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Abstract
Towards the accurate modelling of soft dielectric composites, this investigation aims at
demonstrating that the incompressibility constraint customarily adopted in the literature
may lead to largely inaccurate predictions. This claim is grounded on the premise that, even
though in these composites each phase may individually be assumed to be incompressible,
the volumetric deformation of the softest phase can provide a significant contribution to the
effective behaviour if the phase contrast is high enough. To reach our goal, we determine the
actuation response of two-phase dielectric laminated composites (DLCs) where the softest
phase admits volumetric deformation. Our results, discussed in the light of the limit case
in which the softest phase consists of vacuum, on the one hand, challenge the hypothe-
ses usually assumed in the modelling of soft dielectric composites and, on the other hand,
are expected to provide useful information for the design of high-performance hierarchical
DLCs.

Keywords Dielectric elastomer · Laminated composite · Volumetric deformation · Phase
contrast · Finite deformation · Electromechanical actuation
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1 Introduction

Since the cornerstone contributions to finite deformation hyperelasticity of the fifties (see,
e.g., Rivlin and Saunders [1] and references therein), the incompressibility constraint has
been often adopted to obtain analytical solutions of relatively simple boundary-value prob-
lems, as it may lead to predictions accurately matching experimental data in problems in-
volving homogeneous materials [2–4]. In fact, in typical elastomers the bulk modulus may
be four orders of magnitude larger than the Young modulus [5].
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After the earlier pivotal works of Toupin [6] and Eringen [7], the more recent efforts of
Dorfmann and Ogden [8], McMeeking and Landis [9], Fosdick and Tang [10], and Suo et al.
[11] have paved the way for the development of models for soft dielectric materials, where
the assumption of isochoric deformation also conveniently applies (see, e.g., the review of
Lu et al. [12]), although McMeeking and Landis [9] already provided evidence “that one
must be careful when using an incompressible material model”.

Homogeneous soft dielectric materials are characterised by low permittivity, such that
their actuation requires an inconvenient large electric field. As experimentally demonstrated
(see, e.g, [13, 14]), a way to address this issue consists of designing composite materials
that, through the optimisation of their microstructure, allow the enhancement of the elec-
tromechanical performance of soft dielectric transducers [15–20]. Certainly, even though
incompressibility has been very often assumed for heterogeneous materials as well (in ad-
dition to previous references, see also [21] for a purely mechanical study and [22–25] about
electroelasticity), in such a case one should be even more careful in evaluating its suitabil-
ity for the problem at hand. In fact, although all the composite phases may be individually
considered as incompressible (i.e., in most cases, they may be assumed to undergo isochoric
deformation in boundary-value problems involving only a single homogeneous phase), for
high phase contrast in terms of elastic moduli, the volumetric deformation of the softest
phase can provide a contribution to the displacement field that is not negligible, being com-
parable to the contribution due to the deviatoric deformation of the stiffest phase.

Additionally, studying compressible nonlinear electroelasticity has also become impor-
tant in relation to multiphysics theories for electroactive polymers referred to as ionomer
membranes (e.g., NafionTM and FlemionTM), whose actuation and sensing properties de-
pend on the transport of mobile ions in a solvent. The redistribution of these species governs
the macroscopic volumetric deformation of the ionomer membrane, which can be described
by relying on hyper-electro-elastic models [26–28].

In this investigation, we focus on a two-phase dielectric laminated composite (DLC) actu-
ator [15, 16, 22, 29] in order to demonstrate the enormous impact that considering compress-
ibility may have on the effective response of soft dielectric composites. More specifically,
we assume the stiffest dielectric phase to be incompressible, whereas we admit volumetric
deformation in the softest dielectric phase. Even under this very specific configuration, we
obtain an effective actuation response that is much richer than that predicted for the anal-
ogous incompressible DLC, as the compressible response displays a unique multi-branch
behaviour featuring two distinct levels of electromechanical instability.

We demonstrate our findings by considering both uncoupled and coupled constitutive
laws for the compressible phase [4], and also by analysing in great detail the limit case in
which the compressible phase is vacuum. “Porous” dielectric composites have been investi-
gated also by Lopez-Pamies and co-workers in [30] and [31] for microstructures encompass-
ing a matrix phase. In particular, in [30] the dielectric elastomeric matrix contains spherical
cavities, while [31] considers vacuum in the form of aligned fibres. Although both these
studies are limited to moderate electric fields and small strains and rotations, they allow
Lopez-Pamies and co-workers to conclude that vacuum, or extremely soft inclusions, can
greatly enhance the electromechanical properties of soft dielectric composites. Our findings
for DLCs under finite electric and deformation fields confirm that dielectric composites with
high phase contrast are well worth thorough studies, for the understanding of their complex
nonlinear behaviour is expected to open the door to interesting novel applications.

Outline In Sect. 2 we provide the equations governing the continuum microelectromechan-
ics of the compressible two-phase DLC actuator under study. In particular, in Sect. 2.1 we
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Fig. 1 Reference configuration of the DLC actuator consisting of incompressible phase a and compressible
phase b, subjected to a voltage difference �φ applied across perfectly compliant electrodes. The initial thick-
ness is h0 and, according to the positive direction of the out-of-plane axis X3, the initial lamination angle
θ0 is positive if anticlockwise. Although the boundary conditions refer to the macroscopic scale, where the
actuator should appear homogeneous, for the sake of describing the whole problem in a single figure, in this
schematic we represent also the microstructure

provide the balance and compatibility equations to determine the effective response of gen-
eral compressible two-phase DLCs, whereas in Sect. 2.2 we specify the peculiar constitutive
laws here adopted to discuss the effect of compressibility on the actuator effective behaviour.
Section 2.3 describes the macroscopic boundary conditions for the actuation problem here
of interest and Sect. 2.4 contains analytical manipulations aiding an efficient computation of
the effective response. In Sect. 3 we consider the DLC in which the compressible phase is
vacuum, referred to as “porous DLC”. This limit case turns out to be very important to shed
light on the results obtained for the compressible DLC, which we report in Sect. 4. Section 5
offers our concluding remarks, including some important open issues to address.

2 A Continuum Microelectromechanical Framework for a Compressible
Two-Phase DLC Actuator

2.1 Balance and Compatibility for the Homogenisation of a Compressible
Two-Phase DLC Actuator

We investigate the DLC actuator whose undeformed configuration � = �a ∪ �b is illus-
trated in Fig. 1, where �a and �b are the space regions occupied by the two phases a and
b, respectively. The DLC is built by filling the space along the longitudinal axis X1 with a
unit cell constituted by the two phases, both ideally unbounded along the out-of-plane axis
X3. With reference to hierarchical laminated composites, such a DLC is also denoted as a
rank-one DLC [17, 24]. The geometry is characterised by the initial thickness h0, the initial
phase volume fractions ca and cb = 1 − ca , and the initial lamination angle θ0 ∈ [0,π/2]
defining the unit vectors

m0 =
[− cos θ0

− sin θ0

]
and n0 =

[
sin θ0

− cos θ0

]
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that identify, respectively, the tangential and normal directions to the interfaces between the
two constituents.

The crucial aspect of this investigation is that phase b is compressible, while we assume
that phase a, which is considerably stiffer, undergoes isochoric deformation.

In order to determine the macroscopic response of the composite subjected to an external
electromechanical load, we follow a standard homogenisation procedure, initially developed
by deBotton [21] for the purely mechanical problem and then extended to electroelasticity
(see, e.g., [15–17, 29]). In particular, we study a voltage-driven actuation process and we
adopt a Lagrangian formulation, in which all variables are referred to the undeformed con-
figuration. Hence, as primal variables to describe the effective constitutive behaviour of the
DLC, we select the nominal electric field E and the deformation gradient

F = ∂x
∂X

,

where x(X) is the current position of the macroscopic material point placed at X in the
reference configuration. We adopt the simplest possible electrostatic constitutive law such
that the macroscopic field work-conjugate to E is the nominal electric displacement D, while
the field dual to F, which is the nominal (Piola) stress, is denoted as S.

We recall that the fields entering the problem can be referred to the current configuration,
thus defining the true (or Eulerian) electric field, e, the true electric displacement, d, and the
Cauchy stress, σ . Their relations to the Lagrangian quantities read [8]

e = F−TE , (1a)

d = J−1FD , (1b)

σ = J−1SFT , (1c)

in which

J = det F

is the volume ratio. The corresponding microscopic fields are indicated with subscripts a

and b, depending on the phase where they are evaluated.
We assume a spatially uniform response in each phase [21, 22, 24], such that the macro-

scopic fields can be expressed as the weighed sums of the corresponding microscopic quan-
tities:

F = caFa + cbFb , (2a)

E = caEa + cbEb , (2b)

S = caSa + cbSb , (2c)

D = caDa + cbDb . (2d)

Moreover, the following continuity conditions hold at internal interfaces [8, 21]:

(Fa − Fb)m0 = 0 , (3a)

(Sa − Sb)n0 = 0 , (3b)
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(Da − Db) · n0 = 0 , (3c)

n0 × (Ea − Eb) = 0 , (3d)

where · and × denote the inner and vector products, respectively. The continuity of the dis-
placement field at the interfaces, which is expressed in Eq. (3a) in terms of the microscopic
deformation gradient, may be rewritten as [21]

Fa − Fb = w ⊗ n0 , (4)

where

w = (Fa − Fb)n0

is referred to as the amplitude vector and ⊗ denotes the tensor product. It is convenient to
further manipulate Eq. (4) to obtain

Fa − Fb = Fω ⊗ n0 (5)

in terms of the unknown vector

ω = F−1w .

