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Abstract
The collection, organisation and analysis of large amount of data (Big Data) in differ-

ent application domains often require the involvement of experts for the identifica-

tion of relevant data, without being overwhelmed by volume, velocity and variety

of collected data. According to the Human-In-the-Loop Data Analysis paradigm,

experts explore data to take decisions in unexpected situations, based on their long-

term experience. The IDEAaS (Interactive Data Exploration As-a-Service) approach

is presented, apt to enable Big Data Exploration (BDE). In the approach, novel tech-

niques have been developed: (i) an incremental clustering algorithm, to provide

summarised representation of collected data streams; (ii) a Multi-Dimensional Model

to organise summarised data and enable data exploration according to different

analysis dimensions; (iii) data relevance evaluation techniques, to attract the ex-

perts’ attention on relevant data only during exploration. Moreover, given the ever

increasing volume and velocity of data streams in many real world applications,

parallel implementations of data streams clustering algorithms have been widely

investigated. To this purpose, a parallel approach, called P-IDEAaS, for massive

and evolving data streams clustering that adopts a multi-level strategy is presented.

Firstly, the Multi-Dimensional Model based on exploration facets is used to perform

a coarse-grained partition of the data stream. Furthermore, other fine-grained levels

of parallelization are applied. The novel characteristic of this approach is the capa-

bility of tuning the application of parallelization levels, depending on an evaluation

of the relevance of the incoming data points. Data relevance is used in order to force

a stronger parallelization (and therefore higher resource usage) only when neces-

sary, that is, in presence of relevant data. The aim is to provide an approach to adapt

the selection and prioritisation of parallelization levels to the data stream complex-

ity and data relevance, taking into account the availability of resources in the dis-

tributed processing architecture. In the first part of the thesis, after an introduction

of the approach (Chapter 1) and an analysis of the related state of the art (Chap-

ter 2), the core components of the IDEAaS approach will be described (Chapter 3).

In Chapter 4, the implementation of the IDEAaS system is detailed, explaining its ex-

perimental validation. The evolution of the IDEAaS system through the introduction

of the parallel implementation of the incremental clustering algorithm (P-IDEAaS)

will be detailed in Chapter 5. The second part of the thesis will be devoted to the
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description of how the IDEAaS approach has been successfully applied to three real

case studies: (i) an anomaly detection scenario in the Industry 4.0 domain, to mon-

itor the health status of a multi-spindle CNC machine used for the manufacturing

of metal raw material, supporting the identification of unknown anomalous condi-

tions (Chapter 6); (ii) a remote monitoring application in the Healthcare domain, to

support medical doctors in controlling the health status of discharged patients du-

ring the recent pandemic emergency due to the COVID-19 virus (Chapter 7); (iii) to

implement context-based resilient system through the surveillance of data collected

from the entire production line in the food industry domain (Chapter 8). Finally,

Chapter 9 close the thesis by highlighting some possible future work.
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Abstract
La raccolta, l’organizzazione e l’analisi di grandi quantità di dati (Big Data) in dif-

ferenti contesti applicativi richiede spesso il coinvolgimento degli esperti per l’iden-

tificazione di dati rilevanti, evitando allo stesso tempo che essi vengano sopraffatti

dal volume, dalla velocità e dalla varietà dei dati raccolti. Secondo il paradigma de-

nominato HILDA (Human-In-the-Loop for Data Analysis), gli utenti esperti esplo-

rano i dati per prendere decisioni relative a comportamenti inaspettati ed anomali

del sistema analizzato, basandosi sulla propria esperienza pregressa. In questa tesi

verrà presentato IDEAaS (Interactive Data Exploration As-a-Service), un approccio

per l’esplorazione e l’elaborazione di grandi quantità di dati, allo scopo di foca-

lizzare l’attenzione di utenti esperti su dati rilevanti. A tal fine, IDEAaS si basa

su: (i) un algoritmo di clustering incrementale, utile per fornire una rappresen-

tazione sintetica dei dati generati sotto forma di un flusso continuo (data stream);

(ii) un Modello Multi-Dimensionale, per organizzare i dati clusterizzati e per per-

mettere l’esplorazione secondo diverse prospettive di analisi; (iii) un modello di

rilevanza, per attirare l’attenzione degli esperti unicamente sui dati rilevanti, du-

rante l’esplorazione. Considerando il costante aumento del volume e della veloci-

tà dei dati raccolti sotto forma di data stream in applicazioni reali, è stata studiata

un’implementazione parallela dell’algoritmo di clustering incementale per questo

tipo di dati. Tale implementazione, denominata P-IDEAaS, costituisce un approccio

parallelizzato per il clustering di data stream massivi ed in continua evoluzione, e

adotta una strategia multilivello. Prima di tutto, il Modello Multi-Dimensionale,

organizzato nelle diverse prospettive di analisi, viene utilizzato per eseguire un

partizionamento ad alto livello del flusso di dati, che poi vengono elaborati uti-

lizzando diversi livelli di parallelizzazione. Un aspetto innovativo dell’approccio

risiede nell’utilizzo della rilevanza dei dati proprio per regolare tali livelli di paral-

lelizzazione. Infatti, il modello di rilevanza viene utilizzato per aumentare il grado

di parallelizzazione (che di conseguenza porta ad un corrispettivo aumento delle

risorse computazionali richieste) solo quando è necessario, cioè in presenza di dati

rilevanti. Lo scopo è quello di riuscire a fornire un metodo per adattare la selezione

dei livelli di parallelizzazione dando priorità ai dati che sono identificati come rile-

vanti, in modo da considerare la disponibilità di risorse nell’architettura di elabo-

razione distribuita. Nella prima parte della tesi, dopo l’introduzione (Capitolo 1) e
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un’analisi dello stato dell’arte (Capitolo 2), saranno descritti i componenti principali

dell’approccio IDEAaS (Capitolo 3). Nel Capitolo 4 verrà riportata l’implementazione

e una validazione preliminare del sistema IDEAaS. L’implementazione paralleliz-

zata dell’algoritmo di clustering incrementale (P-IDEAaS) verrà descritta nel Capi-

tolo 5. La seconda parte della tesi sarà dedicata a presentare l’applicazione di IDEAaS

in tre casi di studio reali: (i) in un contesto di industria 4.0, dove l’approccio è

stato utilizzato per il monitoraggio dello stato di funzionamento di macchine multi-

mandrino, al fine di identificare delle anomalie sotto forma di stati di funzionamento

sconosciuto durante la lavorazione del materiale grezzo (Capitolo 6); (ii) in ambito

sanitario per il monitoraggio remoto, da parte dei medici competenti, dello stato di

salute di pazienti dimessi durante il contenimento della pandemia causata dal virus

COVID-19 (Capitolo 7); (iii) nel settore dell’industria alimentare per la realizzazione

di sistemi resilienti tenendo in considerazione il contesto di produzione, tramite il

monitoraggio dei dati raccolti dell’intera linea di produzione (Capitolo 8). Infine, nel

Capitolo 9 verranno discusse le conclusioni del lavoro di tesi e una serie di possibili

sviluppi futuri.





vii

Contents

I The approach 1

1 Introduction 3

1.1 Big Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Anomaly detection of Cyber Physical Production Systems . . . 9

1.3.2 Remote monitoring services in the healthcare . . . . . . . . . . 11

1.3.3 Context-based resilience in connected Smart Factories . . . . . . 13

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background 17

2.1 General-purpose Big Data Exploration . . . . . . . . . . . . . . . . . . . 17

2.2 Parallel clustering of Big Data streams . . . . . . . . . . . . . . . . . . . 20

2.3 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Context-based resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 A Relevance-based approach for Big Data Exploration 29

3.1 Multi-dimensional model definition . . . . . . . . . . . . . . . . . . . . 29

3.2 Multi-dimensional and incremental clustering . . . . . . . . . . . . . . 31

3.2.1 Micro-clusters generation . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Micro-clusters update strategy in IDEAaS . . . . . . . . . . . . . 35

3.2.3 Multi-dimensional organisation of micro-clusters in IDEAaS . . 36

3.3 Relevance-based data exploration . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Identification of relevant data . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Relevance-driven data exploration . . . . . . . . . . . . . . . . . 41

3.3.3 Selection of relevant data . . . . . . . . . . . . . . . . . . . . . . 44



viii

4 Implementation and experimental evaluation 47

4.1 The IDEAaS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Experiment on relevance evaluation quality . . . . . . . . . . . 52

4.2.3 Experiment on processing time . . . . . . . . . . . . . . . . . . . 55

5 Parallel clustering of Big Data Streams 59

5.1 Parallelisation based on exploration facets . . . . . . . . . . . . . . . . . 60

5.2 Parallelisation based on data buffering . . . . . . . . . . . . . . . . . . . 63

5.3 Parallelisation based on the set of micro-clusters . . . . . . . . . . . . . 64

5.4 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Scalability of parallelisation levels . . . . . . . . . . . . . . . . . 68

5.5.2 Parallelisation feasibility . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.3 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . 72

II Applications 75

6 Big Data exploration for anomaly detection 77

6.1 Anomaly detection services in a nutshell . . . . . . . . . . . . . . . . . . 78

6.2 Relevance-based data exploration for anomaly detection . . . . . . . . 80

6.3 Adaptive relevance evaluation . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Remote monitoring services in the healthcare domain 91

7.1 Risk monitoring services in the healthcare domain . . . . . . . . . . . . 92

7.2 Patients’ profiles and monitoring data . . . . . . . . . . . . . . . . . . . 93

7.3 Relevance-based healthcare data exploration . . . . . . . . . . . . . . . 96

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Context-based resilience in the Smart Factory 101

8.1 Context Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 Context-based resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3 Implementation and validation . . . . . . . . . . . . . . . . . . . . . . . 107



ix

9 Concluding Remarks 113

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114





1

Part I

The approach





3

Chapter 1

Introduction

1.1 Big Data Exploration

The volume, velocity and variety of real time data (Big Data), collected in different

application domains and fostered by the widespread diffusion of Internet of Things

(IoT) technologies, raised new research challenges on the collection, organisation

and exploration of Big Data [1, 2]. In many big data applications, data are collected as

a continuous stream, that must be properly processed taking into account its veloc-

ity, the volume of content that is incrementally gathered and the variety of formats

and data structures in the stream. Data streams are dynamic, continuous, massive

sequences of data points, with typically unpredictable input rate, very common in

real world applications [3, 4]. Data streams are used in stock and traffic monitor-

ing, network management, sensor data analysis, event detection and reaction. They

are used, for example, to model data collected from embedded IoT components in

Cyber-Physical Systems, in order to implement predictive maintenance, or gathered

from wearable sensors and devices, for providing remote monitoring in Healthcare

applications. Indeed, volume and velocity of real time data as collected in dynamic

contexts of interconnected systems, as well as the endless and incremental collec-

tion of data streams, pose additional issues in order to implement Big Data Explo-

ration (BDE) in an efficient way. First of all, high volume calls for solutions that

provide users with a compact view over the large amount of collected data. There-

fore, data summarisation techniques have been proposed and adapted to the data

streams. Among proposed techniques, incremental clustering has been recently in-

vestigated, in order to: (i) reduce the amount of data; (ii) identify the concept drift in

the data stream, i.e., a deviation from a normal/stable working condition, without

being hampered by the noise present in the stream. Moreover, in a BDE context,
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another critical issue is given by the complexity of analysis dimensions (in terms of

their number and heterogeneity), that impacts on data variety and require a proper

organisation of summarised data. To this aim, the following aspects should be con-

sidered: (i) data points in the stream can be associated to different analysis dimen-

sions, whose number is proportional to the complexity of the observed phenomenon

and of the monitored system (for example, measures collected from a Cyber Physical

System in a smart factory for predictive maintenance purposes may refer to differ-

ent tools used by the system or different steps of the manufacturing program that

is being executed); (ii) not all data points are equally relevant (for example, con-

cerning remote monitoring of industrial Cyber Physical Systems, observation rate

should be increased only when parameters values are close to specific thresholds).

Multi-dimensional modelling of data streams can be fruitfully exploited to partition

the input stream according to different exploration facets, thus reducing the data com-

plexity. Indeed, according to the “Human-In-the-Loop Data Analysis” vision [5], ex-

perts are required to explore data for taking decisions in unknown situations, based

on their long-term experience. Data exploration [1] and exploratory data analysis [2]

have been defined as multi-step processes, where data can be browsed through it-

erative refinements, since the user is not able to specify his/her requirements using

a precise query, and for this reason should be guided through new information dis-

covery. In addition to the organisation of data according to different exploration

facets, the development of proper metrics able to quantify the relevance of data with

respect to a specific exploration goal is of paramount importance. Relevance has

been defined in literature [1] as the distance from an expected value. In applications

of BDE where data streams are analysed in order to identify anomalous situations,

data relevance should be quantified by measuring the difference in the shape of data

stream with respect to normal working conditions.

Given the issues presented above, BDE is addressed in this thesis by highlighting

three main concepts, namely data summarisation, multi-dimensional modelling and data

relevance evaluation. On these three pillars, the IDEAaS (Interactive Data Exploration

As-a-Service) approach has been developed. The approach, specifically conceived

for big data streams, relies on the following novel techniques, properly combined to

realise BDE under a Human-In-the-Loop vision:

• an incremental clustering algorithm, that aggregates, in the so-called micro-

clusters, data collected as streams of numeric features; micro-clusters represent
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Figure 1.1: The IDEAaS overview.

a working behaviour of the monitored system, to provide summarised repre-

sentation of data streams; micro-clusters are in turn organised into snapshots to

enable exploration of different portions of the data streams;

• multi-dimensional organisation of summarised data, to allow data exploration

according to different analysis dimensions;

• data relevance evaluation techniques, to support the identification of micro-

clusters and snapshots that correspond to unexpected behaviours and to at-

tract the experts’ attention on them during exploration.

The IDEAaS approach has been applied in Industry 4.0 and healthcare monitor-

ing domains, to implement new solutions for anomaly detection, remote monitoring

and design of resilience systems. In the following, the main pillars of the approach,

as well as the case studies in which IDEAaS has been tested, will be introduced.

1.2 Approach overview

The overview of the IDEAaS approach is reported in Figure 1.1. The approach

is articulated over three main phases: (i) Multi-Dimensional Model definition, in

which the experts manually identify the analysis dimensions and the features spaces

to be monitored; (ii) multi-dimensional and incremental clustering, to provide a

summarised representation of collected measures and organise them in the Multi-

Dimensional Model; (iii) relevance-based data exploration, to support the experts

during selection and exploration of relevant data only. Figure 1.1 also specifies

whether tasks are manually, automatically executed or semi-automatic.
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Multi-dimensional model definition. Measures collected from the monitored sys-

tem are further enriched with details about analysis dimensions, that contribute to

describe the specific conditions in which measures have been taken. For instance,

considering remote monitoring of a Computer Numerical Control (CNC) machine

that is manufacturing raw material (e.g., metal, wood), the tool that is being used

when the measure has been collected, or the kind of material that is being manu-

factured, can provide additional useful information to distinguish among different

working conditions. In this respect, the observation of different combinations of

measured features is strictly related to the working conditions in which such ob-

servation occurs. Considering again the example of the CNC machine introduced

above, and in particular remote monitoring of a spindle used for working raw metal,

the spindle rolling friction torque increase and the tool wear are two possible prob-

lems that are frequently monitored on this kind of machines. Monitoring in these

cases is performed through the collection of power absorption and kinematic fea-

tures such as accelerations. If an increased power absorption is detected disregard-

ing the tool that is used, it is possible to identify a problem in the spindle rolling

friction torque increase. On the other hand, if the increase in absorbed power is re-

lated only to the usage of a particular tool, this can be recognised as a symptom of

a possible tool wear. Therefore, aspects such as the tools used to shape the raw ma-

terial can be considered as perspectives according to which data exploration can be

performed. These can be modelled as analysis dimensions, that are used to create

a Multi-Dimensional Model in which summarised data is organised for data explo-

ration.

Multi-dimensional and incremental clustering. In order to manage and explore

large quantity of data, an incremental clustering algorithm is applied on collected

measures for different combinations of observed features. Multi-dimensional and

incremental clustering phase, as shown in Figure 1.1, is articulated over two sub-

tasks:

• generation/update of summarised data (micro-clusters) - the clustering algorithm

is applied to summarise collected data and offers a two-fold advantage: (a) it

gives an overall view over measures, using a reduced amount of information;
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(b) it allows to represent the behaviour of the monitored system better than sin-

gle measures, that might be affected by noise and false outliers while observ-

ing a given physical phenomenon of interest; in literature, different approaches

to data stream clustering have been investigated; amongst them, incremental

ones, such as CluStream [6], have emerged as promising solutions when treat-

ing data arriving at high rates; the peculiarity of such algorithms is to rely on

the notion of lossless aggregation of data, denoted as data micro-cluster; a micro-

cluster conceptually represents a working behaviour of the monitored system,

corresponding to a set of measures that are close each other in the space of

observed features;

• multi-dimensional organisation of micro-clusters - generated micro-clusters are or-

ganised according to different analysis perspectives through the Multi-Dimen-

sional Model defined above; however, the iterative nature of the data explo-

ration process requires that experts must be able to extract and explore differ-

ent portions of the data stream; therefore, the incremental clustering approach

has been enriched here with the generation of snapshots for the exploration over

time of the data stream; multi-dimensional organisation of micro-clusters and

snapshots are used to support experts during data exploration.

Relevance-based data exploration. Once the sets of micro-clusters and snapshots

have been generated and organised within the Multi-Dimensional Model, relevance-

based data exploration is articulated over three sub-tasks, as shown in Figure 1.1:

• identification of relevant data - in literature, data relevance has been defined

as the distance from an expected status [1]; in the presented approach, data

relevance evaluation is performed by computing the differences between the

micro-clusters set that represents the current behaviour of the monitored sys-

tem and the set that represents its normal working behaviour, using the novel

metrics that will be detailed in this thesis; the notion of data relevance has been

extended to snapshots as well, including the definition of relevant snapshot;

• relevance-driven data exploration - starting from relevant micro-clusters and snap-

shots that have been identified, the expert may perform data exploration over

the analysis dimensions of the Multi-Dimensional Model; exploration is guided

by the system in order to identify the working conditions which relevant micro-

clusters correspond to;
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• selection of relevant data - once the expert has been guided towards such working

conditions through the relevance-based exploration in the Multi-Dimensional

Model, novel techniques are applied to prune available data, thanks to the

exploitation of relevant snapshots, and to show to the expert how the observed

phenomena on the monitored system evolved towards the relevant status just

identified.

Considering that the incremental clustering algorithm is the most time-consuming

element of the approach, a parallel version of the algorithm has been proposed. In

this version, the multi-dimensional modelling and data relevance evaluation are ex-

ploited for enhancing parallel clustering of massive data streams. Specifically, the

main effort is focused on the online phase of clustering, where the parallelisation is

worth being applied to face data volume and velocity. Novel aspects of the cluster-

ing parallelisation are summarised in the following:

• the adoption of the Multi-Dimensional Model to perform a first, coarse-grained

partition of data streams, according to a divide-and-conquer strategy, to face their

complexity;

• the combined application of other fine-grained levels of parallelisation: (i) a

parallelisation based on a buffering mechanism, that splits the data stream into

portions of data points on which processing is performed in parallel; (ii) a par-

allelisation over the set of micro-clusters that are generated and change over

time; parallelisation at these levels is enforced with data relevance evaluation

techniques, while maintaining the scalability and efficiency of the clustering

algorithm;

• the exploitation of data relevance evaluation techniques to ensure different pri-

ority to parallelisation levels, in order to dedicate more resources for paralleli-

sation in those cases that present higher priority (i.e., higher data relevance);

this will also mitigate the overload due to the distribution of processing tasks

over the network of computation nodes, which might have a negative impact

on algorithm efficiency, when it is not strictly necessary;

The first part of this thesis will be devoted to the presentation of the details about

the IDEAaS approach and its core modules, and about parallel implementation of

the clustering algorithm. The efficiency and effectiveness of the IDEAaS approach
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Figure 1.2: The multi-spindle machine from which real time data have been collected

for exploration purposes.

have been tested through its application on different case studies, ranging from the

Industry 4.0 to the healthcare domain. The second part of this thesis will be devoted

to the detailed discussion about these case studies, that will be briefly introduced in

the following.

1.3 Case Studies

1.3.1 Anomaly detection of Cyber Physical Production Systems

The first case study that has been considered for the application of the IDEAaS ap-

proach concerns anomaly detection in the Industry 4.0 domain, specifically con-

ceived for Cyber Physical Production Systems (CPPS). Similarly, to more general

Cyber Physical Systems, CPPS are systems where the physical side interacts with the

cyber-side through a continuous collection and organisation of data (e.g., by means

of IoT devices) to analyse them in order to take decisions and actuate proper (possi-

bly automated) operations on the physical part. Specifically, CPPS are focused on the

production line, where of autonomous and cooperative elements and sub-systems

that are getting into connection with each other in situation dependent ways, on and

across all levels of production, from processes through machines up to production

and logistics networks [7]. In particular, the case study has been focused on a multi-

spindle CNC machine produced by an Original Equipment Manufacturer (OEM) As

shown in Figure 1.2, the considered multi-spindle machines present 3 spindles, each

of them working independently on the raw material. Each spindle is mounted on

a unit moved by an electrical engine to perform X, Y, Z movements. The spindle

rotation is impressed by an electrical engine and its rotation speed is controlled by
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the machine control. Spindles use different tools (that are selected according to the

instructions specified within the Part Program 1) in order to complete different steps

in the manufacturing cycle. For each unit, the velocity of the three axes (X, Y and

Z), the electrical current absorbed by each of the engines, the value of rpm for the

spindle, the percentage of power absorbed by the spindle engine (charge coefficient)

are measured.

The aim of the OEM is to understand if it is possible to use real time data collected

directly from the machine control for monitoring the spindle axle hardening over

time and the tool wear. With spindle axle hardening is referred a specific behaviour

of the spindle shaft that turns hard more and more due to different possible reasons:

lack of lubrication and bearing wear that may lead to possible bearing failures. Tool

wear monitoring is referred to possible tool usage optimisation in order to balance

the trade-off between the number of tools used and the risk of breaking the tool

during operations that may lead to long down times.

This opens a set of issues, mainly related to data volumes and velocity and the

considered application domain.

