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We present an improved version of the superatom (SA) model to examine the slow-light dynamics of
a few-photons signal field in cold Rydberg atoms with van der Waals (vdW) interactions. A main
feature of this version is that it promises consistent estimations on total Rydberg excitations based
on dynamic equations of SAs or atoms. We consider two specific cases in which the incident signal
field contains more photons with a smaller detuning or less photons with a larger detuning so as to
realize the single-photon-level light storage. It is found that vdW interactions play a significant role
even for the slow-light dynamics of a single-photon signal field as distributed Rydberg excitations are
inevitable in the picture of dark-state polariton. Moreover, the stored (retrieved) signal field exhibits
a clearly asymmetric (more symmetric) profile because its leading and trailing edges undergo different
(identical) traveling journeys, and higher storage/retrieval efficiencies with well preserved profiles apply
only to weaker and well detuned signal fields. These findings are crucial to understand the nontrivial
interplay of single-photon-level light storage and distributed Rydberg excitations.
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1 Introduction

In the 20th century, people have been guided by extensive
studies in optics and photonics into the intriguing world
of quantum physics and quantum information. Photon-
based schemes exhibiting obvious advantages like fast and
parallel operations have flourished in both quantum com-
munication and quantum computation tasks, including
long-range secure quantum cryptography [1, 2], quantum
repeater [3], and quantum information encoding [4]. It
is still a great challenge, however, to achieve effective
interactions between individual photons, though various
schemes have been proposed to generate strongly inter-
acting photons based, e.g., on cavity quantum electrody-
namics systems assisted with atoms [5–7].

Interactions of photons may also be achieved through
electromagnetically induced transparency (EIT), a well-
known quantum interference effect that can largely mod-
ify near-resonant optical properties of coherently driven
atomic media and metamaterials [8–10]. For instance,
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EIT can significantly enhance the Kerr nonlinearity and
well suppress the linear absorption, both needed to achieve
effective photonic phase gates [11–13]. Rydberg atoms, on
the other hand, have been widely exploited to seek alter-
native quantum manipulation schemes, not only because
they exhibit long radiative lifetimes and strong dipole-
dipole interactions [14], but also because they are easy
to combine with the EIT techniques [15–17]. Within this
context, Rydberg-EIT media have been used to achieve
single photon manipulation [18–21], cooperative optical
nonlinearity [22], and photons bound states [23–25].

Neighboring Rydberg atoms exhibit, in turn, strong van
der Waals (vdW) interactions that may lead to dipole
blockade [26–29], known to prohibit the simultaneous ex-
citations of two (or more) atoms to the same and different
Rydberg states. A superatom (SA) model [30, 31] in the
mean-field sense is commonly adopted to treat the non-
linear spectra based on dipole blockade in Rydberg-EIT
media. This effective model has been extended [32] to
partially recover experiments on slow-light propagation
in cold Rydberg atoms [33–39], where intriguing effects
such as sub-Poissonian statistics, storage enhanced in-
teractions, and microwave induced exchanges of Rydberg
dark-state polaritons are recently observed. On a differ-
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ent tack and unrelated to the SA model, efforts have also
been made [40–43] to devise theoretical schemes that deal
with slow-light propagation and interaction in Rydberg-
EIT media. These are schemes based, e.g., on open spin or
effective field theories that use different degrees of approx-
imation to relax the complexity of many-body photon(s)
propagation problems in actual experiments.

In this paper we address the nontrivial interplay be-
tween spatially distributed Rydberg excitations and non-
linear light storage in a Rydberg-EIT medium, based on
an improved SA model enabling deeper insights into the
slow-light dynamics of a few-photons signal. This model
provides consistent estimates on the total Rydberg exci-
tations during light storage via two independent integra-
tion procedures, while ensuring an effective coupling to
Rydberg atoms even if the signal is in the single-photon
state. Our findings are supported by numerical calcula-
tions carried out for both an incident well detuned weaker
signal and an incident nearly resonant stronger signal. We
confirm, in particular, that vdW interactions ought to be
taken into account even for a single-photon signal pulse as
its slow-light dynamics must result in a dark-state polari-
ton [43] with distributed Rydberg excitations. We also ob-
serve that the stored (retrieved) signal has a clearly asym-
metric (more symmetric) profile as its leading and trailing
edges suffer fairly different (roughly identical) nonlinear
absorption and dispersion while propagating through the
Rydberg-EIT medium. Last but not least, it is found that
weaker and well detuned incident signals are largely in-
sensitive to the nonlinear absorption and dispersion aris-
ing from distributed Rydberg excitations and hence are
beneficial to improve the storage/retrieval efficiency and
preserve the space-time profile.

