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Abstract

Sign-Perturbed-Sums (SPS) is a system identification algorithm that, under mild assumptions on the distribution of the noise,
constructs confidence regions with finite-sample validity and a user-specified confidence level. For linear regression models,
SPS regions are well-shaped in a precise meaning, but it is still possible (though rare in practice) that they are unbounded. In
this communication, we provide a reformulation of a technical condition for the boundedness of the SPS regions in terms of
a more practical excitation condition. We briefly argue that the simple condition here proposed provides insight to tune the
SPS parameters, and even to design refined algorithms that can be guaranteed to deliver bounded regions.
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1 Introduction

Consider a system in linear regression form

Yt = ϕ⊤
t θ

∗ +Nt,

where t is the discrete time index, Yt is the (scalar)
output, Nt the (scalar) noise, ϕt is a measured d-
dimensional input regressor and θ∗ is an unknown d-
dimensional parameter vector that we want to estimate
based on a finite set of n input-output observations
(ϕ1, Y1), (ϕ2, Y2), . . . , (ϕn, Yn).

The noise sequence {Nt} is made up of random variables
that are independent (not necessarily identically dis-
tributed) and symmetric about zero. We treat the mea-
sured input sequence {ϕt} as deterministic, although the
generalisation to the case of random inputs is immediate
as soon as {ϕt} and {Nt} are independent.

The least squares estimate (LSE) θ̂n is the value of θ
that minimises the sum of the squared prediction errors
{Yt − ϕ⊤

t θ}, i.e.,

⋆ This paper was not presented at any IFAC meeting.
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θ̂n , argmin
θ∈Rd

n∑

t=1

(Yt − ϕ⊤
t θ)

2. (1)

The LSE, (1), satisfies the normal equation

n∑

t=1

ϕt(Yt − ϕ⊤
t θ) = 0,

whose solution is unique provided that

Rn ,
1

n

n∑

t=1

ϕtϕ
⊤
t

is invertible. The invertibility of Rn is assumed through-
out, so the LSE can always be written as

θ̂n =

( n∑

t=1

ϕtϕ
⊤
t

)−1( n∑

t=1

ϕtYt

)
.

The Sign-Perturbed-Sums (SPS) algorithm [6] con-

structs a confidence region Θ̂n ⊆ R
d around θ̂n, with a

guaranteed probability of including θ∗.

The construction of the SPS region Θ̂n depends on two
integer parameters, q andm, 1 ≤ q < m, that are prelim-
inarily set by the user. Sometimes, when it is important
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to recall the dependence of Θ̂n on q and m, we will write

more explicitly Θ̂n;(q,m) instead of Θ̂n. The SPS region

Θ̂n is the set of the candidate parameters θ that satisfy
a simple inclusion condition: the values of m functions
v0(θ), . . . , vm−1(θ) (which we will define below) are com-
pared and the rank of v0(θ) is computed (we say that
the rank is one if v0(θ) is the smallest value among those
in the vector [v0(θ), . . . , vm−1(θ)]; two, if it is the second
smallest, etc.; in the case of ties, a suitable tie-break rule
is introduced, see [6] for details); if the rank of v0(θ) is

larger than m− q, then θ /∈ Θ̂n; θ ∈ Θ̂n otherwise.

The SPS region Θ̂n;(q,m) is guaranteed to include θ∗ with
probability 1− q

m
because the functions v0, v1, . . . , vm−1

are defined in such a way that the rank of v0(θ
∗) has

uniform distribution over {1, 2, . . . ,m}. More precisely,
the “reference” function v0 is defined as v0(θ) = ‖S0(θ)‖

(=
√
S0(θ)⊤S0(θ) ), where

S0(θ) ,
1

n
R

− 1

2

n

n∑

t=1

ϕt(Yt − ϕ⊤
t θ)

(R
− 1

2

n is the inverse of the principal square root of Rn).
The functions v1, . . . , vm−1 are sign-perturbed versions
of this reference function, namely, vi(θ) = ‖Si(θ)‖,
where

Si(θ) ,
1

n
R

− 1

2

n

n∑

t=1

αi,tϕt(Yt − ϕ⊤
t θ) (2)

and {αi,t} are independent symmetric Bernoulli vari-
ables, such that P(αi,t = +1) = P(αi,t = −1) = 0.5 for
all i = 1, . . . ,m− 1 and t = 1, . . . , n.