Firstly, the ability of providing a compact view of the huge amount of data col-

lected from the machine is strongly required. Therefore, a data summarisation ap-

proach, where data are observed in an aggregated way, is welcome. At the same

time, data aggregations should be observed on the fly, given the highly dynamic na-

ture of the application domain, and efficient computation algorithms are required to

summarise data. A multi-dimensional representation of data can be helpful too,

since it allows aggregation of data according to different dimensions (e.g., time,

monitored spindle, tool used for a specific manufacturing step), that might be related

to the observed problems (e.g., spindle axles hardening or tool wear), thus giving

proper semantics to the collected data. Moreover, Multi-Dimensional Model enables

refinement of the exploration by following the hierarchical organisation of dimen-

sions. Finally, the user who explores data (e.g., operators who are in charge of mon-

itoring the multi-spindle machine to decide about maintenance actions) needs an

underlying data-model to enable fast exploration of the available data, to be guided

towards only those relevant measures that correspond to spindle hardening or tool

1Part Programs are sequences of instructions, which define the actions to be executed by a CNC
machine.
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Figure 1.3: Remote monitoring of patients health parameters, with the support of

smartphone applications.

wear problems. To this aim, it is required a model of relevance that enables to iden-

tify only relevant data on which the user must focus for managing critical situations,

taking into account volumes and speed of data collection phase.

1.3.2 Remote monitoring services in the healthcare

Another relevant case study that will be described in this thesis to test the IDEAaS

approach concerns the remote healthcare domain. Indeed, during the recent pan-

demic emergency due to the COVID-19 virus, several apps have been designed

and implemented to ease the measure and subsequent evaluation of breath qual-

ity, analysing the dynamics of the respiratory act. In particular, the IDEAaS ap-

proach has been integrated in one of these projects, where traces of respiratory acts

are recorded by the three axial accelerometers, embedded by a smartphone (posi-

tioned over the abdomen of the patient). The scenario considered in this project

is depicted in Figure 1.3.Traces, plus other patient’s health parameters (e.g., tem-

perature, bpm), are exploited to evaluate the quality of breath, raising alerts in the

presence of anomalies (e.g., evidences of shortness of breath). In this respect, the app

could be employed as a self-evaluation instrument, albeit not conceived to substitute

a medical device or the medical examination. Target users of the app are mainly dis-

charged SARS-CoV-2 patients, for determining health improvements or emerging

problems (e.g., uprising of breath difficulties). The app guides the user throughout

the measurement session, with the support of predefined audio messages, to limit

unwanted actions made by the user.

When a patient registers to the app, the following information is collected for pro-

filing: (i) Physical Connotations, concerning sex, age, weight and height; (ii) Personal

Information, regarding habits of the patient (e.g., whether she is a smoker), possible

ongoing pregnancy and cholesterol levels; (iii) Diseases, which are classified by their
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Figure 1.4: Production process for the food industry case study.

virtue (inherited, chronic, congenital) and by the part of the human body they af-

fect; (iv) Drugs, assumed by patients and belonging to diverse classes, depending

on their specific purpose (e.g., anti-hypertensive, immunosuppressant). Profile data

enables the creation of Patients Groups, uniquely identified by a combination of the

aforementioned data (male patients, male patients over 65 years, etc.); amongst the

(potentially vast) set of possible groups, Relevant Patients Groups (in brief, RPG) may

be recognised, that is, groups which are under the lens of doctors’ consideration,

as they are more exposed to (a relapse of) the infection risk. RPG may be identified

from well known clinical studies (e.g., male subjects are more likely of being infected

by SARS-CoV-2 with respect to female ones), but also in a dynamic way, due to the

emerging critical health status in several patients within the group.

The integration of IDEAaS approach within the project brought several advantages:

(i) monitoring of discharged SARS-CoV-2 patients to promptly detect worsening

conditions presents many affinities with remote monitoring of a CPPS, as well as

the characteristics of volume, velocity and variety of data streams collected from pa-

tients is similar; (ii) data summarisation techniques may help to reduce the amount

of data that are transferred from patients and may reduce the burden of medical doc-

tors to explore too much data about their patients; (iii) the multiple aspects to be con-

sidered (e.g., diseases, age, sex, habits) suggest the adoption of a Multi-Dimensional

Model in order to partition the data streams (such a model might help to organise

data streams belonging to distinct patients’ groups); (iv) multi-dimensional mod-

elling, together with data relevance evaluation within a patients’ group, might help

to speed up and ease the efficiency of medical doctors, who can focus on critical

patients only.
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1.3.3 Context-based resilience in connected Smart Factories

Another application scenario where the IDEAaS approach can be fruitfully applied

concerns the design of resilient CPPS. In this case, an example in the food industry

has been considered to validate the approach. The production line of the target in-

dustry is reported in Figure 1.4. The considered company produces biscuits, starting

from the recipe and the ingredients to the finished product (ready-to-sell biscuits).

In the production process, the dough is prepared by a kneading machine and let rise

in a leavening chamber. Once the biscuits are ready to be baked, they are placed

in the oven. Indeed, the oven is composed of a conveyor belt, mounting a rotating

engine, and the cooking chamber. By regulating the velocity of the belt through the

rpm of the rotating engine, it is possible to setup the cooking time of the biscuits.

Moreover, also the temperature and the humidity of the cooking chamber can be

regulated. Finally, other measures can be gathered at the shop floor level, such as

the temperature and the humidity of the whole production line environment. In a

fully connected digital factory, all these measures can be exploited to ensure the re-

silience, but the following specific characteristics must be taken into consideration.

C1) A multi-level hierarchy of smart components. According to the RAMI 4.0 ref-

erence architectural model [8] (IEC62264/IEC61512 standards), modern digital fac-

tories present a hierarchical organisation of the CPPS, from connected devices up

to the fully connected work centers and factory. In the considered case study, the

production line is composed of different machines and, among them, the oven is

in turn composed of the conveyor belt and the cooking chamber. Measures can be

gathered from components in this hierarchy and from the operating environment

at shop-floor level; this allows to detect anomalous working conditions, that may

propagate over the whole hierarchy, and making the component smarter.

C2) Recovery actions across different components. Identification of anomalous

working conditions on a smart component in the hierarchy may trigger recovery

actions either on the component itself or on a different one. This is enabled by the

strong connection between components over the whole production line. Let’s con-

sider, for example, an anomaly on the rotating speed of the conveyor belt, which can

be detected by measuring the rpm of the rotating engine. Since this anomaly might

cause the cookies to burn, a possible recovery action can be triggered to modify the

temperature of the cooking chamber to face a longer cooking time. But at the same
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time the effects of environment temperature must be considered on the dough en-

tering the oven.

C3) The role of the humans in the loop. Re-configuration often represent a sub-

optimal recovery solution. Other recovery actions, such as the redundancy of some

parts in the production line, are costly and should be carefully acknowledged by

workers supervising the monitored machines. Furthermore, in some machines, pa-

rameters to be modified (according to the output of re-configuration services) could

be set only manually. In these cases, recovery actions must be modelled as a support

for operators.

Also in this case, several benefits might derive from the integration of the IDEAaS

approach. In particular, the Human-In-the-Loop perspective assumed here (C3) sug-

gests the need of multi-dimensional modelling, data summarisation and data rele-

vance techniques to ease the job of workers supervising the monitored machine.

Moreover, among the analysis dimensions to be considered during multi-dimensional

modelling, the hierarchy of CPPS, from single machines up to the whole production

line, enables to properly distinguish anomalies ranging from different components

in the factory, thus making the approach more effective and efficient. Finally, also in

this case there is an anomaly detection aspect in common with the other considered

case studies.

1.4 Thesis outline

This thesis is organised in two parts. In the first one, the core elements of the

IDEAaS approach are presented. In the second part, the application of the IDEAaS

approach is discussed in three case studies introduced above. In Chapter 2 the back-

ground of the approach is presented, including a comparison with the state of the

art. Chapter 3 describes the core elements of IDEAaS approach, namely the Multi-

Dimensional Model, the incremental clustering algorithm and the relevance-based

data exploration. In Chapter 4 the IDEAaS functional architecture and experimental

evaluation are discussed. In Chapter 5 a parallel version of the IDEAaS incremental

clustering is presented and the associated experimental evaluation is reported.

For what concerns the three applications of the IDEAaS approach, in Chapter 6

the anomaly detection case study in the Industry 4.0 domain scenario is presented.
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In Chapter 7 the approach has been applied for remote monitoring services in the

healthcare domain. Chapter 8 reports the application of the approach in order to

ensure context-based resilience in the Smart Factory.

Finally, Chapter 9 closes the thesis with some final remarks and a discussion

about future work.
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Chapter 2

Background

The IDEAaS approach and its application in the three paradigmatic case studies

touch upon different challenges, corresponding to distinct research fields, that range

from general-purpose Big Data Exploration approaches to anomaly detection or en-

gineering of resilient systems. In this chapter, the state of the art in these fields is

reported. Given the extent of approaches that addressed all these challenges, in the

following the attention will be devoted to recent efforts specifically meant for the

domains (e.g., smart factories) for which IDEAaS has been originally conceived or

considering data structures (e.g., data streams) on which the proposed approach has

been tailored.

2.1 General-purpose Big Data Exploration

As formerly introduced, Human-In-the-Loop Data Analysis (HILDA) is a compelling

challenge to tightly couple the human role with the (Big) Data Exploration experi-

ence. In this section, focusing on a specific part of the taxonomy reported in [5] an

excerpt of the literature concerning approaches on data exploration and exploratory

computing has been inspected (in particular, the branch that includes the extrac-

tion of insights data for analysis purposes). In this respect, techniques that have

been studied to enable BDE are: (i) data summarisation solutions; (ii) proper tools

and methods (including interactive data exploration interfaces) to organise data; (iii)

metrics apt to attract experts’ attention on data of interest.

In [9] authors highlight relevant data within weather time series by means of

coloured maps, exploitable by the user, after performing different preparatory steps

(e.g., data cleansing). Likewise, in [10] and [11] raw data, gathered from different
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data sources, is seamlessly collected in (No)SQL data stores, to be employed by pre-

dictive (the former) or corrective (the latter) algorithms to provide the users with

insights upon past and future data. With the same philosophy, in [12] a stochastic

approach is proposed to enable a probabilistic representation of data with the aim of

exploiting the model for inference purposes. In [13] historical stock data is analysed

to extract patterns, with the ultimate goal of increasing the prediction accuracy; these

patterns also attract users’ attention, to favour the exploration task. In [14] remote

sensing datasets (containing images) are elaborated within a large-scale data pro-

cessing system, wherein a tree-like index structure is exploited to efficiently retrieve

data, ensuring real-time update capabilities. In the majority of the aforementioned

works, quality metrics related to the prediction/correction outcome are presented

to the user, in order to assure him/her additional instruments to take (and refine)

decisions.

In [15] structured and multi-dimensional OLAP data is incrementally collected

and organised in a facet-based cube structure; as a consequence, the role of the user is

empowered by the application of data sampling techniques, to guess the next choices

he/she will be likely to perform. In [16] incrementally collected data is compressed,

fostering data decaying techniques to provide an efficient usage of the available stor-

age capabilities. Herein, occurrence frequency thresholds are employed to highlight

values, that are summarised by applying a lossless compression algorithm. Differ-

ently, in [17] multi-dimensional data is organised starting from different datasets,

before the exploration process begins, adopting range queries to identify partially

overlapping windows, shown to the user according to a cost-benefit criterion. In a

similar way, AIDE [18] handles multi-dimensional data, which is not collected in-

crementally, extracts samplings from the DBMS and applies a classifier to infer data

relevance to improve the exploration task.

Other approaches dealing with multi-dimensional data mainly focus on how to

let the data relevance emerge, in order to suggest promising exploration actions, also

depending on past interactions of the user with the data exploration interface. In [19]

a recommendation table keeps track of the potential applicable transformations (re-

garding data, axes and chart types) that can be suggested to the user, together with a

value of relevance updated whenever a specific transformation is accepted and ap-

plied. In [20] data relevance is achieved through highlights on plotted data. Differ-

ently, Hashedcubes [21] provides a surrogate multi-dimensional model for real-time
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visualisation, based on optimised pivot-like data structures. Broadly speaking, these

approaches are less suitable to deal with Big Data, since an effective data summari-

sation and organisation strategy, apt to give experts a comprehensive view of data,

is missing and experts are basically “lost in the cyber-space of data”.

Contribution of the IDEAaS approach. A qualitative discussion on the novelties

introduced in IDEAaS with respect to the existing literature is reported in Table 2.2.

Specifically, the comparison criteria (incremental data collection, summarisation tech-

niques, multi-dimensional modelling and relevance evaluation) adopted within the

IDEAaS research methodology are leveraged to thoroughly motivate the adoption

of IDEAaS as a BDE solution. Only a subset of the considered approaches deal with

data streams. Given the intrinsic streaming nature of data collected in dynamic con-

texts, including the Industry 4.0 domain upon which IDEAaS has been primarily

tested, research proposals operating on pre-collected (historical) data [10, 9, 18, 13,

17, 14] are less suitable.

Moreover, proper summarisation techniques are advocated, since inspecting each

single data in the stream would be very resource demanding, entailing a possible

risk of loosing the overall view of the phenomenon being observed. The majority of

the considered approaches uses either sampling, compression or clustering (even-

tually combined together, when appropriate). Regarding the latter, a variant of a

renowned incremental clustering algorithm, CluStream [6], has been proposed in

this thesis, extending its original implementation by introducing a novel syntheses

update policy and the concept of snapshot. Clustering has been chosen due to the

fact that it considers the whole set of data (if compared to sampling) and offers the

opportunity of aggregating data, according to similarity metrics, forming distinct

groups of related measures (if compared to compression).

In IDEAaS, techniques to provide a proper organisation of data, according to

facets/dimensions, have been considered, aimed at enabling BDE under different

perspectives. Most of the analysed approaches handle multi-dimensional data; nonethe-

less, only few of them [15, 21, 14] envisage proper data structure to organise (sum-

marised) data and integrate such structure in the exploration process, as imple-

mented through the multi-dimensional model included in IDEAaS.

After data has been suitably labelled with multiple analysis dimensions, the

main concern is to attract experts’ attention on a subset of data deemed as relevant,



20 Chapter 2. Background

specifically considering the disruptive characteristics of Big Data (volume, velocity,

variety). In the investigated approaches, this is mainly achieved through visualisa-

tion effects (such as highlights [20, 22], colours [9], labels [23]) or specific methods

(e.g., frequency [16], thresholds [24], pattern identification [13]). Instead, in IDEAaS

a distance-based approach is applied. The distance value is computed between dif-

ferent clusters sets, taken at distinct time slots, in order to identify only those streams

that are going to change (and therefore correspond on the physical side to changing

behaviours of the monitored systems). This quantitative distance is used to attract

the human observer’s attention on streams that evolve only (see next chapter for

details on this metrics). The multi-dimensional organisation of streams is also used

to ease the observer’s task, providing a partition of the data streams. This choice

also enables a generalisation of the approach to different BDE scenarios, instead of

relying on problem-specific solutions.

As an additional remark, a discussion on how IDEAaS addresses the 5Vs of Big

Data (namely, Volume, Velocity, Variety, Veracity and Value) is provided. Specifi-

cally, IDEAaS faces Volume and Velocity by applying a variant of an incremental clus-

tering algorithm, notably apt to operate on data streams, yielding to a lossless repre-

sentation (summarisation) of data (Section 3.2). Summarisation techniques, used in

combination with data relevance evaluation metrics, enable to attract the attention

of experts on a subset of data only. Such techniques are also able to address Variety,

inherently associated to the number and heterogeneity of features, feature spaces

and analysis dimensions. Finally, both Veracity and Value are involved whenever it

is necessary to determine which are the important situations to observe. To this aim,

relevance evaluation techniques are exploited in IDEAaS to support the identifica-

tion of unexpected behaviours of the monitored system and, consequently, attract

experts’ attention towards them (Section 3.3).

2.2 Parallel clustering of Big Data streams

As already remarked in the introduction, the most expensive element of the IDEAaS

approach regards incremental clustering, also given the Big Data nature of incoming

data streams. Therefore, in this thesis a parallel implementation of the clustering

algorithm will be provided as well. Accordingly, the version of the IDEAaS system
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Incremental data
collection

Summarisation
techniques

Multi-
dimensional
modelling

Relevance
evaluation

Cube Exploration [15] Yes Sampling Yes No
Semantic Windows [17] No Sampling No No

Costa et al. [16] Yes Compression,
Clustering No Frequency-based

AIDE [18] No Sampling,
Clustering No No

Orr et al. [12] No Sampling,
Compression No No

Sauvanaud et al. [24] Yes Clustering No Threshold-based
Yin et al. [23] Yes Clustering No Labelling-based

Stojanovic et al. [22] Yes Clustering No Highlighting-
based

Hashedcubes [21] No N/A
⇠ (Auxiliary
pivot-like data
structures)

No

Saket et al. [19] No N/A No Recommendation-
based

Sansen et al. [20] No N/A No Highlighting-
based

Wang et al. [11] Yes (Event-based,
buffered data batches) No No No

Chang [9]
⇠ (Daily data
collectable, historical
data used)

⇠ (Clustering
parallel design
sketched)

No Colour-based (on
maps)

Jeon et al. [13] No (Only historical
data considered)

⇠ (Data aggregation

over time)
No Pattern-based

Birek et al. [10] No

Clustering (in
computational
modelling
methodology)

No No

Wang et al. [14] No (Data subscription
and sharing) N/A

⇠ (Tree structure
for optimal
indexing)

No

IDEAaS Yes Clustering Yes
Based on
distance between
clusters sets

Table 2.1: Overview of approaches on Big Data exploration.

that includes the new, parallel implementation of the algorithm has been named P-

IDEAaS. Recently, many parallel implementations of clustering algorithms have been

developed. A comprehensive survey on this topic can be found in [25]. Parallel clus-

tering algorithms have been proposed on two families of Big Data platforms: (a)

vertical scaling platforms, that rely on a hardware equipment enhancement using

Graphics Processing Units (GPU), Field Programmable Gate Arrays (FPGA), multi-

core CPU and High Performance Computing (HPC) clusters [26, 27, 28]; (b) hori-

zontal scaling platforms, that rely on Apache Spark, MapReduce and peer-to-peer

architectures [29, 30, 31]. There is, however, limited work on clustering data streams

in a parallel manner. Among them, [32, 33, 34] are mentioned as parallel clustering

on vertical scaling platforms and [35, 36, 37] on horizontal scaling platforms.

In [32] a GPU has been programmed with the main constructs (i.e., threads and
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kernels) provided by the CUDA programming model, to ensure a proper parallel im-

plementation of the CluStream algorithm called PaStream. PaStream contains par-

allel implementation of micro-clusters extraction. In particular, data stream buffer-

ing, computation of micro-cluster distance, computation of micro-cluster relevance

stamp to decide which micro-cluster to remove and macro-clusters generation in the

offline phase have been parallelized. With respect to the P-IDEAaS approach, PaS-

tream does not consider any mechanism to partition the initial data stream beyond

buffering, neither any technique to adapt the granularity of parallelisation, as per-

formed through the data relevance evaluation in P-IDEAaS. Furthermore, the vol-

ume and velocity challenges of Big Data have a higher impact on the online phase,

on which P-IDEAaS is mainly focused. In [33] CUDA parallel implementation of

the BIRCH hierarchical clustering algorithm is described. BIRCH relies on the key

concept of Clustering Feature (CF), that is a triple containing information (e.g., linear

sum, square sum) of all data points in the same cluster. BIRCH builds a balanced tree

called CF-Tree, where leaf nodes represent clusters and clustering procedure consists

of finding the closest node descending the tree from the root to the leaf nodes. The

parallel algorithm is a GPU-based version of BIRCH called GBIRCH, where a master

is launched and orchestrates several slaves using CUDA Dynamic Parallelism. Each

slave deals with a subset of the data points in the GPU memory, indeed, performing

a parallelisation over the data that corresponds to the second parallelisation level

described in this thesis (based on buffering). Each slave kernel executes the BIRCH

algorithm to assign a data point to a given node of the CF-Tree: if the data point

could not be absorbed by the existing nodes, it will be returned to the master and

processed sequentially by it, once all the slaves are terminated. With respect to the P-

IDEAaS approach and to the approach described in [32], GBIRCH does not consider

any mechanism to partition the initial data stream beyond buffering and the only

parallel action regards the identification of the dataset node in the CF-Tree, similar

to the search of the closest micro-clusters in [32] and in P-IDEAaS. In [34] a vertical

scaling solution for parallel incremental clustering is proposed. Specifically, the au-

thors investigate the parallelisation of the EINCKM [38] algorithm, that is composed

of three modular steps, namely clusters building, merging and pruning. These steps

are executed in sequence, nevertheless each step is parallelized on a set of processors

over the same machine and the number of processors is adapted in order to grant

algorithm performance without exceeding in the use of computation resources.
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In [37] authors use Spark as an in-memory open source cluster-computing frame-

work. Spark Streaming is used to process in batches the data points coming from the

stream. Batches are fixed at user specified time intervals, and parallelisation with

Apache Spark is performed over the data points in the batch. For each data point, the

proposed algorithm finds the nearest micro-cluster. The data points that could not

be absorbed by the existing micro-clusters are processed separately and sequentially,

by searching a micro-cluster to remove or two micro-clusters to merge. In addition,

authors in [37] propose the usage of the Canopy algorithm, an unsupervised learn-

ing preprocessing algorithm, which can improve the preprocessing of large data in

order to optimise the offline phase of CluStream. With respect to P-IDEAaS, the

approach in [37] considers only the buffer parallelisation, and does not mention

any parallelisation over facets nor over micro-clusters, neither for finding the micro-

cluster to remove or micro-clusters to merge. Indeed these parts of the data stream

clustering are the most challenging for parallelisation, since they determine the cre-

ation and removal of micro-clusters, thus requiring a sequential processing of data

points. Nonetheless, introducing some parallelisation strategies also in these parts,

and properly managing outliers, may improve the overall algorithm performance.

