

American Journal of Cardiology Research and Reviews (ISSN:2637-4935)

An Easy Affordable Statistical and Economic (EASE) approach to avoid unnecessary and expensive exams to monitor patients with small AAA

Vezzoli Marika¹, Archetti Claudia², Bianchessi Nicola³, Bonardelli Stefano⁴, Garrafa Emirena^{1*}

¹Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy. ²IDS Department, ESSEC Business School in Paris, Paris, 95021 Cergy-Pontoise Cedex, France. ³Department of Informatics "Giovanni degli Antoni", University of Milan, Milan, 20133, Italy. ⁴Department of Clinical and Experimental Sciences, University of Brescia, Brescia, 25123, Italy.

ABSTRACT

Abdominal Aortic Aneurysm (AAA) is a localized enlargement *Correspondence to Author: of the abdominal aorta, such that the diameter exceeds 30 Emirena Garrafa mm. AAA is a progressive growth leading to rupture, with high Department of Molecular and risk of mortality, therefore elective surgical repair is indicated Translational Medicine, University when AAA diamenter is >55 mm. Screening programs, that use of Brescia, Brescia, 25123, Italy. morphological imaging, have been developed internationally with the aim of detecting AAA before rupture with important **How to cite this article:** limitations in term of cost and benefit for patients. Furthermore, Vezzoli Marika, Archetti Claudia, different biochemical markers have been proposed to monitor Bianchessi Nicola, Bonardelli Ste-AAA progression to overcome the above-mentioned limitations fano, Garrafa Emirena. An Easy but none of them is used in the clinical practice. In fact, most Affordable Statistical and Economic of the biomarkers proposed are expensive and not feasible in (EASE) approach to avoid unnecthe majority of laboratories. Combining different methodologies essary and expensive exams to coming from Statistics and Operational Research fields, we monitor patients with small AAA developed an algorithm able to assess the importance of EASE Score. American Journal of common biomarkers, requested in the clinical practice to Cardiology Research and Reviews, evaluate the health of patient, and therefore no exams are 2021, 4:18. required. Furthermore, we develop an Easy, Affordable Statistics and Economic (EASE) model able to identify if the AAA remain below the cut off for surgical repair. This prediction can provide guidance to how closely the patient's abdominal aorta should be eSciPub LLC, Houston, TX USA. monitored avoiding additional and expensive exams.

Keywords: Abdominal Aortic Aneurysm, EASE

Introduction

Abdominal Aortic Aneurysm (AAA), a dilatation that exceed 30 mm of the distal aorta, is among the 10 leading causes of death for people aged 60-84 years in industrialized countries ^[1]. It is considered a life-threating condition since the ultimate complication of AAA is rupture of the aneurysm ^[2; 3], with an approximate overall mortality rate of at least 80% ^[1]. Depending on their diameter, AAA are classified as Small (< 45 mm), Medium (45 mm \leq diameter < 55 mm) and Large (\geq 55 mm) ^[4; 5].

International screening programs that recommend conservative management and imaging surveillance of Small AAA have been developed. Lack of established prognostic indexes or drug treatment make repeating imaging necessary to monitor ^[6] vessel dilatation that is often progressive in patients that are usually asymptomatic. In fact, timely elective AAA repair is currently the only available effective therapy and is related to AAA diameter ^[7; 1].

When AAA are diagnosticated and result < 55 mm, survey program provides the execution of an ultrasound or a TAC; in detail, every 2 years in case of Small AAA and every 6-12 months in case of Medium AAA. Surveillance continues until aortic diameter increases (≥ 55 mm), at which point surgical intervention is usually undertaken, since risk of rupture outweighs preoperative risks for the majority of patients ^[8; 6; 1]. In patients with a not yet surgical AAA, there are no clear predictors of a fast or slow progression, and the best interval between an imaging check and the next step is not defined with important consequences in terms of risk for patients and cost-effectiveness [8]. Furthermore, the use of morphologic imaging as a stand-alone approach to diagnose and provide prognostic information regarding AAA, has a number of limitations: imaging may not always be visible as variations in patient characteristics (obesity, renal impairment etc) and, more importantly, imaging assessments do not provide complete data to identify which AAA will remain below the cut-off of 55 mm^[3; 9]. This oblige patients to undergo unnecessary imaging exams, that require waiting time, specialized staff to perform and evaluate the results together with important cost for sanitary service and indirect cost on life of patients^[3; 9; 10].

