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Abstract
The recent COVID-19 pandemic has had a significant impact on our lives and has rapidly expanded to reach more than 4 million
cases worldwide by May 2020. These cases are characterized by extreme variability, from a mild or asymptomatic form lasting
for a few days up to severe forms of interstitial pneumonia that may require ventilatory therapy and can lead to patient death.

Several hypotheses have been drawn up to understand the role of the interaction between the infectious agent and the immune
system in the development of the disease and the most severe forms; the role of the cytokine storm seems important.

Innate immunity, as one of the first elements of guest interaction with different infectious agents, could play an important role
in the development of the cytokine storm and be responsible for boosting more severe forms. Therefore, it seems important to
study also this important arm of the immune system to adequately understand the pathogenesis of the disease. Research on this
topic is also needed to develop therapeutic strategies for treatment of this disease.
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Introduction

COVID-19 is an infection of a new coronavirus called severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1,
2] that emerged in China in late 2019 in the Wuhan region,
and led to a rapid spread worldwide that has been declared a

pandemic by the World Health Organization in March 2020,
and now there are more than 4 million cases reported.

The SARS-CoV2 virus belongs to the coronavirus family, a
positive-sense single-stranded RNA virus [3]. In vitro experi-
ments on spike proteins of the virus hypothesized affinity with
the angiotensin-converting enzyme receptor 2 (ACE2) [4, 5];
this acts as the gateway to the virus, which subsequently dis-
tributes through the circulatory stream and triggers a systemic
response with hyperinflammation that has been compared to
several inflammatory diseases [6]. Several studies in Chinese
populations showed that the main predictors of poor prognosis
are increased levels of IL6 and fibrinogen, and systemic inflam-
mation, which contributes to mortality [7].

Different studies try to investigate how blocking inflamma-
tion can help the treatment of this pathology [8]. Researchers
focused their attention on effector mechanisms; however, it is
important to try to understand the role of the triggers and of
innate immunity, which acting as a first defense barrier against
microorganisms determines the activation of the immune re-
sponse. In some subjects this response seems to be aberrant,
causing immune-mediated damage in patients even more
harmful than the viral damage itself. Understanding how these
mechanisms act may in the future help us to create further
approaches for the treatment of this disease.
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Toll-like receptors

Toll-like receptors (TLR) are proteins involved in the devel-
opment and activation of innate immunity; it is a family of 11
transmembrane receptor proteins that recognize pathogen-
associated molecular patterns (PAMPs) [9]. Coronavirus
seems to trigger a significant cytokine release in the body,
primarily IL-6 and all the other proteins of the acute phase
that leads to activation of the immune response [10]. The first
mechanism of defense of human body from infections is in-
nate immunity; in particular, the virus is recognized by spe-
cific TLR. Several studies on SARS-CoV and MERS showed
the role of TLR3 in the development of a protective response
against coronaviruses [11]. TLR3 is highly expressed on den-
dritic cells, placenta, and pancreas, and its activation, trough
TRIF (TIR-domain-containing adapter-inducing interferon-β)
pathway, determines the activation of IRF3 (interferon regu-
latory factor 3) and NF-kB [12, 13] (Fig.1).

In mouse models, Totura et al. demonstrate increasing
levels of transcription of TLR3 after coronavirus infections
already in the 2nd day post-infection; this determines activa-
tion of downstream molecules, such as TRIF, which deter-
mines the activation of transcription factors, such as IRF3
and NF-kB, associated with increased production of type I
interferons (IFN alpha and beta), inflammatory cytokines
(IL-6, TNF), and IFN-gamma [11]. Despite the role in the
production of inflammatory cytokines, knock-out mice for
TLR3 do not have reduced expression of IL6, IFN beta,
TNF, and inflammatory cytokines. So several pathways
linked to TLR signaling can contribute to the production of
cytokines, which convey downstream on the same inflamma-
tory cascade, with consequent amplification [12–15].

