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An Easy Affordable Statistical and Economic (EASE) approach to 
avoid unnecessary and expensive exams to monitor patients with 
small AAA

Abdominal Aortic Aneurysm (AAA) is a localized enlargement 
of the abdominal aorta, such that the diameter exceeds 30 
mm. AAA is a progressive growth leading to rupture, with high 
risk of mortality, therefore elective surgical repair is indicated 
when AAA diamenter is >55 mm. Screening programs, that use 
morphological imaging, have been developed internationally 
with the aim of detecting AAA before rupture with important 
limitations in term of cost and benefit for patients. Furthermore, 
different biochemical markers have been proposed to monitor 
AAA progression to overcome the above-mentioned limitations 
but none of them is used in the clinical practice. In fact, most 
of the biomarkers proposed are expensive and not feasible in 
the majority of laboratories. Combining different methodologies 
coming from Statistics and Operational Research fields, we 
developed an algorithm able to assess the importance of 
common biomarkers, requested in the clinical practice to 
evaluate the health of patient, and therefore no exams are 
required. Furthermore, we develop an Easy, Affordable Statistics 
and Economic (EASE) model able to identify if the AAA remain 
below the cut off for surgical repair. This prediction can provide 
guidance to how closely the patient’s abdominal aorta should be 
monitored avoiding additional and expensive exams.
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Introduction 

Abdominal Aortic Aneurysm (AAA), a dilatation 

that exceed 30 mm of the distal aorta, is among 

the 10 leading causes of death for people aged 

60-84 years in industrialized countries [1]. It is 

considered a life-threating condition since the ul-

timate complication of AAA is rupture of the an-

eurysm [2; 3], with an approximate overall mortal-

ity rate of at least 80% [1]. Depending on their di-

ameter, AAA are classified as Small (< 45 mm), 

Medium (45 mm ≤ diameter <  55 mm) and 

Large (≥ 55 mm) [4; 5]. 

International screening programs that recom-

mend conservative management and imaging 

surveillance of Small AAA have been developed. 

Lack of established prognostic indexes or drug 

treatment make repeating imaging necessary to 

monitor [6] vessel dilatation that is often progres-

sive in patients that are usually asymptomatic. In 

fact, timely elective AAA repair is currently the 

only available effective therapy and is related to 

AAA diameter [7; 1]. 

When AAA are diagnosticated and result < 55 

mm, survey program provides the execution of 

an ultrasound or a TAC; in detail, every 2 years 

in case of Small AAA and every 6-12 months in 

case of Medium AAA. Surveillance continues 

until aortic diameter increases ( ≥ 55 mm), at 

which point surgical intervention is usually un-

dertaken, since risk of rupture outweighs pre-

operative risks for the majority of patients [8; 6; 1]. 

In patients with a not yet surgical AAA, there are 

no clear predictors of a fast or slow progression, 

and the best interval between an imaging check 

and the next step is not defined with important 

consequences in terms of risk for patients and 

cost-effectiveness [8]. Furthermore, the use of 

morphologic imaging as a stand-alone approach 

to diagnose and provide prognostic information 

regarding AAA, has a number of limitations: im-

aging may not always be visible as variations in 

patient characteristics (obesity, renal impair-

ment etc) and, more importantly, imaging as-

sessments do not provide complete data to iden-

tify which AAA will remain below the cut-off of 55 

mm [3; 9]. This oblige patients to undergo 

unnecessary imaging exams, that require wait-

ing time, specialized staff to perform and evalu-

ate the results together with important cost for 

sanitary service and indirect cost on life of pa-

tients [3; 9; 10]. 

Many authors have investigated the role of bio-

chemical markers able to follow AAA progres-

sion and that potentially could help in triaging pa-

tients in order to discriminate those who should 

undergo rapid imaging to allow a prompt initia-

tion of treatment [11; 12; 13]. Most of the molecules 

studied are molecules potentially involved in 

mechanism that could be critical in AAA for-

mation and progression. Most of them may be 

expressed within diseased tissues, even if those 

that can be detected within body fluids, such as 

serum and plasma, are highly desirable, for di-

agnostic, prognostic and monitoring purpose, 

due to relative ease of sample collection. Be-

tween the most studied markers of thrombosis, 

such as inflammatory markers, and selected 

proteolytic enzymes, conflicting results often 

emerge [14; 15; 7]. Furthermore, most of the mark-

ers analyzed are sophisticated and their detec-

tion requires complex and expensive analyzers, 

specialized staff, while other markers are easier 

to detect and often part of a routine required by 

the medical service to assess patient’s health [14; 

16; 17]. Some of these biomarkers have been used 

to build or integrate previous mathematical mod-

els able to predict risk of rupture of AAA [18; 19]. 

Nevertheless, in the clinical practice none of the 

models proposed by the literature is used prob-

ably because a focused hypothesis-led ap-

proach may miss important molecular changes if 

such molecules are not a direct target of the in-

vestigation. 

The combination of different methodologies 

coming from the field of Statistic and Operational 

Research through the development of increas-

ingly powerful technologies permit the simulta-

neous analysis of thousands of candidates from 

a single biological specimen could bypass this 

shortfall. By using these approaches, the likeli-

hood of identifying key physiological changes is 

supposed to greatly increased. For this reason, 
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we combine different statistic and operational re-

search approaches in order to assess the im-

portance of biomarkers requested in the clinical 

practice to evaluate the health of patients, and 

therefore do not require additional exams. 

We select the biomarkers using an innovative al-

gorithm and build an Easy, Affordable Statistical 

and Economic (EASE) mathematical model able 

to define if the AAA remain below the cut off for 

surgical repair. This is very important since if 

AAA is < 55 mm, the patients can cease with un-

necessary exams with benefit for health care 

system and patients itself. In the first part of our 

analysis, we combine non-parametric methods 

and machine learning techniques, such as Vari-

able Importance Measures (VIM) extracted from 

Random Forest (RM), to select key biochemical 

marker(s). Afterwards, we build a classification 

tree through an approach based on the sequen-

tial solution of Linear Programming (LP) models 

that identify combinations of molecules and 

threshold values. The resulting tree is then 

transformed into an easy tool, the EASE score, 

which provides an immediate answer given the 

values of the identified molecules. 

With the EASE score we were able to identify 

79% of patients with Small/Medium AAA that do 

not turn into Large, avoiding unnecessary and 

expensive exams. 

Materials and Methods 

Patients and specimens 

Among the 700 consecutive male patients who 

were enrolled between 2017-2019 for the study 

admitted to the Vascular Surgery Unit of Brescia 

University “Spedali Civili” hospital in Brescia, 

Northern Italy, 37 (5.3%) were rejected because 

had recent infections, fever, or traumas, inflam-

matory aneurysm based on CT findings, symp-

tomatic or ruptured aneurysm, inflammatory or 

infectious aneurysm, or anastomotic pseudoan-

eurysm and malignant disease. We obtain a 

consecutive sample of 423 male Caucasian pa-

tients (mean age 72.6± 7.68; median age 72) 

admitted to the Vascular Surgery Unit of Brescia 

University “Spedali Civili” hospital in Brescia, 

Northern Italy, for AAA resection. 

Based on CT findings, we found that 39 out of 

the 423 patients selected for the study, were 

classified as having a Small AAA (diameter <45 

mm), 202 as Medium (45 mm ≤diameter <55 

mm) and 182 as Large (diameter ≥ 55 mm). 

Since the number of Small aneurisms were un-

balanced with respect the others, we join the cat-

egories Small and Medium in a unique group 

that we renamed “S/M” for a total of 241 patients. 

The study is conformed to the ethical guidelines 

of the “World Medical Association Declaration of 

Helsinki – Ethical Principles for Medical Re-

search Involving Human Subjects” adopted by 

the 18th World Medical Association General As-

sembly, Helsinki, Finland, June 1964, and re-

vised in Tokyo in 2004. Institutional ethic com-

mittees approved the study, and all patients pro-

vided a written informed consent (Ethics Com-

mittee of ASST Spedali Civili di Brescia, ap-

proval reference number: 1353) [7]. Participants 

did not receive any form of financial compensa-

tion. 

As mentioned above, these patients performed 

numerous blood tests, and for some of them a 

maximum of 77 biomarkers were collected. To 

obtain a homogeneous sample, from our data 

we selected those biomarkers with less than 

55% of missing values obtaining a data matrix 

with 423 man for 55 biomarkers. 

Since we deal with a consistent sample, we de-

cided to split the data in two subsets: the first 

containing 90% of subjects for training the clas-

sificator proposed in our analysis and the re-

maining fresh data for testing the accuracy of the 

output obtained. 

We compute the percentage of diameters clas-

sified as S/M or L (≅ 57% and ≅ 43%, respec-

tively), then we sample 90% of the data stratify-

ing for the dichotomized diameter. Hence, we 

obtained a training set of 381 patients that re-

flected the same percentage of S/M and L diam-

eter: 217 (57%) and 164 (43%) patients, respec-

tively. The same holds for the test set: S/M=24 

patients (57%) versus L=18 patients (43%). 

Blood collection and laboratory measure-

ments 
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Venous blood samples were obtained from fast-

ing overnight patients via an anticubital vein 

puncture without venous stasis before AAA re-

section (no longer than one month from imaging 

and resection). Commercially available assays 

were used according to manufacturer’s instruc-

tion on instruments calibrated against appropri-

ate proprietary reference standard material and 

verified by using the registered quality controls 

[7]. 

Statistical approach 

We applied a new combination of different meth-

ods to test and prove the connection and inter-

relationship among the many faces of a complex 

pathological state to discover missing pieces in 

the current knowledge. The different approaches 

that we merged come from different fields, 

namely, statistics (with non-parametric and ma-

chine learning methods) and operational 

research. The choice of combining methodolo-

gies coming from different disciplines is due to 

the complexity of the problem and the variety of 

the dataset. This allowed us, on one side, to deal 

with complex data (as in our case) such as out-

liers, missing values, extremely asymmetric var-

iables (positive and negative) and, on the other 

side, to use optimization when determining the 

best predictive molecules and their interrela-

tions. 

Non-parametric method 

Since biomarkers have a not-normal distribution 

(data not shown but available upon request), for 

understanding if one of them is able to discrimi-

nate whether a patient can be classified as hav-

ing S/M or L AAA, we use a well-known non-par-

ametric test like the Wilcoxon Rank Sum test 

with a significance level of 0.05.  

 

 
Figure 4: How ensemble methods (e.g. Random Forest) work 

This figure summarizes the functioning of the ensemble method and can be read from the bottom up. 

In case of Random Forest, used in this study for extracting the relative VIM jointly with the Wilcoxon test, starting from 

the matrix containing outcomes and covariates, the training set is repeatedly perturbed (10,000 bootstrap samples). On 

each perturbed set, a single regression tree (weak learner) is grown selecting only a limited number (√55) of covariates 

at each split. Its performance is measured on a test set not used in the training procedure, called Out of Bag (OOB). 

From each tree, the algorithm extracts the predictions and combines them (average in case of regression or majority 

vote in case of classification) in order to generate a stable and accurate predictor. 
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Machine learning 

To identify biomarkers that most impact on the 

prediction of AAA dimensions, we use machine 

learning techniques. In detail, we use ensemble 

method where the weak learner is the regression 

tree [33]. In fact, as suggested in [20], when the 

outcome is dichotomic, you can use regression 

instead of classification. 

Ensemble methods [20], and in particular Ran-

dom Forest [34] technique used in this paper, are 

an extension of trees, combines the predictions 

obtained from many regression trees grown on 

perturbed versions of the dataset. RF deals with 

the missing values by means of imputation on 

the fly algorithm. The algorithm below quickly ex-

plains how Random Forest works, providing de-

tails on parameters setting. Moreover, Figure 4 

syntheses the idea under the perturbation and 

combination method. The prediction error of 

Random Forest is measured with the Out-Of-

Bag procedure which is the mean prediction er-

ror on each training sample, xi, based on trees  

that do not contain xi in their bootstrap sample. 