Many authors have investigated the role of biochemical markers able to follow AAA progression and that potentially could help in triaging patients in order to discriminate those who should undergo rapid imaging to allow a prompt initiation of treatment ^[11; 12; 13]. Most of the molecules studied are molecules potentially involved in mechanism that could be critical in AAA formation and progression. Most of them may be expressed within diseased tissues, even if those that can be detected within body fluids, such as serum and plasma, are highly desirable, for diagnostic, prognostic and monitoring purpose, due to relative ease of sample collection. Between the most studied markers of thrombosis, such as inflammatory markers, and selected proteolytic enzymes, conflicting results often emerge^[14, 15, 7]. Furthermore, most of the markers analyzed are sophisticated and their detection requires complex and expensive analyzers, specialized staff, while other markers are easier to detect and often part of a routine required by the medical service to assess patient's health [14; ^{16; 17]}. Some of these biomarkers have been used to build or integrate previous mathematical models able to predict risk of rupture of AAA^[18; 19]. Nevertheless, in the clinical practice none of the models proposed by the literature is used probably because a focused hypothesis-led approach may miss important molecular changes if such molecules are not a direct target of the investigation.

The combination of different methodologies coming from the field of Statistic and Operational Research through the development of increasingly powerful technologies permit the simultaneous analysis of thousands of candidates from a single biological specimen could bypass this shortfall. By using these approaches, the likelihood of identifying key physiological changes is supposed to greatly increased. For this reason, we combine different statistic and operational research approaches in order to assess the importance of biomarkers requested in the clinical practice to evaluate the health of patients, and therefore do not require additional exams.

We select the biomarkers using an innovative algorithm and build an Easy, Affordable Statistical and Economic (EASE) mathematical model able to define if the AAA remain below the cut off for surgical repair. This is very important since if AAA is < 55 mm, the patients can cease with unnecessary exams with benefit for health care system and patients itself. In the first part of our analysis, we combine non-parametric methods and machine learning techniques, such as Variable Importance Measures (VIM) extracted from Random Forest (RM), to select key biochemical marker(s). Afterwards, we build a classification tree through an approach based on the sequential solution of Linear Programming (LP) models that identify combinations of molecules and threshold values. The resulting tree is then transformed into an easy tool, the EASE score, which provides an immediate answer given the values of the identified molecules.

With the EASE score we were able to identify 79% of patients with Small/Medium AAA that do not turn into Large, avoiding unnecessary and expensive exams.

Materials and Methods

Patients and specimens

Among the 700 consecutive male patients who were enrolled between 2017-2019 for the study admitted to the Vascular Surgery Unit of Brescia University "Spedali Civili" hospital in Brescia, Northern Italy, 37 (5.3%) were rejected because had recent infections, fever, or traumas, inflammatory aneurysm based on CT findings, symptomatic or ruptured aneurysm, inflammatory or infectious aneurysm, or anastomotic pseudoaneurysm and malignant disease. We obtain a consecutive sample of 423 male Caucasian patients (mean age $72.6\pm$ 7.68; median age 72) admitted to the Vascular Surgery Unit of Brescia University "Spedali Civili" hospital in Brescia, Northern Italy, for AAA resection.