Since only phase a is constrained to undergo isochoric deformation, such as Ja = 1, the
macroscopic volume ratio reads

J = ca + cbJb .

This noticeably implies that ω is not necessarily coaxial with m0, contrary to the case of
incompressible laminates, where the possibility of enforcing isochoric micro- and macro-
deformation allows the reduction of the vectorial unknown ω to a single scalar unknown
[21, 24, 29].

Combination of Eqs. (2a) and (5) leads to the following expressions for the microscopic
deformation gradients:

Fa = F(I + cbω ⊗ n0) , (6a)

Fb = F(I − caω ⊗ n0) , (6b)

where I is the second-order identity tensor.
By using relation (2b), we rewrite condition (3d) in terms of the unknown scalar β [21,

22, 24], thus obtaining

Ea = E + cbβ n0 , (7a)

Eb = E − caβ n0 . (7b)

Finally, note that assuming spatially uniform microscopic fields implies that the interface
remains planar during deformation and the current unit vectors defining its tangential and
normal directions can be written in terms of the macroscopic deformation gradient:

m = Fm0

|Fm0| =
[− cos θ

− sin θ

]
and n = F−Tn0

|F−Tn0| =
[

sin θ

− cos θ

]
, (8)

where θ is the current lamination angle, which determines the evolution of the DLC
anisotropy.
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2.2 Local Constitutive Prescriptions

We assume hyper-electro-elastic behaviour obtained by combining neo-Hookean hypere-
lasticity and ideal dielectricity, whereby the Helmholtz free-energy density depends on the
invariants trC ≡ F ·F and |F−TE|, along with J for the compressible phase. Here and hence-
forth, tr is the operator providing the trace of a second-order tensor, C = FTF indicates the
right Cauchy-Green deformation tensor, and |A| ≡ √

A · A denotes the modulus of A.
In particular, the following free-energy density governs the isotropic behaviour of the

incompressible phase a:

Wa(Fa,Ea) =
{μa

2
(trCa − 3) − εa

2
|F−T

a Ea|2 if Ja = 1

+∞ if Ja �= 1
, (9)

where μa is the shear modulus and εa is the dielectric permittivity.
To reach our goal (that is, the discussion of the effect of accounting for the volumetric

deformation in soft dielectric composites), it is crucial that for phase b we select a free-
energy density that admits to be written as the sum of two separate terms for its contributions
due to the deviatoric and volumetric deformations. In the literature, this type of potential is
briefly referred to as uncoupled energy.

Hence, in this investigation, we mainly make use of the following isotropic energy, in
which the deviatoric and volumetric deformations are controlled by the shear modulus μb

and the bulk modulus Kb , respectively (see Holzapfel [32] and Saccomandi [33]):

Wb(Fb,Eb) = μb

2

(
trCb

J
2/3
b

− 3

)
+ Kb

2

(
J 2

b − 1

2
− lnJb

)
− εbJb

2
|F−T

b Eb|2 , (10)

where J−2/3C is the isochoric right Cauchy-Green deformation tensor and εb is the dielectric
permittivity of phase b. However, our results will be discussed and validated by assuming
that phase b either is vacuum or obeys a coupled energy, the latter defined in Sect. 2.2.1.

Although the key parameter in our investigation is the phase contrast expressed in terms
of the ratio between the shear modulus of the incompressible phase and the bulk modulus of
the softest phase, denoted as

ρK = μa/Kb , (11)

we will show that the interplay between ρK and the phase contrast in terms of the shear
moduli, i.e.

ρμ = μa/μb , (12)

is also important in establishing the actuation response of the compressible DLC.
Additionally, definitions (11) and (12) are such that the ratio of the two parameters mea-

suring the phase contrast provides the ratio between the bulk and shear moduli of phase b, in
turn determining its Poisson’s ratio through the well-known relations for isotropic materials:

νb = 3ρμ/ρK − 2

6ρμ/ρK + 2
, (13)

which can be used for a comparison with the typical quantitative difference between the
initial bulk and shear moduli of elastomers (see, e.g., [5, 34]).
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The microscopic constitutive relations read (see, e.g., [8, 32] and references therein):

Sa = ∂Wa

∂Fa

− paF−T
a , (14a)

Sb = ∂Wb

∂Fb

, (14b)

Dk = −∂Wk

∂Ek

with k = a, b , (14c)

where pa is a Lagrangian multiplier representing a hydrostatic pressure, to be determined
by imposing equilibrium.

Through combination of Eqs. (9), (10), and (14a)–(14c) we obtain the microscopic
stresses

Sa = μaFa − paF−T
a + εaF−T

a Ea ⊗ C−1
a Ea , (15a)

Sb = μb

J
2/3
b

(
Fb − trCb

3
F−T

b

)
+ Kb

2
(J 2

b − 1)F−T
b

+ εbJbF−T
b Eb ⊗ C−1

b Eb − εbJb

2
|F−T

b Eb|2F−T
b (15b)

and the microscopic electric displacements

Da = εaC−1
a Ea , (16a)

Db = εbJbC−1
b Eb . (16b)

Substitution of Eq. (15b) into Eq. (1c) readily shows that the volume ratio dependence in the
selected free energy (10) leads to a hydrostatic component of the mechanical contribution to
the Cauchy stress that is proportional to Jb − (1/Jb).

2.2.1 A Coupled Free-Energy Density for the Compressible Phase

We will validate our findings based on the free energy (10) by also employing for the com-
pressible phase b a coupled potential, whose use has two purposes. First, obtaining similar
results with two significantly different free-energy densities for the compressible phase will
allow us to infer that, qualitatively, our findings are somewhat general. Second, it is known
that uncoupled energies, such as that in Eq. (10), may be inaccurate in the description of the
large volumetric deformation behaviour of elastomers (see, e.g., Boyce and Arruda [4]).

Hence, for phase b, we also consider the following potential, whose mechanical part
corresponds to the proposal of Blatz and Ko [35] in which the dependence on the (second)
invariant [(trC)2 − tr(C2)]/2 is neglected [36]:

Wb(Fb,Eb) = μb

2
(trCb − 3) + μb

2γb

(
J

−2γb

b − 1
)

− εbJb

2
|F−T

b Eb|2 . (17)

Here, by assuming isotropy, γb is a material parameter that can be expressed in terms of the
Poisson’s ratio (13) as

γb = νb

1 − 2νb

= Kb

2μb

− 1

3
= ρμ

2ρK

− 1

3
, (18)
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in which we have employed definitions (11) and (12) to express γb in terms of the phase
contrast.

Given the potential (17), the stress in phase b reads

Sb = μb

(
Fb − J

−2γb

b F−T
b

)
+ εbJbF−T

b Eb ⊗ C−1
b Eb − εbJb

2
|F−T

b Eb|2F−T
b ,

such that, through Eq. (1c), we obtain the mechanical contribution to the Cauchy stress as
the sum of two terms both involving the volumetric deformation: μb(FbFT

b − J
−2γb

b I)/Jb .

2.3 Macroscopic Boundary Conditions

We focus on plane-strain conditions and, due to the very small ratio between the thickness
h0 and the actuator length, we disregard edge effects at the actuator ends, thus assuming
that the macroscopic electric field E uniformly acts along the transverse direction X2 (see
Fig. 1). This implies

E1 = 0 , (19)

whereas we apply

E2 = �φ

h0
, (20)

in which �φ is the voltage drop across the electrodes. It is however convenient to express
the results in terms of the nondimensional electric field

Ē2 = E2

√
εa/μa .

We remark that the longitudinal component of the macroscopic electric displacement D1 is in
general non-vanishing due to the effective dielectric anisotropy of the laminated composite.

In this first contribution towards assessing the role of compressibility in soft dielectric
composites, we follow [22, 29, 37] and assume that macroscopic shear deformations are
hampered such that the macroscopic deformation gradient depends on the macroscopic free
stretches λ1 and λ2 only:

F =
⎡
⎣λ1 0 0

0 λ2 0
0 0 1

⎤
⎦ . (21)

Correspondingly, the following effective direct stress components vanish

S11 = 0 , (22a)

S22 = 0 , (22b)

while, in general, S12 �= 0. In concluding the paper in Sect. 5 we will briefly discuss possible
outcomes of more general boundary conditions.