On the other side, neutralization of adaptor proteins leads to
different results: the main adaptor proteins involved in TLR
pathways in coronavirus infection are TRIF andMyD-88 (my-
eloid differentiation primary response 88). TRIF is associated
with TLR 3 and determines the activation of IFR3 and NK-
kB, while Myd-88 interacts with TLR4 and several proteins
involved in IL1 function, such as IRAK1–2 and interleukin 1
(IL1) receptor.

TRIF knock-out mice showed reduced production of in-
flammatory cytokines and chemokines in the first 2 days after
coronavirus infection, with a subsequent increase in IFN beta
production followed by a marked increase in inflammatory
cytokines on day 4, while (MyD-88) knock-out mice have
reduced production of inflammatory cytokines and
chemokines [11].

The role of TLR 4 also seems to be interesting; usually, this
receptor appears pivotal for the response to the LPS of gram-
negative bacteria, and similar to TLR3 it is associated with
activation of transcription factors such as NF-kB and IRF3,
with an amplification effect of the inflammatory cascade of
TLR3 [16, 17]. Zhou investigated acute lung damage

mediated by respiratory viruses in mouse models; these stud-
ies showed that laboratory animals infected with SARS,
H1N1, and other lung viruses had pulmonary damage charac-
terized by production of oxidized phospholipids; these phos-
pholipids cause the activation of TLR4, similar to bacterial
LPS, which determines activation of MyD88 and TRIF, with
consequent overproduction of inflammatory cytokines, of
which IL6 represents one of the main determinants of lung
damage; IL6−/− mice had reduced inflammatory infiltrate and
reduced lung damage compared with controls [18].

These observations, together with the evidence of increased
IL6 levels in patients with COVID-19, led to hypothesize on
important pathogenic role of IL6. Consequently, blocking
IL6, modulating levels of this cytokine, may represent a pos-
sible treatment in severe patients [19, 20]. Tocilizumab (TCZ),
a recombinant humanized monoclonal antibody that has an
antagonistic effect on the IL-6 receptor used in the treatment
of rheumatoid arthritis, could play a key role in the treatment
of seriously ill patients with COVID-19 [21]. The first pilot
study for the use of tocilizumab enrolled in China 21 patients
with severe coronavirus pneumonia. This study showed that
tocilizumab treatment improved body temperature, arterial ox-
ygen saturation (SpO2), reduced C-RP (C-reactive protein),
and reduced oxygen demand [21].

These preliminary results led to further development of
clinical trials on the use of tocilizumab and sarilumab, another
IL6 inhibitor, for the treatment of COVID-19. These prelimi-
nary encouraging data seem promising, as may lead to devel-
opment of therapeutic strategies for the most severe forms.

Other TLRs, such as TLR7 and 8, showed implication in
coronavirus response. Normally TLR7 recognizes single-
stranded RNA in endosomes and recognizes RNA of virus-
es such as coronaviruses, HIV, and HCV. TLR7 is highly
expressed in human plasmacytoid dendritic cells (pDCs)
and B cells, although low levels of this receptor are ob-
served in epithelial cells, keratinocytes, and hepatocytes.
TLR7 binds ssRNA and activates the MyD88 pathway,
with consequent activation of mitogen-activated protein ki-
nase (MAPK) cascade, NF-kB, and other pathways. This
activation increases expression of TNF-alfa, IL1beta, IL-6,
IL12, and IFN-alfa.

TLR8 is expressed in myeloid cells and low levels in pDCs
and similar to TLR7 localizes in endosomes. RNA degrada-
tion in endosomes causes his binding with TLR8 with conse-
quent conformational change and activation of MyD88 with a
downstream pathway similar to TLR7. [22–25].

Studies on SARS-CoV, another virus of the same family,
demonstrate how some regions of the viral genome were as-
sociated, in bioinformatic models, with an immunostimulant
activity of TNF-a, IL-6, and IL-12 production through TLR7
and 8, almost 2-fold higher than other single-strand RNA
viruses [26]. All these elements, together with the interlinking
of the different mechanisms of innate immunity, lead to an
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overactivation of the inflammatory response that makes coro-
navirus induced-pneumonia an immune-mediated disease.