Based on CT findings, we found that 39 out of the 423 patients selected for the study, were classified as having a Small AAA (diameter <45 mm), 202 as Medium (45 mm ≤diameter <55 mm) and 182 as Large (diameter \geq 55 mm). Since the number of Small aneurisms were unbalanced with respect the others, we join the categories Small and Medium in a unique group that we renamed "S/M" for a total of 241 patients. The study is conformed to the ethical guidelines of the "World Medical Association Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects" adopted by the 18th World Medical Association General Assembly, Helsinki, Finland, June 1964, and revised in Tokyo in 2004. Institutional ethic committees approved the study, and all patients provided a written informed consent (Ethics Committee of ASST Spedali Civili di Brescia, approval reference number: 1353) [⁷]. Participants did not receive any form of financial compensation.

As mentioned above, these patients performed numerous blood tests, and for some of them a maximum of 77 biomarkers were collected. To obtain a homogeneous sample, from our data we selected those biomarkers with less than 55% of missing values obtaining a data matrix with 423 man for 55 biomarkers.

Since we deal with a consistent sample, we decided to split the data in two subsets: the first containing 90% of subjects for training the classificator proposed in our analysis and the remaining fresh data for testing the accuracy of the output obtained.

We compute the percentage of diameters classified as S/M or L (\cong 57% and \cong 43%, respectively), then we sample 90% of the data stratifying for the dichotomized diameter. Hence, we obtained a training set of 381 patients that reflected the same percentage of S/M and L diameter: 217 (57%) and 164 (43%) patients, respectively. The same holds for the test set: S/M=24 patients (57%) versus L=18 patients (43%).

Blood collection and laboratory measurements

Venous blood samples were obtained from fasting overnight patients via an anticubital vein puncture without venous stasis before AAA resection (no longer than one month from imaging and resection). Commercially available assays were used according to manufacturer's instruction on instruments calibrated against appropriate proprietary reference standard material and verified by using the registered quality controls ^[7].

Statistical approach

We applied a new combination of different methods to test and prove the connection and interrelationship among the many faces of a complex pathological state to discover missing pieces in the current knowledge. The different approaches that we merged come from different fields, namely, statistics (with non-parametric and machine learning methods) and operational research. The choice of combining methodologies coming from different disciplines is due to the complexity of the problem and the variety of the dataset. This allowed us, on one side, to deal with complex data (as in our case) such as outliers, missing values, extremely asymmetric variables (positive and negative) and, on the other side, to use optimization when determining the best predictive molecules and their interrelations.

Non-parametric method

Since biomarkers have a not-normal distribution (data not shown but available upon request), for understanding if one of them is able to discriminate whether a patient can be classified as having S/M or L AAA, we use a well-known non-parametric test like the Wilcoxon Rank Sum test with a significance level of 0.05.

Figure 4: How ensemble methods (e.g. Random Forest) work

This figure summarizes the functioning of the ensemble method and can be read from the bottom up.

In case of Random Forest, used in this study for extracting the relative VIM jointly with the Wilcoxon test, starting from the matrix containing outcomes and covariates, the training set is repeatedly perturbed (10,000 bootstrap samples). On each perturbed set, a single regression tree (weak learner) is grown selecting only a limited number ($\sqrt{55}$) of covariates at each split. Its performance is measured on a test set not used in the training procedure, called Out of Bag (OOB). From each tree, the algorithm extracts the predictions and combines them (average in case of regression or majority vote in case of classification) in order to generate a stable and accurate predictor.

Machine learning

To identify biomarkers that most impact on the prediction of AAA dimensions, we use machine learning techniques. In detail, we use ensemble method where the weak learner is the regression tree ^[33]. In fact, as suggested in ^[20], when the outcome is dichotomic, you can use regression instead of classification.