From Random Forest we extracted a variable 

importance measure, called Mean Decrease in 

Accuracy (MDA), which identified the covariates 

that most impact on the prediction of the re-

sponse variable (AAA dimension). This measure 

is relativized respect its maximum. Hence, the 

most important variable has a VIM=100 and to 

the remaining covariates a decreasing value is 

assigned. Using this procedure, we selected an-

alytes with a VIM>57, since this threshold is 

closed to 60, as suggested in [22]. 

All the statistical analyses were performed with 

R 4.0. 

 

Random Forest Algorithm – Regression 

# Set parameters 

N=423      # number of observations in the dataset 

X=data matrix with 423 patients for 𝑟 = {1, … , 𝑅} columns, where R=55 analytes in our dataset 

BOOT=10,000     #number of replications (10,000) 

nmin=10% of observation=0.1*423≅ 42   # minimum node size (fourty-two subjects) 

g=√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = √55 ≅ 7 #number of variables selected by the algorithm at each node of the tree 

r AAA  𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = [
1 if diameter ≥ 55 mm  L

0 otherwise (diameter < 45 mm  S/M)
 

For i=1 to BOOT { 

(a) Draw a bootstrap sample, called booti, of size N from the dataset 

(b) Grow a regression tree 𝑇𝑏𝑜𝑜𝑡𝑖
 (𝑌~𝑋) to the bootstrapped data, by recursively repeating the following steps for each 

node of the tree, until the minimum node size nmin is reached: 

(i) Select g variables at random from the r covariates 

(ii) Take the best split/variable among the g variables available 

(iii) Split the node in two child nodes. 

Each 𝑇𝑏𝑜𝑜𝑡𝑖  produces a vector of predictions 𝑓𝑟𝑓𝑏𝑜𝑜𝑡𝑖
(𝑥) validated Out-Of-Bag (OOB), namely on observations not used 

in the training step} 

From the ensemble of trees, the prediction at a new point x is: 

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵𝑂𝑂𝑇
∑ 𝑓𝑟𝑓𝑏𝑜𝑜𝑡𝑖

(𝑥)
𝐵𝑂𝑂𝑇

𝑖=1
 

 

Score 

EASE-Score is a simple and easy tool which en-

ables to immediately know the classification of 

the AAA (S/M or L) given the value of the mole-

cules identified by the two non-parametric ap-

proaches used in this study. Specifically, once 

executed the blood tests on a patient, the mole-

cule values are inserted in the score which 

provides the classification. The EASE score was 

developed as an Excel-file based macro and it is 

available upon request (Figure 3.A and 3.B re-

ports report the interface of the score and an ex-

ample of classification computed on a real pa-

tient of our sample, respectively). Missing values 

are not recommended but, just in case of an 

omitted value, the macro automatically imputes 
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the median value of the missing analyte com-

puted on the original dataset. 

The EASE Score is programmed starting from a 

Linear Programming (LP)-based tree where the 

outcome is the Idiameter and covariates are the an-

alytes previously identified. It is inspired by clas-

sification trees since, at each interaction, it splits 

subjects in two subsets [33]. Unlike the classifica-

tion tree, it identifies splits, thresholds and, con-

sequently, final nodes using a completely inno-

vative approach based on sequentially solving 

linear programming models [35; 36]. Relative to 

well-known decision tree (that generates a local 

optimum since the final partition is conditioned 

from the rules of thumb at each node), the result-

ing partition represents a global optimum, since 

all the splitting variables and corresponding 

thresholds, induce the best path from the treetop 

to the final nodes, where patients, classified re-

spect the most representative class in the node, 

fall. Moreover, the running time of the LP-based 

tree is very long; for this reason, the first step 

that select most important covariates (reducing  

the dataset dimension) is of primary importance. 

Here follows a brief description of how LP-based 

tree works. 

Consider two disjoint sets S1 and S2 that we wish 

to discriminate, with |S1|= n1 and |S2|= n2.The 

available training values for sets S1 and S2 are 

represented as matrices A1 and A2 of dimension 

𝑛1 ∙ 𝑟  and 𝑛2 ∙ 𝑟 , respectively, where r is the 

number of variables involved in the analysis. Let 

w be an r-dimensional weight vector in Rr, and γ 

be a real number. We would like to identify a 

separating plane 𝑥𝑇 ∙ 𝑤 = 𝛾  in the attribute 

space of the examples, where xT is the trans-

pose of x. Ideally, such a plane would be such 

that all the points of A1 lie on one side of the 

plane and all the points of A2 lie on the other. 

This is in general not possible to achieve. Thus, 

in [35], the author proposes to minimize the aver-

age distance between the plane and the mis-

classified points. This results in optimizing the 

following linear programming problem: 

min
𝑤,𝑡,𝑧

{
𝑒𝑡

𝑛1
+

𝑒𝑧

𝑛2
|𝑡 ≥ −𝐴1 ∙ 𝑤 + 𝑒 ∙ 𝛾 + 𝑒, 𝑧 ≥ 𝐴2 ∙ 𝑤 − 𝑒 ∙ 𝛾 + 𝑒, 𝑡 ≥ 0, 𝑧 ≥ 0} (1) 

where t and z are variables measuring the dis-

tance between the plane and the misclassified 

points and e is the identity vector. 

For each node in the tree, the best split (𝑤∗, 𝛾∗) 

of the points reaching that node is found by solv-

ing (1). The node is then split into two branches. 

In the first branch a node is defined for the points 

ai ∈  A1 ∪  A2 such that 𝑎𝑖 ∙ 𝑤∗ ≤ 𝑒 ∙ 𝛾∗ , while 

points ai ∈  A1 ∪  A2 such that 𝑎𝑖 ∙ 𝑤∗ > 𝑒 ∙ 𝛾∗ 

are associated with the node of the second 

branch. The procedure is recursively applied un-

til there are mostly points of one class at the 

node or there are too few points at the node. The 

node is classified by means of the majority vote 

(indirectly we compute the node mode). The pro-

cedure is also adapted to the case where at most 

k attributes (where k<<r) are chosen in (1) by im-

posing an additional inequality in each LP 

model. 

In this study on AAA classification, starting from 

the training set of 381 patients for 7 variables (Idi-

ameter (outcome) + 6 biomarkers selected by 

Wilcoxon-test and Random Forest), S1 corre-

sponds to the set of patients with a S/M AAA, 

where nS/M=217 (57%), while S2 corresponds to 

set of patients with a L AAA, where nL=164 

(43%). LP-based trees are then built following 

the procedure described above. 

Two options are proposed. The first one shows 

the tree obtained in the special case where only 

one biomarker is considered in the inequalities 

shown in (1). Graphically, it recalls the classic 

decision tree where grey branches reported 

splitting variables and corresponding threshold, 

and final nodes (grey ovals) contains the classi-

fication for each subject fallen inside them. The 

second option contains the LP-based tree 

where, for each node, a linear combination of bi-

omarkers is chosen. In this case, the graphical 

representation of a single tree is completely lost 

but the ability of detecting S/M AAA out of sam-

ple increases. In fact, since the aim of our study 

is to detect the AAA progression, for each LP-

tree we evaluated the specificity and 
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corresponding 90% Confidence Interval (CI) 

computed with 10000 stratified bootstrap repli-

cates.  

Concluding, we focused our attention on the 

second LP tree, programming our EASE score 

from it. 

Results 

Patients and specimens 

We selected a consecutive sample of 423 male 

Caucasian patients (mean age 72.6±, 7.68 me-

dian 72) admitted to the Vascular Surgery Unit 

of Brescia University “Spedali Civili” hospital in 

Brescia, Northern Italy, for AAA resection. This 

sample is the result of a selection from a bigger 

cohort where patients have performed a CT an-

giography to classify AAA as Small (S), Medium 

(M) or Large (L) within one month before or after 

blood tests. Due the exiguous number of S AAA 

(39 patients), we dichotomized the diameter in 

S/M (249 patients, namely 57%) and L (182 pa-

tients, namely 43%). Furthermore, depending on 

the patients, laboratory data were different 

since, for some of them consisted of 77 bi-

omarkers, for others were collected a smaller 

number of analytes. To overcome this limitation, 

we selected only biomarkers with less than 55% 

of missing values. The result is a data matrix with 

423 man for 55 biomarkers. First, using two non-

parametric methods (Wilcoxon test and Relative 

VIM for Random Forest) we selected a limited 

number of analytes. Then, using 90% of the 

sample (training set with 381 patients) we 

trained a Linear Programming based tree obtain-

ing a AAA classificator and validating it on the 

remaining 10% of patients (42 subjects). Obvi-

ously, the training set reflects the percentage of 

S/M and L AAA of the entire sample. In Table 1 

are reported the 55 biomarkers used in our anal-

yses (in alphabetical order) together with normal 

range values, descriptive statistics (mean  SD, 

median, min-max) and number (%) of missing 

values. Table 2 reports descriptive statistics on 

the diameter (entire sample or stratified for S, M, 

S/M, and L). 

 
Table 1: Descriptive statistics on 55 analytes (in alphabetical order) considering the entire sample of 423 patients 

Analytes 

(Variables, Bi-

omarkers, test) 

Normal range val-

ues 

Media ± SD 

*GeoMean 

with Boot interval 

Median 
Range  

(min-max) 

Missing val-

ues 

n (%) 

A/G 1.08 – 1.86 1.21 ± 0.21 1.19 0.64 - 1.84 14 (3.31%) 

Albumin 3.4 – 4.6 g/dL 3.89 ± 0.35 3.93 2.19 - 4.69 14 (3.31%) 

Albumin % 55.80 – 66.10 % 54.46 ± 4.32 54.40 39.10 - 64.80 14 (3.31%)  

Alfa 1 0.15 – 0.4 g/dL 0.18 ± 0.07 0.18 0.08 - 1.34 14 (3.31%) 

Alfa 1 % 1.0 – 3.0 % 2.56 ± 0.76 2.50 1.10 - 7.90 14 (3.31%) 

Alfa 2 0.45 – 1.0 g/dL 0.93 ± 0.17 0.91 0.25 - 1.60 14 (3.31%) 

Alfa 2 % 9.5 – 14.4 % 13.01 ± 2.10 12.80 6.30 - 23.40 14 (3.31%) 

ALP 40 – 129 U/L 80.94 ± 36.09 75.00 
24.00 - 

453.00 
11 (2.60%) 

ALT 5.0 – 50 U/L 26.57 ± 14.95 23.00 
7.00 – 

163.00 
0 (0.00%) 

APTT (sec) 24 – 38 sec 31.57 ± 8.57 30.50 0.19 - 178.10 14 (3.31%) 

APTT ratio 0.7 – 1.28 1.06 ± 0.57 1.00 0.41 - 11.04 14 (3.31%) 

AST 5.0 - 50 U/L 19.74 ± 19.59 17.00 
3.00 – 

283.00 
1 (0.24%) 

Basophilis 0 – 0.20 ×103/μL 0.04 ± 0.03 0.04 0.00 - 0.17 
119 

(28.13%) 

Basophilis % 0 – 1.5 % 0.61 ± 0.33 0.55 0.00 – 3.20 
119 

(28.13%) 

Beta 0.55 – 1.10 g/dL 1.05 ± 0.17 1.05 0.52 - 1.76 14 (3.31%) 

Beta % 8.6 – 15.6 % 14.66 ± 1.78 14.60 10.10 - 23.80 14 (3.31%) 

Calcium 8.6 – 10.6 mmol/L 9.08 ± 0.55 9.10 3.00 – 10.36 8 (1.89%) 