The interested reader is referred to [6,9,12,2] for more
details on SPS and its theoretical and computational
aspects, and to [3] for an overview of related methods.

1.1 Problem statement and contribution of this study

This study moves from the premise that it is often desir-

able that Θ̂n be bounded. For example, when Θ̂n is used
as an uncertainty set in a robust design context, bound-
edness enables one to obtain structured approximations

of Θ̂n (see, e.g., Section VI.A of [6]) and to apply stan-
dard robust optimization techniques, [1]. Boundedness
is also precious in uncertainty quantification, where a

bounded Θ̂n allows one to simulate different uncertainty
scenarios by generating samples according to a uniform

distribution over Θ̂n (see, e.g., Section 4.1. in [4]).

The shape of the SPS region is known to satisfy an
asymptotic optimality property (Theorem 3 in [12]) and,
for finite n, some favourable topological properties were

demonstrated in [6]. Nonetheless, the finite sample anal-
ysis of [6] leaves open the possibility that unbounded
regions could be constructed. Indeed, one can find situ-
ations where SPS constructs unbounded regions under
the standard condition that the regressors ϕ1, . . . , ϕn are
“exciting” in the sense that their linear span is the whole
space R

d; furthermore, there exist situations where un-
bounded regions appear even under the condition that
the regressors are “completely exciting” in the sense that
any d regressors span the whole space Rd. For example,
consider having n = 10 completely exciting regressors of
size d = 3: when the SPS algorithm is run with parame-
ters q = 1 and m = 5, it typically builds an unbounded
region in more than one third of the simulation runs (in
Section 4.1, we will see that this behaviour is really “typ-
ical” as it does not depend on the specific regressors and
on the specific distribution of the noise, provided that it
has density). On the other hand, experience shows that,
with the same n = 10 data and the same confidence level
1− q

m
, increasing the values of q reduces the probability

of constructing an unbounded region. The present study
aims at throwing some light on these and similar phe-
nomena by formulating a simple condition for bounded-
ness. As a preview of the implications of the results here
obtained, we anticipate that, with n = 10 completely
exciting regressors of size d = 3, the probability of oc-
currence of an unbounded region is necessarily below
3 · 10−9 if (q,m) = (100, 500). With (q,m) = (1, 5), on
the other hand, one needs at least n = 40 completely ex-
citing regressors of size d = 3 to reduce the probability
of building an unbounded region below 10−8.

In the following section, we recall some important facts
that are necessary to understand our main result, which
is Theorem 1 in Section 3. Some of the implications of
Theorem 1 will be discussed in Section 4.

2 Technical Preliminaries

From the analysis in [6], Section VI and Appendix B, it

is clear that the shape of Θ̂n is affected by the Hessians
of the functions 1

2 (‖S0(θ)‖
2−‖Si(θ)‖

2), i = 1, . . . ,m−1,
which are equal to

Ki , Rn −QiR
−1
n Qi, i = 1, . . . ,m− 1,

where Qi is a sign-perturbed version of Rn, namely

Qi ,
1

n

n∑

t=1

αi,tϕtϕ
⊤
t .

Lemma 4 of [6] ensures that Ki � 0. 1 Although not
stated explicitly in [6], Fact 1 below is immediately im-
plied by the analysis in Appendix B of [6] (a similar fact

1 The symbols ≻ and � refers to the Löwner partial order,
i.e., M � 0 (M ≻ 0) means that the matrix M is positive
semidefinite (definite).
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was stated explicitly for a variant of the SPS algorithm,
see Definition 3 and Theorem 4 in [10]).

Fact 1. Let the SPS parameters q and m, 1 ≤ q < m, be
arbitrarily chosen. Suppose thatKi ≻ 0 for at leastm−q

values of i ∈ {1, . . . ,m− 1}. Then Θ̂n;(q,m) is bounded.