Similarly, the approach in [36] is based on Apache Spark to process batches of in-

coming data points in parallel. In each batch, the computation of distance from a

new data point and centroids of existing micro-clusters is performed in parallel as

well. The issue of handling outliers is considered here, and also in this case outliers

that can not be absorbed in existing micro-clusters are processed separately and se-

quentially. The work presented in [35] uses Apache Storm as a distributed stream

processing framework, coping with policies related to memory management (the

so-called shared-nothing versus shared memory issue). Authors propose two dif-

ferent solutions to parallelize the online phase of Clustream. The first one is run on

a shared-memory architecture using a common store, and the other one is run on a

non-shared-memory architecture in a decentralised way. As new data points arrive,

they are assigned to a processing unit, that is in charge of generating the new set of

clusters. Data points are sent to a local processing unit in a load-balanced manner,

and resulting micro-clusters are sent back to a remote processing unit in a round-

robin fashion. Both algorithms need a synchronisation phase in order to avoid to

loose the clustering accuracy: in the shared-memory architecture, local processing

units (called allocators) communicate directly with the global processing unit (called
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aggregator) for synchronisation; data points that do not belong to any existing micro-

cluster trigger the update of the global set of clusters; in the non-shared-memory

solution, synchronisation is performed between local processing units according to

a gossip-based algorithm in a P2P environment. Parallelisation presented in [35]

is performed on the buffer level only. Moreover, also in this case, authors do not

consider the opportunity of tuning different parallelisation strategies. Finally, the

SAMOA library [39] is a distributed computing implementation of CluStream. It

is not implemented in Spark, but rather in a Distributed Stream Processing Engine

which adapts the Map-Reduce paradigm to parallel stream processing, and it does

not include the offline phase.

Platform Dataset
type Base algorithm Outlier

inspection

PaStream [32] GPU
(vertical scaling) synthetic, real CluStream (⇠)

GBIRCH [33] GPU
(vertical scaling) synthetic, real BIRCH No

CClustream [37] Apache Spark
(horizontal scaling) synthetic CluStream No

Spark-Clustream [36] Apache Spark
(horizontal scaling) synthetic CluStream No

Karunaratne et al. [35] Apache Storm
(horizontal scaling) synthetic, real CluStream No

P-IDEAaS Apache Spark
(horizontal scaling) real CluStream Yes

Parallelisation
focus

Parallelisation
levels

Tunable
parallelisation

Experimental
setup

PaStream [32] online - offline

buffer, micro-cluster
relevance stamp,
distance from
micro-cluster
centroids, offline
phase

No

Intel-i7 CPU 3.40
GHz (4 cores, 8
threads),
NVIDIA GeForce
GTX 750 GPU

GBIRCH [33] online buffering only No

Intel-i5 3.20 GHz,
8GB RAM,
NVIDIA Tesla
K20 GPU

CClustream [37] online - offline buffering only No
Intel-i5 3.40 GHz,
8GB RAM (3
machines)

Spark-Clustream [36] online - offline
buffering, distance
from micro-cluster
centroids

No
-
(up to 40
processor)

Karunaratne et al. [35] online buffering only No 8-node cluster,
4GB RAM

P-IDEAaS online

buffering,
micro-cluster
relevance stamp,
distance from
micro-cluster
centroids, distance
between
micro-clusters

Yes
Intel-i5 2.60 GHz,
1 master - 3
slaves

Table 2.2: Overview of approaches on parallel clustering of Big Data streams.
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Contribution of the P-IDEAaS approach. Table 2.2 reports a comparative overview

of approaches on parallel clustering of data streams. With respect to existing ap-

proaches, parallel implementation of the clustering algorithm within P-IDEAaS is

structured into different levels of parallelisation (at increasing complexity), that can

be tuned through the multi-dimensional model, in combination with the data rele-

vance evaluation, in order to adapt the use of computation resources to the different

characteristics of the incoming data stream. It is focused on the online phase, as it

determines the stream rates that the algorithm will be able to handle. Among the

approaches in literature that addressed the parallelisation of the two-phases clus-

tering of massive and evolving data streams, the approaches proposed in [32, 36]

are the only ones that go beyond the partition of the initial data stream through the

buffering. Nevertheless, the P-IDEAaS approach is the only one that enables to tune

parallelisation levels with respect to the buffer size, the dynamics and complexity

of the stream (i.e., the number of features). Considering the commodity hardware

capabilities of horizontal scaling platforms, experiments will demonstrate that the

approach enables to increase performances also reducing computation costs, com-

pared to the adoption stream. Moreover, although vertical scaling platform might

ignore this aspect since they enable a performance increment with respect to the

traditional approaches, as explained in [25], horizontal scaling platforms can be po-

tentially extended without limits with the addition of new computation nodes, thus

facing Big Data volume with commodity hardware. For what concerns the inspec-

tion of outliers, almost all the approaches process sequentially those data points that

cannot be absorbed by existing clusters. The PaStream approach [32] assumes the

same perspective as well and does not process outliers in parallel, although it pro-

poses the use of a Distance Matrix to efficiently store Euclidean distance values be-

tween micro-clusters. In P-IDEAaS approach the strategy of postponing the outlier

management (also experimentally evaluating the effects of this action on the clus-

tering results) will be proposed in order to reduce as much as possible the creation,

merging and/or removal of micro-clusters in the procedure.

2.3 Anomaly Detection

The IDEAaS approach is described in this thesis can be classified among approaches

that have been proposed to address anomaly detection in presence of big data streams
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(please refer to [40] for a comprehensive survey). These approaches differ from those

based on static data, since all the observations are not available at once and measures

are collected and processed incrementally. Moreover, the IDEAaS approach also dif-

fers from solutions for anomaly detection in presence of evolving graphs [41, 42],

that are characterised by causal/non-causal relationships between measurements.

Among the approaches for anomaly detection on evolving data, the authors

in [40] focused on unsupervised proposals, since supervised and semi-supervised

scenarios are rare to happen in real-world applications, due to the lack of label

information regarding the anomalies that could be detected in collected observa-

tions. Unsupervised approaches can be in turn classified into statistical-based, near-

est neighbours-based and clustering-based. Statistical-based approaches usually re-

quire a priori knowledge about the underlying distribution of the measures, that is

almost always unavailable when data is collected incrementally. In [43] an approach

based on in-memory big data processing is described. A preparation phase is used

to generate a model for the “usual state" of the system, by applying machine learn-

ing (pre-training) on stored data. An operation phase compares real-time incoming

data with the “usual state" to identify anomalies. Similarly, in [44] machine learning

is used to train data collected during regular execution of the manufacturing process

in order to learn a probabilistic “normal model". Authors in [45] applies Hierarchical

Temporal Memory (HTM) to anomaly detection, by performing two post-processing

steps over the output of HTM system: (i) computing the prediction error; (ii) com-

puting the anomaly likelihood.

Nearest neighbours-based approaches rely on the assumption that a measure

can be considered as an anomaly if its distance from a significant portion of other

measures is greater than a given threshold [46, 47]. In clustering-based approaches,

anomalies are discovered either: (a) since they are assumed to fall into clusters with

small number of data points or low density; (b) based on their distance from nearest

clusters centroids. The approach in [22] operates in two steps: (i) learning of the

normal behaviour of the system (based on past data), using a clustering technique

(K-means algorithm); (ii) detecting at real-time an anomalous behaviour when new

data does not belong to previously detected clusters. The approach in [48] builds a

cluster model using Gaussian clustering, that is updated as incoming data arrives.

Clustering is performed over a time window. As a new data arrives, the algorithm

tries to assign it to an existing cluster. If this is not possible, the evaluation on new
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data is suspended. When the time window expires, a batch clustering algorithm

(e.g., DBScan) is performed, in order to check if suspended data is an anomaly or

can be recognised as a new cluster.

Although our approach is cluster-based, it is focused on the evolution of sum-

marised data over time in order to detect anomalies. Indeed, it relies on summari-

sation techniques as a basis on which to apply relevance evaluation. Moreover, ex-

ploration is performed over the multi-dimensional model. This distinguishes the

IDEAaS approach from the approaches described in [40] and from traditional Com-

plex Event Processing (CEP) approaches, that are mainly based on pre-defined queries

and event detection rules.

2.4 Context-based resilience

Monitoring of industrial plants for anomaly detection purposes is aimed at ensur-

ing timely recovery actions. In [49] has been integrated an anomaly detection ap-

proach with a CMMS (Computerised Maintenance Management System) to pro-

vide time-limited maintenance interventions. However, a recent ever growing in-

terest has been devoted to resilience challenges, often related with the notion of self-

adaptation, as witnessed by an increasing number of surveys on this topic [50, 51,

52]. This will be the focus of this thesis. Time-limited solutions can be considered

if the identification of recovery actions fails. CPS resilience approaches are mainly

focused on security issues at runtime on the communication layer or to implement

resource balancing strategies between the edge and cloud computing layers. In [53]

a model-free, quantitative, and general-purpose evaluation methodology is given, to

evaluate the systems resilience in case of cyber attacks, by extracting indexes from

historical data. This kind of approaches is out of the scope of our thesis. However,

resilience/self-adaptation specifically designed for CPPS has been addressed in few

works [54, 55], where ad-hoc solutions are provided, focusing on single work cen-

ters or on the production line, without considering the effects of resilience across

connected components. In [56] a decision support system is proposed to automati-

cally select the best recovery action based on KPIs (e.g., overall equipment efficiency)

measured on the whole production process.

This thesis approach contributes to the state of the art by introducing a context
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model, apt to relate recovery services with work centers organised in the fully con-

nected hierarchy of smart components (from connected devices up to the whole pro-

duction line at shop floor level), according to the IEC62264/IEC61512 standards of

the RAMI 4.0 reference architectural model [8]. Work centers are in turn associ-

ated with supervising operators. This model enables, on the one hand, to take into

account the propagation of recovery effects throughout the hierarchy of connected

work centers and, on the other hand, to personalise the visualisation of recovery ac-

tions nearby the involved work centers, supporting the operativity of workers who

supervise the production line.

The adoption of context-awareness to implement resilient CPS has been inves-

tigated in the Cyber Physical Systems (CAR) Project [57]. In the project, resilience

patterns have been identified via the empirical analysis of practical CPS systems and

implemented as the combination of recovery services. Our approach enables a better

flexibility, given by the adoption of service-oriented technologies, and a continuous

evolution of the service ecosystem is realised through the design of new services in

case of unsuccessful recovery service identification. Authors in [58] share with us the

same premises regarding the adoption of service-oriented technologies, modelling

processes as composition of services that can be invoked to ensure resilience. With

respect to them, here is added the context model and has been proposed a set of

context-driven phases to support the human operator in the identification of critical

conditions and in the confirmation of recovery services.
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Chapter 3

A Relevance-based approach for

Big Data Exploration

In this chapter the core components of the IDEAaS approach will be presented with

more details, namely: the multi-dimensional model to partition incoming data streams,

the incremental clustering algorithm and relevance-based data exploration.

3.1 Multi-dimensional model definition

Data points in a stream can be explored and analysed according to different perspec-

tives, that may change dynamically during data stream processing.

Definition 1 (Data Stream) A data stream DS is a sequence of data generated over time

described as DS = {x(t0), x(t1), . . . , x(tn)}, where x(tn) is a data collected at a certain

time tn and n can potentially be •.

Within IDEAaS the considered data stream are composed of only numeric data,

called data points which are defined as follows:

Definition 2 (Data points) Data points are modelled as d-dimensional vectors x = hx1, x2,

. . . , xdi, where each xi is a measure of a feature fi. Features correspond to the measurable

quantities to be monitored over the observed system.

Indeed, features are formally defined as follows.

Definition 3 (Feature) A feature fi is a measurable quantity described as hn fi , u fii, where

n fi is the feature name, u fi represents the unit of measure. Let’s denote with F = { f1, f2, . . . ,

fd} the overall set of measurable features in the monitored system. A data point x(t) =

hx1(t), x2(t), . . . xd(t)i is defined as the tuple containing the measurements of features in F,

collected jointly at timestamp t, expressed in terms of their units of measure u f1 , u f2 , . . . u fd .
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A feature space is defined as a set of features that are measured together to observe

a physical phenomenon of interest. Spindle rolling friction torque increase is an

example of feature space. In fact, it can be monitored through the spindle power

absorption feature jointly with the spindle rpm feature. Specifically, if the spindle

rpm decreases as long as the power absorption increases, this might be due to the

spindle rolling friction torque increase. Different feature spaces can be defined over

the whole set F of features. Feature spaces are designed to be monitored separately

according to the different perspectives that identifies portions of the data stream

on which exploration can be differently focused. For example, in the smart factory

anomaly detection case study, data points can be partitioned with respect to the dif-

ferent tools that are used during the manufacturing process on the monitored Cyber

Physical System. Within the IDEAaS approach, different exploration perspectives

have been modelled using a Multi-Dimensional Model (MDM).
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Figure 3.1: The tree structure used to represent the multi-dimensional model (an in-

stantiation for the anomaly detection in smart factory case study.).

The MDM formalization is inspired by the literature on multi-dimensional data

analysis [59] and involves dimensions and hierarchies over dimensions, according

to the following definition.

Definition 4 (Multi-Dimensional Model) A Multi-Dimensional Model over a data stream

is denoted as a triple MDM = hD, H, DSi, where:

• D = {d1, . . . dp} is a finite set of analysis dimensions on categorical domains Dom(dk),

8k = 1 . . . p;
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• H = {h1, . . . hm} is a finite set of hierarchies; each hierarchy is described with (i) a

subset Dim(hj)✓D 8j = 1 . . . m of dimensions, such that Dim(hj) defines a partition

of D; (ii) a total order ⌫hj of Dim(hj); let Dom(H) = Dom(h1)⇥ . . .⇥Dom(hm);

• DS is a (potentially infinite) set of data points within the data stream.

Figure 3.1 reports an instantiation of the MDM in the anomaly detection for smart

factory case study. In the example depicted in Figure 3.1, analysis dimensions are

the Machine, the Spindle, the Tool and the Part Program
1.

Combinations of instances for analysis dimensions can be used to aggregate data

points according to different exploration perspectives. These combinations have

been denoted as exploration facets, defined as follows.

Definition 5 (Exploration facet) Given a MDM = hD, H, DSi, a facet schema is de-

noted as f2Dom(H). An exploration facet ji2Dom(f) is a combination of dimension

instances, one for each hj2H, used to partition the whole set of d-dimensional data points.

Let’s denote with F the set of exploration facets.

With reference to the example reported, in Figure 3.1 the spindle sp2, the tool

u3 and the part program pp1 form an exploration facet used to filter the subset of

data points in the highlighted data cube. Partitions created by means of exploration

facets can be separately processed through the incremental clustering algorithm to

generate micro-clusters.

In the following, details on how data is summarised and organised in the multi-

dimensional model will be provided.

3.2 Multi-dimensional and incremental clustering

The algorithm described in this section has been published in [60], where the no-

tion of data summarisation was introduced to aggregate in the feature space a set

of measures that are closely related each other, by applying a notion of distance

between measures. The micro-clusters generation procedure is organised over two

steps: (i) the creation of new micro-clusters and (ii) the update of existing ones. Al-

gorithm (1) summarises the micro-clusters generation procedure and derives from

the CluStream approach [6].

1Part Programs are sequences of instructions, which define the actions to be executed by a numerical
control machine.
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A micro-cluster is represented as a hyper-sphere, representing a set of d-dimensional

data points, where d is the number of measured quantities. Using a temporal exten-

sion of the concept of cluster feature vector (CF) [61], which also takes into account the

timestamps of incoming data points, the i-th micro-cluster µci, containing ni data

points Xi = xi1 , xi2 , . . . , xini
with timestamps Ti = ti1 , ti2 , . . . , tini

, can be represented

by a tuple defined as follows:

µci = hCF1x
i , CF2x

i , CF1t
i , CF2t

i , nii (3.1)

where: (i) each xik is a d-dimensional data point, represented as a vector; (ii) CF1x
i

is a d-dimensional vector whose elements represent the linear sum of data points in

µci (one for each dimension); (iii) CF2x
i is a d-dimensional vector whose elements

represent the quadratic sum of data points in µci (one for each dimension); (iv) CF1t
i

is a scalar value representing the linear sum of timestamps in µci; (v) CF2t
i is a scalar

value representing the quadratic sum of timestamps in µci; (vi) ni is the number

of data points included into µci. Therefore, a micro-cluster is represented through

(2d + 3) values instead of (ni⇤d), significantly reducing the memory requirements.

From the elements of the tuple (3.1) above, the centroid X0i and the radius Ri of the

micro-cluster µci can be obtained.

3.2.1 Micro-clusters generation

The micro-clusters generation procedure reported in Algorithm (1) is iterative. At

each iteration, the algorithm is logically divided in two parts: (i) firstly, each data

point creates a new micro-cluster, until the maximum number of available micro-

clusters is reached (lines 3-6); (ii) existing micro-clusters are update considering the

new incoming data points (line 7-18).

Concerning the first two parts, instead of processing one data point at a time,

data points X are collected in a buffer that spans a temporal lapse equal to ji.Dt,

where fi2F denotes the current exploration facet in which the algorithm is being

executed. At each iteration it updates the existing set of micro-clusters µCji for the

considered exploration facet ji. As new records X arrive, if the maximum number

of allowed micro-clusters MAXµCji has not been reached yet, a new micro-cluster is

created (CREATENEWMICROCLUSTER procedure), containing only the new record

(lines 4-6). The value MAXµCji is determined by the amount of main memory
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Algorithm 1: Micro-clusters update function

Input: set µCji of micro-clusters given an exploration facet ji, set X of
new data points

Output: updated set µCji
new of micro-clusters

1 Function updateMicroClusters(µCji , X):
2 foreach data point xi 2 X do
3 if SIZEOF(µCji) < MAXµCji then
4 µcnew  CREATENEWMICROCLUSTER(xi)
5 µCji

new  µCji [ {µcnew}
6 else
7 µcnear  FINDCLOSESTMICROCLUSTER(µCji , xi)
8 if µcnear == null then
9 µcremove  GETMICROCLUSTERTOREMOVE(µCji)

10 if µcremove 6= null then
11 µCji

new  µCji \ {µcremove}
12 else
13 (µca, µcb) GETMICROCLUSTERSTOMERGE(µCji)
14 µCji

new  MERGE(µca, µcb)
15 end if
16 end if
17 µcnew  CREATENEWMICROCLUSTER(xi)
18 µCji

new  µCji [ {µcnew}
19 end if
20 end foreach
21 return µCji

new
22 End Function

available in order to store the micro-clusters. The parameter MAXµCji has been

introduced to prevent memory overloading. Otherwise, if the maximum number of

micro-clusters has been reached, the algorithm searches for an existing micro-cluster

in which the new record xi can be assigned, through the FINDCLOSESTMICROCLUS-

TER procedure (line 7). This procedure identifies a cluster µcnear that represents the

cluster that is closest to the new record xi. The implementation of this procedure

is compliant with the one detailed in [6] and is based on the relative distance of

xi from the centroid of µcnear compared to the distance from the centroids of other

micro-clusters. If it is not possible to identify µcnear (line 8), the data point is inter-

preted as new emerging behaviour in the monitored system and should generate a

new micro-cluster.

Since the maximum number of micro-clusters has been reached, before includ-

ing the new micro-cluster into the output set µCji
new, the new micro-cluster must

be substituted to an existing one. The GETMICROCLUSTERTOREMOVE procedure

is applied to identify the micro-clusters to remove (lines 9-12). In CluStream [6],
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this procedure is based on the micro-cluster age. If a micro-cluster to remove is

not identified, two other micro-clusters must be merged, using GETMICROCLUS-

TERSTOMERGE procedure (lines 13-15).

Once a micro-cluster has been removed or two micro-clusters have been merged,

a new micro cluster µcnew is generated from the data point xi, through the CREATE-

NEWMICROCLUSTER procedure (line 17).

feature k

featurej

featurei

featurek

featurej

featurei

featurek

featurej

featurei

μc1
μc2

μc3 μc3
μc4

μc2 μc2,4
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t t + Δt t + 2Δt

(a) (b) (c)

Figure 3.2: Example of an evolution of micro-clusters over time considering a three

dimensions feature space. Analysis dimensions are fixed and not shown here.

Figure 3.2 illustrates three different results of the micro-clusters generation pro-

cedure for the same three-dimensional feature space; coloured micro-clusters are

the micro-clusters that have changed over time. Indeed, from Figure 3.2(a) to Fig-

ure 3.2(b) the micro-cluster µc1 has been deleted to create space for the new micro-

cluster µc4; and the micro-cluster µc3 has been re-positioned. On the next step, from

Figure 3.2(b) to Figure 3.2(c) the merging of micro-clusters µc2 and µc4 occurs in or-

der to create space for the new emerging micro-cluster µc5.

With respect to the CluStream approach [6], the micro-cluster generation proce-

dure has been modified to generate a new set of micro-clusters starting from a set of

records collected in a time interval equal to Dt. In fact, considering the volume and

the velocity of the collected records, the application of the micro-cluster generation

procedure on each single record may be not efficient, as demonstrated in the experi-

mental evaluation. Hence, the clustering algorithm at a given time t produces a new

set of micro-clusters µCji
new starting from data points collected from time t� Dt to t

and built on the top of the previous set of micro-clusters, for a given feature space.

Choosing a proper Dt interval is critical to guarantee that the time required to sum-

marise new data is compliant with the data acquisition rate and to reduce storage



3.2. Multi-dimensional and incremental clustering 35

costs. Indeed, lower Dt values require more time to prepare data for summarisation

and for input/output operations on the IDEAaS Data Storage. On the other hand,

if Dt is set to larger values, the system is less prompt to detect changes in the ob-

served data. Section 4.2 will illustrate experimental results obtained by analysing

the impact of variations in the value of Dt.

With respect to [6], the following innovations have been additionally introduced

in the IDEAaS approach: (i) the micro-clusters update criterion has been modified,

considering both the age and density of generated micro-clusters; (ii) micro-clusters

have been organised within the multi-dimensional model, and the notion of snap-

shot has been introduced, to enable successive exploration of different portions of

incoming data stream.

3.2.2 Micro-clusters update strategy in IDEAaS

The solution proposed in [6] identifies micro-clusters to remove by relying on their

age. Given a threshold t, if the micro-cluster last update occurs before t� t, then the

micro-cluster is considered old and it is candidate to be discarded. Further consid-

erations on the choice of threshold t are reported in the experimental evaluation in

Section 4.2. If only the age of micro-cluster is considered, persistent behaviours of

the monitored system may be neglected, although they are a valuable representation

of consolidated working status. Here, two different criteria have been combined, in

order of priority: (i) the age and (ii) the density of the micro-cluster, defined as fol-

lows.

Definition 6 (Density of a micro-cluster) The density of a micro-cluster µcj, denoted

with den(µcj), is defined as:

den(µcj) =
Nj

(Rj)n (3.2)

where (i) Nj is the number of records belonging to the micro-cluster, (ii) (Rj)n is the micro-

cluster bounding n-dimensional cube (i.e, an envelope of the area/hyper-volume occupied by

µcj) and (iii) n is the number of features in the record, composing the considered feature

space. The value den(µcj) is updated whenever µcj is modified.

If a micro-cluster is classified as old (according to the threshold t) and its density

is the highest one among all old micro-clusters, then it is candidate to be removed.