By combining Eqs. (8) and (21), we obtain the current lamination angle as a function of
the macroscopic principal stretches and the initial lamination angle:

θ = arctan

(
λ2

λ1
tan θ0

)
. (23)
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Next, we find analytical expressions for the localisation parameters that turn out to be useful
for the efficient numerical computation of the effective behaviour under investigation.

2.4 Analytical Simplification of the Solving System with Focus on the Localisation
Parameters

Here, we analytically manipulate the foregoing governing equations to obtain convenient
expressions for the localisation parameters ω and β entering the homogenisation problem
through Eq. (6a)–(6b) for the deformation gradient and Eq. (7a)–(7b) for the nominal electric
field, respectively. Note that under plane strain the relevant components of ω are ω1 and ω2.

By substituting Eqs. (16a) and (16b) in condition (3c), β assumes the following form:

β = [εbJbB(ω) − εaC(ω)]B(ω)C(ω)

cbεaC2(ω) + caε0JbB2(ω)

F−TE · (F−Tn0)

|F−Tn0|2 + E · ω , (24)

where

B(ω) = 1 + cbω · n0 and C(ω) = 1 − caω · n0 .

We note that, by setting Jb = 1 and ω = αm0, with α denoting an unknown scalar, Eq. (24)
can be particularised to the analogous expression obtained in [29] for an incompressible
DLC.

By focusing on the free energy (10) for the compressible phase, to determine ω1 and
ω2, we substitute Eqs. (15a)–(15b) and (24) into Eq. (3b); then, we take the inner products
between the left-hand side of the obtained relation and Fm0 and F−Tn0, which, respectively,
leads to

Fω · (Fm0) = − μaJ
2/3
b − μb

cbμaJ
2/3
b + caμb

Fn0 · (Fm0) (25a)

and

μaB(ω) − μb

J
2/3
b

C(ω) + [F−TE · (F−Tn0)]2 εaεbJb [εbJbB(ω) − εaC(ω)][
cbεaC2(ω) + caεbJbB2(ω)

]2

+ |F−Tn0|2
(

εbJb

2C(ω)
|F−T

b Eb|2 − pa

B(ω)
− Kb(J

2
b − 1)

2C(ω)
+ μbtrCb

3J
2/3
b C(ω)

)
= 0 . (25b)

The unknown pressure pa in Eq. (25b) can be determined by imposing the macroscopic
boundary condition (22b). Then, Eqs. (25a) and (25b) can be solved by coupling them with
the constraint det Fa = 1 and the macroscopic boundary condition (22a). This algebraic
system allows us to compute the actuation stretches, λ1 and λ2, along with the localisation
parameters, ω1 and ω2.

3 Effective Response of a “Porous DLC”

Here, we study the behaviour of the DLC actuator in which the compressible phase b is just
vacuum.
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3.1 Influence of the Vacuum Phase on the Governing Equations

The (spatially uniform) deformation gradient Fb of the vacuum phase is defined in terms of
the displacement field at the interface between the solid phase a and the vacuum, that is

Fb = 1

|�b|
∫

∂�b

x ⊗ n0dA,

where ∂�b and |�b| respectively indicate the undeformed boundary and the initial volume
of the space region occupied by the vacuum phase and, here, n0 points outward �b .

In the “porous DLC”, the three mechanical stress components in the vacuum are zero,
such that, on the one hand, we have three less unknowns. On the other hand, we have two
less conditions, because Eq. (3a) on the continuity of the microscopic displacement at the
interfaces does not play any role. Hence, this might seem to be an ill-posed problem, and
this might be ascribed to the strong assumption of spatially uniform microscopic fields. This
notwithstanding, we will demonstrate its usefulness in interpreting the results of the com-
pressible DLC: this is the case because, as shown below, once the electric field is applied, the
vacuum phase suddenly changes its volume in such a way that all the governing equations
can be satisfied.

In the vacuum, only electrostatics contributes to the free-energy density, such that both
Eqs. (10) and (17) particularise to

Wb = −ε0Jb

2
|F−T

b Eb|2 , (26)

where ε0 = 8.85×10−12 F/m is the vacuum permittivity. When dealing with “porous DLCs”,
we denote the relative permittivity of phase a simply as

εr = εa/ε0 . (27)

By combining Eqs. (26), (14b), and (14c) we determine the stress and the electric displace-
ment in the vacuum, which read

Sb = ε0Jb(F−T
b Eb ⊗ C−1

b Eb) − ε0Jb

2
|F−T

b Eb|2F−T
b (28a)

and

Db = ε0JbC−1
b Eb . (28b)

By applying transformation (1c) to Eq. (28a), and accounting for Eq. (1a), we obtain the
Cauchy stress tensor in the vacuum due to the Eulerian electric field in the absence of mag-
netism, that is the Maxwell stress

σ b = ε0

(
eb ⊗ eb − 1

2
|eb|2I

)
. (29)

By following Sect. 2.4, we determine the expressions of the localisation parameters. It turns
out that β reads as in Eq. (24), except that the permittivity εb is substituted by ε0, while
relations (25a) and (25b) for ω can be simplified into

Fω · (Fm0) = − 1

cb

Fn0 · (Fm0) ⇒ Cω · m0 = − 1

cb

Cn0 · m0
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Fig. 2 Actuation response and relevant deformation stages of the “porous DLC”, for εr = 10, cb = 0.1, and
θ0 = (3/8)π . The change from continuous to dashed curve corresponds to the switch from Ē2-controlled to
λ1-controlled analysis. The dotted curve refers to the analogous DLC where phase b is constrained to be
incompressible

and

μaB(ω) + |F−Tn0|2
(

ε0Jb

2C(ω)
|F−T

b Eb|2 − pa

B(ω)

)

+ [F−TE · (F−Tn0)]2 εaJb [JbB(ω) − εrC(ω)][
cbεrC2(ω) + caJbB2(ω)

]2 = 0 .

3.2 Effective Actuation Response of the “Porous DLC”: Results, Analysis, and
Discussion

3.2.1 General Features of the “Porous DLC” Actuation

By referring to the macroscopic boundary conditions illustrated in Sect. 2.3, we apply an
increasing voltage across the electrodes. We initially set the volume fraction of the vacuum
phase cb = 0.1, the contrast on electric permittivities of the two phases εr = 10, and the
lamination angle θ0 = 3π/8. We will clarify the reason for choosing such an angle in the
analysis of Sect. 3.2.2 and will explore different values of θ0 and εr in Sect. 3.2.3. Here and
henceforth, the numerical results are obtained by solving the equations presented in Sects. 2
and 3.1 through the commercial software Mathematica® (Wolfram Research, Inc.).

Figure 2 displays the actuation response in terms of the longitudinal stretch λ1 as a func-
tion of Ē2, along with drawings of three relevant stages of deformation, labelled with capital
letters B to D on the red curve, the letter A identifying the undeformed configuration. These
drawings refer to a single unit cell of the laminate, where phases a and b are coloured in
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red and blue, respectively. The change of curve style from continuous to dashed indicates
the switch from Ē2-controlled to λ1-controlled analysis, needed because of the presence of
a maximum in the Ē2(λ1) function. 1 As a reference, the dotted black curve in Fig. 2 pro-
vides the prediction computed by using the Spinelli and Lopez-Pamies [22] analytical form
of the effective energy density for two-phase incompressible neo-Hookean DLCs, in which
we numerically set μb → 0 to mimic the vacuum phase, although such phase may not admit
volumetric deformation in the analytical solution presented in [22]. The fact that, within
this layout, the incompressibility constraint leads to a larger actuation is counterintuitive
and should be ascribed to the non-trivial deformation path followed by the unconstrained
vacuum phase, as described below.

The four stages A, B, C, and D subdivide the actuation response in the following three
different branches:

- transient branch A-B (dotted line): except for the stages A and B, in this initial branch our
algorithm cannot properly satisfy condition (3b) on the continuity of the traction vector
at the interfaces, whereby the vacuum phase suddenly reduces its volume. Quasi-statics
seems to be unable to properly describe the behaviour of the material until the config-
uration B is reached, (λ1, Ē2) ≈ (0.973,0.00025), in which all governing equations are
satisfied;

- branch B-C: by increasing the potential jump across the electrodes, the laminate elongates
in the X1 direction while shrinking along the X2 axis, until Ē2 reaches a maximum value
at C, (λ1, Ēcr

2 ) ≈ (1.155,0.459), that we ascribe to the onset of a pull-in electromechanical
instability. In our numerical simulation almost all of this branch is obtained by applying
E2. We remark that the electromechanical instability is absent from the response of a
homogeneous dielectric material under plane strain, at least for the neo-Hookean energy
density (9), such that it represents a peculiar feature of the composite [29];

- λ1-controlled branch C-D: once the critical value Ēcr
2 = 0.459 is reached, the longitudinal

stretch λ1 can increase up to the limit point D of coordinates (λmax
1 , Ē2) ≈ (1.289,0.335),

in which the vacuum phase vanishes (that is, Jb → 0). In the absence of numerical issues
preventing us from completing the analysis, the last point of the actuation curves pre-
sented in this work always corresponds to the collapse of the vacuum phase. Clearly, this
may not happen in the particularisation to “porous DLCs” of the solution of Spinelli and
Lopez-Pamies [22] for incompressible DLCs.