Thus, Fact 1 provides a natural test for the boundedness

of Θ̂n. When q = 1, a useful (converse) statement is also
valid.

Fact 2. Let the SPS parameter q be equal to 1, and
let m > 1 be arbitrarily chosen. Suppose that there ex-
ists at least one value of i ∈ {1, . . . ,m − 1} for which

Si(θ̂n) 6= 0 andKi is not positive definite. Then Θ̂n;(1,m)

is unbounded.

It is remarkable that the conditions Ki ≻ 0, i =
1, . . . ,m − 1, do not depend on the noise Nt. Hence,
drawing conclusions based on Ki ≻ 0 is a very robust
way of proceeding. The main contribution of this paper
is formulating the condition Ki ≻ 0 in terms of a more
usual regressor excitation condition.

3 A simple equivalent condition for Ki ≻ 0

In this section, the index i ∈ {1, . . . ,m−1} is kept fixed.
Let us consider the time indices corresponding to the
occurrence of a sign perturbation in (2): Ip , {t : αi,t =
−1}. The set of the remaining time indices is denoted by

Iu, i.e., Iu , {t : αi,t = +1}. We call perturbed regressors
the regressors indexed by Ip (i.e., those that undergo a
sign change in (2)), and we call unperturbed regressors
the remaining ones, with indices in Iu.

We say that the regressors ϕt indexed by a set I ⊆
{1, . . . , n} are exciting if

∑
t∈I ϕtϕ

⊤
t is invertible (or,

equivalently, the linear span of these regressors is Rd).

We prove the following theorem.

Theorem 1. Ki ≻ 0 if and only if both the perturbed
regressors and the unperturbed regressors are exciting.

Proof. Note that, by definition of Ip and Iu,
∑

t∈Ip
ϕtϕ

⊤
t =

∑n
t=1

(1−αi,t)
2 ϕtϕ

⊤
t and

∑
t∈Iu

ϕtϕ
⊤
t =

∑n
t=1

(1+αi,t)
2 ϕtϕ

⊤
t .

Hence, the perturbed regressors and the unperturbed
regressors are both exciting if and only if the matrices
1
n

∑n
t=1(1−αi,t)ϕtϕ

⊤
t and 1

n

∑n
t=1(1+αi,t)ϕtϕ

⊤
t are in-

vertible. By definition, 1
n

∑n
t=1(1−αi,t)ϕtϕ

⊤
t = Rn−Qi,

and 1
n

∑n
t=1(1 + αi,t)ϕtϕ

⊤
t = Rn +Qi. Since ϕtϕ

⊤
t � 0,

it is true that
Rn −Qi � 0 (3)

and
Rn +Qi � 0. (4)

Therefore, the invertibility of both 1
n

∑n
t=1(1−αi,t)ϕtϕ

⊤
t

and 1
n

∑n
t=1(1 + αi,t)ϕtϕ

⊤
t is equivalent to positive def-

initeness (≻) in both (3) and (4). Letting R
1

2

n be the
principal square root matrix of Rn, we define

A , R
− 1

2

n (Rn −Qi)R
− 1

2

n

and

B , R
− 1

2

n (Rn +Qi)R
− 1

2

n .

Since R
− 1

2

n ≻ 0, the positive definiteness (≻) in both
(3) and (4) is equivalent to the condition “A ≻ 0 and
B ≻ 0”. Since A and B are symmetric and commute
(i.e., AB = BA), they are simultaneously diagonalisable
(see, e.g., Theorem 4.1.6. in [8]). Simultaneous diagonal-
isation reveals that “A ≻ 0 and B ≻ 0” if and only if
AB ≻ 0. To sum up, the perturbed regressors and the
unperturbed regressors are both exciting if and only if
AB ≻ 0. Finally, the following chain of equalities reveals
that AB ≻ 0 if and only if Ki is positive definite:

AB = I −R
− 1

2

n QiR
−1
n QiR

− 1

2

n

=R
− 1

2

n

(
Rn −QiR

−1
n Qi

)
R

− 1

2

n

=R
− 1

2

n KiR
− 1

2

n .