Vezzoli Marika et al., AJCRAR, 2021, 4:18 

 AJCRAR: https://escipub.com/american-journal-of-cardiology-research-and-reviews/         8       

Analytes 

(Variables, Bi-

omarkers, test) 

Normal range val-

ues 

Media ± SD 

*GeoMean 

with Boot interval 

Median 
Range  

(min-max) 

Missing val-

ues 

n (%) 

Cholesterol 120 – 200 mg/dL 175.50 ± 40.95 173.00 
74.00 - 

322.00 
2 (0.47%) 

Cholinesterase 

(CHE) 
6400 – 15500 U/L 11,100.35 ± 3198.62 11,274.00 

144.00 – 

21,375 
33 (7.80%) 

CK 20 – 170 U/L 87.10 (81.57 - 92.89)* 82.00 
13.00 - 

13201.00 
7 (1.65%) 

Cloryte 95 – 110 mmol/L 104.90 ± 5.68 105.00 8.67 - 116.00 7 (1.65%) 

Creatinine 0.5 – 1.2 mg/dL 1.18 ± 0.89 0.99 0.55 – 9.85 0 (0.00%) 

Eosinophilis  0 – 0.80 ×103/μL 0.29 ± 1.26 0.17 0.00 – 22-00 
119 

(28.13%) 

Eosinophilis % 0 – 8 % 2.99 ± 2.23 2.50 0.00 – 15.10 
119 

(28.13%) 

ESR < 20 mm/h 14.96 ± 13.79 11.00 2.00 – 83.00 32 (7.57%) 

Fibrinogen 170 – 410 mg/dL 341.51 ± 84.67 325.00 105 - 856 50 (11.82%) 

Gamma % 10.7 – 20.3 % 15.29 ± 3.55 14.90 4.60 - 33.50 14 (3.31%) 

GGT 5.0 – 50 U/L 43.33 ± 52.96 31.00 5.00 - 767.00 3 (0.71%) 

Glucose 70 – 100 mg/dL 104.00 ± 25.15 98.00 
60.00 – 

294.00 
2 (0.47%) 

Hematocrite 

(Hct) 
42 – 52 % 43.12 ± 18.10 42.70 

24.30 - 

401.00 
0 (0.00%) 

Hemoglobin 

(Hgb) 
14 – 18 g/dL 14.11 ± 1.65 14.30 7.60 – 18.60 0 (0.00%) 

INR 0.2 – 1.2 1.11 ± 0.36 1.00 0.80 - 4.20 11 (2.60%) 

LDH 125 – 220 U/L 177.82 ± 42.97 171.00 
41.00 - 

403.00 
9 (2.13%) 

Linphocytes 0.9 – 4.0 ×103/μL 1.83 ± 0.70 1.77 0.54 - 8.11 
119 

(28.13%) 

Linphocytes % 20 – 45 % 25.25 ± 7.80 24.50 6.60 - 61.20 
119 

(28.13%) 

MCH 27 – 31 pg 31.00 ± 2.21 31.20 
18.10 – 

37.00 
0 (0.00%) 

MCHC 32 – 37 g/dL 33.30 ± 1.64 33.40 3.70 – 35.50 0 (0.00%) 

MCV 82 – 94 fL 92.83 ± 5.70 93.10 
61.80 - 

106.90 
0 (0.00%) 

Monocyte 0.2 – 1.0 ×103/μL 0.63 ± 0.19 0.59 0.12 - 1.26 
119 

(28.13%) 

Monocytes % 3.4 – 9 % 8.59 ± 1.99 8.40 1.30 - 15.20 
119 

(28.13%) 

Neutrophils 1.50 – 8 ×103/μL 4.68 ± 1.67 4.39 1.96 - 12.48 
119 

(28.13%) 

Neutrophils % 40 – 74 % 62.55 ± 8.89 63.25 29.40 - 91.30 
119 

(28.13%) 

Phosphorous 2.7 – 4.5 mmol/L 3.26 ± 10.17 2.70 
1.00 – 

209.00 
10 (2.36%) 

Platets (PTL) 130 – 400 × 103 U/L 193.30 ± 57.40 188.00 
11.00 – 

449.00 
0 (0.00%) 

Potassium 3.5 – 5 mmol/L 4.39 ± 5.08 4.10 
2.80 – 

108.00 
3 (0.71%) 

PT (seconds) 9.5 – 13.5 seconds 12.65 ± 6.43 11.30 9.30 - 109.00 13 (3.07%) 

PT % 80 – 120% 98.28 ± 22.07 103.00 
14.00 - 

151.00 
13 (3.07%) 

RDW 12.0 – 17.0 % 14.44 ± 1.43 14.20 12.10 - 26.40 0 (0.00%) 
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Analytes 

(Variables, Bi-

omarkers, test) 

Normal range val-

ues 

Media ± SD 

*GeoMean 

with Boot interval 

Median 
Range  

(min-max) 

Missing val-

ues 

n (%) 

Red blood cell 

count (RBC) 
4.5 – 5.5 ×106/μL 4.57 ± 0.56 4.60 2.55 - 6.55 0 (0.00%) 

Sodium 135 – 145 mmol/L 141.00 ± 7.09 141.00 
3.80 – 

149.00 
2 (0.47%) 

Total Bilirubin 0.30 – 1.20 mg/dL 0.78 ± 1.87 0.60 0.21 – 38.00 5 (1.18%) 

Total protein 6.0 – 8.0 g/dL 7.13 ± 0.65 7.20 0.79 – 9.40 13 (3.07%) 

Tryglicerides < 150 mg/dL 129.24 ± 68.89 111.00 
34.00 - 

467.00 
2 (0.47%) 

Uric acid 3.4 – 7 mg/dL 5.47 ± 1.41 5.30 2.09 – 11.90 3 (0.71%) 

White blood cell 

(WBC) 
4.00 – 10.80 ×103/μL 7.39 ± 2.05 7.05 3.15 - 16.68 0 (0.00%) 

 
Table 2: Descriptive statistics on AAA diameter: entire sample (S+M+L) and stratified respect S, M, S/M, and L 

Diameter 

Entire sample 

(S+M+L) 

N=423 

S 

(nS=39) 

M 

(nM=202) 

S/M 

(nS/M=241) 

L 

(nL= 182) 

Mean ± sd 

Median 

Min-Max 

55.18 ± 10.26 

53.80 

28.00-106.00 

38.95 ± 4.39 

40.00 

28.00 – 44.00 

50.71 ± 2.54 

51.00 

45 - 54.50 

48.81 ± 5.22 

50.00 

28 - 54.50 

63.61 ± 9.17 

60.00 

55.00 – 106.00 

**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request. In third column, in bold and 

italics Wilcoxon p-values ≤ 0.05. In fourth column, in bold VIM values >57. 

 

Statistical analysis 

In this research we merged approaches coming 

from different fields, namely, statistics (non-par-

ametric and machine learning methods) and op-

erational research (Linear Programming -LP- 

models). The choice of combining methodolo-

gies coming from different disciplines is due to 

the complexity of the problem and the typology 

of the dataset. On one side, the use of machine 

learning allowed us to deal with complex data 

non-normally distributed, containing outliers, 

high percentages of missing values, and with 

multicollinearity problems (data shown upon re-

quest). On the other side, by means of the LP-

based model, we determine the interrelations 

between the best predictive molecules identified 

by the machine learning approach. 

 
Table 3: Descriptive statistics on each analyte stratified for AAA diameter (S/M vs L) and relative VIM 

Variables are ordered respect the relative VIM extracted from the Random Forest (values in the last column), from the 

most (CK, VIM=100) to the less important variable (Basophilis %, VIM=31.21).  

The table has a grey background in correspondence of the 6 analytes (CK, ALT, MCV, Hemoglobin (Hgb), RDW, Hem-

atocrite (Hct)) jointly selected by the Wilcoxon test and the relative VIM. 

Analytes 

(Variables, Biomarkers, covariates) 

Analytes 

(Variables, Biomarkers, 

covariates) 

Diameter ≥ 55 

(L) 

nL=182 

p-

value 

Relative 

VIM 

CK (20-170 U/L)** 

Mean ± SD 

Median 

Min - Max 

 

109.64 ± 102.97 

85 

13 – 1061 

 

181.99 ± 984.58 

77 

23 - 13201 

 

 

0.0341 

 

100 

ALT (5-50 U/L)** 

Mean ± SD 

Median 

Min - Max 

 

26.81 ± 12.67 

24.00 

8 - 123 

 

26.24 ± 17.56 

21.50 

7 - 163 

 

 

0.0089 

 

96.43 

Plates (PTL) 

(130-400 × 103 U/L)** 

Mean ± SD 

 

 

189.91 ± 54.30 

 

 

197.85 ± 61.24 

 

 

 

 

86.54 
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Median 

Min - Max 

188.00 

78 - 420 

188.50 

11 - 449 

0.3625 

Cholinesterase (CHE) (6400-15500 U/L)** 

Mean ± SD 

Median 

Min - Max 

 

11287.03 ± 2967.11 

11274.00 

144 - 20363 

 

10884.63 ± 3198.03 

11133.00 

1224 - 21375 

 

 

0.1538 

 

78.86 

Glucose (70-100 mg/dL)** 

Mean ± SD 

Median 

Min - Max 

 

104.76 ± 25.29 

98.00 

67 - 294 

 

102.91 ± 24.86 

97.00 

60 - 220 

 

 

0.3346 

 

78.25 

Calcium (8.6-10.6 mmol/L)** 

Mean ± SD 

Median 

Min - Max 

 

9.10 ± 0.60 

9.10 

3.00 - 10.36 

 

9.07 ± 0.47 

9.05 

7.40 - 10.31 

 

 

0.2190 

 

77.83 

Gamma % (10.7-20.3%)** 

Mean ± SD 

Median 

Min - Max 

 

15.05 ± 3.21 

14.80 

7.30 - 27.40 

 

15.57 ± 3.81 

15.10 

4.60 - 33.50 

 

 

0.0669 

 

66.04 

Total Protein (6.0-8.0 g/dL)** 

Mean ± SD 

Median 

Min - Max 

 

7.12 ± 0.54 

7.20 

4.00 - 8.50 

 

7.14 ± 0.75 

7.20 

0.79 - 9.40 

 

 

0.837 

 

 

LDH (125-220 U/L)** 

Mean ± SD 

Median 

Min - Max 

 

173.61 ± 38.85 

171.00 

41 - 397 

 

183.05 ± 46.51 

172.50 

91 - 403 

 

 

0.1236 

 

63.20 

MCV (82-94 fl)** 

Mean ± SD 

Median 

Min - Max 

 

93.40 ± 5.71 

94.00 

65.30 - 106.90 

 

92.09 ± 5.64 

92.65 

61.80 - 104.60 

 

 

0.0044 

 

59.02 

Hemoglobin (Hgb) 

(14-18 g/dl)** 

Mean ± SD 

Median 

Min - Max 

 

 

14.31 ± 1.59 

14.50 

8.20 - 18.6 

 

 

13.83 ± 1.70 

14.10 

7.60 - 18.0 

 

 

 

0.0042 

 

 

58.22 

RDW (12-17%)** 

Mean ± SD 

Median 

Min - Max 

 

14.28 ± 1.41 

14.00 

12.10 - 26.40 

 

14.64 ± 1.44 

14.30 

12.40 - 21.00 

 

 

0.0020 

 

57.74 

Hematocrite (Hct) (42-52%)** 

Mean ± SD 

Median 

Min - Max 

 

42.84 ± 4.73 

43.10 

24.30 - 55.90 

 

43.50 ± 27.12 

42.40 

25.80 - 401.00 

 

 

0.0189 

 