Ensemble methods ^[20], and in particular Random Forest ^[34] technique used in this paper, are an extension of trees, combines the predictions obtained from many regression trees grown on perturbed versions of the dataset. RF deals with the missing values by means of *imputation on the fly* algorithm. The algorithm below quickly explains how Random Forest works, providing details on parameters setting. Moreover, Figure 4 syntheses the idea under the perturbation and

combination method. The prediction error of Random Forest is measured with the Out-Of-Bag procedure which is the mean prediction error on each training sample, x_i , based on trees that do not contain x_i in their bootstrap sample. From Random Forest we extracted a variable importance measure, called Mean Decrease in Accuracy (MDA), which identified the covariates that most impact on the prediction of the response variable (AAA dimension). This measure is relativized respect its maximum. Hence, the most important variable has a VIM=100 and to the remaining covariates a decreasing value is assigned. Using this procedure, we selected analytes with a VIM>57, since this threshold is closed to 60, as suggested in ^[22].

All the statistical analyses were performed with R 4.0.

Random	Forest	Algorithm	 Regression
--------	--------	-----------	--------------------------------

Set parameters *N*=423 # number of observations in the dataset *X*=data matrix with 423 patients for $r = \{1, ..., R\}$ columns, where *R*=55 analytes in our dataset *BOOT*=10,000 #number of replications (10,000) *n_{min}*=10% of observation=0.1*423 \cong 42 # minimum node size (fourty-two subjects) #number of variables selected by the algorithm at each node of the tree r AAA \Rightarrow *I*_{diameter} = $\begin{bmatrix} 1 \text{ if diameter } \ge 55 \text{ mm} \Rightarrow \text{L} \\ 0 \text{ otherwise (diameter < 45 mm} \Rightarrow \text{S/M}) \end{bmatrix}$ For *i*=1 to *BOOT* { (a) Draw a bootstrap sample, called *boot_i*, of size *N* from the dataset (b) Grow a regression tree *T*_{boot_i} (*Y*~*X*) to the bootstrapped data, by recursively repeating the following steps for each node of the tree, until the minimum node size *n_{min}* is reached:

(*i*) Select *g* variables at random from the *r* covariates

(*ii*) Take the best split/variable among the g variables available

(iii) Split the node in two child nodes.

Each T_{boot_i} produces a vector of predictions $\hat{f}_{rf_{boot_i}}(x)$ validated Out-Of-Bag (OOB), namely on observations not used in the training step}

From the ensemble of trees, the prediction at a new point x is:

$$\hat{f}_{rf}^B(x) = \frac{1}{BOOT} \sum_{i=1}^{BOOT} \hat{f}_{rf_{boot_i}}(x)$$

Score

EASE-Score is a simple and easy tool which enables to immediately know the classification of the AAA (S/M or L) given the value of the molecules identified by the two non-parametric approaches used in this study. Specifically, once executed the blood tests on a patient, the molecule values are inserted in the score which provides the classification. The EASE score was developed as an Excel-file based macro and it is available upon request (Figure 3.A and 3.B reports report the interface of the score and an example of classification computed on a real patient of our sample, respectively). Missing values are not recommended but, just in case of an omitted value, the macro automatically imputes the median value of the missing analyte computed on the original dataset.

The EASE Score is programmed starting from a Linear Programming (LP)-based tree where the outcome is the Idiameter and covariates are the analytes previously identified. It is inspired by classification trees since, at each interaction, it splits subjects in two subsets [33]. Unlike the classification tree, it identifies splits, thresholds and, consequently, final nodes using a completely innovative approach based on sequentially solving linear programming models ^[35; 36]. Relative to well-known decision tree (that generates a local optimum since the final partition is conditioned from the rules of thumb at each node), the resulting partition represents a global optimum, since all the splitting variables and corresponding thresholds, induce the best path from the treetop to the final nodes, where patients, classified respect the most representative class in the node, fall. Moreover, the running time of the LP-based tree is very long; for this reason, the first step that select most important covariates (reducing

$$\min_{w,t,z} \left\{ \frac{et}{n_1} + \frac{ez}{n_2} | t \ge -A_1 \cdot w + e \cdot \gamma + e, z \ge A_2 \cdot w - e \cdot \gamma + e \right\}$$

where t and z are variables measuring the distance between the plane and the misclassified points and e is the identity vector.