4 Some implications

We first show how the condition provided by Theorem 1
can help tune the parameters q and m of the SPS algo-
rithm. Then, we briefly discuss how this condition can
guide the user in designing SPS-based algorithms that
are guaranteed to construct bounded regions. For the
sake of brevity, in what follows we work under the sim-
plifying but meaningful assumption that any d regres-
sors are exciting (i.e., the linear span of any d regressors
is the whole Rd space).

4.1 On tuning the SPS parameters

Thanks to Theorem 1, the following bound is easily ob-
tained:

P{unbounded Θ̂n} ≤

m−q−1∑

j=0

(
m− 1

j

)
pjn,d(1−pn,d)

m−1−j ,

(5)
where

pn,d ,

n−d∑

j=d

(
n

j

)(
1

2

)j (
1−

1

2

)n−j

3



is the probability that, for a given i, the conditionKi ≻ 0
is satisfied. 2

Proof. We first show that P{Ki ≻ 0} = pn,d. By The-
orem 1, P{Ki ≻ 0} = P{|Ip| ≥ d and |Iu| ≥ d} (| · |
denotes cardinality). By construction, the event that a
given regressor ϕt is a perturbed regressor is an inde-
pendent Bernoulli trial with probability of success equal
to P{αi,t = −1} = 1

2 . Since |Ip|+ |Iu| = n, we have that
P(|Ip| ≥ d and |Iu| ≥ d) = P(d ≤ |Ip| ≤ n − d) = pn,d.

Then, Fact 1 ensures that P{unbounded Θ̂n} ≤ P{Ki ≻
0 for less than m− q values of i}, and (5) follows by ob-
serving that, for each i ∈ {1, . . . ,m − 1}, the outcome
Ki ≻ 0 is a Bernoulli trial with probability of suc-
cess equal to pn,d, independent of the other m − 2 out-
comes.

Inequality (5) can help choose the SPS parameters q
and m in order to favour the construction of bounded
regions. For instance, the numerical evaluations in the
example provided in Section 1.1 are obtained by directly
substituting the values of n, d, m and q into (5).

In concluding, we also remark that Theorem 1 justifies
the claim in Section 1.1 that, in a typical simulation
with n = 10, d = 3, m = 5 and q = 1, an unbounded
region is constructed in more than 1/3 of the cases. To
see this, note that, if the random variables Nt are dis-
tributed with density, then, with probability one, the

LSE θ̂n (which satisfies S0(θ̂n) = 0 by definition) sat-

isfies Si(θ̂n) = 0 for i 6= 0 if and only if αi,1 = . . . =
αi,n. Thus, using Theorem 1, we have that, for every

i 6= 0, P{Si(θ̂n) = 0 or Ki ≻ 0} = P{|Ip| = 0 or |Ip| =
n or d ≤ |Ip| ≤ n−d} = 21−n+pn,d, and Fact 2 ensures

that P{bounded Θ̂n} ≤ P{∀i ∈ {1, . . . ,m− 1} Si(θ̂n) =
0 or Ki ≻ 0} = (21−n + pn,d)

m−1 ≈ 0.63.

4.2 On designing refined SPS algorithms

Let us consider the following simple idea: if we could
force any i-th sign string αi,1, . . . , αi,n to satisfy the con-
dition d ≤ |Ip| ≤ n− d, then we would have Ki ≻ 0 for
all i (by Theorem 1), and the SPS region would be cer-
tainly bounded (by Fact 1). In what follows, we consider
two implementations of this idea that build on a vari-
ant of SPS, known under the name of Block SPS (Block
SPS was introduced in [6] with the aim of making SPS
more robust against non-independent noise). However,
the same idea could be beneficial for studies beyond the
scope of this short communication, for example, for the
analysis and the design of regularised versions of SPS,
[5,7,11,4].

2 In MATLAB, provided that n ≥ 2d, pn,d can be computed
by the command binocdf(n-d, n, 0.5)-binocdf(d-1, n, 0.5), and
the right-hand side of (5) by binocdf(m-q-1,m-1,binocdf(n-d,
n, 0.5)-binocdf(d-1, n, 0.5)).