Moreover, the results of our numerical simulations, presented in Sect. 3.2.3 and obtained by
varying the initial lamination angle and the relative permittivity, indicate that the actuation
behaviour of the “porous DLC” is characterised by the two following important features,
henceforth referred to as FA and FB.

FA) At stage B the two direct components of the microscopic Cauchy stress vanish:

σa11 = σa22 = σb11 = σb22 = 0 . (30a)

Noticeably, in order to satisfy Eq. (3b), this results in a microscopically uniform
Cauchy stress, i.e.

σa12 = σb12 , (30b)

1Actually, we switch from Ē2-controlled to λ1-controlled analysis when the former reaches its maximum.
However, it often happens that after switching to λ1-controlled analysis Ē2 can still undergo a small increase,
thus slightly changing the maximum of the Ē2(λ1) function as predicted under Ē2-controlled analysis.
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which is obviously identical to the effective Cauchy stress σ12. The stress state is there-
fore pure shear throughout the actuator.
Moreover, by combining conditions (30a) with the general form (29) of the Maxwell
stress, which is the sole contribution to the stress in phase b, we obtain the following
condition among the components of the current electric field:

eb1 = −eb2 . (31)

Once conditions (30a) and (31) on the local fields are attained at stage B, they are
maintained for the whole process (up to stage D), although after B the interface may
undergo significant rotation for certain values of the initial lamination angle θ0.

FB) In the transient branch the interface is subject to negligible rotations if θ0 is suitably
larger than π/4, with θ0 ≤ π/2.

Next, through a simplified analytical investigation, we focus on the explanation of the be-
haviour observed in the initial transient branch A-B.

3.2.2 A Simplified Analysis of the Initial Transient

The two foregoing observations FA and FB allow us to provide an interpretation of the
response in the initial transient reported in Fig. 2 by resorting to the algebraic system con-
stituted by the average condition on the electric field (2b) along with the interface continuity
conditions (3c) and (3d) for the electric displacement and the electric field, respectively.

To this purpose, we rewrite such conditions in the current configuration, thus involving
the Eulerian quantities d and e (as defined by transformations (1b) and (1a), respectively):

(da − db) · n = 0 , (32a)

(ea − eb) · m = 0 , (32b)

caea + cbJbeb = e(ca + cbJb) , (32c)

where the unit vectors m and n are defined by Eq. (8) in terms of the current lamination
angle θ .

By substituting in Eq. (32a) the microscopic electrostatic constitutive laws da = εaea

and db = ε0eb , where Eq. (27) holds, and by accounting for e1 = 0, which is due to the
macroscopic conditions (19) and (21) and transformation (1a), we obtain the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εrea2 − eb2 + (eb1 − εrea1) tan θ = 0

ea1 − eb1 + (ea2 − eb2) tan θ = 0

caea1 + cbJbeb1 = 0

caea2 + cbJbeb2 = e2(ca + cbJb)

. (33)

We, first, consider feature FA by making use of Eq. (31). Thus, by substituting in the first
two equations of system (33) its third equation along with condition (31), we obtain two
homogeneous equations that are linear in the same two unknown components of the elec-
tric field. Hence, such two equations must be linearly dependent, and this turns out to be
equivalent to the condition

εr

tan θ
=

1 +
(

εr

cbJb

ca

+ 1

)
tan θ

tan θ − 1 − cbJb

ca

, (34)
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whose inspection shows that θ = π/2 is impossible, and if θ ∈ [0,π/2), in order to avoid
non-positive εr , we have the further condition:

tan θ > 1 + cbJb

1 − cb

⇒ θ >
π

4
.

Hence, assumption (31) may hold for actual lamination angle belonging to the interval

π

4
< θ <

π

2

and this somehow well agrees with our numerical investigations on the fully nonlinear prob-
lem that we will present in Sect. 3.2.3, whereby it becomes actually harder to obtain so-
lutions for the initial lamination angle θ0 approaching either π/4 from above or π/2 from
below.

We now consider feature FB, thus assuming θ = θ0 in the transient branch A-B (recall
that this should hold for θ0 suitably larger than π/4). This allows the use of Eq. (34) to
estimate Jb at stage B, denoted as J B

b , when all governing equations are satisfied:

J B
b ≈ [εr tan θ0 − (εr + tan θ0 + tan2 θ0)] 1 − cb

cbεr (1 + tan2 θ0)
. (35)

This estimate, relying also on the conditions (30a), says that, in order to ensure Jb > 0, one
should have

εr >
1 + tan θ0

1 − cot θ0
, (36)

which provides an interesting constraint on the relative permittivity of phase a as a function
of the lamination angle only, given its independence from the vacuum volume fraction.
In fact, Eq. (36) can be conveniently discussed by selecting a positive value of εr , thus
bringing to the conclusion that the lamination angle needs to be suitably larger than π/4
and suitably smaller than π/2. Violating constraint (36) would lead to the collapse of the
vacuum phase within the transient branch A-B, thus hampering, in our model that disregards
contact between interfaces initially separated by vacuum, the attainment of a configuration
where all the governing equations are satisfied.

Moreover, from Eq. (35) we deduce that, for large enough εr , the vacuum phase enlarges,
instead of shrinking as for the case illustrated in Fig. 2. By imposing that the right-hand side
of Eq. (35) is larger than 1, we estimate that this happens under the two following conditions:
the lamination angle should be such that

f (θ0, cb) ≡ tan θ0 − 1 − cb(1 + tan2 θ0)

1 − cb

> 0 (37)

and the relative permittivity should satisfy

εr > (tan θ0 + tan2 θ0)/f (θ0, cb) . (38)

Differently from constraint (36), conditions (37) and (38) depend on the vacuum volume
fraction. In general, the larger cb , the smaller the εr required to avoid transient shrinkage.
However, for a given θ0, cb is limited by the constraint (37), providing
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cb <
1 − cot θ0

1 + tan θ0
,

which states that, to avoid transient shrinkage, there should be no vacuum phase (cb = 0) for
both θ0 = π/4 and θ0 = π/2, while the maximum allowed value of cb is 3 − 2

√
2 ≈ 0.1716

(requiring, however, εr → ∞ because of Eq. (36)), being attained at

θ0 = 3

8
π .

Noticeably, this value of θ0 maximises J B
b independently of both εr and cb , also being the

value where the function at the right-hand side of Eq. (36) attains its minimum, thus indi-
cating that εr may not be lower than 3 + 2

√
2 ≈ 5.82843.

Moreover, the right-hand side of Eq. (38) provides an estimate for the watershed between
shrinkage and expansion within the transient. For cb = 0.1 and θ0 = 3π/8, we obtain εr ≈
12.5746.

By imposing the equality between the left-hand and right-hand sides of Eq. (38), we
can compute the vacuum volume fraction to be interpreted as an estimate for the volume
fraction that the vacuum assumes at the end of the initial transient (stage B in Fig. 2). For
this quantity we adopt the symbol cB

b and obtain

cB
b = 1 + εr(1 − cot θ0)

(εr − 1) cos (2θ0)
. (39)

We observe that Eq. (39) can also be solved to obtain the range of admissible θ0, by imposing
that 0 < cB

b < 1. For instance, by selecting εr = 10, we obtain 52◦.4 < θ0 < 82◦.6.
Additionally, once cB

b is known from Eq. (39), straightforward arguments lead to the
estimate of the volume ratio of the vacuum phase at stage B, which reads

J B
b = cac

B
b

cb(1 − cB
b )

. (40)

Of course, by substituting Eq. (39) into Eq. (40) one can exactly obtain the right-hand side
of Eq. (35).

It is interesting to observe that the foregoing analysis, along with the fundamental feature
FA, is fully confirmed by the exact solution of the electroelastic actuation problem in the
framework of small strains and rotations. In fact, in this framework there is only a one-way
coupling between electrostatics and mechanics [17], whereby electrostatics can be solved
first. System (33) particularises to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εrEa2 − Eb2 + (Eb1 − εrEa1) tan θ0 = 0

Ea1 − Eb1 + (Ea2 − Eb2) tan θ0 = 0

caEa1 + cbEb1 = 0

caEa2 + cbEb2 = E2

and can be easily directly solved for the four components of the microscopic electric fields.
In particular, by setting ca = 1 − cb , the components of the electric field in the vacuum read

Eb1 = − (1 − cb)(εr − 1) cos(2θ0)

2[1 + cb(εr − 1)] E2 , (41a)
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Eb2 =
(

εr cos2 θ0

1 + cb(εr − 1)
+ sin2 θ0

)
E2 . (41b)

Then, we can compute the microscopic electrostatic contribution to the stress through

σ a − σ mec
a = εa

(
Ea ⊗ Ea − 1

2
|Ea|2I

)
and σ b = ε0

(
Eb ⊗ Eb − 1

2
|Eb|2I

)
,

where σ mec
a is the mechanical stress in phase a.