For each node in the tree, the best split (w^*, γ^*) of the points reaching that node is found by solving (1). The node is then split into two branches. In the first branch a node is defined for the points $a_i \in A_1 \cup A_2$ such that $a_i \cdot w^* \leq e \cdot \gamma^*$, while points $a_i \in A_1 \cup A_2$ such that $a_i \cdot w^* > e \cdot \gamma^*$ are associated with the node of the second branch. The procedure is recursively applied until there are mostly points of one class at the node or there are too few points at the node. The node is classified by means of the majority vote (indirectly we compute the node mode). The procedure is also adapted to the case where at most k attributes (where k < < r) are chosen in (1) by imposing an additional inequality in each LP model.

In this study on AAA classification, starting from the training set of 381 patients for 7 variables (Idiameter (outcome) + 6 biomarkers selected by

the dataset dimension) is of primary importance. Here follows a brief description of how LP-based tree works.

Consider two disjoint sets S_1 and S_2 that we wish to discriminate, with $|S_1| = n_1$ and $|S_2| = n_2$. The available training values for sets S_1 and S_2 are represented as matrices A_1 and A_2 of dimension $n_1 \cdot r$ and $n_2 \cdot r$, respectively, where r is the number of variables involved in the analysis. Let w be an r-dimensional weight vector in \mathbb{R}^{r} , and y be a real number. We would like to identify a separating plane $x^T \cdot w = \gamma$ in the attribute space of the examples, where x^{T} is the transpose of x. Ideally, such a plane would be such that all the points of A_1 lie on one side of the plane and all the points of A_2 lie on the other. This is in general not possible to achieve. Thus, in [³⁵], the author proposes to minimize the average distance between the plane and the misclassified points. This results in optimizing the following linear programming problem:

 $+ e, t \ge 0, z \ge 0 \right\} (1)$

Wilcoxon-test and Random Forest), S1 corresponds to the set of patients with a S/M AAA, where $n_{S/M}=217$ (57%), while S_2 corresponds to set of patients with a L AAA, where $n_{L}=164$ (43%). LP-based trees are then built following the procedure described above.

Two options are proposed. The first one shows the tree obtained in the special case where only one biomarker is considered in the inequalities shown in (1). Graphically, it recalls the classic decision tree where grey branches reported splitting variables and corresponding threshold, and final nodes (grey ovals) contains the classification for each subject fallen inside them. The second option contains the LP-based tree where, for each node, a linear combination of biomarkers is chosen. In this case, the graphical representation of a single tree is completely lost but the ability of detecting S/M AAA out of sample increases. In fact, since the aim of our study is to detect the AAA progression, for each LPtree evaluated the specificity and we

corresponding 90% Confidence Interval (CI) computed with 10000 stratified bootstrap replicates.

Concluding, we focused our attention on the second LP tree, programming our EASE score from it.

Results

Patients and specimens

We selected a consecutive sample of 423 male Caucasian patients (mean age 72.6±, 7.68 median 72) admitted to the Vascular Surgery Unit of Brescia University "Spedali Civili" hospital in Brescia, Northern Italy, for AAA resection. This sample is the result of a selection from a bigger cohort where patients have performed a CT angiography to classify AAA as Small (S), Medium (M) or Large (L) within one month before or after blood tests. Due the exiguous number of S AAA (39 patients), we dichotomized the diameter in S/M (249 patients, namely 57%) and L (182 patients, namely 43%). Furthermore, depending on the patients, laboratory data were different

since, for some of them consisted of 77 biomarkers, for others were collected a smaller number of analytes. To overcome this limitation, we selected only biomarkers with less than 55% of missing values. The result is a data matrix with 423 man for 55 biomarkers. First, using two nonparametric methods (Wilcoxon test and Relative VIM for Random Forest) we selected a limited number of analytes. Then, using 90% of the sample (training set with 381 patients) we trained a Linear Programming based tree obtaining a AAA classificator and validating it on the remaining 10% of patients (42 subjects). Obviously, the training set reflects the percentage of S/M and L AAA of the entire sample. In Table 1 are reported the 55 biomarkers used in our analyses (in alphabetical order) together with normal range values, descriptive statistics (mean \pm SD, median, min-max) and number (%) of missing values. Table 2 reports descriptive statistics on the diameter (entire sample or stratified for S, M, S/M, and L).