57.40 

Red blood cell count (RBC) (4.5-5.5 × 

106/L)** 

Mean ± SD 

Median 

Min - Max 

 

 

4.60 ± 0.56 

4.63 

2.55 - 6.55 

 

 

4.52 ± 0.56 

4.56 

2.93 - 6.29 

 

 

 

0.1955 

 

 

56.06 

Albumin (3.4-4.6 g/dL)** 

Mean ± SD 

Median 

Min – Max 

 

3.90 ± 0.35 

3.93 

2.19 – 4.69 

 

3.88 ± 0.34 

3.91 

2.68 – 4.67 

 

 

0.3425 

 

56.02 

PT (9.5-13.5 seconds)** 

Mean ± SD 

Median 

Min - Max 

 

12.56 ± 7.37 

11.20 

9.30 - 109.00 

 

12.67 ± 4.63 

11.45 

9.70 - 41.70 

 

 

0.0013 

 

55.56 

Cholesterol (120-200 mg/dL)** 

Mean ± SD 

Median 

Min - Max 

 

179.02 ± 41.54 

177.00 

92 - 322 

 

170.84 ± 39.56 

169.50 

74 - 314 

 

 

0.0636 

 

54.78 

MCH (27-31 pg)**     
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Mean ± SD 

Median 

Min - Max 

31.23 ± 2.23 

31.30 

20.20 - 37.00 

30.69 ± 2.17 

30.75 

18.10 - 35.60 

 

0.0034 

54.26 

White blood cell (WBC)  

(4.0-10.8 × 103/l)** 

Mean ± SD 

Median 

Min - Max 

 

 

7.36 ± 2.13 

7.08 

3.15 - 16.68 

 

 

7.43 ± 1.96 

7.02 

3.67 - 14.80 

 

 

 

0.6376 

 

 

54.19 

GGT (5.0-50 U/L)** 

Mean ± SD 

Median 

Min - Max 

 

44.02 ± 58.30 

31 

5 - 767 

 

42.21 ± 44.56 

30 

9 - 377 

 

 

0.3761 

 

53.43 

ALP (40-129 U/L)** 

Mean ± SD 

Median 

Min - Max 

 

77.98 ± 31.32 

71 

24 - 331 

 

77.98 ± 31.32 

71 

24 - 331 

 

 

0.0251 

 

52.84 

PT % (80-120%)** 

Mean ± SD 

Median 

Min - Max 

 

100.06 ± 21.96 

104 

14 - 151 

 

96.25 ± 21.32 

100 

18 - 137 

 

 

0.0027 

 

52.77 

 

Albumin % (55.80-66.10%)** 

Mean ± SD 

Median 

Min - Max 

 

54.70 ± 4.06 

54.60 

39.10 - 64.50 

 

54.14 ± 4.48 

54.25 

39.80 - 64.80 

 

 

0.1348 

 

51.90 

Uric acid (3.4-7 mg/dL)** 

Mean ± SD 

Median 

Min - Max 

 

5.43 ± 1.39 

5.30 

2.30 - 11.90 

 

5.52 ± 1.42 

5.40 

2.09 - 10.40 

 

 

0.5175 

 

51.60 

Tryglicerides (<150 mg/dL)** 

Mean ± SD 

Median 

Min - Max 

 

130.86 ± 73.63 

115.00 

34 - 467 

 

126.90 ± 61.80 

105.50 

38 - 356 

 

 

0.8841 

 

49.64 

Alfa 1 (0.15-0.40 g/dL)** 

Mean ± SD 

Median 

Min - Max 

 

0.18 ± 0.04 

0.17 

0.08 - 0.36 

 

0.20 ± 0.10 

0.18 

0.09 - 1.34 

 

 

0.0006 

 

49.20 

AST (5.0-50 U/L)** 

Mean ± SD 

Median 

Min - Max 

 

19.48 ± 14.63 

17 

6 - 196 

 

20.08 ± 24.66 

16 

3 - 283 

 

 

0.0481 

 

49.01 

Potassium (3.5-5.0 mmol/L)** 

Mean ± SD 

Median 

Min - Max 

 

4.57 ± 6.70 

4.10 

2.80 - 108.00 

 

4.15 ± 0.46 

4.10 

2.82 - 5.60 

 

 

0.669 

 

48.49 

ESR (< 20 mm/h)** 

Mean ± SD 

Median 

Min - Max 

 

12.67 ± 11.61 

10 

2 - 83 

 

17.31 ± 14.88 

12 

2 - 83 

 

 

0.0005 

 

46.00 

Alfa 1 % (1.0-3.0%)** 

Mean ± SD 

Median 

Min - Max 

 

2.49 ± 0.74 

2.40 

1.10 – 7.80 

 

2.65 ± 0.76 

2.55 

1.20 – 7.90 

 

 

0.0015 

 

45.85 

Creatinine (0.5-1.2 mg/dL)** 

Mean ± SD 

Median 

Min - Max 

 

1.10 ± 0.57 

0.98 

0.59 - 6.40 

 

1.29 ± 1.18 

1.00 

0.55 - 9.85 

 

 

0.1980 

 

45.45 

 

Alfa 2 % (9.5-14.4%)** 

Mean ± SD 

Median 

Min - Max 

 

12.94 ± 2.01 

12.80 

7.70 - 23.40 

 

13.08 ± 2.13 

12.90 

6.30 - 20.80 

 

 

0.4256 

 

44.53 

 

Alfa 2 (0.45-1.0 g/dL)**     
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Mean ± SD 

Median 

Min - Max 

0.92 ± 0.17 

0.91 

0.25 - 1.59 

0.94 ± 0.17 

0.91 

0.47 - 1.60 

 

0.3132 

44.47 

Fibrinogen (170-410 mg/dL)** 

Mean ± SD 

Median 

Min - Max 

 

329.51 ± 67.36 

325 

198 - 554 

 

351.62 ± 90.86 

325 

105 - 856 

 

 

0.0158 

 

 

43.87 

 

Beta (0.55-1.10 g/dL)** 

Mean ± SD 

Median 

Min - Max 

 

1.05 ± 0.16 

1.05 

0.52 - 1.76 

 

1.05 ± 0.16 

1.05 

0.52 - 1.76 

 

 

0.5053 

 

0.5053 

 

Beta % (8.6-15.6%)** 

Mean ± SD 

Median 

Min - Max 

 

14.75 ± 1.77 

14.60 

10.1 - 23.80 

 

14.54 ± 1.73 

14.50 

10.4 - 19.90 

 

 

0.2269 

 

 

43.06 

 

 

A/G (1.08-1.86)** 

Mean ± SD 

Median 

Min - Max 

 

1.22 ± 0.20 

1.20 

0.64 - 1.82 

 

1.20 ± 0.22 

1.18 

0.66 - 1.84 

 

 

0.1119 

 

41.76 

Eosinophilis (0-0.80 × 103/L)** 

Mean ± SD 

Median 

Min - Max 

 

0.19 ± 0.13 

0.17 

0.00 - 1.30 

 

0.34 ± 1.62 

0.17 

0.00 - 22.0 

 

 

0.0850 

 

 

41.52 

Phosphorous (2.7-4.5 mmol/L)** 

Mean ± SD 

Median 

Min - Max 

 

3.59 ± 13.30 

2.70 

1.00 - 209.00 

 

2.79 ± 0.62 

2.70 

1.70 - 6.30 

 

 

0.6103 

 

41.27 

Linphocytes  

(0.9-4.0 × 103/L)** 

Mean ± SD 

Median 

Min - Max 

 

 

1.83 ± 0.54 

1.77 

0.70 - 3.76 

 

 

1.78 ± 0.67 

1.77 

0.54 - 8.11 

 

 

 

0.3852 

 

 

 

40.66 

Monocytes % (3.4-9%)** 

Mean ± SD 

Median 

Min - Max 

 

8.51 ± 1.71 

8.40 

1.30 – 15.20 

 

8.58 ± 1.66 

8.40 

4.70 – 15.1 

 

 

0.9987 

 

 

37.65 

Neutrophils  

(1.50-8 × 103/L)** 

Mean ± SD 

Median 

Min - Max 

 

 

4.57 ± 1.47 

4.38 

1.96 - 12.48 

 

 

4.62 ± 1.37 

4.38 

2.07 - 11.78 

 

 

 

0.7579 

 

 

37.32 

Monocytes (0.2-1 × 103/L)** 

Mean ± SD 

Median 

Min - Max 

 

0.61 ± 0.17 

0.59 

0.12 - 1.21 

 

0.62 ± 0.16 

0.59 

0.34 - 1.26 

 

 

0.4575 

 

36.86 

Sodium (135-145 mmol/L)** 

Mean ± SD 

Median 

Min - Max 

 

140.72 ± 9.14 

141.00 

3.80 – 149.00 

 

141.40 ± 2.44 

141.0 

132.00 – 148.00 

 

 

0.5823 

 

 

36.37 

Eosinophilis % (0-8%)** 

Mean ± SD 

Median 

Min - Max 

 

2.71 ± 1.72 

2.50 

0.00 - 15.10 

 

3.04 ± 2.11 

2.50 

0.00 - 14.10 

 

 

0.0993 

 

 

36.09 

Linphocytes % (20-45%)** 

Mean ± SD 

Median 

Min - Max 

 

25.47 ± 6.46 

24.50 

7.20 - 49.00 

 

24.47 ± 6.80 

24.50 

6.60 - 61.20 

 

 

0.0925 

 

36.09 

MCHC (32-37 g/dL)** 

Mean ± SD 

Median 

Min - Max 

 

33.29 ± 2.08 

33.40 

3.70 - 35.50 

 

33.32 ± 0.76 

33.30 

29.30 - 35.50 

 

 

0.3241 

 

35.17 
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Basophilis (0-0.20 × 103/L)** 

Mean ± SD 

Median 

Min - Max 

 

0.04 ± 0.02 

0.04 

0.01 - 0.13 

 

0.04 ± 0.02 

0.04 

0.00 - 0.17 

 

 

0.3140 

 

34.78 

 

Neutrophils % (40-74%)** 

Mean ± SD 

Median 

Min - Max 

 

62.51 ± 7.46 

63.25 

36.4 - 91.30 

 

62.51 ± 7.46 

63.25 

36.4 - 91.30 

 

 

0.4632 

 

34.19 

 

APTT (24-38 seconds)** 

Mean ± SD 

Median 

Min - Max 

 

31.70 ± 10.38 

30.50 

0.19 - 178.10 

 

31.32 ± 4.75 

30.30 

23.00 - 68.10 

 

 

0.5361 

 

33.43 

INR (0.2-1.2)** 

Mean ± SD 

Median 

Min - Max 

 

1.09 ± 0.34 

1.00 

0.80 - 4.20 

 

1.13 ± 0.39 

1.00 

0.90 - 3.70 

 

 

0.7037 

 

32.48 

 

 

Cloryte (95-110 mmol/L)** 

Mean ± SD 

Median 

Min - Max 

 

104.71 ± 6.92 

105.00 

8.67 – 114.00 

 

105.15 ± 3.25 

105.00 

91.00 – 116.00 

 

 

0.7649 

 

32.30 

APTT ratio (0.70-1.28 ratio)** 

Mean ± SD 

Median 

Min - Max 

 

1.08 ± 0.73 

1.00 

0.41 - 11.04 

 

1.03 ± 0.15 

1.00 

0.76 - 2.13 

 

 

0.7032 

 

32.03 

Basophilis % (0-1.50%)** 

Mean ± SD 

Median 

Min - Max 

 

0.58 ± 0.22 

0.55 

0.10 - 1.70 

 

0.58 ± 0.22 

0.55 

0.10 - 1.70 

 

 

0.5283 

 

 

31.21 

 

**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request. 

In third column, in bold and italics Wilcoxon p-values ≤ 0.05. In fourth column, in bold VIM values >57. 