2 Model and methods

Here we examine the storage and retrieval dynamics of
a quantum signal pulse of electric field (frequency) Ês
(ωs) traveling along the z axis in a cold sample of sta-
tionary atoms illuminated by a classical control beam of
amplitude (frequency) Ec (ωc) [see Fig. 1(a)]. Relevant
Rabi frequencies and detunings are defined, respectively,
as Ωs = κEs, Ωc = Ecder/(2h̄) and δ = ωs − ωge,
∆ = ωs + ωc − ωgr [see Fig. 1(b)]. Here dij (ωij) de-
notes the dipole moment (resonant frequency) on tran-
sition |i〉 ↔ |j〉 while κ = dge

√
ωs/(2h̄ε0V ) represents

the coupling constant for signal photons of quantum vol-
ume V . The atoms exhibit a three-level ladder config-
uration involving the ground state |g〉, the intermediate
state |e〉, and the Rydberg state |r〉, a pair of which lo-
cated respectively at z and z′ will interact through the
vdW potential V(z − z′) = C6/|z − z′|6 when both ex-
cited to the Rydberg state. The vdW coefficient takes the
value C6 = 6.5 × 2π × 1012s−1µm6 in the case of |g〉 ≡∣∣5S1/2, F = 2,mF = 2

〉
, |e〉 ≡

∣∣5P3/2, F = 3,mF = 3
〉
,

Fig. 1 (a) Schematic illustration of a storage and retrieval
process where the slow-light signal field Ês (Ωs) is mapped into
and then recovered from the stationary spin field Ŝ in a sample
of cold atoms by switching off and then back on the control
field Ec (Ωc). (b) A ladder level configuration driven by the
signal field of Rabi frequency (detuning) Ωs (δ) on transition
|g〉 ↔ |e〉 and the control field of Rabi frequency (detuning)
Ωc (∆− δ) on transition |e〉 ↔ |r〉. Two atoms also exhibit the
separation-dependent vdW potential V(z − z′) when both are
in Rydberg state |r〉. (c) A time sequence for the storage and
retrieval process, in which field Ω̂s is incident at t = 0 while
field Ωc is switched off (on) at toff (ton).

and |r〉 ≡
∣∣83S1/2,mJ = 1/2

〉
for the 87Rb atoms [44].

A typical three-stage (time) excitation sequence for a sig-
nal taken in the form of a Gaussian pulse (see Section 3)
is illustrated in Fig. 1(c). We further introduce the po-
larization P̂ =

√
N σ̂ge and the spin field Ŝ =

√
N σ̂gr

in terms of the atomic transition operators σ̂ge = |g〉 〈e|
and σ̂gr = |g〉 〈r| [45], with N denoting the homogeneous
atomic density. In the limit of low atomic excitations
(σge → 0 and σgr → 0) [46], these operators satisfy the
same-time commutation relations [Ês(z, t), Ê†

s (z
′, t)]/V =

[P̂ (z, t), P̂ †(z′, t)] = [Ŝ(z, t), Ŝ†(z′, t)] = δ(z − z′).
Then we can write down the Hamiltonians [47]

Ĥtot = Ĥph + Ĥcp + Ĥint,

Ĥph = −ih̄c
∫ L

0
dzÊ†

s (z, t)∂z Ês(z, t),

Ĥcp = −h̄

∫ L

0
dz[

√
N Ω̂†

s(z, t)P̂ (z, t) + h.c.]

− h̄

∫ L

0
dz[Ωc(t)Ŝ

†(z, t)P̂ (z, t) + h.c.]