Analytes (Variables, Bi- omarkers, test)	Normal range val- ues	Media ± SD *GeoMean with Boot interval	Median	Range (min-max)	Missing val- ues n (%)
A/G	1.08 – 1.86	1.21 ± 0.21	1.19	0.64 - 1.84	14 (3.31%)
Albumin	3.4 – 4.6 g/dL	3.89 ± 0.35	3.93	2.19 - 4.69	14 (3.31%)
Albumin %	55.80 - 66.10 %	54.46 ± 4.32	54.40	39.10 - 64.80	14 (3.31%)
Alfa 1	0.15 – 0.4 g/dL	0.18 ± 0.07	0.18	0.08 - 1.34	14 (3.31%)
Alfa 1 %	1.0 – 3.0 %	2.56 ± 0.76	2.50	1.10 - 7.90	14 (3.31%)
Alfa 2	0.45 – 1.0 g/dL	0.93 ± 0.17	0.91	0.25 - 1.60	14 (3.31%)
Alfa 2 %	9.5 – 14.4 %	13.01 ± 2.10	12.80	6.30 - 23.40	14 (3.31%)
ALP	40 – 129 U/L	80.94 ± 36.09	75.00	24.00 - 453.00	11 (2.60%)
ALT	5.0 – 50 U/L	26.57 ± 14.95	23.00	7.00 – 163.00	0 (0.00%)
APTT (sec)	24 – 38 sec	31.57 ± 8.57	30.50	0.19 - 178.10	14 (3.31%)
APTT ratio	0.7 – 1.28	1.06 ± 0.57	1.00	0.41 - 11.04	14 (3.31%)
AST	5.0 - 50 U/L	19.74 ± 19.59	17.00	3.00 – 283.00	1 (0.24%)
Basophilis	0 – 0.20 ×10³/µL	0.04 ± 0.03	0.04	0.00 - 0.17	119 (28.13%)
Basophilis %	0 – 1.5 %	0.61 ± 0.33	0.55	0.00 – 3.20	119 (28.13%)
Beta	0.55 – 1.10 g/dL	1.05 ± 0.17	1.05	0.52 - 1.76	14 (3.31%)
Beta %	8.6 – 15.6 %	14.66 ± 1.78	14.60	10.10 - 23.80	14 (3.31%)
Calcium	8.6 – 10.6 mmol/L	9.08 ± 0.55	9.10	3.00 - 10.36	8 (1.89%)

Table 1: Descriptive statistics on 55 analytes (in alphabetical order) considering the entire sample of 423 patients