 

In Table 3, using the entire sample of 423 pa-

tients, we first compute the descriptive statistics 

(mean  SD, median, min-max) for each 

biomarker stratifying for the dichotomized diam-

eter: 

𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = {
1 if diameter is ≥ 55 mm  L AAA

0 otherwise S/M AAA
 

Then, we perform the Wilcoxon test, identifying 

15 biomarkers (out of 55) which are significantly 

different (p-value < 0.05) in the two sub-popula-

tions defined by 𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (in Figure 1 they are 

identified by bars with grey background). Sec-

ond, we run an ensemble method where each 

weak learner is a tree which partitions the covari-

ates space into disjoint regions (called nodes), 

homogeneous respect the outcome by means of 

a series of subsequent splits. In detail, we use 

the Random Forest, namely a robust method [20; 
21], where 𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟  is the outcome and X is the 

matrix of 423 patients for 55 biomarkers. We 

then extract the relative Variable Importance 

Measure (VIM) identifying the biomarkers that 

more impact on the prediction of 𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟. The 

algorithm selects 14 biomarkers with a VIM >57 

as shown in the last column of Table 3 (values 

in bold) and in Figure 1 (bars with black dots). 

The cut-off (VIM>57) chosen for the variable se-

lection is close to 60 (as suggested in [22]), se-

lecting 25% of the variables. When comparing 

results obtained by these two different proce-

dures (p-value<0.05 for Wilcoxon test and 

VIM>57 for Random Forest), only six biomarkers 

were jointly chosen: CK, ALT, MCV, Hemoglobin 

(Hgb), RDW, Hematocrite (Hct) The selected bi-

omarkers are used as covariates in a new opti-

mization algorithm (belonging to the operational 

research field), the LP-based classification 

trees, grown on the training set of 381 patients, 

in order to classify the dichotomic variable 

𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 . 
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Figure 1: Barplot for the Relative Variable Importance extracted from the Random Forest 

This Figure visualizes the Relative Variable Importance Measure (VIM) extracted from a Random Forest where the 

outcome is the dichotomized diameter (Idiameter) and the covariates are the 55 analytes. It is grown on a training set of 

381 patients which contains the same percentage of S/M and L diameter of the entire sample. It represents a ranking 

from the most (CK with a VIM=100) to the less (Basophilis % with a VIM=31.21) important variable. Near the analyte 

name, we report the p-value obtained by the Wilcoxon test applied in the two sub-populations defined by Idiameter (patient 

with S/M vs L AAA). Asterisk denotes the significative p-values (<0.05). 

In detail: 

• The 14 bars with black dots are in correspondence of the analytes with a relative VIM>57. We choose this cut-off in 

order to maintain the 25% of the variables. 

• The 15 grey bars are in correspondence of the analytes with Wilcoxon p-values < 0.05 (denoted also by an asterisk).  

• When bars have both gray background and black dots, it means that the corresponding analytes (CK, ALT, MCV, Hgb, 

RDW, Hct) are jointly selected by the relative VIM>57 and the Wilcoxon test (p-values < 0.05). 

• The 32 white bars denote analytes that have a relative VIM<57, jointly with Wilcoxon p-values > 0.05. 

 

 

VIM=57 
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Table S.1 an S.2 of Supplementary Materials, 

report the descriptive statistics (mean  SD, me-

dian, min-max) computed in training and test set, 

respectively, for each biomarker stratifying for 

𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 . It is evident that, training reproduces 

accurately what observed in the entire sample. 

In detail, the Wilcoxon test identifies almost the 

same biomarkers as significantly different (p-

value < 0.05) in the two sub-populations defined 

by 𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 . On the contrary, the test set does 

not reflect what happens in the training set. In 

fact, only five biomarkers are significantly differ-

ent in the two subpopulation’s S/M and L: PT, 

PT%, ESR, INR and Fibrinogen (the latter arises 

only in the test set) and none of them correspond 

with the six analytes identified by VIM and Ran-

dom Forest.  

We proposed two options: the first LP-tree was 

grown using only one biomarker at each node 

(see Figure 2 which is similar to the output of a 

decision tree); the second using a linear 

combination of the six biomarkers at each node 

for defining splits and thresholds. In the first 

case, we obtained an interpretable classifier 

whose specifity (ability to detect patients with 

S/M AAA) is 81% (CI: 77%- 85%) in the training 

set but decreases to 75% (CI: 58%- 88%) in the 

test set (42 patients not used during the train-

ing). In the second case, the LP-based tree 

loses the interpretability (representation) of a 

single tree and it correctly identifies 73% (CI: 

68%- 78%) of S/M AAA patients in the training 

set. But, most important, when it is validated on 

the test set, surprisingly, the specificity in-

creases up to 79% (CI: 67%- 92%), validating 

our score on fresh data. Note that test set is not 

homogeneous respect the training set and, re-

gardless of this aspect, the performance of last 

LP-tree is good in detecting S/M AAA. Hence, 

due to the aim of this study, we focused our at-

tention on this second output. 

 

 
Figure 2: The LP-based classification trees where only one biomarker is chosen at each node 

This figure reports the LP-tree obtained in the special case when we use only one biomarker for each split.  

Relative to the more popular classification tree, the resulting partition represents a global optimum, since the splitting 

variables, and corresponding thresholds, are computed by solving a linear programming problem. In more depth, white 

rectangles display the selected variables, while grey branches the corresponding thresholds which split (at each step) 

the observations within the two subsamples. Grey ovals (which corresponds to the “nodes” in the decision tree theory) 

represent the final partition; they report the classification attributed to each observation that fell into that node. 

This model was not used in the discussion, since its specificity (aim of this paper) out of sample was lower (75%) respect 

the specificity of the LP-tree where at each node a linear combination of biomarkers is chosen (79%). 
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Figure 3: The interface of the EASE Score 

The EASE Score is an Excel-file based macro (file available upon request). It is programmed starting from the LP-tree 

that uses at each node a linear combination of the 6 biomarkers selected in previous analyses. It has been designed to 

remedy the loss of interpretability of a single tree. 

Panel A reports the interface of the macro. In grey cells, physicians insert analytes values; then, pressing the black 

button, they obtain the AAA classification of a patient. 

Panel B reports a real example of a patient: after inserting the values of its exams, we obtain the classification of his/her 

AAA (in this case S/M).  

Missing values are advised but, just in case, they are imputed with the median value of the missing analyte computed 

on the entire sample of 423 patients. 

 

To overcome the loose of interpretability, the LP-

based tree is traduced into an easy tool useful 

for physicians, called EASE score (Figure 3). It 

is a macro contained in an Excel file. For each 

new patient, the physician inserts the six bi-

omarkers values (CK, ALT, MCV, Hgb, RDW, 

Hct) in the corresponding grey cells, and, press-

ing the black button, obtains the AAA classifica-

tion as S/M or L. Obviously, missing values are 

not recommended but, just in case of an omitted 

value, the macro automatically imputes the me-

dian value of the missing analyte computed on 

the 423 patients. Figure 3.A and 3.B reports re-

port the interface of the score and an example of 

classification computed on a real patient, re-

spectively. 

Discussion 

In this paper we propose an Easy Affordable 

Statistical and Economic method that use 

routine blood analysis for the follow up of pa-

tients with S/M AAA and avoid unnecessary cost 

for health care system since the current strategy 

of using morphologic imaging as a stand-alone 

approach has a number or limitations, in partic-

ular for S/M AAA [3; 10]. First, imaging may not al-

ways be feasible, as variations in patient charac-

teristics, such as obesity, meteorism or renal im-

pairment, may prove prohibitive. Second ultra-

sound is a method that is operator dependent 

while CT is more accurate but has the drawback 

of exposing the patient to ionizing radiation and 

intravenous contrast and is also more expensive 

[23; 24]. Furthermore, both the approach above 

mentioned are exams that require waiting time 

with indirect costs for patients but also for health 

care system since, different authors have 

demonstrated that S/M AAA with similar initial di-

ameter can vary significantly in growth pattern 

1

A

CK (U/L)

ALT (U/L)

MCV (fL)

Hemoglobin (Hgb) (g/dL)

RDW (%)

Hematocrite (Hct) (%)

Insert data

B

CK (U/L) 61

ALT (U/L) 63

MCV (fL) 85.9

Hemoglobin (Hgb) (g/dL) 17.7

RDW (%) 15

Hematocrite (Hct) (%) 54

S/M

Biomarkers
Insert values in the 

grey spaces

Biomarkers
Insert values in the 

grey spaces

Press here
for classification

Press here
for classification
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[25; 23]. A more complete ability to monitor S/M 

AAA may allow significant streamlining of cur-

rent management practice, which involves pro-

longed intermittent imaging. Different authors 

have used mathematical model using more com-

plex factors as expansion rate, mechanical 

stress, wall stiffness [2; 26]. These variables have 

technical limitations mainly due to the difficulties 

of the analyses that require trained operators not 

available in all hospitals. Hence, since we were 

looking for something economic and easy to use 

and understandable, we decide to focus our at-

tention on routine exams performed by these pa-

tients to build our score. We avoid the search in 

the biological matrix of extra lead markers that 

are mostly represented in the literature since, at 

the time of this writing, the clinical value of these 

markers remains unknown and none of them is 

used in the clinical practice even if different mod-

els have been proposed [16; 14]. In order to deter-

mine the biomarkers that identifies S/M or L 

AAA, we used (jointly with the Wilcoxon test) a 

Random Forest of regression trees. It extrapo-

lates information from a dataset where each 

subject is composed by a set of features associ-

ated to a class (S/M or L). Many methodologies 

have been proposed to deal with problems of 

this type. For example, in [27] authors evaluated 

179 classifiers arising from 17 families over 121 

data sets. One of the main findings is that Ran-

dom Forest is the best classifiers since it 

achieves 94.1% of the maximum accuracy over-

coming 90% in the 84.3% of the data sets. 

One of the innovations of our process is that the 

biomarkers used in this paper are jointly se-

lected by the Wilcoxon test and Random Forest, 

without considering the previous literature. Dif-

ferently from most of the approaches that have 

investigated specific molecules believed to be 

critical in AAA formation and progression, such 

as inflammatory markers or proteolytic enzymes, 

we decide to use high-throughput techniques to 

test different putative markers in an unbiased 

manner.  

Recently, many papers use the machine learn-

ing approach for analysing clinical data [28; 29; 30; 

21], but we are pioneers in the AAA field in 

combining approaches coming from machine 

learning and operational research. Our new LP-

tree based algorithm provides, for each patient, 

the diameter classification (S/M or L) based on 

the selected biomarkers. This is an easy and ef-

fective tool to quickly and cheaply obtain predic-

tions based on basic information collected on 

patients. 

Relative to the more popular classification tree, 

the resulting partition represents a global opti-

mum, since all the splitting variables, and corre-

sponding thresholds, are computed by solving it-

eratively a linear programming problem that pro-

vide the best path from the treetop to the final 

nodes. As in decision tree, at each split, patients 

are separates in two classes. Final nodes pro-

vide a classification of each subject, minimizing 

the error in predicting the right class (S/M or L). 

The approach extends those proposed in [31] and 
[32]. 

Armed with the small but robust panel of bi-

omarkers and the LP-based classification tree, 

we obtain a classificator able to identify (out of 

sample, namely on fresh data) 79% (CI: 67%- 

92%) of S/M AAA patients that do not pro-

gressed into L AAA and therefore do not require 

useless exams. 