− h̄

∫ L

0
dz[δP̂ †(z, t)P̂ (z, t) +∆Ŝ†(z, t)Ŝ(z, t)],

Ĥint =
h̄

2

∫ L

0

∫ L

0
dzdz′[Ŝ†(z, t)Ŝ†(z′, t)

V(z − z′)Ŝ(z′, t)Ŝ(z, t)], (1)

where the contributions Ĥph, Ĥcp, and Ĥint have the usual
interpretations [47] with respect to the kinetic energy,
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atom-photon couplings, and dipole-dipole interactions, re-
spectively. The corresponding Heisenberg equations can
be obtained from Ĥtot and read as

∂tP̂ = −(γe − iδ)P̂ + iΩ∗
c Ŝ + i

√
N Ω̂s,

∂tŜ = −[γr − i(∆−∆v)]Ŝ + iΩcP̂ , (2)
∂tΩ̂s = −c∂zΩ̂s + iκ2V

√
NP̂ ,

where γe (γr) is the dephasing rate on transition |g〉 ↔ |e〉
(|e〉 ↔ |r〉). It is worth noting that the nonlocal term ∆v

denotes the expectation value

∆v(z) =
1

2

∫ L

0
dz′[Ŝ†(z′, t)V(z − z′)Ŝ(z′, t)],

which refers to the vdW induced shift of state |r〉. This
fully describes the slow-light dynamics of signal (Ω̂s) yet
makes Eq. (2) difficult to solve.

In the spirit of a mean-field sense, we now develop an
improved version of the SA model [30] to solve Eq. (2)
by providing an estimate of the total Rydberg excitations
that is consistent with dynamic equations for SAs as well
as with dynamic equations for atoms. Each SA is defined
here as an ensemble of nb = NVb atoms in the thin and
short cylinder of volume Vb = 2πRbR2

s with half blockade
length Rb = [C6(δ2 + γ2

e )/(δ + γe)|Ωc|2]1/6 [48] and sig-
nal beam radius Rs ≤ Rb. The SAs should be described
by 3nb collective states among which |G〉 is the ground
state while

∣∣E(1)
〉

and
∣∣R(1)

〉
are the first-order states [31].

Higher-order SA states involving two or more excitations
in atomic state |r〉 (|e〉) can be safely ignored because they
are strictly forbidden (greatly suppressed) owing to the
dipole blockade (EIT) effect [31] in the parameter regime
of our interest. Then we can define Σ̂IJ = |I〉 〈J | as the
SA transition (I *= J) or projection (I = J) operators
with {I, J} ∈ {G,E(1), R(1)}.

For the nb atoms in a given SA, their (average) vdW
induced shift can be expressed as ∆v = ∆̄ΣRR + δ̄Σ̄RR,
being ∆̄ → ∞ weighted by the local Rydberg population
ΣRR inside of this SA while δ̄ = Ω2

c/(8γe) weighted by the
average Rydberg population Σ̄RR outside of this SA [30,
31]. As shown in the next section, both ΣRR and Σ̄RR

are very small and of the same order, so it is appropriate
to take ∆v = ∆̄ΣRR in the following. Accordingly, we
have a two-level absorbing system for the ΣRR fraction of
SAs after taking ∆̄ → ∞ into Eq. (2), while a three-level
EIT system for the 1 − ΣRR fraction of SAs after taking
∆̄ → 0 into Eq. (2) [49]. Then, replacing operators Ô with
their expectation values O, we can recast Eq. (2) into the
following set of coupled equations

∂tΣGG = 2γeΣEE − i√nbΩsΣEG + i√nbΩ
∗
sΣGE ,

∂tΣEE =− 2γeΣEE + 2γrΣRR − iΩcΣRE + iΩ∗
cΣER

+ i√nbΩsΣEG − i√nbΩ
∗
sΣGE ,

∂tΣGE =− (γe − iδ)ΣGE + iΩ∗
cΣGR (3)

− i√nbΩs(ΣEE − ΣGG),

∂tΣGR =− (γr − i∆)ΣGR + iΩcΣGE − i√nbΩsΣER,

∂tΣER =− (γe + γr − i∆+ iδ)ΣER

− iΩc(ΣRR − ΣEE)− i√nbΩ
∗
sΣGR,

for the three-level SA;