Finally, the remaining unknowns are the three components of σ mec
a . Once they are ob-

tained, through the constitutive law one obtains the strain field in phase a, which governs
the macroscopic deformation. However, as mentioned above, we have four equations to ob-
tain these last three unknowns. Such equations consist of the continuity of the traction vector
at the interfaces (3b) and conditions (22a)–(22b) on the two macroscopic direct stress com-
ponents, which must vanish. It is however possible to solve this problem by assuming cb as
a fourth unknown, becoming the volume fraction that the vacuum must assume in order to
satisfy all the governing equations, which refers to the stage B in Fig. 2. For such a vacuum
volume fraction we obtain exactly Eq. (39). Noticeably, if expression (39) is substituted for
cb in Eqs. (41a)–(41b) one obtains relation (31), implying conditions (30a)–(30b) on the
microscopic stress and confirming our observation, referred to as feature FA, relying on the
numerical results obtained by solving the original nonlinear problem.

Clearly, in the framework of small strains and rotations, once the configuration estab-
lished by Eq. (39), in which the DLC is subject to uniform shear stress only, is “attained”,
it remains fixed and one can determine the effective DLC deformation through the strain
field in phase a. Conversely, in the geometrically nonlinear setting, after this configuration
is attained, we can observe a non-trivial evolution of the DLC actuation. Incidentally, it is
noteworthy that our implementation of the nonlinear problem can automatically attain this
configuration in a relatively small amount of applied electric field.

Next, we further numerically assess the foregoing analysis with two purposes. First, we
aim at understanding the behaviour reported in Fig. 2, which is crucial in order to tackle
the problem of the compressible DLC dealt with in Sect. 4. Second, we want to establish at
which extent the foregoing analysis may be adopted as a criterion to select the key param-
eters of a “porous DLC”, or even a compressible DLC with extremely high contrast in the
elastic moduli.

3.2.3 Numerical Assessment and Discussion

We begin by assessing the estimate provided by the right-hand side of Eq. (38), which gives
εr ≈ 12.5746 for cb = 0.1 and θ0 = 3π/8. The complete analysis on the basis of the results of
Sect. 3.1 agrees with this estimate as it provides no transient branch at all for εr = 12.5746;
more precisely, Jb ≈ 1.0 remains almost constant up to Ē2 ≈ 0.03 and then slightly de-
creases to Jb ≈ 0.999975 at Ē2 ≈ 0.07. In this case, the peak of the Ē2(λ1) curve (that is, the
electromechanical instability) is reached at (λ1, Ē2) ≈ (1.183,0.468).

Then, initially for the case εr = 10, we investigate the influence of the lamination angle
in the actuation response of the composite, by properly selecting θ0 in the open interval
(π/4,π/2). In particular, in Fig. 3 we consider θ0 ={45◦,50◦,60◦,70◦,80◦,81◦}. We remark
that, as displayed in the drawing of the deformation stage E in Fig. 3, for θ0 = 45◦ the
interface is subject to a significant rotation, so that feature FB of Sect. 3.2.1 does not hold, as
well as the analysis leading to Eqs. (35)–(39). This notwithstanding, the sole non-vanishing
Cauchy stress component is still the shear one, which is spatially uniform over the whole
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Fig. 3 Actuation response of the “porous DLC” for εr = 10, cb = 0.1, and variable lamination angle θ0. The
stages of deformation E and F correspond to the first equilibrium configuration after the transient branch for
θ0 =45◦ and θ0 =80◦ , respectively. The change from continuous to dashed curve corresponds to the switch
from Ē2-controlled to λ1-controlled analysis. The red curve is the same as in Fig. 2

DLC. This important feature, referred to as FA in Sect. 3.2.1, is common to all the lamination
angles, volume fractions, and permittivities, and is maintained up to the end of the analysis,
always corresponding to collapse of the vacuum phase (Jb → 0). This happens at stage D in
Fig. 2 or much earlier, even before reaching the electromechanical instability, for low θ0, as
for instance for the cases θ0 = 45◦ and θ0 = 50◦ in Fig. 3.

For θ0 = 80◦, the stage of deformation denoted with F in Fig. 3 shows that the unit cell
exhibits negligible rotations, thus confirming feature FB. This is actually common to all
θ0 ≥ 3π/8 up to the maximum possible initial lamination angle, whose actual value can be
estimated through Eq. (39). Our code cannot solve the problem for θ0 = 82◦.5, as in this
case the transient ends up with a complete collapse of the vacuum phase, which, in fact,
quite well agrees with Eq. (39), establishing that the maximum θ0 for the selected relative
permittivity, εr = 10, is equal to ≈ 82◦.6 (cB

b would be negative at larger θ0). For the sake of
graphical clarity, Fig. 3 does not display the complete actuation response for large θ0, which
we will discuss in detail below for higher relative permittivity.

Back to the cases of “small” initial lamination angle, according to the foregoing observa-
tion, Eq. (39) would predict that, in order to avoid cB

b ≤ 0, the smallest possible θ0 for εr = 10
is θ0 ≈ 52.4, which does not actually agree with the results of our fully nonlinear analyses.
In fact, the interface rotation allows a different solution to be attained, which is anyway as-
sociated with a poor actuation, as is clear from Fig. 3. We obtain totally analogous solutions
with initial lamination angle even smaller than 45◦ (but, obviously, not significantly smaller
than 45◦).

Now, in discussing the case εr = 20, we delve into further details. The results in terms
of the actuation response for various θ0 are reported in Figs. 4 and 5. In particular, Fig. 4
provides results for both “small” and “large” initial lamination angles along with a compar-
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Fig. 4 Actuation response of the “porous DLC” for εr = 20, cb = 0.1, and variable lamination angle θ0.
The change from continuous to dashed curve corresponds to the switch from Ē2-controlled to λ1-controlled
analysis. For comparison, the red curve represents the solution for εr = 10 and θ0 = (3/8)π ≡ 67◦.5, already
plotted in Figs. 2 and 3

Table 1 Volume ratio of the
vacuum phase at the end of the
initial transient: comparison
between the results of the fully
nonlinear analyses and the
analytical estimate (35)

θ0 J B
b

J B
b

error

nonlinear Eq. (35) [%]

50◦ 0.6597 0.2274 −65.5

60◦ 1.0895 1.1148 2.32

67◦ .5 1.3176 1.3208 0.243

75◦ 1.1260 1.1148 −0.995

80◦ 0.7289 0.7543 3.48

82◦ .5 0.4672 0.5108 9.33

85◦ 0.1766 0.2274 28.8

86◦ .4 0.005182 0.05209 905.

ison with the case εr = 10, while Fig. 5 focuses on the whole actuation response for “large”
initial lamination angles. Note that, in this case, Eq. (38) predicts that the possible range of
the initial lamination angle approximately is θ0 ∈ (48◦.2,86◦.8).

We begin by considering the predictions provided by Eqs. (39) and (40) (or, equivalently,
Eq. (35)) for the volume ratio of the vacuum phase at the end of the initial transient. The
results are reported in Table 1, where we compare them with our findings from the fully
nonlinear analyses, by also reporting the percentage relative error.

As expected, for θ0 = 3π/8, we observe an excellent agreement between the predic-
tions, delivering cB

b ≈ 0.12797 and J B
b ≈ 1.3208, and the fully nonlinear analysis, providing

J B
b ≈ 1.3176. As θ0 either decreases towards 48◦.2 or increases towards 86◦.8 the agreement

becomes much worse.
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Fig. 5 Actuation response of the “porous DLC” for εr = 20, cb = 0.1, and variable lamination angle θ0.
The change from continuous to dashed curve corresponds to the switch from Ē2-controlled to λ1-controlled
analysis

As for the case εr = 10, we could not attain solutions up to the electromechanical insta-
bility for low initial lamination angle (see the case θ0 = 50◦), as the vacuum phase collapses
earlier. In very good agreement with Eq. (38), which predicts a maximum possible initial
lamination angle ≈ 86◦.8, θ0 = 86◦.4 is the largest initial lamination angle that we can se-
lect in the fully nonlinear analysis in order to avoid that at stage B (that is, at the end of the
initial transient) the vacuum phase collapses, thus ending the analysis. For such a large θ0,
the actuation performance is noticeable, as the final longitudinal stretch λ1 goes up to the
value 3.577. In general, the actuation response, as expressed in terms of the obtained maxi-
mum λ1, largely improves by increasing the lamination angle towards its maximum value as
estimated by Eq. (38). Hence, the criterion adopted to choose θ0 = 3π/8 does not lead to the
best actuation performance at all, that is, the best DLC actuation is not that of the actuator
minimising the shrinkage (or even maximising the enlargement) of the vacuum phase in the
initial transient branch.