Vezzoli Marika et al., AJCRAR, 2021, 4:18

Analytes (Variables, Bi- omarkers, test)	Normal range val- ues	Media ± SD *GeoMean with Boot interval	Median	Range (min-max)	Missing val- ues n (%)
Cholesterol	120 – 200 mg/dL	175.50 ± 40.95	173.00	74.00 - 322.00	2 (0.47%)
Cholinesterase (CHE)	6400 – 15500 U/L	11,100.35 ± 3198.62	11,274.00	144.00 – 21,375	33 (7.80%)
ск	20 – 170 U/L	87.10 (81.57 - 92.89)*	82.00	13.00 - 13201.00	7 (1.65%)
Cloryte	95 – 110 mmol/L	104.90 ± 5.68	105.00	8.67 - 116.00	7 (1.65%)
Creatinine	0.5 – 1.2 mg/dL	1.18 ± 0.89	0.99	0.55 – 9.85	0 (0.00%)
Eosinophilis	0 – 0.80 ×10³/µL	0.29 ± 1.26	0.17	0.00 – 22-00	119 (28.13%)
Eosinophilis %	0 – 8 %	2.99 ± 2.23	2.50	0.00 – 15.10	119 (28.13%)
ESR	< 20 mm/h	14.96 ± 13.79	11.00	2.00 - 83.00	32 (7.57%)
Fibrinogen	170 – 410 mg/dL	341.51 ± 84.67	325.00	105 - 856	50 (11.82%)
Gamma %	10.7 – 20.3 %	15.29 ± 3.55	14.90	4.60 - 33.50	14 (3.31%)
GGT	5.0 – 50 U/L	43.33 ± 52.96	31.00	5.00 - 767.00	3 (0.71%)
Glucose	70 – 100 mg/dL	104.00 ± 25.15	98.00	60.00 – 294.00	2 (0.47%)
Hematocrite (Hct)	42 – 52 %	43.12 ± 18.10	42.70	24.30 - 401.00	0 (0.00%)
Hemoglobin (Hgb)	14 – 18 g/dL	14.11 ± 1.65	14.30	7.60 – 18.60	0 (0.00%)
INR	0.2 – 1.2	1.11 ± 0.36	1.00	0.80 - 4.20	11 (2.60%)
LDH	125 – 220 U/L	177.82 ± 42.97	171.00	41.00 - 403.00	9 (2.13%)
Linphocytes	0.9 – 4.0 ×10³/µL	1.83 ± 0.70	1.77	0.54 - 8.11	119 (28.13%)
Linphocytes %	20 – 45 %	25.25 ± 7.80	24.50	6.60 - 61.20	119 (28.13%)
мсн	27 – 31 pg	31.00 ± 2.21	31.20	18.10 – 37.00	0 (0.00%)
MCHC	32 – 37 g/dL	33.30 ± 1.64	33.40	3.70 – 35.50	0 (0.00%)
MCV	82 – 94 fL	92.83 ± 5.70	93.10	61.80 - 106.90	0 (0.00%)
Monocyte	0.2 – 1.0 ×10³/µL	0.63 ± 0.19	0.59	0.12 - 1.26	119 (28.13%)
Monocytes %	3.4 – 9 %	8.59 ± 1.99	8.40	1.30 - 15.20	119 (28.13%)
Neutrophils	1.50 – 8 ×10³/µL	4.68 ± 1.67	4.39	1.96 - 12.48	119 (28.13%)
Neutrophils %	40 – 74 %	62.55 ± 8.89	63.25	29.40 - 91.30	119 (28.13%)
Phosphorous	2.7 – 4.5 mmol/L	3.26 ± 10.17	2.70	1.00 – 209.00	10 (2.36%)
Platets (PTL)	130 – 400 × 10 ³ U/L	193.30 ± 57.40	188.00	11.00 – 449.00	0 (0.00%)
Potassium	3.5 – 5 mmol/L	4.39 ± 5.08	4.10	2.80 – 108.00	3 (0.71%)
PT (seconds)	9.5 – 13.5 seconds	12.65 ± 6.43	11.30	9.30 - 109.00	13 (3.07%)
PT %	80 – 120%	98.28 ± 22.07	103.00	14.00 - 151.00	13 (3.07%)
RDW	12.0 – 17.0 %	14.44 ± 1.43	14.20	12.10 - 26.40	0 (0.00%)