The rationale is that, if dense micro-clusters have not been updated for a while, then
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they represent a consolidated working behaviour that is no longer present in the

monitored system. These micro-clusters should be removed because their density

may attract new records distorting the micro-clusters update results. Experiments

in Section 4.2 confirmed this intuition. If micro-clusters candidate to be removed are

not found, because all the existing micro-clusters have been updated after t� t and

cannot be classified as old, then the whole set of micro-clusters is looked up to find

the two closest ones to be merged, according to the original Algorithm (1).

3.2.3 Multi-dimensional organisation of micro-clusters in IDEAaS

Distinguishing micro-clusters across different facets might be useful to foster data

exploration, as suggested by the identification of tool wear in the anomaly detection

case study (see Section 1.3.1). Therefore, the set of micro-clusters generated every

Dt seconds is stored as a snapshot and labelled with analysis dimensions according

to the multi-dimensional model. For example, considering the CNC machine in the

case study, different snapshots can be built depending on the feature space that is

being considered, the tool that is being used, the part program that is being executed.

A snapshot is formally defined as follows.

Definition 7 (Snapshot) A snapshot SN(t), stored at time t, is defined as the following

tuple:

SN(t) = hµC(t), r, f sj, jii (3.3)

where: (i) µC(t) is a set of micro-clusters generated at time t, (ii) r : µC(t) ! 2µC(t�Dt) is

a mapping function that relates a micro-cluster in µC(t) to zero, one or more micro-clusters

in the set µC(t� Dt) stored in the previous snapshot SN(t� Dt), (iii) f sj is the monitored

feature space and (iv) ji is the exploration facet.

The co-domain of the mapping function r is the power set 2µC(t�Dt), because a micro-

cluster µci 2 µC(t) can be mapped to: (i) a single micro-cluster in µC(t� Dt) if it is

maintained across the two snapshots, (ii) a set of micro-clusters in µC(t � Dt) as a

result of a merge operation or (iii) the empty set if the micro-cluster µci has just been

created in µC(t) and therefore was not previously present in SN(t� Dt).

As an example, all the snapshots resulting from the application of data summari-

sation techniques for machine m1 (spindle sp2), while using tool u2 and during the

execution of the part program pa, to monitor the tool wear feature space f s2, are
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Figure 3.3: Annotation of micro-clusters snapshots using the multi-dimensional

model.

annotated with the subset of the tree nodes highlighted by the dashed line in Fig-

ure 3.3. In the next section, it will be shown how exploration of the model enables to

identify the snapshots of interest.

3.3 Relevance-based data exploration

In this section, it is illustrated how IDEAaS can guide the expert throughout the

exploration of relevant data, following three steps: (i) the identification of relevant

data through the application of novel data relevance evaluation techniques; (ii) start-

ing from the relevant data previously identified, the exploration over the Multi-

Dimensional Model; (iii) the selection of relevant data and the visualisation of its

evolution over time.

3.3.1 Identification of relevant data

According to the definition given in [1], data relevance can be defined as the dis-

tance from an expected status. Data relevance evaluation techniques are aimed to

support the identification of relevant (and potentially critical) data according to the

evolution over time of identified micro-clusters. Given an exploration facet j2F,

micro-clusters evolution is detected by comparing the current set of micro-clusters
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in j (denoted with µCj
curr) against the set of micro-clusters generated when the mon-

itored system is operating in normal conditions in the same facet j (denoted with

µ̂Cj). Deviation from the normal working conditions means that the monitored sys-

tem behaves abnormally and alerts about the identified conditions must be raised.

The main concern here is to define the expected status and how to compute such a

distance. In the IDEAaS approach, the expected status corresponds to the snapshot

saved during the normal working behaviour of the monitored system (denoted as

reference snapshot) and data relevance techniques are based on the computation of

the distance between the set of micro-clusters in the current snapshot and the set of

micro-clusters in the reference snapshot. The devised approach aims at identifying

relevant snapshots through the application of relevance evaluation techniques, and

then at retrieving relevant micro-clusters among the ones of the relevant snapshots.

Data within such micro-clusters is proposed to the expert as relevant.

Distance between sets of micro-clusters. The proposed relevance evaluation tech-

niques rely on the concept of distance between the two sets of micro-clusters µCj
curr =

{µc1, µc2, . . . , µcn} and µ̂Cj
= {µ̂c1, µ̂c2, . . . , µ̂cm}, where n and m represent the

number of micro-clusters in µCj
curr and µ̂Cj, respectively, and n and m do not neces-

sarily coincide. The distance is computed as:

D(µCj
curr, µ̂Cj

) =
Âµ̂ci2µ̂Cj D(µ̂ci, µCj

curr) + Âµcj2µCj
curr

D(µcj, µ̂Cj
)

m + n
(3.4)

where D(µ̂ci, µCj
curr) = minj=1,...,nd(µ̂ci, µcj) is the minimum distance between µ̂ci 2

µ̂Cj and micro-clusters in µCj
curr. Similarly, the distance D(µcj, µ̂Cj

) = mini=1,...,m

d(µcj, µ̂ci) is the minimum distance between µcj2µCj
curr and micro-clusters in µ̂Cj.

To compute the distance d(µca, µcb) between two micro-clusters, different factors

are combined: (i) the Euclidean distance between micro-clusters centroids dX0(µca,

µcb), to verify if µcb moved with respect to µca and (ii) the difference between micro-

clusters radii dR(µca, µcb), to verify whether there has been an expansion or a con-

traction of micro-cluster µcb with respect to µca. Formally:

d(µca, µcb) = a · dX0(µca, µcb) + b · dR(µca, µcb) (3.5)

where a, b 2[0, 1] are weights such that a + b = 1, used to balance the impact of
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Figure 3.4: Evolution of micro-clusters over time. Feature space is composed of the

spindle rpm and the percentage of absorbed power. Analysis dimensions are fixed

and not shown here.

terms in Equation (3.5). In the experiments described in [60] the two terms of Equa-

tion (3.5) are equally weighted, that is, a = b = 1
2 .

The distance dX0(µca, µcb) is computed by applying the Euclidean distance be-

tween micro-clusters centroids, according to the following formula:

dX0(µca, µcb) =
q
(X0a � X0b)2 (3.6)

where X0a and X0b are centroids of µca and µcb, respectively.

The distance dR(µca, µcb) is obtained by computing the difference between micro-

clusters radii, that is:

dR(µca, µcb) = Rb � Ra (3.7)

where Ra (resp., Rb) is the radius of µca (resp., µcb).

If dR(µca, µcb) > 0 the micro-cluster µcb has expanded with respect to micro-cluster

µca, otherwise, if dR(µca, µcb) < 0 a micro-cluster contraction has been detected.

To better understand the rationale behind data relevance evaluation, Figure 3.4

illustrates three different micro-clusters sets related to the same bi-dimensional fea-

ture space; coloured micro-clusters are deemed as relevant due to centroid re-po-

sitioning from Figure 3.4(a) to Figure 3.4(c) (see micro-cluster µc5), micro-cluster

expansion (see micro-cluster µc5), contraction, creation (see micro-cluster µc6) or

merging (i.e., variation of the number of micro-clusters, that has an impact on the
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denominator of Equation (3.4), see micro-clusters µc3 and µc4.

Identification of relevant snapshots. Let ˆSN(t0) = hµ̂C(t0), r, f sj, jii be the refer-

ence snapshot, where µ̂C(t0) = { ˆµc1, ˆµc2 . . . ˆµck}, f sj is the observed feature space

and d1, . . . dp are the values of analysis dimensions in facet ji. ˆSN(t0) is tagged

by the expert while observing the monitored system when operates normally. As

explained above, data relevance at time t is based on the computation of distance

between the current set of micro-clusters µC(t) = {µc1, µc2, ..., µcn} and µ̂C(t0) =

{µ̂c1, µ̂c2, ..., µ̂ck}, where such distance has been denoted with D(µ̂C(t0), µC(t)). The

value of this distance is used to identify relevant snapshots and, accordingly, rele-

vant exploration facets. A relevant snapshot is formally defined as follows.

Definition 8 (Relevant snapshot) Given a snapshot SN(t) = hµC(t), r, f sj, jii stored

at time t and the reference snapshot ˆSN(t0) = hµ̂C(t0), r, f sj, jii, SN(t) is recognised as

relevant if D(µ̂C(t0), µC(t)) � #, where # is a threshold that is set by the expert.

Similarly, relevant exploration facet is defined as follows.

Definition 9 (Relevant exploration facet) Given a set of micro-clusters µCj
curr, gener-

ated for an exploration facet j2F, and given the set of micro-clusters µ̂Cj generated when

the monitored system is operating in normal conditions for the same exploration facet j, the

set µCj
curr is marked as relevant if the condition D(µCj

curr, µ̂Cj
) > e holds, where e is a

threshold set by domain expert based on his/her knowledge about the monitored system. The

facet j is denoted as relevant.

An example of the evolution of micro-clusters over time is shown in Figure 3.4.

Figure 3.4(a) represents the set of micro-clusters that belong to the reference snap-

shot, in this case µ̂C(t0) = {µ̂c1, µ̂c2, ..., µ̂c5}. Snapshot SN(t), as shown in Fig-

ure 3.4(c), is identified as relevant considering that D(µ̂C(t0), µC(t)) � #. In fact,

a new micro-cluster µc6 has been created, micro-clusters µc3 and µc4 have been

merged, micro-cluster µc5 has been expanded and moved. In the figure, the fea-

ture space composed of the spindle rpm and the percentage of absorbed power is

considered. On the other hand, the previous snapshot SN(t � Dt), whose set of

micro-clusters µC(t � Dt) is represented in Figure 3.4(b), has not been labelled as

relevant, given that D(µ̂C(t0), µC(t � Dt)) < # (i.e., no relevant changes in micro-

clusters set have been detected).
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Identification of relevant micro-clusters. Once a relevant snapshot SN(t) = hµC(t),

r, f sj, jii at time t has been detected, the data relevance approach identifies which

micro-clusters have changed with respect to the set of micro-clusters in the previous

snapshot SN(t�Dt) = hµC(t�Dt), r, f sj, jii. This information is retrieved through

the application of the mapping function r, that will be exploited during data explo-

ration as shown in the next section. A micro-cluster may change in different ways

over time. Indeed, a micro-cluster may be:

• created, if µci2µC(t) in SN(t), but µci 62µC(t � Dt) in the previous snapshot

(e.g., micro-cluster µc6 in Figure 3.4(c)); in this case r(µc6) = ∆;

• merged, if µci2µC(t) in SN(t) is the result of a merging operation between two

micro-clusters µca,µcb2µC(t� Dt) in the previous snapshot SN(t� Dt) (e.g.,

micro-cluster µc3,4 in Figure 3.4(c)); in this case r(µc3,4) = {µc3, µc4};

• moved, when a micro-cluster µci2µC(t) in SN(t) moved from its position in

the previous snapshot SN(t � Dt) (e.g., micro-cluster µc5 in Figure 3.4(c)); in

order to verify if a micro-cluster moved over time, Equation (3.6) is exploited;

in this case r(µc5) = {µc5};

• expanded/shrunk when the micro-cluster µci2µC(t) in SN(t) changed its size

compared to the previous snapshot SN(t� Dt) (e.g., micro-cluster µc5 in Fig-

ure 3.4(c)); in order to verify if a micro-cluster expanded/shrunk over time,

Equation (3.7) is exploited; in this case r(µc5) = {µc5}.

Therefore, in the example of Figure 3.4 the micro-clusters considered as relevant

and proposed to the experts to start the exploration are µC(t) = {µc3,4, µc5, µc6}.

3.3.2 Relevance-driven data exploration

Figure 3.5 sketches how the multi-dimensional model and relevance evaluation tech-

niques help experts during relevant data exploration.

Preparing the exploration. The relevant snapshots identified in the previous step are

associated to a feature space and instances of the analysis dimensions. Feature space

and analysis dimensions for which relevant snapshots have been found are properly

labelled within the multi-dimensional space. To start the exploration, the expert

might specify a set dr of desired values for the dimensions he/she is interested in,
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Figure 3.5: Data exploration supported by the multi-dimensional model and relevance

evaluation techniques.

where dr = {dr
1, . . . dr

p} and dr
i2Di. The expert might specify preferences on a subset

of dimensions in D or he/she may not express any preference at all. Let bounded be

the dimensions on which the expert expressed a preference and unbounded the other

dimensions. IDEAaS filters out relevant snapshots that are associated with values

for bounded dimensions that have not been specified in dr. For example, referring

to Figure 3.5, dr = {-, -, ppb}. In this case, the expert only expressed preferences on

the part program, therefore IDEAaS does not consider relevant snapshots that are

associated with the part program ppa (Figure 3.5(e)), and selects relevant snapshots

that have been found for the feature space “tool wear” ( f s2) while using the tool u2

and executing the part program ppb (Figure 3.5(c)) and those that have been found

for the feature space “spindle rolling friction torque” ( f s1) while executing the part

program ppb (Figure 3.5(d)). It is assumed that the expert formulates dr as an explicit,

albeit vague, exploration request, and expects IDEAaS to suggest some promising

data to explore. The expert may also leave dr empty and IDEAaS will select only

relevant snapshots at time t.

Selected relevant snapshots are used to prune the hierarchy of monitored system

towards the upper levels: in Figure 3.5 relevant snapshots are associated to the spin-

dle sp2 and to the machine m1, that includes the spindle among its components.

Exploring relevant data. The expert starts the exploration from the hierarchy of the

monitored system, as shown in Figure 3.5(a) and Figure 3.5(b) for the motivating
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Micro-cluster Micro-clusterMicro-cluster Micro-cluster

Figure 3.6: Prototype data exploration GUI.

example. In the example, the machine m1 is explored and, among the components

of the machine, spindle sp2 is highlighted to suggest to the expert that such spindle

is associated with relevant snapshots, identified and selected in the previous steps.

Relevant snapshots associated with dimensions values shown in Figure 3.5(c) and

Figure 3.5(d) are proposed to the expert, properly ranked using relevance evaluation

techniques. In particular, distance computed in Equation (3.4) is exploited as ranking

criterion.

To let the expert explore selected relevant snapshots, a prototype exploratory

GUI has been implemented. Figure 3.6 shows the GUI, where relevant micro-clusters

have been plotted for the feature space composed of the percentage of absorbed

power and the spindle rpm on the multi-spindle machine 101170 after selecting the

part program 0171507160 in the anomaly detection case study. By clicking on the

“Change Selected Dimensions" button the expert can change the dimensions to ex-

plore, according to the data exploration approach implemented on top of the Multi-

Dimensional Model. On the GUI, physical limits of the two features in the consid-

ered feature space are plotted as well, to provide additional information to the expert
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Micro-cluster

Figure 3.7: Evolution history for the relevant snapshots over the time window h with

respect to the relevant micro-cluster with id = 2.

during data exploration. In the figure, empty micro-clusters are those that have not

been identified as relevant. The coloured ones are associated with different colours

and labels to distinguish among error micro-clusters (representing measures that ex-

ceeded feature allowed limits), warning micro-clusters (representing measures that

are close to feature limits) and OK micro-clusters (relevant micro-clusters that ag-

gregate measures that did not exceed any feature limit). Micro-clusters have been

represented on the GUI as (hyper)spheres, as this is the most natural representation

for objects endowed with a center and a radius.

3.3.3 Selection of relevant data

Once relevant snapshots have been selected through the exploration steps described

in the previous section, their evolution over time up to the current time instant can

be retrieved and visualised on the prototype GUI. Figure 3.7 presents the main idea

behind the micro-clusters selection step. Starting from the current relevant snapshot

(at time tend), the sequence of previous relevant snapshots that led to the current

one is retrieved. The temporal evolution of a relevant snapshot can be retrieved by

exploiting backwards the linkage relationships between (relevant) snapshots, up to

an initial time instant (at time tstart) when data relevance emerged. Links between
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Algorithm 2: Relevant snapshots evolution over time
Input: current time instant tend, a relevant snapshot SN(tend)
Output: the sequence of relevant snapshots S over the time window

(tstart, tend)
1 Function GetRelevantSnapshotsSequence(tend, SN(tend)):
2 tstart  tend
3 S SN(tend)
4 while tend 6= t0 do
5 SN(tprev) GETLINKEDSNAPSHOT(SN(tend))
6 if ISRELEVANT(SN(tprev)) then
7 S S [ SN(tprev)
8 tstart  tprev
9 else

10 exit
11 end if
12 end
13 return S
14 End Function

snapshots are depicted as dashed lines in Figure 3.7, and the linkage relationship is

formalised as follows.

Definition 10 (Linked snapshots) Given a feature space f sj and ji = {d1, . . . dp} val-

ues of analysis dimensions, snapshots SN(t1) = hµC(t1), rSN(t1), f sj, jii and SN(t2) =

hµC(t2), rSN(t2), f sj, jii, taken at time instants t1 and t2, respectively (with t2 = t1 + Dt),

are linked with respect to a micro-cluster µci2µC(t2) if rSN(t2)(µci)✓µC(t1), that is, µci 2

SN(t2) was already present in SN(t1), changed with respect to its counterpart in SN(t1) or

derives from merging of other micro-clusters in SN(t1). Two snapshots SN(t1) and SN(t2)

are denoted as linked if they are linked with respect to at least one micro-cluster.

Definition 10 supports the tracing of a relevant micro-cluster across relevant linked

snapshots. Algorithm (2) illustrates how to retrieve the set of such relevant snap-

shots, starting from the current time instant tend and the snapshot SN(tend); the out-

come of the algorithm is the sequence of relevant snapshots (denoted with S) over

the time interval h delimited by tstart and tend.

Starting from tend and the relevant snapshot SN(tend), the procedure retrieves the

previous snapshot SN(tprev) linked to SN(tend) by applying the GETLINKEDSNAP-

SHOT subroutine (line 5); if SN(tprev) is relevant (line 6), then it is added to S and

tstart is updated accordingly (lines 7-8). The loop may end due to the following con-

ditions: (i) the current value of tend reached t0 (i.e., the time instant of the reference

snapshot ˆSN(t0)) or (ii) the previous linked snapshot is not relevant.
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The rationale behind Algorithm (2) is that, once exploration at time t across the

nodes of the Multi-Dimensional Model enabled experts to identify snapshots of in-

terest for a given feature space f sj and given values d1, . . . dp of analysis dimensions,

the algorithm will also enable to retrieve the temporal evolution of micro-clusters

within relevant snapshots back to the first time instant in which relevance of the

snapshot emerged. This mechanism can be fruitfully applied in different exploration

scenarios, for example to identify the changes that gradually led the monitored sys-

tem in a specific working status, for diagnostic purposes, or as input for predictive

maintenance strategies, that will be further investigated in future work.

To let the expert visualise all the evolution of micro-clusters across relevant snap-

shots, the data exploration GUI shown in Figure 3.6 provides an animation slider be-

tween time instants tstart and tend. The expert can explore data over time by clicking

on the “Play” button, or stop the stream clicking on “Pause” button.
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Chapter 4

Implementation and experimental

evaluation

4.1 The IDEAaS Architecture

Considering the complexity of the Big Data context in which IDEAaS operates, the

architecture of the approach has been designed for being as modular as possible.

It has been inspired by the architecture proposed in [62], expressly conceived for

Big Data Analysis. To this purpose, the data acquisition, storage, processing and

visualisation phases are clearly distinguished and decoupled in order to sustain the

volume and acquisition rate of a Big Data ecosystem. Figure 4.1 shows the modular

architecture.

In figure, the IDEAaS modules are distinguished in: (i) Data Collection Modules,

that include Data Configuration and Data Acquisition, (ii) the Core Modules, that in-

clude the Data Summarisation, Data Relevance Evaluation and Data Exploration API

and (iii) IDEAaS GUI, which is feed by the Data Exploration API and is designed to

be used by experts who want to explore the collected data. All modules rely on and

independently interact with the IDEAaS Data Storage, that includes DBMS technolo-

gies to store Multi-Dimensional Model metadata (i.e., analysis dimensions and their

hierarchy), collected data and summarised data (i.e., micro-clusters and snapshots).

In order to face the data volume and velocity during acquisition, data processing is

strongly minimised to avoid bottlenecks and, in this respect, costly data elaboration

steps (i.e., incremental clustering and relevance evaluation) are delegated to the Core

Modules. This separation among modules allows an acquisition rate of ⇠ 8240 mea-

sures per second on a mid-range computer system (Intel Core i7-6700HQ processor,

CPU 2.60 GHz, 4 cores, 8 logical cores, RAM 16GB), as detailed in Section 4.2. In the



48 Chapter 4. Implementation and experimental evaluation

following, more details are provided on the implemented modules.
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Figure 4.1: The IDEAaS architecture.

Data Collection Modules. These modules include the Data Configuration and the

Data Acquisition modules. The Data Configuration module supports experts for the

Multi-Dimensional Model definition (see Section 3.1), to save analysis dimensions

and the composition of the feature spaces as sets of features. As shown through the

arrows depicted in Figure 4.1, measures collected from the physical system, using

sensors and IoT technologies, are pre-processed by Data Acquisition module. Tech-

nical details concerning this service are not given here, as they strictly depend on

the application domain and, therefore, their description is out of the scope of this

thesis. For example, this module may implement data cleansing and data quality

control capabilities. Some future work will be discussed in this field in the last chap-

ter. Collected measures are saved within a NoSQL database (Collected Data) as JSON

documents using MongoDB technology and are organised into temporal-referenced

collections (in particular, a new collection is created for each month). Each JSON

document (automatically assembled by the Data Acquisition module) represents a

record of collected measures within a feature space, and includes the timestamp and



4.1. The IDEAaS Architecture 49

{ Object }

[ Array ]
{ } Implicit Object

Property

Legend

timestamp_start

timestamp_end

[ micro_cluster ] { }

[ centroid ]

feature_id

feature_value{ }

SS
radius
number_of_records

[ dimension ] { } name
value

id

ls

feature_name

{ Snapshot Document }

[ previous_snapshot_id ]

 { feature_space }
{ }

name
measure_unit

id

[ feature ]

name
id

id
_id

micro_clusters_distance

{ Δt }

is_relevant
relevance_details

is_relevant

Figure 4.2: The structure of the JSON document to store relevance-enriched sum-

marised data.

a reference to the dimensions in which the measures have been collected (such as the

monitored machine, the tool used, the part program, saved in the Model-Metadata re-

lational database).

Core Modules. The Data Summarisation module is in charge of summarising col-

lected data, automatically updating the current set of micro-clusters and the corre-

sponding snapshots, through the incremental clustering algorithm described in Sec-

tion 3.2. It processes a batch of collected data every Dt seconds and at each iteration

it generates a JSON document, containing the micro-clusters and snapshots properly

organised with respect to the analysis dimensions of the Multi-Dimensional Model.