Complement system

The complement system is a group of proteins present in the
bloodstream in a form of inactive precursors, involved in
mechanisms of protection from bacteria and viruses. The
complement system acts through three different pathways:

the classic pathway, the alternative pathway, and the lectin
pathway, to activate different elements of the immune sys-
tem [27].

The complement system appears to play an important role
in coronaviruses infections. Several studies on other
coronaviruses, such as SARS-CoV and MERS, demonstrate
that the complement system is not directly involved in the
clearance of the viruses, as C3−/− mice do not have different
viral levels compared to normal mice; however, there are more
attenuated forms of lung damage.
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Fig. 1 Role of toll-like receptor in
response to coronavirus infection.
TLR4 is involved in the response
triggered by oxidized phospho-
lipids (OxPLs) induced by SARS-
CoV2 infection, with activation,
through MyD88 and TRIF, of the
production of type I Interferon
and inflammatory cytokines such
as IL6 and TNF. TLR3 and
TLR7/8 recognize viral RNA at
the endosome and through
MyD88 and TRIF, activate inter-
feron regulatory factor (IRF3 and
IRF7)
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In the lungs of mice with a disease similar to SARS, com-
plement deposits were abundant, with inflammatory infiltrate
of lymphocytes, neutrophils, macrophages, and dendritic
cells. In C3−/− mice there were no differences in the lympho-
cytic infiltrate, but there were marked differences in neutro-
phils and macrophages that infiltrate with inflammatory phe-
notype, which were clearly reduced. This suggests that their
presence could be related to local activation of the comple-
ment [28, 29]. These findings seem important, since, in sev-
eral coronavirus-mediated forms of SARS, neutrophils and
macrophages play a pathogenetic role in alveolar damage, as
their localization correlates with the most damaged sites of
lung tissue, while lymphocytes appear crucial in post-
infectious recovery, as T-cells are involved in SARS-CoV
clearance and higher survival in mice and men [30, 31].

Recent preliminary data highlight the importance of com-
plement system in patients with COVID-19 [32]. A small
study showed the presence of placental complement deposits
in 5 cases of pregnant patients with COVID-19, with histo-
logical evidence of avascular villi and thrombosis in fetal ves-
sels, associated with complement deposits [33].

For these reasons, the use of complement system inhibitors
for the treatment of COVID-19 has started. The first drug used
was Eculizumab, a human monoclonal antibody that inhibits
cleavage to C5a and C5b, involved in the generation of mem-
brane attack complex. This structure, as a result of the activa-
tion of the complement system, creates transmembrane chan-
nels that disrupt cell membranes and lead to cell disruption
and death [27]. The inhibition of this pathway through
Eculizumab is a current target for the treatment of various
hematological diseases. [34]

First data on the use of Eculizumab in COVID-19 come
from a case series of 4 patients; after treatment, all patients
clinically improved within the first 48 h with a reduction of
inflammatory markers (Both ESR and C-RP). [35]

In addition to Eculizumab, AMY-101, a small-sized pep-
tidic C3 inhibitor, was used to treat COVID-19 pneumonia in
a single case. This drug is under development for hematolog-
ical diseases and not yet approved [36]. After administration,
patient clinical conditions rapidly improved after 48 h, while
leukocytosis and lymphopenia improved more slowly; these
laboratory markers were associated with improvement of re-
spiratory performance and reduction of oxygen demand. [37]

Monocytes and macrophages

The commitment of immune cells such as macrophages looks
important; the first studies on autopsies in patients with
COVID-19 revealed an extensive immune infiltrate consisting
mainly of macrophages and monocytes, associated with neu-
trophils, eosinophils, and CD4 lymphocytes [38].