The advantages of our procedure are different: 

first, we use, as biological matrix, blood (entire 

blood and plasma) that differently from mole-

cules expressed within diseased tissue are eas-

ier to be sample. Furthermore, we did not 

choose new biomarkers, but we build our score 

by using routine exams that these patients afford 

in their follow up with no additional cost for health 

care system neither for patients. Moreover the 6 

biomarkers that we use for our score can be pre-

scribed by a generalist doctor and can be per-

formed also in small and periphery laboratories 

since are commonly request and the commer-

cialization of common reagents has contributed 

to the standardization and reproducibility. Fur-

thermore, these exams are not expensive and 

patients do not waste time on waiting list. Very 

intriguing, the biomarkers we found to be im-

portant for the prediction of the AAA diameter, 

are not the most cited in the literature and the 
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value of biomarkers are often in the normal 

range: none of them must be necessary out of 

the reference range. This could be due the fact 

that most researches are based on case-control 

studies, furthermore, in a multifactorial disease 

such as AAA, it seems unlikely that observed pa-

thologies result from an important change in the 

expression of a single molecules. Rather, we be-

lieve that the AAA phenotype results from the 

concerted actions of large numbers of molecules 

over a prolonged period that could be detected, 

in part, by our approach. 

A limit of this study is the 21% of false positive 

(patients S/M classified as L). Probably, intro-

ducing more sophisticated markers or other at-

tributes, we will reduce this percentage.  

Anyhow, given the international opinion regard-

ing the importance of biomarkers in AAA, the 

finding of this study serves as a primer to stimu-

late interest for further validation by external co-

horts. In fact, we could not divide our cohort in 3 

subsamples (training, test and validating) since 

it does not reach 1000 subjects that is the num-

ber recommended for this procedure. For Any-

how, using our score, it is possible to avoid, for 

79% of patients with S / M AAA, unnecessary 

examinations or to use the classification for 

scheduling the imaging timing, personalizing the 

surveillance intervals. To deliver on this promise, 

more comprehensive screening studies with 

large-scale validation of identified putative bio-

logical markers are needed. 
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Analytes 

(Variables, Biomarkers, co-

variates) 

Diameter < 55 

(S/M) 

ntrain S/M=217 

Diameter ≥ 55 

(L) 

ntrain L=164 

TOTAL 

Ntrain=381 

p-value 

Creatine kinase (CK) 

 (20-170 U/L)** 

    

Mean ± SD 109.20 ± 103.12 189.55 ± 1036.61 143.79 ± 684.52  

Median 86.00 77.00 82.00 0.0355 

Min - Max 13 - 1061 23 - 13201 13 - 13201  

Alanine transaminase (ALT) 

(5-50 U/L)** 

    

Mean ± SD 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32)  

Median 24.00 22.00 23.00 0.0096 

Min - Max 11 - 123 7 - 163 7 - 163  

Platelet (PTL) 

(130-400 × 103 U/L)** 

    

Mean ± SD 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16  

Median 188.00 187.50 188.00 0.5504 

Min - Max 78 - 420 11.00 - 449.00 11 - 449  

Cholinesterase (CHE)  

(6400-15500 U/L)** 

    

Mean ± SD 11275.04 ± 

2945.56 

10841.30 ± 

3045.02 

11088.34 ± 

2992.55 

 

Median 11274.00 11133.00 11274.00 0.1558 

Min - Max 144 - 20363 1288 - 19531 144 - 20363  

Total Bilirubin 

(0.30-1.20 mg/dL)** 

    

Mean ± SD 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95  

Median 0.60 0.57 0.59 0.4250 

Min - Max 0.21 - 3.08 0.23 – 38.00 0.21 – 38.00  

Glucose (70-100 mg/dL)**     

Mean ± SD 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30  

Median 98.00 97.00 98.00 0.2939 

Min - Max 67 - 294 60 - 220 60 - 294  

Calcium (8.6-10.6 mmol/L)**     

Mean ± SD 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55  

Median 9.10 9.08 9.10 0.3720 

Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36  

Gamma % (10.7-20.3%)**     

Mean ± SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46  

Median 14.90 15.10 14.90 0.1260 

Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50  

Total Protein (6.0-8.0 g/dL)**     

Mean ± SD 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65  

Median 7.20 7.20 7.20 0.8858 

Min - Max 4.00 - 8.50 0.79 - 9.40 0.79 - 9.40  

Lactate Dehydrogenase 

(LDH) (125-220 U/L)** 

    

Mean ± SD 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58  

Median 171.00 172.00 171.00 0.2967 

Min - Max 41 - 397 91 - 379 41.00 - 397.00  

Mean Corpuscular Value 

(MCV) (82-94 fl)** 

    

Mean ± SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83  

Median 93.80 92.65 92.90 0.0070 

Min - Max 65.30 - 106.90 61.80 - 102.70 61.80 - 106.90  



Vezzoli Marika et al., AJCRAR, 2021, 4:18 

 AJCRAR: https://escipub.com/american-journal-of-cardiology-research-and-reviews/       21  

Hemoglobin (Hgb) 

(14-18 g/dl)** 

    

Mean ± SD 14.30 ± 1.58 13.79 ± 1.73 14.08 ± 1.66  

Median 14.50 14.05 14.30 0.0049 

Min - Max 8.20 - 18.60 7.60 - 18.00 7.60 - 18.60  

RDW (12-17%)**     

Mean ± SD 14.31 ±1.45 14.64 ± 1.44 14.46 ± 1.45  

Median 14.00 14.30 14.20 0.0043 

Min - Max 12.10 - 26.40 12.40 - 21.00 12.10 - 26.40  

Hematocrite (Hct) (42-52%)**     

Mean ± SD 42.81 ± 4.67 43.59 ± 28.55 43.15 ± 19.03  

Median 43.10 42.40 42.70 0.0215 

Min - Max 24.30 - 55.90 25.80 - 401.00 24.30 - 401.00  

Red blood cell count (RBC) 

(4.5-5.5 × 106/mL)** 

    

Mean ± SD 4.61 ± 0.55 4.51 ± 0.58 4.57 ± 0.56  

Median 4.63 4.58 4.61 0.1852 

Min - Max 2.55 - 6.55 2.93 - 6.29 2.55 - 6.55  

Albumin (3.4-4.6 g/dL)**     

Mean ± SD 3.90 ± 0.34 3.88 ± 0.33 3.89 ± 0.34  

Median 3.93 3.91 3.93 0.3455 

Min – Max 2.19 - 4.66 2.68 - 4.67 2.19 - 4.67  

PT (9.5-13.5 seconds)**     

Mean ± SD 12.72 ± 7.75 12.52 ± 4.44 12.63 ± 6.52  

Median 11.20 11.40 11.30 0.0139 

Min - Max 9.30 - 109.00 9.70 - 41.70 9.30 - 109.00  

Cholesterol (120-200 mg/dL)**     

Mean ± SD 179.06 ± 41.62 169.94 ± 38.70 175.13 ± 40.59  

Median 176.00 169.50 173.00 0.0543 

Min - Max 92.00 - 322.00 74.00 - 314.00 74.00 - 322.00  

MCH (27-31 pg)**     

Mean ± SD 31.16 ± 2.29 30.63 ± 2.23 30.93 ± 2.28  

Median 31.30 30.70 31.20 0.0068 

Min - Max 20.20 - 37.00 18.10 - 35.60 18.10 - 37.00  

White blood cell (WBC)  

(4.0-10.8 × 103/ml)** 

    

Mean ± SD 7.42 ± 2.16 7.36 ± 1.87 7.39 ± 2.04  

Median 7.08 6.98 7.04 0.9993 

Min - Max 3.15 - 16.68 3.67 - 14.37 3.15 - 16.68  

GGT (5.0-50 U/L)**     

Mean ± SD 43.31 ± 59.66 40.67 ± 38.09 42.17 ± 51.45  

Median 31.00 30.00 31.00 0.5249 

Min - Max 11 - 76 9 - 289 9 - 767  

ALP (40-129 U/L)**     

Mean ± SD 77.35 ± 30.38 84.85 ± 41.52 80.58 ± 35.75  

Median 71.00 78.00 75.00 0.0164 

Min - Max 24 - 331 39 - 453 24 - 453  

PT % (80-120%)**     

Mean ± SD 98.98 ± 22.25 96.98 ± 20.51 98.12 ± 21.52  

Median 103.00 100.00 103.00 0.0279 

Min - Max 14 - 151 18 - 137 14 - 151  

Albumin % (55.80-66.10%)**     

Mean ± SD 54.64 ± 3.96 54.10 ± 4.52 54.41 ± 4.21  

Median 54.40 54.05 54.40 0.1558 

Min - Max 39.10 - 64.50 39.80 - 64.80 39.10 - 64.80  
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Uric acid (3.4-7 mg/dL)**     

Mean ± SD 5.42 ± 1.42 5.48 ± 1.45 5.45 ± 1.43  

Median 5.29 5.30 5.30 0.7511 

Min - Max 2.30 - 11.90 2.09 - 10.40 2.09 - 11.90  

Tryglicerides (<150 mg/dL)**     

Mean ± SD 127.80 ± 70.83 126.05 ± 61.92 127.05 ± 67.06  

Median 112.00 105.00 111.00 0.9341 

Min - Max 34 - 453 38 - 356 34 - 453  

Alfa 1 (0.15-0.40 g/dL)**     

Mean ± SD 0.18 ± 0.04 0.20 ± 0.10 0.19 ± 0.07  

Median 0.17 0.19 0.18 0.0006 

Min - Max 0.08 - 0.36 0.09 - 1.34 0.08 - 1.34  

AST (5.0-50 U/L)**     

Mean ± SD 19.65 ± 15.26 19.99 ± 25.66 19.80 ± 20.37  

Median 17.00 16.00 16.00 0.0299 

Min - Max 7 - 196 3 - 283 3 - 283  

Potassium (3.5-5.0 mmol/L)**     

Mean ± SD 4.61 ± 7.07 4.16 ± 0.47 4.42 ± 5.34  

Median 4.10 4.19 4.10 0.3559 

Min - Max 2.80 - 108.00 2.82 - 5.60 2.80 - 108.00  

ESR (< 20 mm/h)**     

Mean ± SD 12.54 ± 10.89 17.20 ± 15.08 14.55 ± 13.05  

Median 10.00 12.00 11.00 0.0028 

Min - Max 2.00 - 75.00 2.00 - 83.00 2.00 - 83.00  

Alfa 1 % (1.0-3.0%)**     

Mean ± SD 2.50 ± 0.75 2.67 ± 0.78 2.58 ± 0.76  

Median 2.40 2.60 2.50 0.0022 

Min - Max 1.10 - 7.80 1.20 - 7.90 1.10 - 7.90  

Creatinine (0.5-1.2 mg/dL)**     

Mean ± SD 1.11 ± 0.59 1.32 ± 1.24 1.20 ± 0.93  

Median 0.98 1.00 0.99 0.1327 

Min - Max 0.59 - 6.40 0.55 - 9.85 0.55 - 9.85  

Alfa 2 % (9.5-14.4%)**     

Mean ± SD 12.91 ± 1.91 13.11 ± 2.05 13.00 ± 1.97  

Median 12.80 12.95 12.80 0.2898 

Min - Max 7.70 - 18.70 6.30 - 19.40 6.30 - 19.40  

Alfa 2 (0.45-1.0 g/dL)**     

Mean ± SD 0.92 ± 0.16 0.94 ± 0.16 0.93 ± 0.16  

Median 0.91 0.92 0.91 0.1835 

Min - Max 0.25 - 1.46 0.47 - 1.60 0.25 - 1.60  

Fibrinogen (170-410 mg/dL)**     

Mean ± SD 330.96 ± 68.54 351.30 ± 93.45 339.72 ± 80.73  

Median 325.00 325.00 325.00 0.0630 

Min - Max 198 - 554 105 - 856 105 - 856  

Beta (0.55-1.10 g/dL)**     

Mean ± SD 1.06 ± 0.16 1.05 ± 0.17 1.05 ± 0.16  

Median 1.05 1.05 1.05 0.5419 

Min - Max 0.52 - 1.76 0.71 - 1.48 0.52 - 1.76  

Beta % (8.6-15.6%)**     

Mean ± SD 14.78 ± 1.77 14.57 ± 1.70 14.69 ± 1.74  

Median 14.60 14.50 14.60 0.2736 

Min - Max 10.10 - 23.80 11.10 - 18.80 10.10 - 23.80  

A/G (1.08-1.86)**     

Mean ± SD 1.22 ± 0.19 1.20 ± 0.22 1.21 ± 0.21  

Median 1.19 1.17 1.19 0.1287 
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Min - Max 0.64 - 1.82 0.66 - 1.84 0.64 - 1.84  