The MongoDB technology is used also to store the results of incremental clustering

algorithm computation (Summarised Data). The Data Relevance Evaluation module im-

plements the relevance evaluation techniques described in Section 3.3. The output of

this module is another JSON file, automatically generated every Dt seconds, where

micro-clusters and snapshots organised in the multi-dimensional model are labelled

with a relevance score. Figure 4.2 shows the structure of the JSON document defined

to represent relevance-enriched summarised data. In particular, a Snapshot Document

contains information about the set of micro-clusters in the snapshot, the time inter-

val Dt over which the snapshot has been generated, the list of analysis dimensions,
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information about the observed feature space and the relevance score computed for

relevance evaluation as described in Section 3.3.1.

IDEAaS GUI. The Data Exploration API manages experts’ interactions with the data

exploration GUI. Every interaction, that requires to load micro-clusters and snap-

shots from the Summarised Data database, activates the Data Exploration API, that

is in charge of communicating with the IDEAaS Data Storage. This module imple-

ments the last two tasks (relevance-based data exploration, selection of relevant

data) shown in Figure 1.1.

Implementation technologies and system requirements. The base version of the

IDEAaS system has been implemented in Java 8, on top of a Glassfish Server 4 Open

Source Edition (Glassfish version 4.2). Apache Maven1 has been integrated in the

system in order to manage its dependencies, ensuring the required level of flexibil-

ity. Considering that IDEAaS has been developed in Java, it has been conceived as

a multi-platform solution. Experimental evaluation (detailed in Section 4.2), has

demonstrated that this configuration actually meets the characteristics of a mid-

range computer system (Intel Core i7-6700HQ processor, CPU 2.60 GHz, 4 cores,

8 logical cores, RAM 16GB). For data visualisation, several graphical design libraries

have been considered (e.g., D3js2, Plotly3 library). Plotly library has been chosen as

a suitable candidate due to its versatility and ease of use. In the next chapter an evo-

lution of the approach, where the time-consuming incremental clustering algorithm

is further improved using a parallel architecture, will be described.

1https://maven.apache.org/
2https://d3js.org/
3https://plot.ly/

https://d3js.org/
https://plot.ly/
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4.2 Experimental evaluation

4.2.1 Experimental setup

This section describes the experimental evaluation performed on the base version of

IDEAaS. Experiments on the parallelised version of the incremental clustering algo-

rithm will be described in the next chapter. The main goal of the experimental evalu-

ation here is to demonstrate the effectiveness in promptly suggesting to experts’ sub-

stantial variations in the collected data according to the definition of data relevance

provided in this thesis and in presence of Big Data characteristics. The considered

real time data, incrementally collected from monitored systems through sensors and

IoT devices, is considered as an example of Big Data. Specifically, IDEAaS is able

to handle volume and velocity of real time data, in presence of endless and incre-

mental collection of data streams, and to cope with a high complexity of analysis

dimensions.

To this aim, three experiments have been performed to evaluate: (i) the qual-

ity of data relevance evaluation techniques; (ii) the processing time, in order to

verify if summarisation and relevance evaluation techniques, used to produce and

store snapshots for data exploration, can face high data acquisition rates;A synthetic

dataset has been built containing data inspired by the anomaly detection case study.

In the second part of the thesis, concrete applications of the IDEAaS approach will

be described. The dataset contains measures of 8 features for 2 feature spaces (corre-

sponding to overlapping feature sets), collected at an acquisition rate up to ⇠ 8000

measures per second. In total, the dataset contains ⇠ 630, 720, 000 measures col-

lected in 6 months for the experiments. All the features present a normal distribution

and have been generated considering three kinds of features in the motivating ex-

ample, namely the currents (range: �21÷ 22 Amp, µ: ⇠ 0 Amp, s: ⇠ 1.70 Amp), the

speeds (range: �23000 ÷ 24000 mm/min, µ: ⇠ �7 mm/min, s: ⇠ 4300 mm/min)

and the rpm of the spindle (range: 0 ÷ 6400 rpm, µ: ⇠ 1850 rpm, s: ⇠ 2400 rpm). To

simulate anomalous behaviours, in the dataset a percentage variation of values of

features has been artificially introduced with respect to their value in normal work-

ing conditions. Such percentage changes randomly every 30 minutes. Moreover,

two types of variations, namely gradual and sharp variations, have been introduced

in order to evaluate the strength of the approach in different anomalous behaviours.

Finally, measures in the collected dataset are associated with 4 analysis dimensions
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organised within hierarchies with a depth level ranging from 1 to 3. Analysis di-

mensions have a number of instances that varies from 3 to 200; the average number

of instances per dimension is equal to 58. Table 4.1 provides a summary of the char-

acteristics of the dataset.

In the following, the three performed experiments will be described. Experi-

ments have been performed on a MacBook Pro Retina with a screen resolution of

2880 x 1800 and a refresh rate of 60 Hz, having an Intel Core i7-6700HQ processor,

CPU 2.60 GHz, 4 cores, 8 logical cores, RAM 16GB. The experiment on the explo-

ration GUI, that has been implemented as a Web application, has been performed

on the following browsers, considering their latest versions: Google Chrome v67,

Firefox v59, Safari 11 and Microsoft Edge v42.

Table 4.1: Summary of the characteristics of the experimental dataset.

Highest data acquisition frequency 0.1 ÷ 0.5 sec
Number of features 8
Number of feature spaces 2
Max number of features per feature space 4
Average number of measures per month 105 x 106

Number of analysis dimensions 4
Hierarchy depth of analysis dimensions 1 ÷ 3
Average number of instances per dimensions 58

4.2.2 Experiment on relevance evaluation quality

The aim of this experiment has been to evaluate the impact of different micro-clusters

update mechanisms on the quality of data relevance evaluation techniques. Indeed,

the techniques presented in this thesis (that consider both the age and density of

micro-clusters) have been compared with the CluStream algorithm [6], that only uses

the age of the micro-clusters to update them. Relevance metrics have been evaluated

for different values of the threshold t, which is used to establish if a micro-cluster

has to be considered old or not (see Section 3.2.2), since it has a direct impact on the

capabilities of the approach to promptly detect variations. Moreover, the choice of

t is strongly related to the time interval Dt: choosing too large Dt values and too

small t (i.e. t = 10 and Dt = 30 min) values will induce the relevance evaluation

approach to consider only the latest data arrived during Dt interval. Variations of

incoming data, occurred before t, may be assumed as already old and, therefore,
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Figure 4.3: Correlation between the value of the percentage deviation from the val-

ues of dataset features in normal working conditions (gray line) and the value of

D(µ̂C(t0), µC(t)) computed according to the snapshot relevance evaluation detailed

in Section 3.3.1 for both IDEAaS (dotted red line) and CluStream (blue line) algo-

rithms. (a) Relevance evaluation on sharp variations fixing threshold t = 500 (b)

Relevance evaluation on sharp variations fixing threshold t = 10000.

not included among relevant data. On the other hand, choosing too large values of

t (i.e. t = 10000 and Dt = 10 min) does not eliminate old micro-clusters, causing

resistance in the detection of new variations.

In this experiment Dt value has been set to 10 min. Further considerations on
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Figure 4.4: PCC between injected variations and the value computed with relevance

evaluation techniques for Dt = 10 min when varying the ageing threshold t, using

micro-clusters update mechanisms of IDEAaS and CluStream [6].

the choice of Dt are reported in the next section. Several tests have been run with

different values of t threshold. Figure 4.3 reports the most interesting results. In

particular, in Figure 4.3(a) t = 500 and in Figure 4.3(b) t = 10000. Figure 4.3 shows

how the two compared solutions react to variations introduced in collected data. In

Figure 4.3 only sharp variations have been considered, since for gradual variations

both the algorithms produce effective results. Figure 4.3(b) shows how choosing

too large t values (t = 10000) inhibits algorithms from detecting introduced varia-

tions. In this case, both IDEAaS and CluStream can be considered as equivalent. The

highlighted points (A) and (C) in Figure 4.3(a) show how IDEAaS relevance evalua-

tion techniques are more effective in detecting the variations; the highlighted point

(B) shows a case in which there is not new incoming data and both the algorithms

remain stationary.

In order to quantify the correlation between the curves in Figure 4.3, the Pearson

Correlation Coefficient (PCC) 2 [�1,+1] has been used. Figure 4.4 shows the PCC

between injected variations and the values computed using relevance evaluation

techniques for Dt = 10 min when varying the ageing threshold t. As shown in

the figure, the IDEAaS approach is more likely to follow the introduced variations,

leading to a PCC = 0.86 in the best combination of t and Dt (t = 500 and Dt =

10 min). When t is too small (t = 10), the CluStream algorithm has the worst

result with a PCC = 0.5. On the other hand, IDEAaS maintains a higher correlation
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Figure 4.5: Average response time for writing and reading operations on the Mon-

goDB database by applying different combinations of indexes.

with a PCC = 0.78. Similar results have been obtained even in the case of gradual

variations.

Further experiments are in progress and aim to evaluate the impact of the cen-

troids distance and difference in micro-clusters radii in order to evaluate data rele-

vance (see Section 3.3.1). Negative or positive derivative of the micro-cluster radius,

as well as changes of micro-clusters centroids, may be useful to distinguish among

different kinds of variations (either sharp or more gradual), by properly varying

weights a and b used to compute the distance between a pair of micro-clusters. Cur-

rent experiments have been run with a = b = 1/2, obtaining a satisfying trade-off

between centroids distance and difference in micro-clusters radii.

4.2.3 Experiment on processing time

The experiment on processing time has been run in order to prove that IDEAaS can

efficiently compute data summarisation and relevance evaluation, thus facing high

acquisition rates.

Performances evaluation has been split in two parts: the evaluation of read-

ing/writing operations in the NoSQL database (MongoDB), by introducing proper

indexes, and the evaluation of the clustering algorithm.

Figure 4.5 shows how indexes impact on reading/writing response times for one

record. When no indexes are applied, reading operations are the most expensive

ones in terms of processing time, as expected. Indeed, a single read operation re-

quires ⇠ 1 ms, while a write operation requires ⇠ 0.1 ms on average. On the other
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Query Query Description 

Q1 Query specifying timestamp range 

Q2 Query specifying timestamp range  and machine 

Q3 Query specifying timestamp range, machine and spindle 

Q4 Query specifying timestamp range, machine, spindle and mode 

Q5 Query specifying timestamp range, machine, spindle, mode and part program 

Q6 Query specifying timestamp range, machine, spindle, mode, part program and tool 
 

Figure 4.6: Query types considered for performance evaluation.

hand, setting indexes on the analysis dimensions (including time and feature spaces)

negatively impacts both on the acquisition and reading rate, with respect to the case

where indexes are applied on all analysis dimensions, but not on the time and fea-

ture spaces. In the latter case, a single operation takes ⇠ 0.13 ms for reading and

⇠ 0.17 ms for writing.

The relevance-based data exploration strategy has been designed to isolate the

exploration within a feature space and to speed up the exploration over time intro-

ducing links between snapshots. This enabled to setup indexes on analysis dimen-

sions only, on which exploration steps are more frequent, avoiding to set indexes

over feature spaces and time.

Considering this case, the capability of IDEAaS to face different data acquisition

rates has been tested. The average time required to receive, process and save a new

record is ⇠ 0, 97 ms, leading to a maximum data processing rate equal to ⇠ 8240

measures per second.
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Figure 4.7: Impact of different types of queries on the IDEAaS approach performances

(data reading times in ms).

Further data reading performances have been investigated by considering dif-

ferent kinds of queries issued on the MongoDB database. For this purpose, different

types of queries have been considered, as reported in Figure 4.6. Figure 4.7 shows

how query complexity impacts on data reading performances with respect to differ-

ent indexes set on the MongoDB database. Indeed, when no indexes are set, reading

operation on a complex query (Q6) will take ⇠ 10677 ms (⇠ 10.7 s). On the other

hand, when indexes are set only on all analysis dimensions, but time and feature

spaces, that represents the best scenario, the reading time is reduced to ⇠ 1012 ms

(⇠ 1.0 s). As shown in the figure, results confirm the above considerations made

on different indexing strategies and the advantages brought by the proposed data

exploration approach.

Additional time evaluation experiments have been focused on how variations of

Dt values impact on the IDEAaS processing time. Processing time has been evalu-

ated for data organised in collections where indexes on analysis dimensions have

been set.
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Figure 4.8: Average time of each step of the approach when varying Dt.

Figure 4.8 shows the average time required by each step of the approach to pro-

cess records for different Dt values. The figure shows how lower Dt values require

more time to process data. In fact, every time clustering is applied, some initial-

isation operations have to be performed (e.g., opening/closing connection to the

database, access to the set of micro-clusters previously computed). Therefore, lower

Dt values lead to more frequent initialisation operations. On the other hand, higher

Dt values decrease the promptness in identifying variations on collected data.

Figure 4.9: Number of steps to process⇠ 3, 440, 000 measures and the average number

of data summarised per second at each step when varying Dt.

Finally, Figure 4.9 shows the number of steps required to incrementally sum-

marise ⇠3, 440, 000 measures and the average number of measures summarised per

second for each step when varying Dt. Even in the worst case (Dt = 1 min), ⇠ 2290

measures per second can be processed, thus demonstrating how IDEAaS is able to

face satisfying data acquisition rates for the application domains like ones in which

the IDEAaS approach has been applied.
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Chapter 5

Parallel clustering of Big Data

Streams

As underlined also in the previous chapters, the most time-consuming component

in the IDEAaS approach is the incremental clustering algorithm. Efficient and effec-

tive techniques are needed to cluster data points in a stream, due to the increasing

data volume and rate. For this reason, in this chapter a new version of the IDEAaS

approach is proposed, named P-IDEAaS, where incremental clustering is designed

as a multi-level parallel clustering approach, that starts from the Multi-Dimensional

Model to partition the incoming data points. Furthermore, the approach relies on

additional levels of parallelisation, that can be activated and tuned on demand to

fulfill the exploration requirements, taking into account the available resources of

the distributed processing architecture (e.g., by activating specific levels or by dif-

ferently combining them over distinct partitions of the data stream, filtered using

exploration facets and weighted according to the data relevance evaluation intro-

duced in the previous chapters). Parallel data stream clustering approaches in the

literature are either not conceived as a combination of multiple parallelisation lev-

els or do not assume the possibility of enabling/disabling levels depending on the

availability of computation resources (see Chapter 2 for an in-depth comparison). In

the following sections, an explanation about the parallelisation levels conceived will

be presented. Experiments to demonstrate the approach efficiency and effectiveness

will be illustrated in Section 5.5.



60 Chapter 5. Parallel clustering of Big Data Streams

Algorithm 3: Data stream parallel clustering procedure
Input: data stream DS, Multi-Dimensional Model MDM

1 Procedure clusterEvolvingDataStream(DS, MDM):
2 F GETFACETS(MDM) . set of possible facets
3 foreach facet ji 2 F do parallel . 1st parallel level
4 while OBSERVEFACET(ji) = true do
5 DSi  PARTITIONDATASTREAM(DS, ji)
6 Xi  GETNEWDATAPOINTS(DSi, ji.Dt) . set Xi of new data

points for facet ji collected in [t� ji.Dt, t]
7 µCji

curr  GETCURRENTMICROCLUSTERS(ji)
8 µCji

new  PARALLELUPDATEMICROCLUSTERS(µCji
curr, Xi)

. Algorithm (4) generates new set of micro-clusters

9 µ̂Cji  GETSTABLEMICROCLUSTERS(ji) . µ̂Cji set of
micro-clusters generated in normal working conditions

10 jirelevance  RELEVANCEEVALUATION(µCji
new, µ̂Cji) . relevance

evaluation for facet ji

11 if jirelevance > threshold then . threshold defined by domain expert
based on the criticality of the monitored system (see
Definition 9 in Chapter 3)

12 ji.Dt DECREASEDELTAT(ji)
13 else
14 ji.Dt INCREASEDELTAT(ji)
15 end if
16 ji.SETCURRENTMICROCLUSTERS(µCji

new)
17 WAIT(ji.Dt)
18 end
19 end foreach
20 End Procedure

5.1 Parallelisation based on exploration facets

The first level of parallelisation involves the exploration facets as shown in Algo-

rithm (3). The Multi-Dimensional Model has been specifically conceived to partition

data points in the stream according to the exploration facets. It is worth remark-

ing here that some analysis dimensions that compose exploration facets may dy-

namically change during the data stream collection: for example, the tool used by

the CNC machine in the anomaly detection case study, or the physical activity per-

formed by the monitored patient in eHealthcare case study.

The GETFACET function in Algorithm (3) on line 2 is invoked to return all the

facets defined in F (see Definition 5 in Chapter 3). The facets on which exploration

must be primarily focused are those identified as relevant according to the data rel-

evance evaluation within those facets (see Definition 9 in Chapter 3). Therefore, the

OBSERVEFACET function (line 4) is used to focus on relevant facets only. Relevant
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Figure 5.1: Multi-Dimensional Model for data stream exploration in the smart factory

domain.

facets are used to partition the incoming data stream (PARTITIONDATASTREAM func-

tion on line 5) and to run the clustering algorithm in parallel upon these partitions

(lines 3-19), according to the Multi-Dimensional Model (see the highlighted small

cube in the upper right corner of Figure 5.1). In parallel for each partitioned stream

DSi, incoming data points collected every ji.Dt seconds (GETNEWDATAPOINTS func-

tion on line 6) and the current set of clusters (GETCURRENTMICROCLUSTERS func-

tion on line 7) are processed to generate the new set of micro-clusters (PARALLEL-

UPDATEMICROCLUSTERS function on line 8). The latter function is and extension

of Algorithm (1) in Chapter 3 by introducing parallelisation, as reported in Algo-

rithm (4). Parallelisation will be detailed in the next subsections.

Once the new set of micro-clusters has been obtained, the relevance evaluation

detailed in Section 3.4 is performed in order to detect changes in the set of new

micro-clusters µCji
new with respect to the set of stable micro-clusters µ̂Cji , corre-

sponding to the normal working conditions for facet ji (lines 9-10). The ji.Dt value

represents the buffer over which micro-clusters generation and relevance evaluation

are performed, that may vary depending on the facet ji. Choosing a proper buffer

size influences the ability of the system to promptly detect micro-clusters changes
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Algorithm 4: Parallel micro-clusters update function

Input: set µCji of micro-clusters given an exploration facet ji, set X of
new data points

Output: updated set µCji
new of micro-clusters

1 Function parallelUpdateMicroClusters(µCji , X):
2 Xout  {} . Xout data points that could not be assigned to µCji

3 foreach data point xi 2 X do parallel . 2nd level (buffering)
4 µcnear  FINDCLOSESTMICROCLUSTER(µCji , xi)

. 3rd level parallel
5 if µcnear == null then
6 Xout  Xout [ {xi}
7 end if
8 end foreach

9 while SIZEOF(Xout) > 0 do
10 xout  PICKANDREMOVEFROM(Xout)
11 if |µCji | == MAX then
12 µcremove  GETMICROCLUSTERTOREMOVE(µCji)

. 3rd level parallel
13 if µcremove 6= null then
14 µCji

new  µCji \ {µcremove}
15 else
16 (µca, µcb) GETMICROCLUSTERSTOMERGE(µCji)

. µca 6= µcb; 3rd level parallel
17 µCji

new  MERGE(µca, µcb)
18 end if
19 end if
20 µcnew  CREATENEWMICROCLUSTER(xout)
21 Xout  ASSIGNDATAPOINTS(Xout, µcnew)
22 µCji

new  µCji [ {µcnew}
23 end
24 return µCji

new
25 End Function

corresponding to abnormal behaviours. The shorter ji.Dt value, the faster the reac-

tion of the system to an occurring warning or error, but at the same time the more

frequent the micro-clusters updating procedure, thus requiring more parallelisation

resources as explained in the next subsections and Algorithm (4). The relevance

evaluation value is used to set the buffer size (lines 11-15). Higher data relevance,

exceeding the threshold (see Definition 9 in Chapter 3), implies the need to reduce

ji.Dt (DECREASEDELTAT function on line 12). On the other hand, if no critical data is

detected, ji.Dt can be increased (INCREASEDELTAT function on line 14). The adap-

tive change of fi.Dt can be usefully exploited in anomaly detection applications, as

explained in Chapter 6. Additional levels of parallelisation can be applied during
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the generation and update of micro-clusters, as summarised in Algorithm (4) and

described in the following.

5.2 Parallelisation based on data buffering

Algorithm (4) is logically divided in two parts: (i) firstly, data points that can be

assigned to one of the existing micro-clusters are distinguished from those that re-

quire the generation of new micro-clusters (lines 2-8), denoting the latter data points

as Xout; (ii) therefore, further updating of the micro-clusters starting from Xout is

performed (lines 9-23).

Concerning the first part, instead of processing one data point at a time, data

points are collected in a buffer that spans a temporal lapse equal to ji.Dt. Specif-

ically, the parallelisation based on data buffering focuses on the FINDCLOSESTMI-

CROCLUSTER function (line 4). As a result, all the data points within the buffer will

be assigned to the micro-clusters in parallel and not in a serialised way, as illustrated

in Figure 5.2, except for data points that cannot be assigned to any existing micro-

cluster (Xout). Note that the data relevance evaluation, used to tune the value of

ji.Dt as previously explained, has an impact on this parallelisation level.

F1

F2

F3

time

Data Stream

Δt  

Find nearest 
micro-cluster and 

assign the data point

Parallelized{ 
Δt  { 

Δt  { 

Figure 5.2: Parallelisation based on data buffering.

Data points in Xout are interpreted as new emerging behaviours in the moni-

tored system. With respect to the other data points, they are not processed in par-

allel, since their introduction requires the removal (GETMICROCLUSTERTOREMOVE

function on line 12) or merging (GETMICROCLUSTERSTOMERGE function on line

16) of existing micro-clusters, if the maximum number of micro-clusters has been

already reached (line 11), and in any case the introduction of new micro-clusters

(CREATENEWMICROCLUSTER function on line 20), thus affecting the subsequent
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processing steps and the computation cost. Therefore, processing of data points in

Xout is postponed and data points that do not require to update the current set of

micro-clusters are processed first. Nevertheless, even if their processing is not exe-

cuted in parallel, a third level of parallelisation can be applied, as shown in the algo-

rithm and described in the next subsections for functions on line 12 (micro-clusters

removal) and on line 16 (micro-clusters merging).