The role of macrophages can be inferred from the immune
response observed in other coronavirus infection. SARS-CoV
has an accessory protein, Open Read Frame 8 (ORF-8) [39].
This protein determines the activation of intracellular stress
mechanisms, lysosomal damage, and activation of autophagy.
Specifically, at a macrophage level, ORF-8 causes intracellular
aggregates that interact with NLRP3, also called Cryopyrin, a
structural protein of the inflammasome, determining its activa-
tion [40]. The Inflammasome is a multiprotein complex, part of
the innate immune system, responsible for the activation of
inflammatory response. Inflammasome activation recruits
pro-caspase-1, a proteolytic enzyme that cleaves pro-
inflammatory cytokines, such as pro-IL-1β and pro-IL18, thus
activating them. This leads to a particular form of programmed
cell death, which is called pyroptosis, in which the cell, follow-
ing recognition of intracellular pathogens, undergoes pro-
grammed cell death associated with discharge of inflammatory
cytokines, chemokines, and subsequent chemotaxis of inflam-
matory cells. In particular, the release of IL18 stimulates the
production of IFN gamma, which determines the development
of TH1 polarization, contributing to the development of adap-
tive immunity [41–46]. It is plausible that it occurs similarly in
SARS-CoV-2 infection since studies on SARS-CoV-2 genome
prove that there is a high analogy with the SARS-CoV ORF-8
region, so we may suppose that macrophage activation of the
inflammasome plays an important role determining the impor-
tant inflammatory response observed in patients with more se-
vere forms of infection [47, 48]. Interleukin 1 release by mac-
rophage through the inflammasome contributes to the cytokine
storm responsible for the most aggressive forms of COVID-19,
with symptoms of hyperactivation of the immune system sim-
i l a r t o s e c o n d a r y f o rm s o f h emop h a g o c y t i c
lymphohistiocytosis, (sHLH) infection [49]. The pathogenetic
role of IL1 could lead to important therapeutic implications.
Acting on the inflammatory signaling pathway induced by
the inflammasome, Anakinra, a recombinant IL-1 receptor an-
tagonist, could block the cytokine storm, similarly to various
secondary HLH conditions [50]. Several case reports evaluated
the effectiveness of Anakinra in refractory forms of COVID-19
pneumonia. In a case series of 9 patients treated with subcuta-
neous Anakinra, there was only one case of failure, while the
other 8 had improvement in clinical conditions and reduction of
oxygen flow and blood inflammation markers [51]. Nowadays
there are already 13 clinical trials registered on ClinicalTrials.
gov investigating the efficacy of the inhibitor of IL-1-RA
Anakinra alone or compared with other drugs [52].

Neutrophils

The complete blood count during COVID-19 infection is fre-
quently performed, and an increase in neutrophils with lym-
phopenia is observed. However, the pathogenetic role of this
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cell population in lung disease level is still unclear [1]. From
an anatomopathological point of view, some case series of
patients who died from COVID-19 show a marked infiltration
of neutrophils in patients’ lungs [28].

However, data about the pathogenic role of neutrophils can
derive from in vivo and in vitro infections from other forms of
coronaviruses. In mice, lung hemorrhagic lesions follow the
same distribution of the inflammatory infiltrate by polymor-
phonuclear cells (PMN). They also contribute to the healing
process through clearance of the virus and production of
growth factors involved in healing and re-epithelialization of
damaged regions [29]. According to Channappanavar et al.
[53], viral infection, leading to the expression of viral proteins
and local damage at the epithelial cells, leads to the PMN cells
infiltration. PMN cells contribute to local production of cyto-
kines and chemokines; in particular, the interaction of PMN
cells with lung cells amplifies this effect. In vitro work dem-
onstrated that PMN cells, when they are linked with type I
epithelial alveolar cells (AT1) infected with coronaviruses,
had an increased expression of mRNA levels of proinflamma-
tory cytokines (IL-18, IL-1a, IL-1b, and TNF-a), CXC
chemokines (CXCL-1, CXCL-2, IP-10, and CXCL-11), and
CC chemokines (CCL- 2, CCL-4, CCL-7, CCL-9, CCL-12,
and CCL-22) [54]. So, their role would appear dichotomous;
on the one hand, neutrophils can play as actors in the early
recruitment of inflammation cells; on the other, they can con-
tribute to tissue damage when their action does not appear to
be adequately counterbalanced [55].