∂tP2 = −(γe − iδ)P2 + i
√
NΩs, (4)

for the two-level atom;

∂tP3 = −(γe − iδ)P3 + iΩ∗
cS + i

√
NΩs, (5)

∂tS = −(γr − i∆)S + iΩcP3,

for the three-level atom;

c∂zΩs = iκ2V
√
N [P2ΣRR + P3(1− ΣRR)], (6)

for the signal field. These equations are attained indeed
with the following few considerations. First, we work in
a regime where the SA population ΣRR is much larger
than its atomic counterpart σrr and non negligible even
for very weak signals [50]; all elements ΣIJ have then been
included in Eq. (3) with the constraints ΣIJ = Σ∗

JI and
ΣGG+ΣEE+ΣRR = 1. Second, we remove the term ∂tΩs

from the left side of Eq. (6) as appropriate to the slow-
light regime of our interest. Finally, we recall that the
two-particle (vdW) interactions will modify the signal’s
photon statistics, which can be quantified by introducing
the two-photon correlation function [31, 51]

gs(z, t) =
〈Ê†

s (z, t)Ê†
s (z, t)Ês(z, t)Ês(z, t)〉

〈Ê†
s (z, t)Ês(z, t)〉〈Ê†

s (z, t)Ês(z, t)〉

as further discussed below. It is worth noting that gs does
not appear to modify ΣIJ and thus Ωs as it is absent in
the dynamic equations of both SAs and atoms. Includ-
ing gs in the dynamic equations of only SAs would lead
to inconsistent estimates on the total Rydberg excitations
obtained with ΣRR and |S|2, respectively. Including gs
in the dynamic equations of both SAs and atoms, though
generating consistent estimates on the total Rydberg ex-
citations, is also incorrect because a signal field in the
single-photon Fock state (gs = 0) becomes decoupled from
the Rydberg-EIT medium. Within the present slow-light
regime, gs can be computed with

c∂zgs = −κ2V
√
N Im[ΣRR(P2 − P3)/Ωs]gs, (7)

to account for two-particle (vdW) interactions.
With the help of Eqs. (3)–(6) we can now compute the

number of incident signal photons N in
s ≡ Ns(z = 0) and

that of retrieved signal photons Nre
s ≡ Ns(z = L) outside

the Rydberg-EIT medium

Ns(z) =
h̄ε0λsR2

s

d2ge

∫ ∞

−∞
|Ωs(z, t)|2dt, (8)

with the consideration of Ns(z)h̄ωs = πR2
s

∫∞
0 Is(z, t)dt

as well as Is(z, t) = 2h̄2cε0|Ωs(z, t)|2/d2ge. The number
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of stored signal photons inside the Rydberg-EIT medium,
however, should be computed with

Nst
s =

h̄ε0λsR2
s

d2gevg

∫ L

0
|Ωs(z, t1)|2dz, (9)

being vg the group velocity of a slowly propagating sig-
nal and t1 (slightly smaller than toff) the time when the
control field starts to decrease. The number of distributed
Rydberg excitations, in particular, will be estimated in
two consistent ways. The first is

nat
ryd = πR2

s

∫ L

0
[1− ΣRR(z, t2)]|S(z, t2)|2dz, (10)

which denotes the total Rydberg excitations contributed
by the (1 − ΣRR) fraction of atoms, i.e., those described
by the three-level EIT configuration, since πR2

s|S|2dz =
N |σrr|dV . It is then appropriate to further introduce the
effective spin field S′ = S

√
1− ΣRR by excluding all two-

level absorbing atoms. The second is

nsa
ryd =

1

2Rb

∫ L

0
ΣRR(z, t2)dz, (11)

which denotes the total Rydberg excitations contributed
by all L/2Rb SAs with

∫ L
0 (ΣRR/L)dz being the average

population. Here t2 (slightly larger than toff) is the time
when the control field just decreases to zero.