Moreover, when a new micro-cluster has been created, the algorithm checks if

any other data point in Xout can be assigned to it (ASSIGNDATAPOINTS function on

line 21). This procedure will assign all the possible data points in Xout to the new

micro-cluster (without checking the whole set of existing micro-clusters, to which

data points in Xout can not be assigned by definition, see line 2) and returns only the

remaining ones. This may improve the efficiency of Xout processing, as explained

in Section 5.4. However, postponing the assignment of data points in Xout requires

that the quality of clustering does not depend on the order in which data points are

processed. To assess whether the processing order of data points has a tangible effect

on the quality of clustering, relevance evaluation techniques has been exploited, and

experiments reported in Section 5.5 has been performed.

5.3 Parallelisation based on the set of micro-clusters

The third level of parallelisation concerns the three operations of finding the closest

micro-cluster (see Algorithm (4) on line 4), finding the micro-cluster to remove (on

line 12), finding micro-clusters to merge (on line 16). In the following paragraphs,

the parallel execution of these operations is explained.

Finding closest micro-cluster

Δt1  

μc1
Map

x1  
x2  

xj  

xn  

μc2

μcq

…
…

…

minDistance()

Reduce

Euclidean Distance between micro-cluster (μcq) and data point (xj)

Figure 5.3: Parallel calculation of distance between data points and micro-clusters.
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Finding the closest micro-cluster Figure 5.3 reports the parallel implementation of

the FINDCLOSESTMICROCLUSTER function according to the Map-Reduce paradigm.

To find the closest micro-cluster for an incoming data point, the Euclidean distance

between the data point and the centroid of each micro-cluster is computed, and the

closest micro-cluster is selected. As can be seen in the figure, all the Euclidean dis-

tance calculations between an incoming data point xj and the centroids of existing

micro-clusters µc1 . . . µcq are performed in parallel, in the Map step. After all the

distance values have been calculated, the minimum one is identified in the Reduce

step.

Finding the micro-cluster to remove Parallel implementation of the GETMICRO-

CLUSTERTOREMOVE function is illustrated in Figure 5.4 according to the Map-Reduce

paradigm. It performs the parallel computation of the getRelevanceStamp function,

which checks if the micro-clusters are candidate to be removed according to the logic

explain in Section 3.2.2 in Chapter 3, for each of the existing micro-clusters µc1 . . . µcq

(Map step). Among the micro-clusters candidate to be removed, if any, the oldest

one is chosen (Reduce step).

This function does not require any calculation of Euclidean distance between

data points, but involves the linear and quadratic sum of timestamps CF1t
i , CF2t

i of

each micro-cluster µci.

Finding micro-clusters to remove 

Map

…
…

oldestMicroCluster()

Reduce

μc1

μc2

μcq

μcj getRelevanceStamp()

getRelevanceStamp()

…
…

getRelevanceStamp()

getRelevanceStamp()

Figure 5.4: Parallel calculation of relevance stamps of micro-clusters in order to iden-

tify micro-clusters to remove.

Finding micro-clusters to merge If no removable micro-clusters have been found,

then the two closest micro-clusters must be merged together. The mutual proximity

between two micro-clusters µca and µcb corresponds to the evaluation of the mu-

tual Euclidean distance of their centroids X0a = hx1µca , x2µca , . . . , xdµcai and X0b =

hx1µcb , x2µcb , . . . , xdµcbi, where d denotes the number of features. The computation
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of this distance can be executed in parallel for each pair µca and µcb according to

the Map-Reduce paradigm. The distance D(µca, µcb) between two micro-clusters is

calculated as:

D(µca, µcb) =

vuut
d

Â
i=1

(xiµca � xiµcb)
2 (5.1)

Parallel implementation of the GETMICROCLUSTERSTOMERGE function is illustrated

in Figure 5.5. The proximity calculation between clusters is executed in parallel in

the Map step, while the identification of the minimum distance for merging the pair

of closest micro-clusters µca and µcb is performed in the Reduce step (ensuring that

µca 6= µcb).

Finding two micro-clusters to merge 

μc1
Map

μc2

μcq

…
…

…

closestMicroClusters()

Reduce

Euclidean Distance between micro-cluster (μcq) and micro-cluster (μcj)

μc1

μc2

μcq

μcj

Figure 5.5: Pairwise Euclidean distance calculation between micro-clusters to identify

closest micro-clusters to merge.

5.4 Complexity analysis

Let’s denote with |X| the number of data points collected in ji.Dt, with |Xout| the

number of data points that cannot be assigned to any micro-cluster, with p the par-

allelisation degree (i.e., the number of computation nodes used to enable parallel

computation of the distance from micro-cluster centroids), with d the number of

dimensions, with q the number of micro-clusters, with Nq the average number of

points in micro-clusters (to be considered for the computation of CF1t
i and CF2t

i ).

The computation complexity of the operation to find the closest-micro-cluster is

O( |X|�|Xout|
p · d · q). The complexity of the operation to find the micro-cluster to re-

move in the worst case is O( q
p · Nq · |Xout|), since this operation must be performed

for each data point in Xout. Finally, the complexity of the third operation to find the

micro-clusters to merge in the worst case is O( q2

p · d · Nq · Xout), since every distance

must be computed for every possible pair of q micro-clusters and for each data point



5.5. Experimental Evaluation 67

in Xout. Computation complexity of the three operations shows as the less expen-

sive operation is the fist one, as expected. The choice of postponing the processing

of data points in Xout aims at increasing cases in which the only operation required

is the first one, thus reducing the overall complexity of the clustering.

The three levels of parallelisation that have been introduced in this chapter can

be combined together. Combining differently these levels, in order to adapt the par-

allel implementation of the clustering algorithm to the availability of parallelisation

resources, is one of the contributions of P-IDEAaS version of the approach com-

pared to the literature. Positive and weak points of combining these levels will be

discussed after presenting the experimental results.

5.5 Experimental Evaluation

The experiments described in this chapter have been performed using the dataset in-

troduced in the experimental setup in Section 4.2.1 in Chapter 3, in order to compare

performances of different configurations and combinations of the proposed paral-

lelisation levels. One of the most practical advantages brought by a multi-level par-

allelisation approach relies on the fact that levels can be differently enabled depend-

ing on the investigated scenario, evaluating the real necessities of applying all par-

allelisation levels or only a subset of them, with a trade-off between scalability and

parallelisation costs. The point here is to identify some general guidelines to select

and tune parallelisation levels, depending on the characteristics of the data stream

that is being processed in terms of complexity in the variety of exploration facets

and in terms of data relevance. To this aim, the MDM and the data relevance evalua-

tion techniques come to the rescue. In the following, experiments to figure out these

aspects will be described, namely the impact of parallelisation levels on the overall

performances of the parallel implementation of the algorithm and the feasibility of

parallelisation (due to the data points in Xout, see Algorithm (4) above).

Experiments have been performed on Apache Spark (version 2.3.1 for Hadoop

2.7+), running one Spark master and three Spark slaves, configured with Docker

(engine: 18.06.1-ce). Each node has been configured with Intel-i5 2.60 GHz dual-

core processor and a 4GB memory RAM.
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Figure 5.6: Processing time of parallel data stream clustering by varying the maximum

number of allowed micro-clusters and by setting the number of features to 2 (a), to

200 (b) and to 300 (c). Parallelisation levels based on exploration facets and on micro-

clusters are applied.

5.5.1 Scalability of parallelisation levels

To test the impact of combining different parallelisation levels on the scalability of

the approach, several experiments have been performed. Considering the undis-

puted advantages of the parallelisation based on the exploration facets, experiments

have been mainly focused on the combination of this level with the one based on

data buffering and with the third parallelisation level (based on micro-clusters).

Combinations of parallelisation levels have been tested by varying the maximum

number of allowed micro-clusters (q) and the number of data points in a buffer (n).

Figure 5.6 shows results of scalability experiments by combining the first paral-

lelisation level (based on facets) and the third one (based on micro-clusters), by vary-

ing the maximum number of allowed micro-clusters and the number of features. The

application of the third level of parallelisation is always convenient and reduces the

processing time with respect to the parallelisation based on facets only as expected.

These parallelisation levels have been therefore combined with the second paralleli-

sation level (based on buffering) and tested by varying the number of data points in

the buffer and different number of micro-clusters (Figure 5.7). Figure 5.7 shows how

the second parallelisation level decreases its scalability as the number of data points

in the buffer increases for the same number of micro-clusters. If the maximum num-

ber of allowed micro-clusters is not comparable with the cardinality (i.e., number

of data points) of the buffer, potentially a greater number of data points can be as-

signed to Xout. As explained in Section 5.4, assignment of data points in Xout moves

the main computation effort towards the GETMICROCLUSTERTOREMOVE and GET-

MICROCLUSTERSTOMERGE functions in Algorithm (3) and makes the performance
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Figure 5.7: Impact of the second level of parallelisation (based on data buffering) on

the processing time when varying the maximum number of allowed micro-clusters

and the number of data points in the buffer (number of features set to 2).

Figure 5.8: Impact of different combinations of parallelisation levels on processing

time when varying maximum number of micro-clusters and the number of data points

in the buffer (vertically), while the number of features is set to 2 (a), to 300 (b), to 1000

(c).

improvement due to the parallelisation based on data buffering less effective.

Finally, Figure 5.8 reports different combinations of all parallelisation levels for

different numbers of data points in the buffer and different numbers of features,
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when varying the maximum number of allowed micro-clusters. Figure 5.8 shows

how parallelisation levels can be differently combined depending on the character-

istics of the data stream that is being processed. When the size of the buffer ex-

ceeds the maximum number of allowed micro-clusters, scalability of the approach

decreases if the parallelisation level based on buffering is activated. Only in case of

low complexity (i.e., low number of features measured on the monitored system) the

application of all the three levels of parallelisation brings the maximum advantages.

5.5.2 Parallelisation feasibility

Data relevance evaluation is exploited to determine if the parallelisation based on

data buffering is worth being performed or not. In fact, the detection of anomalies

based on relevance evaluation is caused by changes in the set of generated micro-

clusters, that can be due to the variation of micro-clusters radius, to changes in

micro-clusters position and to the appearance of new micro-clusters. Specifically,

changes are detected if the value of D(µCj
curr, µ̂Cj

) for a given exploration facet j,

according to Equation (3.4), exceeds a given threshold. This is due to data points that

cannot be assigned to any existing micro-cluster, but require the generation of new

micro-clusters that substitute existing ones, that are removed or merged according

to Algorithm (4). In the algorithm the set of such data points is denoted as Xout. Data

points in Xout are processed after all the other data points in the buffer have been as-

signed to existing micro-clusters. As explained in Section 5.4 and in the experiments

on the scalability of the approach, this decreases the performance, depending on the

size of the buffer, the maximum number of allowed micro-clusters and the percent-

age of data points in Xout compared to the buffer size. When the cardinality of Xout

set increases, the parallelisation based on buffering is expected to have a lower effect

on the scalability of the approach and can be skipped, to avoid useless consumption

of computation resources. Therefore, an experiment has been performed to evaluate

the feasibility of parallelisation based on data buffering and what are the effects of

Xout on the data relevance evaluation results. In the experiment, both the cardinality

of Xout and the position of data points of Xout into the buffer have been considered.

In fact, since data relevance evaluation techniques are used to attract the attention

on the relevant portions of the data stream only, if the value of D(µCj
curr, µ̂Cj

) is in-

variant with respect to the characteristics of Xout, then parallelisation based on data

buffering can be considered as feasible and effective and is worth being applied. This
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Figure 5.9: Relevance evaluation D(µCj
curr, µ̂Cj

), with respect to µ̂Cj, in a given ex-

ploration facet j, when varying the number of data points in the buffer and setting

maximum number of micro-clusters equal to 1000.

check can be performed in the first portion of the data stream that is being analysed

and can be reinforced periodically.

Figure 5.9 reports the relevance evaluation D(µCj
curr, µ̂Cj

) for different permuta-

tions of Xout and for different sizes of the buffering. Specifically, three different cases

have been tested, considering 1000 micro-clusters (q=1000) and varying incoming

data points, with 20% of them belonging to the set Xout. Data points in Xout have

been positioned at the beginning, at the end and equally distributed into the anal-

ysed portion of the buffer. As shown in Figure 5.9, the position of data points of

Xout within the buffer has less effect in the relevance evaluation as the buffer size

decreases. In fact, reduced values of j.Dt means a reduced parallelisation based on

data buffering, that is, data points are processed sequentially, mitigating the problem

introduced by new behaviours in parallelisation as explained in Section 5.2. This is

also true when the maximum number of allowed micro-clusters is low. Intuitively,

this is caused by the fact that a limited number of micro-clusters entails a scarce pos-

sibility for a novel data point to be assigned to one of them and, therefore, that is

more likely to be labelled as a new behaviour and assigned to Xout. For this rea-

son, the parallelisation based on buffering with few micro-clusters and a lot of data
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points (i.e., high buffer size) is not appropriate as the number of data points assigned

to Xout increases. On the other hand, this parallelisation level is feasible and appro-

priate when the maximum number of micro-clusters is high enough to represent

well the number of data points in the buffer.

5.5.3 Final considerations

The experimental results on the scalability of parallelisation levels suggest the fol-

lowing considerations:

• as the maximum number of allowed micro-clusters decreases, when the num-

ber of data points in the buffer increases, parallelisation based on data buffer-

ing does not ensure a good scalability (see Figures 5.7 and 5.8);

• as the number of features increases (that is, the complexity of data stream in-

creases as well), more data points belonging to Xout can be potentially found

since a higher number of measures is considered; again, such data points have

a negative impact on scalability due to the parallelisation based on data buffer-

ing (Figure 5.8).

Therefore, the length j.Dt of the buffer for a given exploration facet j can be

varied until the data relevance evaluation D(µCj
curr, µ̂Cj

) is invariant with respect

to the characteristics of the Xout set. Following these considerations, that derive

from the experimental evaluation described in this chapter, the application of the

Multi-Dimensional Model is able to reduce the computational effort required for

data stream clustering by partitioning the stream and enabling a first level of par-

allelisation as expected. This level can be combined with the other two levels, but

this does not automatically ensure an improvement in terms of scalability, since it

depends on the buffer size, the dynamicity of data in the stream (i.e., the cardinality

of the Xout set) and the complexity of the stream (i.e., the number of features).

The application of the other two levels has to be properly set and this is per-

formed by relying on the data relevance evaluation techniques, that may prevent

from the application of costly and useless parallelisation levels. Therefore, these

techniques can be used to decide about the parallelisation feasibility. A performance

comparison with other horizontal scaling platforms will be performed in the future

using common datasets and the same experimental setup. The aim of this work has
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been mainly on demonstrating the effectiveness of an adaptive tuning of paralleli-

sation levels with respect to the characteristics of the stream, that revealed better

performance compared to the application of all possible parallelisation strategies.

Similar performance increments with respect to a full-fledged application of paral-

lelisation levels could be potentially observed also in other approaches.
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Part II

Applications
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Chapter 6

Big Data exploration for anomaly

detection

In this chapter the adoption of the Multi-Dimensional Model, data summarisation

and relevance evaluation techniques to implement anomaly detection based on data

streams will be discussed. This application scenario is based on the anomaly detec-

tion for smart factory case study introduced in 1.3.1 on the multi-spindle machine

reported here in Figure 6.1.

Tool

Spindle #1

Working stations 
(raw material is 
positioned here)

Spindle #2

Spindle #3

Engine that 
moves 

spindle on X, 
Y andZ axes

Figure 6.1: The multi-spindle machine from which real time data have been collected

for exploration purposes.

In this case study, a set of anomaly detection services in the smart factory sce-

nario have been designed and tested, by relying on the IDEAaS system. The work

described in this chapter has been performed in the Smart4CPPS project1 and has

been published in the following papers:

1This project has been funded by Lombardy Region (2018-2021): http://www.smart4cpps.it/
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[63] Ada Bagozi, Devis Bianchini, Valeria De Antonellis, and Alessandro Marini. A

relevance-based data exploration approach to assist operators in anomaly de-

tection. In Proc. of 26th Int. Conference on Cooperative Information Systems

(CoopIS2018), pages 354–371, Valletta, Malta, 2018;

[49] Ada Bagozi, Devis Bianchini, Valeria De Antonellis, Alessandro Marini, and

Davide Ragazzi. Big Data Summarisation and Relevance Evaluation for Anomaly

Detection in Cyber Physical Systems. In Proc. of 25th Int. Conference on Co-

operative Information Systems (CoopIS 2017), pages 429–447, 2017.

6.1 Anomaly detection services in a nutshell

Figure 6.2 presents the IDEAaS modular architecture extended through the introduc-

tion of Anomaly Detection Services. The main purpose is to implement data-intensive

functionalities in order to enable the anomaly detection in a smart factory scenario.

IDEAaS Core Modules

Anomaly Detection Services

IDEAaS Data Storage

IDEAaS Data Collection Modules

IDEAaS GUI

Collected 
Data

Data 
Acquisition

Monitored system 
(e.g., CPS) Collected 

Measures

Data Relevance 
Evaluation

Data 
Exploration API

Model-
Metadata

Data 
Configuration Data 

Summarisation

Expert

Expert
Maintenance Operators GUI

Cockpits/Dashboards

State 
Detection

Data 
Sampling

Summarised 
Data

SendAlert

GetData, 
GetRelevantData, 

GetAlertStatus

Figure 6.2: Anomaly detection services built on top of the IDEAaS modular architec-

ture.

Among Anomaly Detection Services, Data Sampling based on data summarisation

and relevance evaluation techniques has been introduced in order to reduce the total

amount of data to be visualised on the operator’s cockpit. The way data summari-

sation, relevance evaluation and sampling techniques are used to assist operators in

anomaly detection is enabled by the State Detection service, which is detailed in the

next sections. Finally, a remote visualisation cockpit, called Maintenance Operators
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GUI, has been designed on top of the Data Sampling and State Detection services, to

guide the operators during anomaly detection and relevant data discovery.

State Detection Service. The State Detection Service is in charge of detecting possi-

ble anomalies through the observation of data collected from the monitored system

and managing the interaction with visualisation tools, such as cockpits and dash-

boards, on which (maintenance) operators can explore data.

In order to detect anomalies, four different values for the status of the moni-

tored system have been considered, (a) ok, when the system works normally; (b)

changed, when the system behaviour changed with respect to the normal one, but

no anomalies have been detected yet; (c) warning, when the system works in anoma-

lous conditions that may lead to breakdown or damage; (d) error, when the system

works in unacceptable conditions or does not operate. The changed and warning

status are used to perform an early detection of a potential deviation towards an er-

ror status. The warning or error status occurs when one or more features exceed a

given bound. Besides defining features bounds, the notion of contextual bounds have

been introduced. A contextual bound represents the limit of a feature within specific

conditions (e.g., determined by the tool used and/or the part program that is being

executed) in which the feature is measured. The rationale is that, in specific condi-

tions, a feature should assume values within a specific range, that might be different

from the overall physical limits for the same feature disregarding the working con-

ditions. In this context, conditions can be identified through analysis dimensions

of the Multi-Dimensional Model. If the measure overtakes warning bounds, but not

the error ones, then the feature status is set as warning, otherwise the feature is in the

error status. Features (contextual) bounds are fixed by domain experts, for instance

through to the FMEA/FMECA analysis. The operators can monitor state changes in

order to revise features and contextual bounds for specific working conditions.

The State Detection Service includes data relevance evaluation techniques to at-

tract the operator’s attention on state changes. In fact, the State Detection Service

provides the following methods, as remarked in Figure 6.2:

• SendAlert sends asynchronous notifications about detected changes of the

working status in the monitored system, based on Summarised Data; to this

aim, this method relies on the Data Relevance Evaluation module of the IDEAaS
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architecture and adapts the anomaly detection frequency according to the data

relevance, as explained in the next sections;

• GetAlertStatus sends a summary report on the current status of the moni-

tored system; this service is required to synchronise visualisation tools to the

current status of the physical system, when external cockpits and dashboards

get connected with the State Detection Service.

Data visualisation must take into account the high volume of information to be vi-

sualised and facilitate the interaction of operators with the Graphical User Interface

(GUI) of the visualisation tool. To this purpose, the following additional methods

are exposed by the State Detection Service:

• ExploreRelevantData sends relevant data, by relying on the Data Relevance

Evaluation module; data is transferred as micro-clusters about measures (ob-

tained through the application of IDEAaS incremental clustering algorithm)

and visualised according to the Multi-Dimensional Model; this method has

been designed to support (maintenance) operators to focus on relevant data

only, without specifying any data search and filtering criteria, since operators

might not have any a-priori knowledge about which data can be considered as

relevant;

• GetData sends data within a given time interval and/or for specific search and

filtering criteria expressed on dimensions of the Multi-Dimensional Model;

this functionality can be used, for example, once relevant summarised data

has been identified; since sent data may reach a massive size, sampling tech-

niques are applied; hence, sampling takes into account the relevance of data

that is being transmitted, by adapting the sampling ratio to the data relevance.

6.2 Relevance-based data exploration for anomaly detection

For anomaly detection purposes, for each micro-cluster µcc 2 µC(t), where µC(t) is

the set of micro-cluster identified as relevant (see Section 3.3.1 in Chapter 3), the dis-

tance of micro-cluster centroid from the warning and error bounds is computed. In

the following, absolute features bounds will be considered, but the same considera-

tions hold for the contextual ones. The record vector of distances (one value for each

feature in the feature space) between the centroid of the micro-cluster µcc and the
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Figure 6.3: Anomaly detection through data exploration based on relevance evalu-

ation in the multi-spindle case study: data relevance techniques detect changes in

micro-clusters set due to spindle rolling friction torque increase, that may be iden-

tified when the rpm value decreases and, at the same time, the power absorption

increases.

warning bounds is denoted with dw
c and the record vector of distances between the

centroid of µcc and the error bounds is denoted with de
c. The State Detection Service

uses dw
c and de

c to perform anomaly detection, by distinguishing among ok, warning

and error status. Figure 6.3 reports an example of anomaly detection performed on

micro-clusters computed on the mukti-spindle machine considered in the first case

study. As mentioned in the case study, spindle rolling friction torque increase and

the tool wear are two possible problems that are frequently monitored on this kind

of machines. Monitoring in these cases is performed through the collection of power

absorption (% absorbed power) and kinematic features such as accelerations (rpm).

