained above. For any code
in 𝑆, we generated all equivalent codes and deleted the ones contained
in 𝑆 from 𝑆. We had to repeat this 3 times until the set was empty. So
there are 3 distinct trifferent (𝑛,𝑀) = (6, 13)-codes up to equivalence.
These are:

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 2 1 2 0 1 1 1 2
0 1 1 0 2 1 2 2 2 0 1 2 1
0 1 1 1 0 2 2 2 2 2 0 1 1
0 1 1 2 1 0 2 2 2 1 2 0 1
0 1 2 1 1 1 0 2 1 2 2 2 0

,

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 1 2 2 0 1 1 2 1
0 1 1 0 2 2 1 2 2 0 1 1 2
0 1 1 1 0 2 2 2 2 2 0 1 1
0 1 2 1 1 0 2 2 1 2 2 0 1
0 1 1 2 1 1 0 2 2 1 2 2 0

,

3

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 1 2 2 0 1 1 2 1
0 1 1 0 2 2 2 2 2 0 1 1 1
0 1 1 1 0 2 1 2 2 2 0 1 2
0 1 2 1 1 0 2 2 1 2 2 0 1
0 1 1 1 2 1 0 2 2 2 1 2 0

.

For each of these codes, in each coordinate position two symbols
occur 5 times and one symbol occurs 3 times.
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