Eosinophilis  

(0-0.80 × 103/mL)** 

    

Mean ± SD 0.20 ± 0.14 0.35 ± 1.71 0.26 ± 1.13  

Median 0.17 0.17 0.17 0.1436 

Min - Max 0.00 - 1.30 0.00 - 22.00 0.00 - 22.00  

Phosphorous 

(2.7-4.5 mmol/L)** 

    

Mean ± SD 2.72 ± 0.60 2.82 ± 0.63 2.77 ± 0.62  

Median 2.70 2.70 2.70 0.2261 

Min - Max 1.00 - 8.00 1.70 - 6.30 1.00 - 8.00  

Linphocytes  

(0.9-4.0 × 103/mL)** 

    

Mean ± SD 1.86 ± 0.54 1.79 ± 0.69 1.83 ± 0.61  

Median 1.77 1.77 1.77 0.2180 

Min - Max 0.70 - 3.76 0.54 - 8.11 0.54 - 8.11  

Monocytes % (3.4-9%)**     

Mean ± SD 8.49 ± 1.68 8.62 ± 1.68 8.55 ± 1.68  

Median 8.40 8.40 8.40 0.8799 

Min - Max 1.30 - 15.00 4.70 - 15.10 1.30 - 15.10  

Neutrophils  

(1.50-8 × 103/mL)** 

    

Mean ± SD 4.59 ± 1.50 4.53 ± 1.22 4.56 ± 1.39  

Median 4.38 4.38 4.38 0.9262 

Min - Max 2.04 - 12.48 2.07 - 11.18 2.04 - 12.48  

Monocytes (0.2-1 × 103/mL)**     

Mean ± SD 0.61 ± 0.17 0.62 ± 0.16 0.62 ± 0.17  

Median 0.59 0.59 0.59 0.6959 

Min - Max 0.12 - 1.21 0.34 - 1.26 0.12 - 1.26  

Sodium (135-145 mmol/L)**     

Mean ± SD 140.66 ± 9.61 141.49 ± 2.40 141.02 ± 7.43  

Median 141.00 141.00 141.00 0.4569 

Min - Max 3.80 - 149.00 132.00 - 148.00 3.80 - 149.00  

Eosinophilis % (0-8%)**     

Mean ± SD 2.74 ± 1.77 3.09 ± 2.19 2.89 ± 1.97  

Median 2.50 2.50 2.50 0.1079 

Min - Max 0.00 - 15.10 0.00 - 14.10 0.00 - 15.10  

Linphocytes % (20-45%)**     

Mean ± SD 25.63 ± 6.52 24.73 ± 6.76 25.24 ± 6.63  

Median 24.50 24.50 24.50 0.1467 

Min - Max 7.20 - 49.00 6.70 - 61.20 6.70 - 61.20  

MCHC (32-37 g/dL)**     

Mean ± SD 33.40 ± 0.83 33.32 ± 0.77 33.36 ± 0.81  

Median 33.40 33.30 33.30 0.4705 

Min - Max 30.30 - 35.50 29.30 - 35.50 29.30 - 35.50  

Basophilis (0-0.20 × 103/mL)**     

Mean ± SD 0.04 ± 0.02 0.04 ± 0.03 0.04 ± 0.02  

Median 0.04 0.04 0.04 0.6511 

Min - Max 0.01 - 0.13 0.00 - 0.17 0.00 - 0.17  

Neutrophils % (40-74%)**     

Mean ± SD 62.34 ± 7.47 62.71 ± 7.57 62.50 ± 7.50  

Median 63.25 63.25 63.25 0.5113 

Min - Max 36.40 - 91.30 29.40 - 86.80 29.40 - 91.30  

APTT (24-38 seconds)**     

Mean ± SD 31.92 ± 10.70 31.35 ± 4.84 31.68 ± 8.67  
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**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request. 

In fourth column, in bold and italics Wilcoxon p-values ≤ 0.05. 

Tabella S.1 Descriptive statistics on each analyte stratified for AAA diameter (S/M vs L) computed in the training sample 

(381 subjects) 

Analytes maintain the same order of Table 3 in the main text. In detail, the Wilcoxon test confirms same results obtained 

in the entire sample (423 observations), identifying almost the same biomarkers (15 out of 55) significantly different (p-

value < 0.05) in the two sub-populations defined by 𝐼𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟. 

 

Median 30.50 30.30 30.50 0.5854 

Min - Max 24.00 - 178.10 23.00 - 68.10 23.00 - 178.10  

INR (0.2-1.2)**     

Mean ± SD 1.10 ± 0.35 1.11 ± 0.37 1.10 ± 0.36  

Median 1.00 1.00 1.00 0.0387 

Min - Max 0.80 - 4.20 0.90 - 3.70 0.80 - 4.20  

Cloryte (95-110 mmol/L)**     

Mean ± SD 104.67 ± 7.24 105.22 ± 3.27 104.90 ± 5.87  

Median 105.00 105.00 105.00 0.6355 

Min - Max 8.67 - 114.00 91.00 - 116.00 8.67 - 116.00  

APTT ratio  

(0.70-1.28 ratio)** 

    

Mean ± SD 1.09 ± 0.77 1.03 ± 0.15 1.06 ± 0.59  

Median 1.00 1.00 1.00 0.7290 

Min - Max 0.76 - 11.04 0.76 - 2.13 0.76 - 11.04  

Basophilis % (0-1.50%)**     

Mean ± SD 0.58 ± 0.21 0.62 ± 0.35 0.60 ± 0.28  

Median 0.55 0.55 0.55 0.9211 

Min - Max 0.10 - 1.50 0.00 - 3.20 0.00 - 3.20  
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Analytes 

(Variables, Biomarkers, co-

variates) 

Diameter < 55 

(S/M) 

ntest S/M=24 

Diameter ≥ 55 

(L) 

ntest L=18 

TOTAL 

Ntest=42 

p-value 

CK (20-170 U/L)**     

Mean ± SD 113.62 ± 103.69 113.17 ± 111.58 113.43 ± 105.80  

Median 83.00 77.00 82.00 0.7894 

Min - Max 34 - 552 41 - 519 34 - 552  

ALT (5-50 U/L)**     

Mean ± SD 24.92 ± 8.55 26.44 ± 14.16 25.57 ± 11.17  

Median 24.00 20.50 22.00 0.6102 

Min - Max 8 - 46 14 - 71 8 - 71  

Platelet (PTL) 

(130-400 × 103 U/L)** 

    

Mean ± SD 185.25 ± 50.47 205.00 ± 51.35 193.71 ± 51.19  

Median 185.00 198.50 189.00 0.2223 

Min - Max 87 - 309 119 - 290 87 - 309  

Cholinesterase (CHE)  

(6400-15500 U/L)** 

    

Mean ± SD 11395.50 ± 

3220.16 

11279.39 ± 

4450.26 

11345.74 ± 

3745.95 

 

Median 11274.00 11055.50 11274.00 0.7895 

Min - Max 5297 - 18101 1224 - 21375 1224 - 21375  

Total Bilirubin 

(0.30-1.20 mg/dL)** 

    

Mean ± SD 0.72 ± 0.41 0.79 ± 0.36 0.75 ± 0.39  

Median 0.65 0.73 0.65 0.3402 

Min - Max 0.22 - 2.21 0.22 - 1.64 0.22 - 2.21  

Glucose (70-100 mg/dL)**     

Mean ± SD 100.00 ± 18.56 102.67 ± 28.80 101.14 ± 23.21  

Median 100.00 100.00 100.00 0.9696 

Min - Max 7 - 15 61 - 163 61 - 163  

Calcium (8.6-10.6 mmol/L)**     

Mean ± SD 9.14 ± 0.42 9.01 ± 0.60 9.08 ± 0.50  

Median 9.25 8.85 9.14 0.3468 

Min - Max 8.30 - 9.76 8.15 - 10.31 8.15 - 10.31  

Gamma % (10.7-20.3%)**     

Mean ± SD 14.62 ± 3.39 15.86 ± 4.24 15.15 ± 3.78  

Median 14.10 15.20 14.85 0.1776 

Min - Max 10.70 - 27.40 11.30 - 30.60 10.70 - 30.60  

Total Protein (6.0-8.0 g/dL)**     

Mean ± SD 7.01 ± 0.47 7.07 ± 0.61 7.04 ± 0.53  

Median 7.00 7.20 7.05 0.7595 

Min - Max 5.70 - 7.70 5.80 - 8.20 5.70 - 8.20  

LDH (125-220 U/L)**     

Mean ± SD 169.25 ± 47.56 205.00 ± 76.82 184.57 ± 63.54  

Median 169.00 175.50 170.50 0.1335 

Min - Max 122 - 332 118 - 403 118 - 403  

MCV (82-94 fl)**     

Mean ± SD 94.78 ± 4.06ì 93.69 ± 4.57 94.31 ± 4.26  

Median 94.95 93.50 94.45 0.3215 

Min - Max 85.60 - 103.00 86.60 - 104.60 85.60 - 104.60  

Hemoglobin (Hgb) 

(14-18 g/dl)** 

    

Mean ± SD 14.45 ± 1.70 14.25 ± 1.40 14.36 ± 1.56  

Median 14.40 14.30 14.35 0.5667 
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Min - Max 11.30 - 18.00 12.10 - 17.70 11.30 - 18.00  

RDW (12-17%)**     

Mean ± SD 14.01 ± 0.88 14.61 ± 1.56 14.27 ± 1.24  

Median 14.00 14.20 14.15 0.2627 

Min - Max 12.70 - 16.20 12.50 - 19.00 12.50 - 19.00  

Hematocrite (Hct) (42-52%)**     

Mean ± SD 43.08 ± 5.34 42.69 ± 3.99 42.92 ± 4.76  

Median 43.05 42.45 42.50 0.6564 

Min - Max 33.80 - 53.60 36.50 - 53.60 33.80 - 53.60  

Red blood cell count (RBC) 

(4.5-5.5 × 106/mL)** 

    

Mean ± SD 4.56 ± 0.65 4.56 ± 0.44 4.56 ± 0.57  

Median 4.52 4.52 4.52 0.8888 

Min - Max 3.41 - 5.78 3.95 - 5.40 3.41 - 5.78  

Albumin (3.4-4.6 g/dL)**     

Mean ± SD 3.88 ± 0.45 3.85 ± 0.38 3.86 ± 0.42  

Median 3.90 3.88 3.90 0.7314 

Min – Max 2.93 - 4.69 2.90 - 4.44 2.90 - 4.69  

PT (9.5-13.5 seconds)**     

Mean ± SD 11.18 ± 1.04 14.00 ± 6.09 12.39 ± 4.24  

Median 10.95 11.95 11.40 0.0067 

Min - Max 9.80 - 14.30 10.20 - 32.30 9.80 - 32.30  

Cholesterol (120-200 mg/dL)**     

Mean ± SD 178.75 ± 41.77 179.00 ± 47.12 178.86 ± 43.58  

Median 177.50 171.50 175.50 1.0000 

Min - Max 120 - 284 104 - 274 104 - 284  

MCH (27-31 pg)**     

Mean ± SD 31.83 ± 1.43 31.24 ± 1.47 31.58 ± 1.46  

Median 31.55 31.35 31.45 0.2221 

Min - Max 29.20 - 34.30 28.90 - 34.20 28.90 - 34.30  

White blood cell (WBC)  