Differently from the case εr = 10, in the case εr = 20 the maximum of the Ē2(λ1) curve is
always attained exactly at the end of the Ē2-controlled analysis. This is further evidenced by
the square symbols in Fig. 6, where, for the sake of completeness, we provide the evolution
of the (spatially uniform) Cauchy shear stress as a function of the longitudinal stretch.

4 Effective Response of a Compressible DLC: Results, Validation, and
Discussion

On the basis of the analysis for the limit case of the “porous DLC” discussed in Sect. 3,
here we finally illustrate the behaviour of the compressible DLC actuator. The results are
obtained by implementing the governing equations presented in Sect. 2 in the commercial
software Mathematica® (Wolfram Research, Inc.).
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Fig. 6 Nondimensional Cauchy shear stress in the actuation of the “porous DLC” for cb = 0.1 and variable
lamination angle θ0 and relative permittivity εr . The change from continuous to dashed curve corresponds to
the switch from Ē2-controlled to λ1-controlled analysis, while the square symbol indicates the point where
the Ē2(λ1) curve attains its maximum

Except when otherwise specified, we will focus on the contrast between the shear moduli
(12) equal to

ρμ = 3 × 103 . (42)

Figures 7 and 8 display the actuator response for not-too-large longitudinal stretch. We pro-
vide the response as a function of the bulk modulus Kb through the ratio (11) measuring
the phase contrast. For the sake of understanding, we explore a wide range of this ratio,
ρK = 1,10,102,103,106, which, by keeping the parameter (42) fixed, corresponds to Pois-
son’s ratio values νb ≈ 0.4998,0.4983,0.4835,0.35,−0.9866, respectively.

In Fig. 7 we also consider the incompressible case (ρK = 0), which is obtained through
the Spinelli and Lopez-Pamies [22] analytical form of the effective energy density. The
closeness of this exact solution with the response obtained for ρK = 1 (which is the smallest
value of ρK here investigated) provides a further confirmation on the accuracy of our algo-
rithm, implemented as described in Sect. 2.4, for the solution of the fully nonlinear problem
of DLC actuation.

Figure 7 shows the performance enhancement of the DLC with respect to both the analo-
gous incompressible actuator and the homogeneous actuator constituted by the incompress-
ible phase only. Each of the responses reaches a maximum indicating the onset of pull-in
electromechanical instability beyond which the electrostatic stress cannot be equilibrated
by the elastic stress. Analogously to Sect. 3, this critical value of the electric field approx-
imately corresponds with the end of the Ē2-controlled branch of the simulation, which is
followed by a λ1-controlled analysis, whose results are represented with dashed curves in
our figures. We note that the value of λ1 at the onset of the pull-in instability increases by
augmenting the parameter ρK (that is, by diminishing Kb for a given μa). As a reference,
Fig. 7 also reports, in coloured dotted curves, the responses predicted within the framework
of small strains and rotations.
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Fig. 7 Actuation response of the compressible DLC as a function of the ratio (11), for ρμ = 3 × 103,
εa/εb = 10, cb = 0.1, and θ0 = 3π/8: behaviour for electric field limited to its first stationary value com-
pared with the incompressible (ρK = 0) and homogeneous cases, represented by the dotted and dashed black
curves, respectively. The change from continuous to dashed style in the coloured curves corresponds to the
switch from Ē2-controlled to λ1-controlled analysis. Coloured dotted curves represent the response predicted
within the small strains and rotations framework

The most interesting feature of the obtained actuation response for the compressible DLC
is reported in Fig. 8, which shows that, for large enough phase contrast in terms of elastic
moduli, by increasing Ē2 beyond the critical value highlighted in Fig. 7, the solution switches
to a distinct branch, exhibiting similarities with the initial transient branch of the actuation
response obtained for the “porous DLC” (see Sect. 3). In fact, the lower and upper branches
of the responses of the compressible DLC exhibiting a middle transient branch feature direct
stress components of the total Cauchy stress that are numerically completely negligible with
respect to the shear component. This is not the case, of course, in the transient branch itself,
where the algorithm cannot satisfy all the governing equations. We remark that the almost-
pure shear stress state holds for longitudinal stretch limited as in Figs. 7 and 8; in fact, as
shown below, the picture significantly changes for larger λ1.

Before delving into further details of the response illustrated in Fig. 8, which constitutes
one of the main outcomes of this investigation, it is important to further characterise the
actuation response of Fig. 7. This is accomplished through Figs. 9 and 10, where we focus
on the case ρK = 103.

Figure 9 displays drawings of the unit cell at three significant stages of deformation,
labelled with capital letters A to C, which identify the following branches:

- E2-controlled branch A-B: the input potential jump triggers an immediate elongation
in the longitudinal direction, along with a considerably large increase of the volume
of the softer phase b, which almost doubles its initial volume at point B, (λ1, Ē2) ≈
(1.261,0.117), corresponding to the onset of the instability;

- λ1-controlled branch B-C: by increasing the longitudinal stretch λ1 up to the limit value
λ1 = 2, we observe a monotonic decrease of the electric field, whereas the DLC further
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Fig. 8 Actuation response of the compressible DLC as a function of the phase contrast: behaviour for mono-
tonically increasing electric field up to its second stationary value and comparison with the response of the
“porous DLC”, plotted in thick red as in Fig. 2. As indicated, ρK ∈ [1,106], while ρμ = 3 × 103 except
for the gray and yellow curves, where ρμ = 3 × 104 and ρμ = 3 × 105, respectively. Note that a response
almost superposed to the gray curve has been obtained with ρμ = 3 × 105. Other material parameters are
εa/εb = 10, cb = 0.1, and θ0 = 3π/8. The dashed style for coloured curves indicates the transient response

shrinks along the transverse direction X2. Along this branch, the softer phase b highly
deforms by incrementing its volume.

However, the analysis does not end at stage C, as reported in Fig. 10. In fact, after the
minimum in the Ē2(λ1) curve, at λ1 ≈ 2, the stress state in the DLC changes completely: it
does not consist of homogeneous Cauchy shear stress only, as the direct stress components
are not negligible anymore and, in particular, σ11 definitely becomes the largest Cauchy
stress component with the increase of λ1. In more detail, this regime is characterised by the
volume of the compressible phase almost vanishing while the current lamination angle tends
to zero: this, on the one hand, leads to a very large Cauchy pressure and, on the other hand,
allows the compressible phase to largely elongate along the longitudinal direction. Actually,
our model can obtain solutions even for far larger values of the longitudinal stretch than the
value λ1 = 5.5 limiting Fig. 10, with Ē2 monotonically increasing, although very slightly.
However, a deeper investigation on this behaviour is out of the scope of this work, as it
would first of all require a critical assessment of the constitutive electromechanical models
to adopt, to be carefully selected for these very large deformations [1, 2, 4, 33, 35, 38–40],
possibly involving inelasticity and requiring a deformation-dependent apparent permittivity
(see, e.g., [25, 41] and references therein). These would certainly be crucial issues to address
for the softest phase, given the huge volumetric contraction that is just predicted with the
hyper-electro-elastic models here adopted, and should be first of all ascertained to some
extent with respect to the actual employed material.

Back to Fig. 8, by increasing Ē2 beyond the onset of the (first) pull-in instability, for large
enough phase contrast, we obtain the interesting results therein illustrated. After attaining
the critical stage with quite good numerical accuracy, the further increase of Ē2 leads to
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Fig. 9 Actuation response with some relevant deformation stages of the compressible DLC, for nondimen-
sional electric field (20) limited to its first stationary value. The main model parameters are: ρK = 103,
ρμ = 3 × 103, εa/εb = 10, cb = 0.1, and θ0 = 3π/8