The steady state solutions of Eq. (5) and Eq. (6)

P2 =
√
Nσ(2)

ge =
i
√
NΩs

γe − iδ , (12a)

P3 =
√
Nσ(3)

ge =
i(γr − i∆)

√
NΩs

(γe − iδ)(γr − i∆) + |Ωc|2
, (12b)

S =
√
Nσ(3)

gr =
−
√
NΩsΩc

(γe − iδ)(γr − i∆) + |Ωc|2
. (12c)

enable one to attain the atomic population

σrr ≡ σ(3)
rg σ(3)

gr =
|Ωs|2|Ωc|2

γ2
e∆

2 + (|Ωc|2 − δ∆)2
, (13)

whose maxima and half maxima are at

∆max = δ × |Ω2
c |

δ2 + γ2
e

; ∆±
half = (δ ± γe)×

|Ω2
c |

δ2 + γ2
e

in the limit of γr → 0 for a fixed δ. In fact, we have
used ∆+

half to define the blockade radius Rb because C6 is
positive. With χ(3)

s = (1 − ΣRR)N |dge|2σ(3)
ge /(h̄ε0Ωs), we

can also attain the group velocity at ∆ = 0

vg =
λs

π∂χ(3)
s /∂∆

=
h̄ε0λs|Ωc|2

πN |dge|2(1− ΣRR)
, (14)

which will change more or less during the slow-light signal
propagation depending on the local value of ΣRR. We

Fig. 2 Space-time evolutions of the scaled pulse intensity
|Ωs/Ω

m
s |2 (a), the two-photon correlation gs (b), the scaled

magnitude square of spin field 105|S′|2/N (c), and the SA
Rydberg population ΣRR (d) in case (i). The control and
signal fields have parameters ∆ = 0, Ωc = 2π × 2.3 MHz,
δ = 2π×18 MHz, Ωm

s = 2π×6.0 kHz, ts = 6.0 µs, δts = 5.0 µs,
toff = 12.5 µs, ton = 14.0 µs, λs = 780 nm, and Rs = 14.0 µm.
The Rydberg-EIT medium has parameters γe = 2π×6.0 MHz,
γr = 2π× 2.0 kHz, dge = 2.534× 10−29 C·m, N0 = 1.8× 1012

cm−3, L = 600 µm, and Rb = 16.4 µm.

finally find Nst
s = nat

ryd and nat
ryd = nsa

ryd at ∆ = 0 by
taking ΣRR = nb|Ωs|2/(nb|Ωs|2 + |Ωc|2) [30] and nb =
2πNRbR2

s as well as vg in Eq. (14) and S in Eq. (12c) back
to Eqs. (9)–(11). The former equality Nst

s = nat
ryd suggests

that a Rydberg dark-state polariton [43] is formed as the
number of stored signal photons is identical to the number
of total Rydberg excitations. The latter equality nat

ryd =
nsa
ryd [52] is naturally required in a valid SA model as

both nat
ryd and nsa

ryd refer to the number of total Rydberg
excitations, though attained from dynamic equations of
atoms and those of SAs, respectively.

3 Results and discussion

In this section, we present numerical simulations on the
nontrivial slow-light propagation in a cold Rydberg-EIT
medium under two-photon resonance (∆ = 0) using the
improved SA model. In particular, we aim at examining
whether storing the same number of signal photons can
be realized with different combinations of δ and Ωm

s and
in the presence of different dynamic behaviors. The sim-
ulations proceed from an incident (Gaussian) signal with
field amplitude Ωs(0, t) = Ωm

s e−(t−ts)
2/δt2s and two-photon

correlation gs(0, t) = 1, as appropriate for an ideal (co-
herent state) laser. These numerical results enable us to
ascertain two representative cases of the pulse dynamics:
(i) the incident signal is a well detuned weaker pulse with
Ωm

s /(2π) = 6 kHz (N in
s - 2.0) and δ/(2π) = 18 MHz, and

(ii) the incident signal is a nearly resonant stronger pulse
with Ωm

s /(2π) = 16 kHz (N in
s - 14.0) and δ/(2π) = 8

MHz. The two cases confirm that storing the Nst
s - 1.0
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