4.2.1 Two variants of Block SPS

Block SPS is like SPS with the difference that a sequence
αi,1, . . . , αi,n is kept to the same value “+” or “−” for
blocks of λb consecutive time instants before the sign is
randomly drawn. If the block length is λb ≥ d (the last
block can be longer than λb when n is not a multiple of
λb), then the boundedness condition Ki ≻ 0 is satisfied
in all the cases except when the sign string turns out to
be made entirely of “+” or of “−”, which happens with
probability 21−νb , where νb is the number of blocks. To
rule out this event, we can slightly modify the Block SPS
algorithm.

Block SPS with rejection

A first option is modifying the Block SPS algorithm as
follows: for i going from 1 to m−1, when the sign string
αi,1, . . . , αi,n (to be used in Si(θ) according to formula
(2)) is drawn, it is accepted only if it is different from
all the sign strings that have already be employed in
S0(θ), S1(θ), . . . , Si−1(θ) and it is different from the op-
posite values of such strings. If the sign string is equal to
an already employed string or to its opposite, then it is
rejected and redrawn, until a different string is obtained.
A string and its opposite are considered as the same
string because they have the same effect on the value of
‖Si(θ)‖. The string made entirely of “+” (or entirely of
“−”) coincides with the sign string that is employed in
the definition of S0(θ), therefore is always rejected.

Deterministic Block SPS

A second option is building the functionsS1(θ), . . . , Sm−1(θ)
according to all the possible sequences of block pertur-
bations, i.e., in an exhaustive way and without resorting
to random sampling. Namely, under the assumption
that λb ≥ d and n ≥ 2d, denoting by νb the number of
blocks, we can take m = 2νb−1, and define each function
Si, for i = 1, . . . ,m− 1, by using a different (determin-
istic) string {αi,t} of block perturbations in (2) (the
sign strings to be used to construct these functions are
2νb−1 − 1 because a string and its opposite are consid-
ered as the same string and the string made entirely of
“+” is already used in S0).

Proof of exactness

In appendix A, we provide a sketch of the proof that,
like SPS and standard Block SPS, the two variants of
Block SPS here proposed construct regions that include
θ∗ with an exact, user-chosen probability.

5 Conclusions

In this communication, we have stated a simple condi-
tion for the boundedness of SPS regions. By using the

4



standard concept of regressor excitation, we have refor-
mulated a technical condition that was available in the
literature. We have also argued that, in this form, the
condition provides a tool to tune the SPS parameters
and also to guide the design of new SPS-like algorithms
with guarantees on the boundedness of the regions. We
have offered examples of both these possibilities.
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A Technical argument for the exactness of the
two variants of Block SPS

We sketch, in some detail, the proof of the fact that the
variants of Block SPS proposed in Section 4.2.1 construct
regions that include θ∗ with probability 1− q

m
. The key

fact to be proven is that the rank of ‖S0(θ
∗)‖ among

‖S0(θ
∗)‖, . . . , ‖Sm−1(θ

∗)‖ is no larger than m − q with
probability 1− q

m
.

In what follows, we consider a sequence αi,1, . . . , αi,n

and its opposite −αi,1, . . . ,−αi,n as the same sequence.

It is convenient to start with the proof of the exactness
of the Deterministic Block SPS algorithm.

Let N be the random vector [N1, N2, . . . , Nn] and con-
sider the vector function

V (N) = [‖S0(θ
∗)‖, . . . , ‖Sm−1(θ

∗)‖].

For any m-dimensional vector W , we denote by R(W )
the rank of the first component of the vector W with
respect to the values of all them components (the case of
ties is discussed briefly later).With this notation, the key
fact to be proven is that P(R(V (N)) ≤ m− q) = 1− q

m
.

Note that, because of the symmetry of the noise, N
is distributed like its randomly block-perturbed version
defined as Ñ = [α1N1, α1N2, . . ., α1Nλb

, α2Nλb+1, . . .,
α2N2λb

, . . . , ανb
Nn], where α1, . . . , ανb

are i.i.d. signs
with equal probability of being positive or negative. This
fact implies that the random vector V (N) has the same

distribution of the random vector V (Ñ).