Interferons

Interferons (IFN) are a family of signaling proteins involved in
innate and adaptive immune responses, with an important role
in the inhibition of viral replication, through different effector
proteins [56, 57]. There are three types of interferons, Type I
(interferon α β), Type II (Interferon γ), and Type III
(Interferon λ). Although all three are likely to be involved in
protection from coronavirus infection, type I IFN is the most
studied in this area and his role appears predominant especial-
ly in the early stages of the infection [58]. The production of
type I IFN is enhanced by viral RNAs trough two cytosolic
proteins: RIG-1 (retinoic acid-inducible gene I) and MDA5
(melanoma differentiation-associated protein 5). The recogni-
tion of viral RNA by these cytosolic receptors leads to the
activation of IRF3 and determines the initiation of the tran-
scription of type I IF, thus contributing to resolution of the
infection [59].

The importance of interferon in coronavirus infections was
observed in healthy volunteers; Higgins et al. [60] in the
1980s highlighted in a study on 83 healthy volunteers that
intranasal administration of recombinant IFNαwas associated
with a protective effect against coronavirus infections. In

particular, it was observed that in the IFNα treated group, both
the severity of the symptoms and the nasal viral load were
significantly lower, showing a marked protective effect
against respiratory coronavirus.

The various members of the coronavirus family can inhibit
IFN production in different ways. SARS-CoV-2 have several
proteins, including nsp1, nsp3, nsp16, ORF3b, ORF6, and M
and N proteins, similar to proteins of other coronaviruses,
which act on type I IFN pathway, either by inhibiting tran-
scription or by acting on effector mechanisms [58, 61–63]. In
particular, the ability to inhibit the IFN signal varies between
different family members; more aggressive family members,
such as MERS-CoV and SARS-CoV, have a more marked
inhibition of interferon activity, while human coronavirus
HKU1, responsible for mild flu infection, has mild IFN inhi-
bition, thus contributing to the hypothesis of how IFN attenu-
ates viral replication and consequently reduces pathogenicity
[64].

As a demonstration of the importance of the IFN, Trouillet
Assant and colleagues evaluated type I IFN immunoprofiling
in COVID-19 in 26 critically ill patients. They observed a
peak in IFN α2 production after 8–10 days of symptoms on-
set. A small group of patients had suppressed IFN-I produc-
tion, in particular, patients with no IFN-α production present-
ed poorer outcome and longer intensive care unit stay [65].

This observation has led to different clinical trials compar-
ing the use of IFN in COVID-19 disease. Of these trials, one
already completed the enrollment phase (An investigation into
beneficial effects of interferon beta 1a, compared to interferon
beta 1b and the base therapeutic regiment in moderate to se-
vere COVID-19: a randomized clinical trial; ClinicalTrials.
gov Identifier: NCT04343768), and others are still enrolling
(C l i n i c a lT r i a l s . gov Iden t i f i e r : NCT04320238 ,
NCT04350671, NCT04343976, NCT04254874) [66]. Also,
protective role of IFN is explored in a clinical trial
(NCT04320238), developed to evaluate the effect of
intranasal administration of IFN α-1b, alone or in
combination with thymosin-α subcutaneous in doctors at high
risk of infection [66–68].

Conclusion

Slowly we are increasing our knowledge on COVID-19; how-
ever, further studies are still needed to understand its patho-
physiological and epidemiological aspects. Many notions that
we have come from in vitro experiments or from other
coronaviruses [47, 48]. Currently, there is still a lack of ele-
ments that allow us to predict adequately between the asymp-
tomatic forms and the systemic form with severe lung dam-
age. The hyperactivation of the immune system contributes
significantly to the lung and systemic damage that can lead
to patients’ death [62, 63]. Innate immunity, acting as the first
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element of defense, can represent, together with other mecha-
nisms, a promising target for the treatment of patients or at
least to better understand the pathogenesis of the disease.
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