If an increased power absorption is detected disregarding the tool that is used, it is

possible to identify a problem in the spindle rolling friction torque increase. On the

other hand, if the increase in absorbed power is related only to the usage of a partic-

ular tool, this can be recognised as a symptom of a possible tool wear. In the spindle

rolling friction torque increase example, de%
7 represents the distance of the centroid of

the micro-cluster µcc7 from the error bound of the percentage of absorbed power (see

Figure 6.3). Each relevant micro-cluster in µcc is therefore enriched with distances

from warning and error bounds in order to enable anomaly detection as:

µcc = hCF1x
c , CF2x

c , CF1t
c, CF2t

c, nc, dw
c , de

ci (6.1)
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Every Dt seconds, when the set of all micro-clusters µC(t) is updated, data is anal-

ysed to check for anomalies, updating the set of critical micro-clusters µC(t).

For example, in Figure 6.3 micro-cluster µcc7 moved over time getting closer to

the boundaries. Note that distance also helps to detect potential state changes. In

fact, at time t + Dt micro-cluster µcc7 still remains inside the wealth zone (ok sta-

tus), but its movement is detected through relevance-based techniques. Therefore,

micro-cluster µcc7 is recognised as relevant and monitored to promptly detect po-

tential warning or error status occurrences. After Dt seconds, micro-cluster µcc7

moved again and crosses the warning bound of the percentage of absorbed power

feature, raising a warning alert. The warning status is assigned to the feature and

is propagated to the feature space and over the hierarchy of monitored system ac-

cording to the following rules: (i) the status of a feature space corresponds to the

worst one among its features; (ii) similarly, the status of a physical component (e.g.,

the spindle) corresponds to the worst one among monitored feature spaces on that

component and the status of composite systems (e.g., the multi-spindle machine)

corresponds to the worst one among its components. Figure 6.3 also shows that it is

possible to identify the feature with respect to the warning or error bound that has

been exceeded (e.g., among rpm and percentage of absorbed power). If a warning or

error status is detected, the State Detection Service notifies an alert message to the

cockpit with the new status, using the SendAlert method. This check is performed

every Dt seconds. When a micro-cluster moved closer to bounds, the IDEAaS sys-

tem reacts by reducing the interval time Dt to check data for anomalies as described

in the following.

6.3 Adaptive relevance evaluation

Setup of Dt parameter influences the performances of the anomaly detection ap-

proach. Small Dt values increase the promptness in identifying relevant micro-

clusters, in order to attract the attention of the operators on them. On the other

hand, response times of data acquisition and clustering may not be able to face

small Dt values (see experimental evaluation in Section 4.2). The rationale behind the

anomaly detection approach is to change Dt as micro-clusters get closer to warning

and error bounds, since they correspond to potentially critical situations that must

be monitored at finer granularity.
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To this aim, Dt value is changed according to the distance of relevant micro-

cluster µcc 2 µC(t) that is closer to warning and error bounds. We denote with

dw_min
c (resp., de_min

c ) the component of dw
c (resp., de

c) that presents the minimum dis-

tance from the warning bounds (resp., the error bounds). The interval time Dt is

updated as follows:

• if dw_min
c

R > 1, the feature status is set to ok (see for example micro-cluster µcc7

in Figure 6.3 at time t + Dt), Dt is set to a default value defined by the domain

expert according to his/her knowledge about the monitored system;

• if dw_min
c

R <= 1 and de_min
c
R > 1 the micro-cluster centroid is between warning

bounds and error bounds (see for example micro-cluster µcc7 in Figure 6.3

at time t + 2Dt), the feature status is set to warning, Dt is reduced as Dt =

Dt( de_min
c
R � 1) until Dt = minimum value supported by the approach (see ex-

perimental evaluation in Section 4.2);

• if de_min
c
R <= 1 the micro-cluster centroid is beyond error bounds, the feature

status is set to error, Dt is set to the minimum supported value (that is, checks

are made as more frequently as possible).

Adaptive sampling for data visualisation. An effective visualisation of an unex-

pected working status and related data on operator’s cockpit must consider the im-

pact of data volume and velocity, to avoid operators be overwhelmed by the huge

amount of data. To this purpose, data sampling techniques are usually applied,

where sampling is performed taking into account the size and capacity of the cockpit

interface, independently of the specific conditions which visualised data refers to. In

the anomaly detection approach described in this chapter, that relies on the IDEAaS

system, clustering and relevance evaluation techniques are used to implement adap-

tive sampling for data visualisation. To this purpose, ExploreRelevantData and

GetData methods of the State Detection Service have been implemented.

Request for relevant data. When the operator at time t requests for relevant data,

the method ExploreRelevantData is invoked. This method relies on relevance eval-

uation techniques to recognise the most recent relevant micro-clusters set µC(ti),

processed at time ti (ti <= t). Each micro-cluster µcc 2 µC(ti) is marked with
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the corresponding status and with additional information about whether the micro-

cluster moved, changed (expansion or contraction) or has been removed. All micro-

clusters in µC(ti) recognised as anomalous are properly highlighted with different

colours as shown in Figure 6.3.

Exploration of relevant micro-clusters. Once relevant micro-clusters have been

identified, the operator may request to explore in detail records that have been clus-

tered within relevant micro-clusters. These records are returned by invoking the

GetData method. Records may correspond to a time-window h, and for specific

values of analysis dimensions, the amount of extracted data may be really large

and difficult to visualise. In order to enable data visualisation, a classical adaptive

sampling technique has been designed. Nevertheless, in this approach sampling

frequency varies according to data relevance evaluation. Considering maxn as the

maximum number of data supported by the visualisation tool and n as the number

of data points extracted from the database, when n >> maxn a sampling technique

is applied selecting only maxn data points among the n data points that are ready

for visualisation. Sampling rate is adaptively modified by a factor that depends on

the detected status (warning or error) within the time-window. When data is not

recognised as critical, the sampling rate is set to the minimum value. In the case all

data in the interval is not relevant, or is equally relevant, the sampling frequency

is set to maxn
t�h . This strategy facilitates the cooperation between operators who act

remotely on powerful visualisation interfaces and on-site operators, who may need

data visualisation on less powerful HMI embedded in or close to the monitored ma-

chine, by setting different values of maxn.

Figure 6.4 shows the design of remote visualisation cockpit. The cockpit guides data

exploration through analysis dimensions in the considered domain, therefore it first

considers the monitored system, along with the relevant feature spaces. Figure 6.4

shows an overview of the data of the multi-spindle machine with ID 101143 and its

status. In the overview, the operator can visualise the status of the three spindles of

multi-spindle machine, denoted with "Unit 1.0", "Unit 2.0" and "Unit 3.0". In-

deed spindle "Unit 1.0" is working correctly with respect to all the observed feature

spaces, while spindle "Unit 2.0" is in warning status. In particular, micro-clusters

calculated for features "f4" and "f5" are detected as relevant and associated to the
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Figure 6.4: Visualisation of relevant data on operator’s cockpit in the anomaly detec-

tion application scenario (GetData method).

warning status. Therefore, the warning status is propagated to the "tool wear" fea-

ture space as well. Finally, spindle "Unit 3.0" is in error status. In fact, even if the

"tool wear" warning status has been detected, a more critical status is identified for

feature space "spindle rolling friction torque increase". Starting from rele-

vant data, the operator may request to visualise data in details through the GetData

method, as shown in Figure 6.4. Moreover, the operator may further explore data

by setting the time interval of data to be plotted and the other dimensions of the

Multi-Dimensional Model (such as the tool or the part program) to filter data in the

exploration process. In this example maxn is fixed to 3600 records. The value of maxn

can be chosen considering the device on which the operator is navigating. On the left

part of Figure 6.4, the operator requests to visualise data corresponding to the spin-

dle rolling friction torque increase of "Unit 3.0" spindle. In this case the amount
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Figure 6.5: Response times of the State Detection Service with respect to the number

of processed measures.

of data to be visualised is under the maxn value, therefore the sampling techniques

are not applied. In the right part of Figure 6.4 the operator selected a wider time in-

terval for the same feature space and dimensions, that, in this scenario, corresponds

to 7200 records, exceeding the maxn value. In the figure is shown how all the data,

without sampling, is plotted on the cockpit: due to the high number of measures, it

is evident that this visualisation would be not valuable for the operator.

6.4 Experimental evaluation

Experiments on the State Detection Service have been performed in order to test its

performance in terms of processing time and its effectiveness in promptly detecting

anomalies. In this case study, a real dataset has been considered, based on measures

collected from three multi-spindle machines, each of them mounting three spindles.

For each spindle the values of 8 features have been collected every 500ms. Globally

an acquisition rate of 144 measures per second has been addressed. After six months

of monitoring on the three machines 630,720,000 measures have been collected. Ex-

periments have been run on a MacBook Pro mounting MacOS High Sierra, 2,8 GHz

Intel Core i7, RAM 16GB.

Figure 6.5 plots response times of the State Detection Service with respect to the

number of analysed measures. As evident in the figure, response times proportion-

ally (but not exponentially) increase with the number of processed measures. As

shown in Figure 6.5 the designed State Detection Service can process 35000 measures
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in 60 seconds on average, corresponding to ⇠ 583 measures per second. Therefore,

it can successfully cope with the acquisition rate.

Figure 6.6: Relevance evaluation for anomaly detection applied every 5 minutes (Dt

= 5 min) on feature space composed by the electrical current absorbed (a) and the

velocity (b) of X axes.

The effectiveness of the service to detect anomalies has been tested using the

measures collected on the movements of each spindle over X, Y and Z axes. Specifi-

cally, the velocity of the spindle movement over each axis (e.g., Xvel) has been mea-

sures, together with the electrical current (e.g., Xamp) absorbed by the engines that

are responsible of moving the spindle over the axes (one engine for each axis).

In Figure 6.6 anomaly detection service has been applied every 5 minutes (Dt =

5 min) considering the X axis. In the figure, blu points represent single data points

in the stream, corresponding to measured values for the Xvel and Xamp features.

Detecting anomalies by directly observing these data points appear as really difficult

for an operator who is exploring the collected data. Red points represent the value

of the cluster distance between the current set of micro-clusters and the set of micro-

clusters computed when the monitored system was working in normal conditions,
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according to the relevance evaluation techniques described in Section 3.3. Figure

shows how the relevance evaluation techniques are able of detecting anomalies on

the real data stream. Indeed, operators who performed a maintenance intervention

on the machine that has been monitored in this case confirmed that on April 29 there

have been anomalies on the monitored machine.

Figure 6.7: Relevance evaluation for anomaly detection applied every 30 minutes (Dt

= 30 min) on feature space composed by the electrical current absorbed (a) and the

velocity (b) of X axes.

In Figure 6.7 anomaly detection service has been applied every 30 minutes (Dt =

30 min). Figure shows how by enlarging the Dt value, as expected, the promptness

in identifying anomalous conditions decreases and the visualisation of the cluster

distance from stable working conditions is less evident with respect to Figure 6.7.
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Figure 6.8: Response time for IDEAaS processing time, given by data summarisation

and relevance evaluation, with respect to Dt value.

Figure 6.8 shows the average time required by the IDEAaS data summarisation

and relevance evaluation to process a single record for different Dt values. In figure

it is shown how lower Dt values require more time to process data. In fact, every

time clustering is applied, some initialisation steps have to be performed (e.g., open-

ing/closing connection to database, access to the set of micro-clusters previously

computed).

Therefore, lower Dt values lead to more frequent execution of initialisation steps.

On the other hand, higher Dt values decrease the promptness in identifying anoma-

lous situations, as shown in Figure 6.7 (Dt = 30 min) with respect to Figure 6.6 (Dt =

5 min). Indeed, when deal with anomaly detection applications where timing is cru-

cial to avoid losses, Dt should be set as lower as possible, based on the computational

resources, in order to have a near real-time detection of anomalous events.

As a final remark, for what concerns the efficacy of the cockpit to support (main-

tenance) operators during data exploration, sampling techniques offer doubtless ad-

vantages to ease exploration of data through the proposed implementation of the

visualisation cockpit. It is worth remarking here that visualising all the data, with-

out adaptive sampling techniques, is not valuable for the operators and will prevent

them from easy inspecting and identifying incoming anomalies.
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Chapter 7

Remote monitoring services in the

healthcare domain

In this chapter the adoption of the Multi-Dimensional Model, data summarisation

and relevance evaluation techniques to implement remote monitoring services in

the healthcare domain will be discussed. This application scenario is based on the

healthcare case study introduced in 1.3.2. The scenario of the patients monitoring is

reported in Figure 7.1.

Physical Connotations Data

Personal Information Data

Diseases Data

Drugs Data

Health Parameters

(Temperature, bpm, …)

Profiling data

Monitoring data

Figure 7.1: Remote monitoring of patients health parameters, with the support of

smartphone applications.

In this case study, the IDEAaS system has been used within a project, where

some body parameters (in particular, concerning respiratory acts) have been col-

lected from discharged SARS-CoV-2 patients in order to remotely monitor their con-

ditions. Traces of respiratory acts have been recorded by the three axial accelerome-

ters, embedded by a smartphone (positioned over the abdomen of the patient). The

work described in this chapter has been published in the following paper:

[64] Ada Bagozi, Devis Bianchini, Valeria De Antonellis, and Massimiliano Garda.
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Figure 7.2: Risk Monitoring Services built on top of the IDEAaS modular architecture.

Risk Monitoring Services of Discharged SARS-COV-2 Patients. In Web Infor-

mation Systems Engineering – WISE 2020, pages 578–590, 2020.

7.1 Risk monitoring services in the healthcare domain

Figure 7.2 presents the IDEAaS modular architecture extended with the introduc-

tion of Risk Monitoring Services in the healthcare domain. Data is collected within an

InfluxDB time series database, where measures are organised according to measure-

ment sessions and labelled with the dimensions of the Multi-Dimensional Model.

With respect to the IDEAaS modular architecture explosed in Chapter 3, the storage

system of single data points in this case study (i.e., InfluxDB) substituted the original

technology chosen for IDEAaS (i.e., MongoDB). This further demonstrate the feasi-

bility of modular architecture adopted for the approach. Summarised Data, obtained

through incremental clustering algorithm, is stored within MongoDB database of

the IDEAaS system. Measures of interest and considered analysis dimensions will

be detailed in the next section. Among Risk Monitoring Services, Patient Groups Man-

agement Service based on data summarisation and relevance evaluation techniques

has been introduced in order to help the doctor in identifying only relevant groups

of patients, that may be more vulnerable to COVID-19. On the other hand, Patients

Monitoring Services has been designed to monitor each patient and identify when

critical health state emerges. Finally, a remote visualisation dashboard, called Doc-

tors GUI, has been designed on top of the Patient Groups Management and Patients
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Figure 7.3: ER conceptual data model for patients’ profiling and monitoring.

Monitoring services, to guide the medical doctor during critical health state discov-

ery.

7.2 Patients’ profiles and monitoring data

In the following, the measures collected by the app are detailed, modelled through

the Entity-Relationship (ER) diagram (Figure 7.3). The app collects data of both

patients’ profiles and monitoring data (collected during measurement sessions).

Profiling data. When a patient registers to the app, the following information is col-

lected: (i) Physical Connotations, concerning sex, age, weight and height; (ii) Personal

Information, regarding habits of the patient (e.g., whether she is a smoker), possible

ongoing pregnancy and cholesterol levels; (iii) Diseases, which are classified by their

virtue (inherited, chronic, congenital) and by the part of the human body they af-

fect; (iv) Drugs, assumed by patients and belonging to diverse classes, depending

on their specific purpose (e.g., anti-hypertensive, immunosuppressant). Profile data

enables the creation of Patients Groups, uniquely identified by a combination of the

aforementioned data (male patients, male patients over 65 years, etc.); amongst the

(potentially vast) set of possible groups, Relevant Patients Groups (in brief, RPG) may

be recognised, that is, groups which are under the lens of medical doctors’ consid-

eration, as they are more exposed to (a relapse of) the infection risk. RPG may be
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identified from well known clinical studies (e.g., male subjects are more likely of

being infected by SARS-CoV-2 with respect to female ones), but also in a dynamic

way, due to the emerging critical health status in several patients within the group

through the application of IDEAaS relevance evaluation techniques.

Monitoring data. Through the app, the patient can perform a Measurement Session,

which consists in a two-phase exercise aimed at assessing the quality of her breath.

After the registration, the user logs in to the app to start the measurement session, ar-

ticulated over two different phases: (a) an initial series of ten regulated respiratory

acts (controlled breath phase); (b) free breathing followed by deep inspiration and

forced expiration (deep and short breath phase). Two types of features are measured:

(a) Range Features such as the temperature and the bpm, sampled only once before

the measurement session begins, and for which the patient has to select amongst

predefined ranges (defined by clinicians and domain experts) the value falls in (e.g.,

if the bpm value is 77, it is included in the range [75, 80]); (b) Single-valued Features,

regularly sampled multiple times within a measurement session (e.g., the gravity

acceleration measured along the X axis within a session consists of ⇡ 43k samples).

Patients groups management services. Data collected from the app is explored ac-

cording to different perspectives, to identify subsets of data upon which medical

doctors’ analysis must be focused, thus coping with the complexity and the variety

of the domain (patients with different physical connotations, habits, diseases, etc.).

Relevant patients groups might not be a-priori known, but they could be progres-

sively detected through the ongoing risk monitoring procedure (performed by the

Risk Monitoring Services described in the next section). Starting from these premises,

Risk Monitoring Service are based on a Multi-Dimensional Model grounded on four

pivotal elements (dimensions, facets, features and measurements), descending from

the conceptualisation provided in Section 3.1 and exploited by the Patients Groups

Management Service to organise patients data, enabling an intuitive, structured and

effective exploration of available information. Patients groups can be conceived, in

this case study, as exploration facets introduced in Chapter 3.

Given the set D of available dimensions, the extent of the space of patients groups

(i.e., the cardinality of the set F, denoted as |F|) can be very large, as it spans all

the possible combinations of dimension instances (by definition, |F|2N � 1, where
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N = Âi=1...p |Dom(di)|, excluding the empty set combination and, generally, non

combinable dimension instances). For this reason, doctors’ focus should be on the

relevant patients groups, meant to emphasise only specific groups of patients, whose

composing dimension instances configure the clinical picture of a patient as harmful.

In this context data summarisation have been applied in order to represent col-

lected data characterising the health status of patients belonging to the same group,

using a reduced amount of information. Additionally, relevance evaluation tech-

niques are applied on the summarised data instead of considering single measures,

that can be affected by errors and false outliers due to measurement execution per-

formed by non-expert patients. As mentioned in Chapter 3 the clustering algorithm

at a given time t produces a set of micro-clusters µC(t), starting from measures col-

lected from timestamp t � Dt to timestamp t and built on top of the previous set

of micro-clusters µC(t� Dt), for a given patients group. Roughly speaking, micro-

clusters conceptually represent a specific state in a patient’s health status. A set of

micro-clusters is contained within a snapshot. For this case scenario, snapshots have

been further evolved by introducing the breath phase of the patient during data col-

lection, and are defined as follows.

Definition 11 (Enriched Snapshot) An enriched snapshot SNe
i (t), stored at time t, is

defined as the following tuple:

SNe
i (t) = hµC(t), r, f si, ji, pii (7.1)

where: (i) µCi(t) is a set of micro-clusters generated at time t, (ii)r : µC(t) ! 2µC(t�Dt) is

a mapping function that relates a micro-cluster in µC(t) to zero, one or more micro-clusters

in the set µC(t�Dt) stored in the previous snapshot SNe(t� Dt), (iii) f si is the monitored

feature space and (iv) ji is the exploration facet; (v) pi is the breath phase (i.e., controlled

breath, deep and short breath).
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Figure 7.4: Results of incremental clustering of a stream of records reporting X and Y

axes acceleration values over time for a patient in the group “Males with age between

60 and 75 years” during controlled breath phase. Micro-clusters set changes from (a)

to (b) denote weariness of the patient during expiration and inspiration activities.

Figure 7.4 shows two snapshots taken at time tk + Dt and tk + 2Dt, where measured

features are accelerations over X and Y axes during controlled breath phase. Specif-

ically, they are referred to a patient, belonging to a patients group gathering males,

with age in the [60, 75] range. Red circles represent identified micro-clusters within

snapshots. A sequence of snapshots identifies a pattern, that is a behaviour related

to the evolution of patient’s health status. For example, in Figure 7.4(b) a change

in the micro-clusters set with respect to Figure 7.4(a) is evident. Health anomaly

detection techniques described in the following are used to identify such changes.

7.3 Relevance-based healthcare data exploration

Patients whose current health status is approaching an anomalous status have been

considered as relevant. The anomalous status is expressed through a set of thresh-

olds for each observed feature within a specific patients group and a breath phase

(certified by relying on doctors’ long-term expertise). Indeed, due to the fact that

each measured feature is a physical quantity, it may present limits (bounds) that

should not be violated. In particular, warning and error bounds have been distin-

guished: (i) a warning signals that values of a feature are getting closer to irreversible

changes; (ii) an error identifies unacceptable values for a feature, determining health

conditions in which a patient cannot withstand. Warning and error bounds in this
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case are very similar to the bounds defined for anomaly detection in the smart fac-

tory (see Chapter 6).

However, also the transition towards a warning or error condition is worth be-

ing detected. To this aim, the anomaly detection mechanism described in Chapter 6

has been adopted. Let’s denote with reference snapshot SNe
i (t0) the enriched snap-

shot of a patient in healthy conditions after being discharged. The reference snap-

shot represents a baseline for all patients in normal health conditions given f si, ji

and pi. Data relevance at time t is based on the computation of distance between

the set of micro-clusters µCi(t), contained in the snapshot SNe
i (t) and µCi(t0), in

the reference snapshot SNe
i (t0). As mentioned before, relevance techniques allow

to identify what are the micro-clusters that changed over time (namely, appeared,

merged or removed) for a specific combination of f si, ji and pi. By detecting these

changes, it is possible to focus in advance the attention of medical doctors on rel-

evant micro-clusters that are approaching anomalous conditions, also enabling the

prompt identification of unusual conditions on monitored patients, where warning

or error bounds have not been defined yet, solely based on the notion of data rele-

vance. Indeed, groups containing at least one relevant patient have been defined as

Relevant Patients Groups.

Patient monitoring services Exploration of relevant patients groups is performed

on top of the Multi-Dimensional Model, in order for medical doctors to restrict the

search space while monitoring patients’ health status. Exploration is performed

in two main steps: (i) firstly, health anomaly detection is used to identify relevant

groups to start the exploration from; (ii) therefore, the data organisation imposed by

the Multi-Dimensional Model is exploited to further guide the exploration.