Fig. 10 Actuation response of the compressible DLC for ρK = 103, ρμ = 3 × 103, εa/εb = 10, cb = 0.1,
and θ0 = 3π/8: first branch up to very large longitudinal stretches. The black dotted curve represents the
behaviour of the incompressible DLC

a transient branch, displayed with dashed lines, where, analogously to the A-B transient
observed in the “porous DLC”, the stress continuity condition at the interface (3b) cannot
be properly satisfied. Correspondingly, as Ē2 increases, the fields in the actuator largely
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modify, with the longitudinal stretch suddenly decreasing up to overall shortening (λ1 < 1),
to reach a new configuration in which all the governing equations are fulfilled. In Fig. 8 this
configuration corresponds to the first point of the continuous curves to the left of the red
curve describing the response of the “porous DLC”, playing the role of a master curve. In
fact, the response of the “porous DLC” is approached, when further increasing Ē2, by all the
responses for ρK ≥ 102 by setting ρμ as in (42). We observe that, for this contrast in terms
of shear moduli and ρK = 102, the Poisson’s ratio of the compressible phase is νb ≈ 0.4835.
In order to obtain such a behaviour for a larger Poisson’s ratio, one has to leverage on
ρμ. This is for instance the case of the gray and yellow curves in Fig. 8, where we have
set ρμ = 3 × 104, ρK = 102 and ρμ = 3 × 105, ρK = 103, respectively, corresponding to
νb ≈ 0.4983. Additionally, by setting ρμ = 3 × 105, ρK = 102 (that implies νb ≈ 0.49983),
we have obtained an actuation response, undisplayed in Fig. 8 for the sake of clarity, that is
basically superposed to the prediction for ρμ = 3 × 104, ρK = 102. This is quite important
because this value of νb is comparable to that obtained from measurements of initial moduli
of elastomers [5]. For instance, for the infinitesimal deformation of vulcanised natural rubber
at temperature of 25◦, Wood and Martin [34] measured a bulk modulus ≈1984.1 MPa which,
in conjunction with a Young modulus of ≈1.2748 MPa, determines a Poisson’s ratio ≈
0.49989. We must remark, however, that these results suggest that an extremely large phase
contrast is required for such a low compressibility to lead to the new multi-branch response.
As a rule, the larger the phase contrast, the smaller the required compressibility of phase b.
Let us finally observe that by increasing ρK the switch of branch occurs at smaller values of
Ē2 and the master curve is approached earlier.

On the basis of the foregoing arguments, we can further infer that the whole first branch
of the actuation response for the compressible DLC, as displayed in Fig. 8, collapses in
the single origin point, (λ1, Ē2) = (1,0), for (ρμ → ∞, ρK → ∞), that is, for the “porous
DLC”. More importantly, we expect that the analysis of Sect. 3 for the “porous DLC” will
be beneficial for the characterisation of the first electromechanical instability experienced
by the compressible DLC, occurring at stage B in Fig. 9, which surely deserves an ad hoc
future investigation.

Let us remark that in the boundary-value problem for the compressible DLC the number
of equations to solve corresponds to the number of unknowns, while the lack of this algebraic
condition has been detected in Sect. 3 as the main motivation for the existence of the initial
transient branch in the “porous DLC”. Here, in the case of the compressible DLC, the fact
that a similar transient shows up because of the nonlinearity of the problem gives ground to
the hypothesis that it should be possible to properly describe this transient by extending the
model to some appropriate physical aspects, such as dynamics.

For the sake of clarity, the responses in Fig. 8 are cut at the (second) occurrence of elec-
tromechanical instability. We fill this gap in Fig. 11, where, after this maximum of the Ē2(λ1)

curve, we continue the analysis by applying monotonically increasing longitudinal stretch.
It is interesting to observe that the response initially follows the post-critical behaviour of
the “porous DLC” and, then, when this branch is abandoned our algorithm cannot obtain
a solution satisfying all the governing equations (situation represented in Fig. 11 with a
thin dashed line) until we obtain solutions by jumping on the lower λ1-controlled branch
following the very first electromechanical instability.

Now, in Figs. 12 and 13, we give a further insight on the important role of the DLC
anisotropy by providing results for variable initial lamination angle θ0. In the case εa/εb =
10 (see Fig. 12), as expected, the curves for θ0 ≥ 67◦.5, towards their maximum electric
field, approach their respective master curves (displayed with thin-dashed lines) referred
to the corresponding “porous DLCs” (see Fig. 3). In agreement with the issues faced in
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Fig. 11 Actuation response of the compressible DLC, for ρK = 103, ρμ = 3 × 103, εa/εb = 10, cb = 0.1,
and θ0 = 3π/8. The red curve refers to the “porous DLC”, while the orange dashed curve reports the response
obtained by switching to λ1-controlled analysis after occurrence of the first electromechanical instability

Sect. 3.2 for the “porous DLC”, this is not exactly the case when setting θ0 = 60◦, for which
the presence of a compressible phase instead of vacuum allows the application of a slightly
larger maximum electric field, although the maximum that our code can reach is not yet a
stationary value of the λ1(Ē2) function.

In the case εa/εb = 20, the results displayed in Fig. 13 for θ0 ≤ 67◦.5 unveil a further
different behaviour, which is characterised by a single branch where all the equations gov-
erning the nonlinear problem are always satisfied. Note that in these responses, initially,
the longitudinal stretch very slightly increases and the master curves of the corresponding
“porous DLCs” are never approached. Moreover, in spite of the stark contrast between this
type of response and that multi-branch mainly documented in this study, observation FA

of Sect. 3.2.1 still holds, that is, also in this single branch behaviour the sole non-vanishing
Cauchy stress component is the shear one. Finally, and again as expected from the analysis of
Sect. 3.2 on the “porous DLC”, the actuation performance is poor for low initial lamination
angles, such that we leave a deeper study of this type of response for future investigations.

Table 2 provides the values of the current lamination angle, obtained through Eq. (23),
corresponding to the occurrence of the two electromechanical instabilities characterising
each λ1(Ē2) curve under monotonically increasing applied voltage. In particular, θ1 refers to
the first instability and θmax refers to the second instability or, if a maximum in the λ1(Ē2)

curve cannot be reached, to the largest obtained value of Ē2. Remarkably, in all cases in
which we can identify both θ1 and θmax they turn out to be quite close to each other. This
phenomenon might be ascribed to the dependence of the macroscopic DLC anisotropy on
the microstructure evolution, possibly encompassing an overall stiffness which is a non-
monotonic function of the current lamination angle (on the same line of the purely mechan-
ical studies on fibre-reinforced elastomers [42]).

Finally, it is important to demonstrate that, qualitatively, the behaviour illustrated in Fig. 8
is due to the allowed volumetric deformation in the compressible DLC, while it does not
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Fig. 12 Actuation response of the compressible DLC as a function of the initial lamination angle θ0: be-
haviour for monotonically increasing electric field beyond the transient response, indicated with thick-dashed
style. Thin-dashed master curves, taken from Fig. 3, refer to the “porous DLCs”. The model parameters are
ρμ = 3 × 103, ρK = 102, εa/εb = 10, and cb = 0.1

Table 2 Current lamination
angle at occurrence of
instabilities for ρμ = 3 × 103,
ρK = 102, and cb = 0.1

θ0 εa/εb θ1 θmax

60◦ 10 55◦.789 57◦.182

67◦.5 10 61◦.404 60◦.150

80◦ 10 68◦.006 70◦.733

60◦ 20 NA 56◦.954

67◦.5 20 NA 61◦.624

80◦ 20 67◦.511 67◦.197

ensue from the specific choice (10) for the free-energy density of the compressible phase b.
This is accomplished in Fig. 14, where we observe similar responses if we model phase b

through either the coupled free energy (17) or the decoupled potential (10). Note that in the
coupled energy (17) we have set γb = 1/6, which would imply, through Eq. (18), Kb = μb ,
that is ρK = 3 × 103, according to the choice in Eq. (42). In fact, setting relatively large
values of γb leads to inaccurate numerical results in our code, and the results that we have
obtained for γb = 7/6, which would be consistent with ρK = 103, are already unreliable. 2

We emphasise that the DLC whose compressible phase is described by the coupled potential

2More precisely, these unreliable results feature a quite irregular “anomalous branch” of the actuation re-
sponse, departing from the typical Ē2(λ1) curve when the electric field is quite close to its first stationary
point, and characterised by many inaccuracies in the fulfilment of the governing equations, such as, for in-
stance, Ja not close enough to 1. This is totally dissimilar to the transient discussed in this investigation, as
this “anomalous branch” follows a completely different path, it changes with the model parameters, and does
not lead to any other branch where the governing equations are accurately satisfied.
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Fig. 13 Actuation response of the compressible DLC as a function of the initial lamination angle θ0: be-
haviour for monotonically increasing electric field beyond the transient response, indicated with thick-dashed
style. Thin-dashed master curves, taken from Fig. 3, refer to the “porous DLCs”. The model parameters are
ρμ = 3 × 103, ρK = 102, εa/εb = 20, and cb = 0.1

(17) not only exhibits a multi-branch response totally similar to that described so far by
adopting the uncoupled energy (10), but, after the transient branch, it also approaches the
response of the “porous DLC”.

5 Concluding Remarks

In the context of soft dielectric composites with high phase contrast in terms of elastic
moduli, up to the limit of a phase consisting of vacuum, our investigation has unveiled a
quite complex electromechanical response due to the volumetric deformation, within the
framework of finite deformations.

By referring to the actuation of two-phase dielectric laminated composites (DLCs),
where only the stiffest phase is assumed to be incompressible, we have discovered a sur-
prisingly rich set of possible responses, depending on model parameters such as the initial
lamination angle θ0 and the phase contrast in terms of both elastic moduli and permittivities.
In particular, we have focused on a behaviour characterised by a multi-branch response and
two levels of electromechanical instability. Such a rich behaviour has been obtained for a
DLC under plane strain and free to deform axially along its thickness and longitudinal di-
rections, while being constrained to experience vanishing effective shear deformation. The
DLC actuation performance is evaluated by measuring its longitudinal elongation under the
application of an electric field along its thickness.