(4.0-10.8 × 103/ml)** 

    

Mean ± SD 6.82 ± 1.71 8.11 ± 2.63 7.37 ± 2.22  

Median 6.95 8.02 7.22 0.1304 

Min - Max 4.06 - 10.40 4.43 - 14.80 4.06 - 14.80  

GGT (5.0-50 U/L)**     

Mean ± SD 50.42 ± 44.72 56.28 ± 83.68 52.93 ± 63.51  

Median 40.50 30.50 33.50 0.4608 

Min - Max 5 - 222 14 - 377 5- 377  

ALP (40-129 U/L)**     

Mean ± SD 83.67 ± 39.07 81.28 ± 29.48 82.64 ± 34.90  

Median 81.50 74.00 74.50 0.9190 

Min - Max 41 - 217 35- 141 35 - 217  

PT % (80-120%)**     

Mean ± SD 11.18 ± 1.04 14.00 ± 6.09 12.39 ± 4.24  

Median 10.95 11.95 11.40 0.0067 

Min - Max 9.80 - 14.30 10.20 - 32.30 9.80 - 32.30  

Albumin % (55.80-66.10%)**     

Mean ± SD 55.26 ± 4.91 54.49 ± 4.23 54.93 ± 4.59  

Median 55.65 55.75 55.75 0.5168 

Min - Max 41.90 - 61.90 44.00 - 59.50 41.90 - 61.90  

Uric acid (3.4-7 mg/dL)**     

Mean ± SD 5.48 ± 1.09 5.88 ± 1.14 5.65 ± 1.12  

Median 5.40 5.70 5.55 0.1900 

Min - Max 3.40 - 7.60 3.70 - 7.60 3.40 - 7.60  



Vezzoli Marika et al., AJCRAR, 2021, 4:18 

 AJCRAR: https://escipub.com/american-journal-of-cardiology-research-and-reviews/                27

Tryglicerides (<150 mg/dL)**     

Mean ± SD 158.54 ± 92.51 134.56 ± 61.91 148.26 ± 80.84  

Median 138.50 121.50 131.00 0.3945 

Min - Max 61 - 467 57- 252 57 - 467  

Alfa 1 (0.15-0.40 g/dL)**     

Mean ± SD 0.17 ± 0.05 0.17 ± 0.04 0.17 ± 0.04  

Median 0.16 0.17 0.17 0.3251 

Min - Max 0.12 - 0.31 0.13 - 0.29 0.12 - 0.31  

AST (5.0-50 U/L)**     

Mean ± SD 17.96 ± 6.70 20.89 ± 12.64 19.21 ± 9.67  

Median 17.50 17.00 17.00 0.9592 

Min - Max 6 - 38 13 - 65 6 - 65  

Potassium (3.5-5.0 mmol/L)**     

Mean ± SD 4.15 ± 0.36 4.00 ± 0.36 4.09 ± 0.37  

Median 4.15 3.95 4.05 0.0973 

Min - Max 3.50 - 5.10 3.40 - 5.00 3.40 - 5.10  

ESR (< 20 mm/h)**     

Mean ± SD 13.83 ± 17.04 18.28 ± 13.34 15.74 ± 15.55  

Median 9.00 14.00 11.00 0.0104 

Min - Max 2 - 83 2 - 61 2 - 83  

Alfa 1 % (1.0-3.0%)**     

Mean ± SD 2.42 ± 0.66 2.48 ± 0.53 2.44 ± 0.60  

Median 2.25 2.50 2.45 0.3375 

Min - Max 1.60 - 4.50 1.70 - 4.20 1.60 - 4.50  

Creatinine (0.5-1.2 mg/dL)**     

Mean ± SD 1.08 ± 0.24 1.02 ± 0.21 1.05 ± 0.23  

Median 1.02 1.00 1.02 0.4923 

Min - Max 0.78 - 1.75 0.74 - 1.69 0.74 - 1.75  

Alfa 2 % (9.5-14.4%)**     

Mean ± SD 13.21 ± 2.83 12.79 ± 2.78 13.03 ± 2.78  

Median 13.00 12.75 12.75 0.5584 

Min - Max 8.30 - 23.40 8.10 - 20.80 8.10 - 23.40  

Alfa 2 (0.45-1.0 g/dL)**     

Mean ± SD 0.93 ± 0.20 0.90 ± 0.20 0.91 ± 0.20  

Median 0.90 0.84 0.89 0.4230 

Min - Max 0.59 - 1.59 0.59 - 1.38 0.59 - 1.59  

Fibrinogen (170-410 mg/dL)**     

Mean ± SD 316.46 ± 55.06 354.44 ± 64.50 332.74 ± 61.54  

Median 319.00 332.00 325.00 0.0145 

Min - Max 211 - 449 214 - 480 211 - 480  

Beta (0.55-1.10 g/dL)**     

Mean ± SD 1.02 ± 0.14 1.01 ± 0.16 1.01 ± 0.15  

Median 1.02 1.04 1.03 0.8189 

Min - Max 0.76 - 1.26 0.74 - 1.31 0.74 - 1.31  

Beta % (8.6-15.6%)**     

Mean ± SD 14.49 ± 1.72 14.29 ± 2.06 14.40 ± 1.85  

Median 14.50 14.50 14.50 0.6022 

Min - Max 10.90 - 17.40 10.40 - 19.90 10.40 - 19.90  

A/G (1.08-1.86)**     

Mean ± SD 1.26 ± 0.23 1.21 ± 0.19 1.24 ± 0.21  

Median 1.25 1.26 1.26 0.5250 

Min - Max 0.72 - 1.62 0.79 - 1.47 0.72 - 1.62  

Eosinophilis  

(0-0.80 × 103/mL)** 

    

Mean ± SD 0.17 ± 0.08 0.20 ± 0.10 0.18 ± 0.09  
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Median 0.17 0.17 0.17 0.2782 

Min - Max 0.05 - 0.38 0.02 - 0.39 0.02 - 0.39  

Phosphorous 

(2.7-4.5 mmol/L)** 

    

Mean ± SD 11.41 ± 42.09 2.50 ± 0.31 7.60 ± 31.84  

Median 2.80 2.45 2.70 0.0576 

Min - Max 1.60 - 209.00 1.90 - 2.95 1.60 - 209.00  

Linphocytes  

(0.9-4.0 × 103/mL)** 

    

Mean ± SD 1.63 ± 0.41 1.69 ± 0.42 1.66 ± 0.41  

Median 1.75 1.77 1.77 0.2883 

Min - Max 0.86 - 2.56 0.75 - 2.39 0.75 - 2.56  

Monocytes % (3.4-9%)**     

Mean ± SD 8.65 ± 2.00 8.13 ± 1.38 8.43 ± 1.76  

Median 8.35 8.40 8.40 0.6797 

Min - Max 6.10 - 15.20 5.80 - 11.00 5.80 - 15.20  

Neutrophils  

(1.50-8 × 103/mL)** 

    

Mean ± SD 4.44 ± 1.14 5.42 ± 2.20 4.86 ± 1.73  

Median 4.38 4.38 4.38 0.1635 

Min - Max 1.96 - 6.37 3.44 - 11.78 1.96 - 11.78  

Monocytes (0.2-1 × 103/mL)**     

Mean ± SD 0.58 ± 0.11 0.64 ± 0.12 0.61 ± 0.12  

Median 0.59 0.59 0.59 0.2455 

Min - Max 0.34 - 0.79 0.41 - 0.87 0.34 - 0.87  

Sodium (135-145 mmol/L)**     

Mean ± SD 141.29 ± 2.10 140.56 ± 2.71 140.98 ± 2.37  

Median 141.50 141.00 141.00 0.5963 

Min - Max 136 - 145 133 - 143 133 - 145  

Eosinophilis % (0-8%)**     

Mean ± SD 2.50 ± 1.11 2.62 ± 1.08 2.55 ± 1.08  

Median 2.50 2.50 2.50 0.6676 

Min - Max 0.80 - 5.30 0.20 - 4.80 0.20 - 5.30  

Linphocytes % (20-45%)**     

Mean ± SD 24.03 ± 5.82 22.04 ± 6.88 23.18 ± 6.29  

Median 24.50 24.50 24.50 0.3081 

Min - Max 14.20 - 35.30 6.60 - 33.00 6.60 - 35.30  

MCHC (32-37 g/dL)**     

Mean ± SD 32.33 ± 6.12 33.37 ± 0.68 32.78 ± 4.64  

Median 33.45 33.35 33.40 0.3393 

Min - Max 3.70 - 34.40 32.30 - 35.20 3.70 - 35.20  

Basophilis (0-0.20 × 103/mL)**     

Mean ± SD 0.04 ± 0.02 0.05 ± 0.02 0.04 ± 0.02  

Median 0.04 0.04 0.04 0.0893 

Min - Max 0.01 - 0.11 0.01 - 0.11 0.01 - 0.11  

Neutrophils % (40-74%)**     

Mean ± SD 64.07 ± 7.41 66.28 ± 7.91 65.01 ± 7.61  

Median 63.25 63.25 63.25 0.7180 

Min - Max 46.60 - 77.30 54.60 - 83.70 46.60 - 83.70  

APTT (24-38 seconds)**     

Mean ± SD 29.73 ± 6.73 31.04 ± 3.90 30.29 ± 5.67  

Median 31.15 30.40 30.60 0.6471 

Min - Max 0.19 - 37.00 24.40 - 41.00 0.19 - 41.00  

INR (0.2-1.2)**     

Mean ± SD 1.00 ± 0.10 1.23 ± 0.52 1.10 ± 0.36  
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**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request. 

In fourth column, in bold and italics Wilcoxon p-values ≤ 0.05. 

Tabella S.2 Descriptive statistics on each analyte stratified for AAA diameter (S/M vs L) computed in the test sample 

(42 subjects) 

Analytes maintain the same order of Table 3 in the main text. 

The test set does not reflect what happens in the entire sample and in the training set. In fact, Wilcoxon test identify only 

5 biomarkers as significantly different (p-values>0.05) in the two sub-populations S/M AAA vs L AAA. Four of them 

coincide with those identified in the entire sample of 423 observations, while one differs (Fibrinogen). Anyhow, the LP-

based tree grown on linear combination of biomarkers, was validated on this data (not homogeneous with training set), 

showing good performance in terms of specifity. 

 

 

 

Median 1.00 1.06 1.00 0.0050 

Min - Max 0.88 - 1.30 0.90 - 2.80 0.88 - 2.80  

Cloryte (95-110 mmol/L)**     

Mean ± SD 105.12 ± 2.80 104.50 ± 3.09 104.86 ± 2.91  

Median 105.50 105.00 105.50 0.6432 

Min - Max 99 - 112 98 - 109 98 - 112  

APTT ratio  

(0.70-1.28 ratio)** 

    

Mean ± SD 0.99 ± 0.14 1.02 ± 0.13 1.00 ± 0.14  

Median 1.01 0.99 1.01 0.7311 

Min - Max 0.41 - 1.20 0.78 - 1.32 0.41 - 1.32  

Basophilis % (0-1.50%)**     

Mean ± SD 0.56 ± 0.33 0.61 ± 0.25 0.58 ± 0.29  

Median 0.53 0.55 0.55 0.1148 

Min - Max 0.20 - 1.70 0.10 - 1.10 0.10 - 1.70  