Now, we condition on a given realisation of N and let
just the block perturbation α1, . . . , ανb

be random. In
particular, we condition on a realisation of N such that
V (N) is a vector of m different values (no ties) and

we study V (Ñ) as a function of the 2νb−1 = m possi-
ble realisations of the block perturbation (we recall that
we have identified a block perturbation with its oppo-
site). Since the functions Si(θ) i = 1, . . . ,m − 1 are,
by construction, obtained by setting in all the possi-
ble ways the signs of the blocks of αi,1, . . . , αi,n in (2),

each block-perturbed version Ñ of N, when plugged
into V (·), yields a different permutation of V (N). In
particular, each realisation of the block perturbation
α1, . . . , ανb

yields a different value of the first compo-

nent of V (Ñ). As each block perturbation has proba-

bility 1/m, the first component of V (Ñ) assumes each
value among the m possible ones with equal probabil-
ity. We conclude that, conditioning on N, the distribu-
tion of R(V (Ñ)) is uniform over {1, . . . ,m}. When, on
the other hand, we condition on a realisation of N for
which there are repeated values in V (N), a tie-break rule
must be used to define the rank in a suitable manner.

5



By resorting to the same total order ≻π defined in [6],

it is possible to conclude that the rank of V (Ñ) is uni-
formly distributed also in the presence of ties, and that
P(R(V (Ñ)) ≤ m−q |N) = 1− q

m
holds true irrespective

of N. By integrating this conditional probability with
respect to N, we get P(R(V (Ñ)) ≤ m− q) = 1− q

m
. Re-

calling that V (Ñ) is distributed as V (N), the key fact
is proven for the Deterministic Block SPS algorithm.

The exactness of the Block SPS with rejection algorithm
can be proven by interpreting this algorithm as a ran-
domised version of Deterministic Block SPS, where a
pre-determined number δm of functions among ‖S1(θ)‖,
. . . , ‖Sm−1(θ)‖ are randomly neglected during the eval-
uation of the rank of ‖S0(θ)‖. Let us denote by Rm the
rank of ‖S0(θ

∗)‖ when all the m = 2νb−1 functions are
considered (i.e.,Rm = R(V (N)), with the notation that
we used in the study ofDeterministic Block SPS), and let
us denote byRm−δm the rank of ‖S0(θ

∗)‖ among the val-
ues of ‖S0(θ

∗)‖ itself and of the unneglected (m−1−δm)
functions. We prove below thatRm−δm has uniform dis-
tribution over {1, . . . ,m− δm}.

Let us condition on the event Rm = r, and denote by L
the list of the r−1 values among ‖S1(θ

∗)‖,. . .,‖Sm−1(θ
∗)‖

that are smaller than ‖S0(θ
∗)‖. Then, the probability

that Rm−δm = r′ is the probability that the number of
unneglected values among those in L is exactly r′ − 1,
i.e., for r′ = 1, . . . ,m− δm, we have

P(Rm−δm = r′ |Rm = r)

=





( r−1

r′−1
)( m−r

m−δm−r′)
( m−1

m−δm−1)
, if r − δm ≤ r′ ≤ r

0, otherwise.

From the analysis of Deterministic Block SPS we know
that P(Rm = r) = 1

m
for r = 1, . . . ,m. Then, for r′ =

1, . . . ,m− δm, we get

P(Rm−δm = r′)

=

m∑

r=1

P(Rm−δm = r′ |Rm = r)P(Rm = r)

=
1

m

1(
m−1

m−δm−1

)
r′+δm∑

r=r′

(
r − 1

r′ − 1

)(
m− r

m− δm − r′

)

=
1

m

1(
m−1

m−δm−1

)
r′−1+δm∑

j=r′−1

(
j

r′ − 1

)(
(m− 1)− j

(m− δm − 1)− (r′ − 1)

)

=
1

m

1(
m−1

m−δm−1

)
(

m

m− δm

)
=

1

m− δm
.
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