How the exploration starts. In case the medical doctor is willing to focus her anal-

ysis on a specific patients group, she can directly choose a facet, drawn from the

set of facets F. Conversely, in the case the doctor has explicit, albeit not completely

defined, exploration demands, instead of indicating a single exploration facet as be-

fore, she may specify a set dr of desired dimension instances for the dimensions she

is interested in, where dr = {vdr
1
, . . . , vdr

p
} and vdr

i
2Dom(dr

i ). Let’s denote with Fr✓F

the set of corresponding patients groups. In both cases, the doctor can be supported

in the selection by proposing her the patients groups in F (resp., Fr) identified as
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1D-Groups Smoker Male Pneumonia Immunosuppressant
XYZ
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Immunosuppressant XYZ
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Smoker

Male with
Pneumonia

Figure 7.5: Examples of facets (patients groups) with increasing grouping levels.

relevant. Moreover, relevant patients groups are ranked considering the percentage

of patients presenting anomalies inside each group; in this respect, medical doctor’s

attention will be attracted towards those groups in F (resp., Fr), ranked with higher

percentage values.

How the exploration goes on. Let Frel✓F (resp., Frel✓Fr) be the set of relevant

patients groups. The doctor is guided by the MDM in order to explore the groups

in Frel . According to Figure 7.5, relevant patients groups at highest grouping lev-

els (e.g., “males with pneumonia assuming immunosuppressant”) are proposed first.

Starting from them, the doctor may split facets into composing dimensions, mov-

ing towards lower grouping levels. For example, starting from the patients group

mentioned above, the doctor may inspect the percentage of relevant patients among

males, among those affected by pneumonia and among those assuming immunosup-

pressant. This may help identifying facets and dimensions that are correlated the

most with SARS-CoV-2 episodes, thus further increasing the knowledge on this pan-

demic phenomenon.

Once a relevant patients group has been selected in the set Frel , the medical doc-

tor may continue the exploration by adopting different strategies. On the one hand,

she may decide to focus her attention on a specific patient, trying to diagnose the

event that led to the anomalous situation (for instance, warning detected on features

related to the acceleration over the three axes may be a symptom of shortness of

breath). On the other hand, the doctor may carry out a comparative analysis over

different patients of the same group, devoted to discover why anomalies detected in

a single patient are somehow recurring in other patients of the group (for instance,

due to a genetic defect shared by patients).
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Figure 7.6: Results of incremental clustering on discharged SARS-CoV-2 patients for

controlled breath (a) and deep and short breath (b) phases.

7.4 Experimental Evaluation

Experiments are being conducted in order to assess: (i) the quality of data rele-

vance evaluation techniques in the healthcare domain; (ii) processing time to ver-

ify whether summarisation and relevance evaluation techniques could face variable

data acquisition rates and (iii) effectiveness of the data exploration techniques to

properly attract the attention of medical doctors on relevant patients groups. Prelim-

inary results demonstrated that relevance-based anomaly detection techniques were

capable of detecting variations (either gradual or sharp) in incoming data. Moreover,

data summarisation and relevance-based anomaly detection could be efficiently car-

ried out due to a thorough storage environment, ensuring processing time meeting

high acquisition rates. Remarkably, relevance-based anomaly detection was partic-

ularly apt to ease data exploration, by identifying relevant snapshots, labelled with

the facets of the Multi-Dimensional Model. Figure 7.6 shows the results of incre-

mental clustering on a male patient data, with age in the [60, 75] range, on which

worsening respiratory conditions have been detected. Visually, computed micro-

clusters (red circles) are able to better detect a movement in acceleration values on

the X axis, with respect to raw data (grey points), that are affected by variations

and noise. As mentioned in the previous use case application, Dt plays an impor-

tant role in the promptness of the approach in detecting anomalies. However, it is
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possible to set Dt to an higher value, in order to reduce the required computational

resources, when dealing with an healthcare scenario, similar to the one considered

in this application, namely where: (i) the frequency of collected data is not high

for each patient; (ii) the number of patients may be large; (iii) patients health state

changes can be considered slow over time. In this specific application scenario, for

example, Dt may be set to one hour or at time intervals that are comparable with

hourly granularity. The validation of impact of the Multi-Dimensional Model on ex-

ploration will continue through an intense patients recruitment and testing. Recruit-

ment will involve an initial sample of 50-100 discharged patients aged 18-75 years,

50% males with a SARS-CoV-2 diagnosis. App questionnaires for collecting profil-

ing data from enrolled patients and patients inclusion/exclusion criteria are being

defined. Exclusion criteria concern conditions affecting the capacity of the patient to

provide informed consent and to use the app (e.g., physical and intellectual disabil-

ity, dementia, current delusions or hallucinations). Selected patients will suffer of

different kinds of respiratory and cardiac co-morbidities and assume different drugs

such as immunosuppressant and anti-hypertensive therapies. For each group, a per-

centage of patients will be selected among smokers, as risk factor for SARS-CoV-2

episodes. GDPR procedures will be specified, in particular for data and contact trac-

ing in remote medicine. Finally, usability experiments on the monitoring dashboard

will be performed with the collaboration of different categories of medical doctors

(e.g., general practitioners, medical researchers).
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Chapter 8

Context-based resilience in the

Smart Factory

In this chapter the adoption of the IDEAaS system is discussed to implement re-

silience based on data streams, collected in a Smart Factory. This application scenario

is based on the context based resilience in connected Smart Factories case study in-

troduced in 1.3.3 on the production process for the food industry reported here in

Figure 8.1.
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Figure 8.1: Production process for the food industry case study.

The work described in this chapter has been published in the following paper:

[65] Ada Bagozi, Devis Bianchini, and Valeria De Antonellis. Designing Context-

Based Services for Resilient Cyber Physical Production Systems. In Web Infor-

mation Systems Engineering – WISE 2020, pages 474–488, 2020.
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Figure 8.2: Resilient CPPS context model.

8.1 Context Model

Figure 8.2 reports the context model adopted to implement the context-based ap-

proach to resilience in the smart factory as described in this chapter. In the model,

the Context is described by the Product that is being produced (e.g., a certain type of

biscuits), the Process to produce a certain product (e.g., biscuits baking process) and

the Environment Parameters that may influence the production (e.g., the environment

temperature and humidity). A Process is executed by one or more components, that

are used to successfully complete the production. For example, the biscuits baking

process includes the kneading machine to prepare the dough, the leavening cham-

ber to prepare biscuits, the oven to bake the biscuits, and so on. Components can

be organised hierarchically, according to the RAMI 4.0 reference architectural model

[8] (IEC62264/IEC61512 standards) for the smart factory. For example, the oven is

composed of the conveyor belt and the cooking chamber.A component is supervised

by at least one Operator and can be monitored and controlled through a set of Com-

ponent Parameters (e.g., the oven temperature). Furthermore, a production process is

associated to one or more Services, that represent recovery actions that can be exe-

cuted on a component or on the entire production line to ensure resilience. Below

some examples of recovery services are given.

Both Environment Parameters and Component Parameters are used to monitor the

behaviour of a CPPS or of the entire production line in a given Context. Indeed,

parameters are used to observe physical phenomena of the monitored system and

are formally defined as follows. They corresponds to the measured features in the

formula definition of the IDEAaS system and are treated in the same way, being also
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associated with error and warning bounds as in the anomaly detection case studies.

During parameter monitoring, if an anomaly is detected, recovery actions are

required and performed by invoking Services. Indeed, according to the model, for a

CPPS it is possible to define one or more, possibly alternative, Services. A recovery

service is formally defined as follows.

Definition 12 (Recovery service) A recovery service Sj associated to a CPPS (or one of

its components) is described as a tuple

Sj = hnSj , INSj , outSj , typeSj , CPPSSji (8.1)

where: (i) nSj is the service name; (ii) INSj is the set of input parameters of Sj; (iii) outSj

is an optional service output; (iv) typeSj is the service type; (v) CPPSSj is the component

or the whole production line to which the service is associated. Service I/O can be either

Component or Environment Parameters. Let’s denote with S = {S1, S2 . . . Sn} the overall

set of recovery services.

Flexibility of service-oriented architectures enables to include and dynamically

add different types of services. For instance, a recovery service may implement the

function that relates one or more input parameters with the output one. This type of

service will be referred as “re-configuration”. For example, the following service

setOvenTemperature(ConveyorBelt.rpm)! CookingChamber.temperature

is a re-configuration service to set the cooking chamber temperature when the con-

veyor belt rpm changes, to avoid cookies overheating. When a re-configuration is

not an applicable solution (e.g., if the service returns a cooking chamber temperature

out of an acceptable range of values), other recovery actions must be applied, such

as to replace or repair the conveyor belt. An example of “component substitution”

service would be the following:

replaceConveyorBeltRotatingEngine(ConveyorBelt.rpm)! void

that has no output parameter to modify. This service is associated to the conveyor

belt. The function implemented within the re-configuration services, as well as other

service information (e.g., execution cost, time) that can be used to choose among dif-

ferent kinds of services, are based on the knowledge of the domain. The examples of

recovery service types considered here is not exhaustive and may be extended [66].
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8.2 Context-based resilience

In this section, each phase of the proposed context-driven approach to support the

on-field operators in the identification of critical conditions and in the runtime se-

lection of services that implement proper recovery actions will be presented. While

presenting each phase, the possible involvement of the IDEAaS system will be dis-

cussed.
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Figure 8.3: Five context-driven monitoring and recovery phases to design resilient

Cyber Physical Production Systems.

Figure 8.3 reports the five phases of the proposed approach. As a pre-condition,

the designer, who has the domain knowledge about the production plant, is in

charge of preparing the context model described in the previous section, as well

as an initial set of recovery services. At runtime, the CPPS is monitored by relying

on IDEAaS (Phase 1). Critical working conditions are detected by inspecting data

streams collected from monitored CPPS. Anomalies are propagated over the hierar-

chy of connected CPPS (Phase 2). When critical conditions are detected, the relevant

recovery services are identified (Phase 3). Service filtering takes into account the in-

volved component, on which anomalies have been detected, and parameters whose

values exceed warning or error bounds. Selected recovery services are suggested to

the on-field operators working on the involved component (Phase 4). If no recovery

services have been found, a feedback is stored for planning the design of additional

recovery services in the future. The filtering and selection phases of relevant recov-

ery services will be detailed in Section 8.2.



8.2. Context-based resilience 105
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Figure 8.4: Warning and error bounds for parameters measurements in order to detect

the system status.

Identification of critical conditions. The goal of the anomaly detection is to identify

critical conditions and send alerts concerning the system status. Three different val-

ues for the status are considered: (a) ok, when the system works normally as estab-

lished by domain experts according to their expertise; (b) warning, when the system

works in anomalous conditions that may lead to breakdown or damage (proactive

anomaly detection); (c) error, when the system works in unacceptable conditions or

does not operate (reactive anomaly detection). Therefore, the warning status is used

to perform an early detection of a potential deviation towards an error status. The

identification of the system status is based on the comparison between parameters

measurements and warning/error bounds.

As mentioned before anomaly detection is performed over a summarised rep-

resentation of collected measures, incrementally built. Every Dt seconds, IDEAaS

incremental clustering is applied and, micro-clusters are compared against bounds

as shown in Figure 8.4, in order to classify the status of a CPPS, starting from the sta-

tus of its monitored parameters. The following options are considered for the status

of each CPPS:

• ok, if the status for all its parameters is ok;

• warning, if the status of at least one parameter is warning;

• error, if the status of at least one parameter is error.

Once the status of a single component has been established, it is propagated over

the hierarchy of connected components as follows:

• ok, if the status for all its components is ok;
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• warning, if the status of at least one component is warning;

• error, if the status of at least one component is error.

When the status of a component, after applying the propagation rules, changes to-

wards warning or error, an alert is raised by the system.

Filtering and selection of relevant recovery services. Once an anomalous event

(corresponding to a critical condition) is detected on one of the components, the

event is used to identify relevant services that implement recovery actions on the

involved component or connected ones. Relevant recovery services are identified

by inspecting their inputs. In particular, a recovery service is candidate to be iden-

tified as relevant if one of its input parameters have been classified in the error

(reactive resilience) or warning status (proactive resilience). On the other hand, be-

fore including the service among relevant ones, the candidate is checked to verify

the following conditions: (a) if the service type is “re-configuration”, the value of

its output parameters must not exceed any parameter bound; (b) if the service type

is “component substitution”, the component associated to the service should have

an alternative machinery or component ready to be used in substitution of the one

affected by the anomaly. For all the other options (e.g., repair), ad-hoc procedure

must be engaged. Formally, a relevant recovery service is defined as follows.

Definition 13 (Relevant recovery service) A recovery service Sk2S is defined as rele-

vant if:

• the status of at least one input parameter in INSk has been set to warning or error;

• if typeSk =re-configuration, then the value of the output parameter outSk resulting

from service execution must fall inside the admissible parameter bounds;

• if typeSk =component_substitution, then there must exist a component ready to be

substituted to the CPPSSk associated to Sk.

The setOvenTemperature service described above is a candidate to be identified

as relevant if an anomaly has been detected on the values of rotating engine rpm

in the conveyor belt. Since the service type in this case is “re-configuration”, be-

fore proposing the service to the operator, the value of the service output must be

compared against parameter bounds of the cooking chamber temperature.
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Figure 8.5: Context-driven resilience built on top of the IDEAaS modular architecture.

Once relevant recovery services have been identified, they are suggested to the op-

erator assigned to the CPPSSk in order to be confirmed and executed on the compo-

nent or the whole production line (for re-configuration services) or to proceed with

a substitution of the affected part (for component substitution services). In particu-

lar, the second type of services again highlights the role of human operators as the

final actuators of recovery actions on the production line. The service-oriented ar-

chitecture does not exclude that in the future some kinds of services (such as the

re-configuration ones) that require the human intervention can be made fully auto-

matic. Another feature of this implementation of the case study is that the informa-

tion about the recovery actions to undertake, as results of recovery services execu-

tion, are proposed only to the operators supervising the involved CPPS component

and visualised on the edge computing device. This means that “the right information

is made available on the right place only”, avoiding useless data propagation if not nec-

essary and information flooding towards operators that may hamper their working

efficiency.

8.3 Implementation and validation

Case study architecture. The approach described in this chapter has been integrated

with the anomaly detection module and the resulting architecture is presented in

Figure 8.5. During anomaly detection, the Context Manager is invoked in order to
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contextualise the incoming data. To this purpose, the Context Manager will provide

the following information: (i) an identifier for the context; (ii) a set of parameters,

either Environment or Component parameters, to be analysed; (iii) the observed CPPS;

(iv) the product that is being produced; (v) the running process. Such information is

extracted from the Context Model database.

Collected measurements of the parameters in the context are properly summarised

as micro-clusters by applying IDEAaS data summarisation techniques and micro-

clusters are labelled applying relevance evaluation techniques.

Labelled summarised data are visualised: (a) on the Designer GUI to let the

designer monitor the overall evolution of the system; (b) on the Edge Computing

Device of the involved component, to let the on-field operator to better understand

the behaviour of the component. Moreover, when anomalous conditions are de-

tected, the Context Manager is notified with the identifier of the context and the list

of critical parameters on which the anomaly occurred, together with their measure-

ments. The Context Manager will search for relevant recovery services, associated

to the component in the context. Once relevant recovery services have been identi-

fied, the Context Manager launches the execution of the services by interacting with

the Service Manager, which is responsible for services registration in the Service

Repository and for their execution. The result of the services execution is sent to the

operator assigned to the component, in order to let the operator choose the most

suitable service.

On the other hand, when the identification of relevant recovery services fails, the

Context Manager reports the unsuccessful service selection to the designer, thought

the Designer GUI, including all data of the context and available services. The de-

signer will take into account such report for future design of new services. The new

services, when available, will be registered in the Service repository through an in-

teraction between the Service Deployer and the Service Manager. The Context

Manager is notified as well, in order to update the Context model.

Validation of the approach. In this section proof-of-concept validation is performed

in the case study to demonstrate its applicability. In particular, the focus wil be

on: (i) processing time required to promptly detect anomalies and activate recovery

actions services (being this aspect a potential bottleneck for the whole approach);

(ii) a proposal of dashboards to be used in real case studies in order to show the
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Figure 8.6: Average response times per measure for anomaly detection that activates

recovery activation services.

effectiveness of the context model for structuring and filtering the right information

displayed on the right location within the digital factory.

Figure 8.6 reports the average time required for data acquisition, summarisation

and relevance evaluation. Experiments have been run on a MacBook Pro Retina,

with an Intel Core i7-6700HQ processor, at 2.60 GHz, 4 cores, RAM 16GB. Figure 8.6

reports the average response time for each collected measure, with respect to the Dt

interval in which data summarisation and relevance evaluation are performed. In

a counter-intuitive way, as mentioned before, lower Dt values require more time to

process data. This is due to the nature of the incremental data summarisation algo-

rithm. In fact, for each of the algorithm iteration (i.e., every Dt seconds), a certain

amount of time is required for some recurring operations such as opening/closing

connection to database and retrieval of the set of micro-clusters previously com-

puted. Therefore, enlarging Dt values means better distribution of this overhead

over more measures. On the other hand, higher Dt values decrease the prompt-

ness in identifying anomalous events, as the frequency with which the data rele-

vance is evaluated is lower. However, as mentioned in the anomaly detection for

smart factory case study, Dt should be as lower as possible, in order to detect near

real-time anomalies and to promptly implement recovery actions in order to reduce

losses. According to these conditions, the capability to detect anomalies on the

collected measures has been quantified using the Pearson Correlation Coefficient

(PCC) 2 [�1,+1], that estimates the correlation between the real variations and the
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(a)

(b)

Figure 8.7: Dashboards for context-driven monitoring and recovery phases: (a) de-

signer view; (b) operator view.

detected ones. In the experiment, the best PCC value is higher than 0.85 in the case

Dt = 10 minutes, that represents a strong correlation. Further evaluation is being

performed.

To demonstrate the effectiveness of the context model for structuring and filter-

ing information in case of faults, proof-of-concepts dashboards have been designed,

one for the designer (Monitored System Dashboard, MSD) and one for the opera-

tor who supervises the production line or one of its components. Figure 8.7 reports
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the MSD (a) and the Oven Dashboard (b). Let’s consider now the following sce-

nario. Rpm values that exceed the error bounds have been detected on the rotat-

ing engine of the conveyor belt. To recover from the anomaly, three services have

been selected as relevant ones, namely setOvenTemperature, setOvenCookingTime

and replaceConveyorBeltRotatingEngine. However, setOvenCookingTime service

is not applicable, because this service controls the cooking time by changing the

rpm of the belt rotating engine, which is already in error state. On the MSD it is

visualised the hierarchy of the CPPS and, for each component, the parameters and

the available services, according to the model presented in this chapter. The param-

eters measurements that exceed their error bounds are highlighted in red, the ones

that exceed their warning bounds in yellow and the others in green. On the list of

services, the blue stars identify services that have been proposed to recover from the

anomaly and the red cross on the setOvenCookingTime means that the service is not

applicable. On the other hand, on the Oven Dashboard shown in Figure 8.7(b), only

warning or error events that require recovery actions on the oven are displayed. Not

applicable services are not shown to avoid hampering the efficiency of the operator.

The operator can also refuse the suggestions by pushing on "Request new service"

button and, in that case, a notification “Service not found" will be properly displayed

on the MSD for designing future countermeasures.
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Chapter 9

Concluding Remarks

This thesis has been focused on methods and techniques to deal with Big Data Ex-

ploration (BDE). To this aim, the IDEAaS (Interactive Data Exploration As-a-Service)

approach has been designed and developed. The approach, specifically conceived

for big data streams, relies on the following novel techniques, properly combined to

realise BDE under a Human-In-the-Loop vision:

• an incremental clustering algorithm, that aggregates, in the so-called micro-

clusters, data collected as streams of numeric features; micro-clusters represent

a working behaviour of the monitored system, to provide summarised rep-

resentation of data streams; micro-clusters have been in turn organised into

snapshots to enable exploration of different portions of the data streams;

• multi-dimensional organisation of summarised data, to allow data exploration

according to different analysis dimensions;

• data relevance evaluation techniques, to support the identification of micro-

clusters and snapshots that correspond to unexpected behaviours (relevant

data) and to attract the experts’ attention on them during exploration.

Furthermore, considering that the incremental clustering algorithm is the most

time-consuming element of the approach, a parallel version of the algorithm has

been designed and implemented. Indeed, the parallel implementation of the algo-

rithm has been named P-IDEAaS. In this version, the Multi-Dimensional Model and

data relevance evaluation have been exploited for enhancing parallel clustering of

massive data streams. Novel aspects of the clustering parallelisation are summarised

in the following:
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• the adoption of the multi-dimensional model to perform a first, coarse-grained

partition of data streams, according to a divide-and-conquer strategy, to face their

complexity;

• the combined application of other fine-grained levels of parallelisation: (i) a

parallelisation based on a buffering mechanism, that splits the data stream into

portions of data points on which processing is performed in parallel; (ii) a par-

allelisation over the set of micro-clusters that are generated and change over

time;

• the exploitation of data relevance evaluation techniques to ensure different pri-

ority to parallelisation levels, in order to dedicate more resources for paralleli-

sation in those cases that present higher priority (i.e., higher data relevance);

this also mitigated the overload due to the distribution of processing tasks over

the network of computation nodes, which might have a negative impact on al-

gorithm efficiency, when it is not strictly necessary.

Finally, the efficiency and effectiveness of the IDEAaS approach have been tested

through its application on different case studies, ranging from the Industry 4.0 to the

healthcare domain. Specifically, the following real scenarios have been considered:

(i) anomaly detection case study on multi-spindle machines working on metal raw

material in the Industry 4.0 domain; (ii) remote monitoring services in the healthcare

domain on SARS-CoV-2 discharged patients; (iii) context-based resilience over the

entire production line in the connected factory (food industry domain), in the Smart

Factory domain.

9.1 Future Work

Future development efforts will be devoted to investigate the possibility to balance

the distribution of IDEAaS functionalities between the cloud and the edge comput-

ing: Human-In-the-Loop Data Analytics results enabled by current IDEAaS core

components will be used to extract anomaly detection rules, to be applied at real

time on the data streams and executed on the edge side. Therefore, security issues

will be considered and addressed as well. Moreover, further tests will be also per-

formed to consolidate the data exploration GUI, extending its functionality with the

involvement of a larger group of experts in different application domains to assess its



9.1. Future Work 115

effectiveness in supporting data exploration. Currently, the proposed GUI is mainly

focused on easing data exploration through the summarisation of collected mea-

sures and their organisation in the Multi-Dimensional Model, as well as their prun-

ing according to the relevance-based evaluation. Future effort will be addressed to

improve the GUI to proper intercept experts’ feedback, further refining the relevance

evaluation techniques.
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