We have followed a well-known ad hoc homogenisation procedure for DLCs [17, 21, 29],
which takes advantage of periodicity and assumes that the microscopic fields are spatially
uniform within each phase. In the case of the “porous DLC”, that is the DLC in which a
phase is vacuum, such homogenisation procedure leads to an initially ill-posed algebraic
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Fig. 14 Actuation response, limited to the maximum value reached by the applied electric field, of the com-
pressible DLC obtained by adopting either the decoupled free energy density (10) (cyan curve) or the coupled
free energy density (17) (blue curve). The significant material parameters are ρμ = 3 × 103, ρK = 3 × 103

(which is consistent with γb = 1/6 in the energy (17)), εa/εb = 10, cb = 0.1, and θ0 = 3π/8. For compar-
ison, we also display the response of the “porous DLC” (red curve) and that of the compressible DLC with
free energy density (10) and ρK = 103 (orange curve), which appears in all the figures since Fig. 8

problem, having one extra equation to be satisfied with respect to the number of unknowns.
We have demonstrated, by comparing analytical estimates and numerical results obtained
for the fully nonlinear problem, that this mathematical impasse is overcome after a sudden
transient branch in which the vacuum phase changes configuration until attaining a DLC
arrangement in which all the governing equations are fulfilled. In general, this configuration
change mostly involves a large variation of the vacuum volume, but it may also encom-
pass variations of the lamination angle for a certain range of values of θ0 (see Fig. 1). The
transient may correspond to either shrinkage or elongation along the longitudinal direction
depending on θ0, the initial vacuum volume fraction cb , and relative permittivity of the solid
phase εr . We have demonstrated that our analytical estimate for the configuration attained
by the “porous DLC” just after the transient is accurate for θ0 not-too-far from 3π/8, which
is the value that maximises the volume of the vacuum phase at the end of the transient. Ad-
ditionally, through the detailed analysis of the “porous DLC”, we have obtained estimates
establishing that θ0 must range between π/4 and π/2, with better actuation performance for
larger angles, and that cb may not exceed 3 − 2

√
2 ≈ 0.1716, independently of θ0 and εr .

The most noticeable result of our investigation is that a very similar transient branch is
observed also for the general compressible DLC, in spite of the absence of the algebraic
problem affecting the “porous DLC”. More specifically, the actuation response of the com-
pressible DLC displays an initial branch exhibiting “usual” DLC elongation up to a first
electromechanical instability. At this stage, upon increasing the applied electric field, the
above mentioned transient branch appears and leads to a decrease of the effective longitu-
dinal stretch up to an overall DLC shortening. After the transient, the actuation response
suddenly approaches that of the “porous DLC” and, then, accurately follows it significantly
beyond its electromechanical instability, which is the second level of instability for the com-
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pressible DLC. Although the occurrence of this behaviour depends on both θ0 and the phase
contrast, it more easily holds for θ0 ≥ 3π/8, which, interestingly, leads to the best actuation
performance, whereby the latter can be related to the evolution with the applied voltage of
the current lamination angle and the corresponding overall DLC anisotropy.

Moreover, our results strongly confirm that by leveraging both on the phase contrast and
on other microstructural parameters one can, in principle, greatly enhance the electrome-
chanical performance of soft dielectric composites.

5.1 Open Issues

In our opinion, the rich response of compressible DLCs deserves to be further investigated,
by first of all focusing on the characterisation of the two observed levels of electromechan-
ical instability. Moreover, exploring the outcome of assuming an electric breakdown limit
for the involved materials would certainly be worthwhile.

The high phase contrast in terms of elastic moduli that we have explored calls for a critical
assessment of the assumption of spatially uniform microscopic fields on each phase, mostly
in relation to the adopted boundary conditions. To this purpose, the comparison against the
results of full-field simulations, for instance performed by resorting to the finite element
method, would be extremely useful. As an additional detail, we note that the finite element
method would allow the implementation of a contact law to perform analyses beyond the
collapse of the vacuum phase, while, in the present investigation, this is the condition that
typically ends the analysis.

In spite of the very simple composite layout that we have considered, a significant amount
of work would still be needed in order to thoroughly explore the influence of all the geomet-
rical and constitutive parameters involved. About geometry, although we have limited our
analysis to initial volume fraction of the compressible phase, cb , equal to 0.1, we think that
it would be interesting to investigate on the effect of varying it. Moreover, on the basis of
our detailed analysis of the influence of θ0 on the “porous DLC”, we have mostly focused
on θ0 = 3π/8 for the compressible DLC, even though the effect of this important parameter
would deserve further studies, also in the light of its influence on the overall DLC anisotropy.
About constitutive parameters, a key point would be establishing a relationship for the com-
binations of phase contrast and soft phase compressibility (expressible in terms of the ratios
defined in Eqs. (11) and (12), plus the permittivity contrast) able to trigger the multi-branch
actuation response here unveiled. In this regard, an interesting option could consist of ana-
lytically approaching the DLC homogenisation in the limit of nearly incompressible [3] soft
phase.

Regarding the mechanical boundary conditions, the macroscopic assumption of vanish-
ing shear deformation might be relaxed by adopting a more general boundary condition
elastically linking S12 and F12. A preliminary study involving this condition has shown the
potential to provide further insight on the behaviour of compressible DLCs. However, the
extra parameter involved in such a problem would turn out in a much more complex presen-
tation of the results, without adding much to the message that we aim to convey. Moreover,
note that in the case of free shear deformation (that is, if one imposes S12 = 0, as investigated
by Gei et al. [29] for incompressible DLCs and by Tian [17], further limiting the attention to
small strains and rotations) it is impossible to obtain any solution for the actuation problem
on the “porous DLC”, where, in such a case, the vacuum phase immediately collapses be-
cause of the possibility of the solid phase to rotate. Correspondingly, one faces difficulties,
at least of numerical nature, in solving the actuation problem for the compressible DLC with
high phase contrast.



196 L. Bardella et al.

Accounting for a more realistic boundary condition than vanishing macroscopic shear
deformation is however beyond the goals of the present investigation. In fact, in a realis-
tic simulation of a DLC actuator with very high phase contrast, such condition should be
accompanied with a careful modelling of the boundary effects ensuing from the way the
two phases are actually connected with the exterior, by for instance accounting for a finite
electrode compliance in a rank-one DLC, or for the stiffness of the surrounding material
in a hierarchical DLC. Unfortunately, this problem, which is at least fully two-dimensional
and involves heterogeneous microscopic fields, would require a challenging computational
effort that we leave for future investigations. Given that richer benchmarks will lead to even
more complex behaviours than that unveiled in this contribution, we infer that the simple
benchmark here adopted is enough for us both to warn against the indiscriminate use of the
incompressibility assumption in soft dielectric composites and to claim that there is room
for improvements in the design of DLC actuators.

Micro- and macro-scopic instabilities leading to non-homogeneous deformations can
also be investigated in DLCs. In this case, the methodology presented in, e.g., [16, 22,
37] can be applied. In particular, microscopic instability corresponds to onset of non-
homogeneous diffuse modes whose wavelengths are in the order of phase thicknesses,
whereas a macroscopic instability is a large wavelength mode that can be analysed by de-
termining the loss of ellipticity threshold of the homogenised constitutive response. It is
expected that, along the paths described in Sect. 4, the first mode to occur among the two
will depend in a complicated way on all the parameters involved (volume fractions, initial
lamination angle, contrast between phases). Therefore, establishing reliable estimates of the
critical mode surely deserves an ad hoc investigation.

About the electrostatic boundary condition, it might be worth to study the charge-
controlled actuation process, where, instead of a voltage drop across the electrodes, one
applies charges on the electrodes. This suggests a further line of research that would consist
in selecting the nominal electric displacement D, instead of the nominal electric field E, as
primal variable for the Helmholtz free-energy density.

The extension of our model to other physical aspects might be important in order to gain
a better understanding of the observed transient branch in the actuation response. Addi-
tionally, the study of the response for very large deformations would also require a dedi-
cated investigation towards employing suitable constitutive models for the adopted materi-
als. Among several aspects disregarded in our study, without even mentioning inelasticity,
let us recall the possibility of introducing a deformation-dependent apparent permittivity, at
least for the softest phase.

We note that the study of the two-phase “porous DLC” might have an impact on non-
linear high-performance hierarchical DLCs, recently studied by limiting the attention to the
incompressible case [15, 24]. More generally, it would be certainly important to carry out
similar studies for soft dielectric composites with different microstructures, for instance en-
compassing randomness and the presence of a matrix (that is, a continuous phase, missing
in laminated composites).
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