Vezzoli Marika et al., AJCRAR, 2021, 4:18

Analytes (Variables, Bi- omarkers, test)	Normal range val- ues	Media ± SD *GeoMean with Boot interval	Median	Range (min-max)	Missing val- ues <i>n</i> (%)
Red blood cell count (RBC)	4.5 – 5.5 ×10 ⁶ /µL	4.57 ± 0.56	4.60	2.55 - 6.55	0 (0.00%)
Sodium	135 – 145 mmol/L	141.00 ± 7.09	141.00	3.80 – 149.00	2 (0.47%)
Total Bilirubin	0.30 – 1.20 mg/dL	0.78 ± 1.87	0.60	0.21 – 38.00	5 (1.18%)
Total protein	6.0 – 8.0 g/dL	7.13 ± 0.65	7.20	0.79 – 9.40	13 (3.07%)
Tryglicerides	< 150 mg/dL	129.24 ± 68.89	111.00	34.00 - 467.00	2 (0.47%)
Uric acid	3.4 – 7 mg/dL	5.47 ± 1.41	5.30	2.09 – 11.90	3 (0.71%)
White blood cell (WBC)	4.00 – 10.80 ×10 ³ /µL	7.39 ± 2.05	7.05	3.15 - 16.68	0 (0.00%)

Table 2: Descriptive statistics on AAA diameter: entire sample (S+M+L) and stratified respect S, M, S/M, and L

Diameter	Entire sample (S+M+L) N=423	S (<i>n</i> _S =39)	M (<i>n_M</i> =202)	S/M (<i>n_{S/M}</i> =241)	L (<i>n_L</i> = 182)
Mean ± sd	55.18 ± 10.26	38.95 ± 4.39	50.71 ± 2.54	48.81 ± 5.22	63.61 ± 9.17
Median	53.80	40.00	51.00	50.00	60.00
Min-Max	28.00-106.00	28.00 - 44.00	45 - 54.50	28 - 54.50	55.00 - 106.00

**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request. In third column, in bold and italics Wilcoxon p-values \leq 0.05. In fourth column, in bold VIM values >57.

Statistical analysis

In this research we merged approaches coming from different fields, namely, statistics (non-parametric and machine learning methods) and operational research (Linear Programming -LPmodels). The choice of combining methodologies coming from different disciplines is due to the complexity of the problem and the typology of the dataset. On one side, the use of machine learning allowed us to deal with complex data non-normally distributed, containing outliers, high percentages of missing values, and with multicollinearity problems (data shown upon request). On the other side, by means of the LPbased model, we determine the interrelations between the best predictive molecules identified by the machine learning approach.

Table 3: Descriptive statistics on each analyte stratified for AAA diameter (S/M vs L) and relative VIM Variables are ordered respect the relative VIM extracted from the Random Forest (values in the last column), from the most (CK, VIM=100) to the less important variable (Basophilis %, VIM=31.21).

The table has a grey background in correspondence of the 6 analytes (CK, ALT, MCV, Hemoglobin (Hgb), RDW, Hematocrite (Hct)) jointly selected by the Wilcoxon test and the relative VIM.

Analytes	Analytes	Diameter ≥ 55	p-	Relative
(Variables, Biomarkers, covariates)	(Variables, Biomarkers,	(L)	value	VIM
	covariates)	nL=182		
CK (20-170 U/L)**				
Mean ± SD	109.64 ± 102.97	181.99 ± 984.58		100
Median	85	77	0.0341	
Min - Max	13 – 1061	23 - 13201		
ALT (5-50 U/L)**				
Mean ± SD	26.81 ± 12.67	26.24 ± 17.56		96.43
Median	24.00	21.50	0.0089	
Min - Max	8 - 123	7 - 163		
Plates (PTL)				
(130-400 × 103 U/L)**				86.54
Mean ± SD	189.91 ± 54.30	197.85 ± 61.24		

Median	188.00	188.50	0.3625	
Min - Max	78 - 420	11 - 449		
Cholinesterase (CHE) (6400-15500 U/L)**				
Mean + SD	11287 03 + 2967 11	10884 63 + 3198 03		78 86
Median	11274 00	11133 00	0 1538	10.00
Min - May	144 - 20363	1224 - 21375	0.1000	
$\frac{1}{1000} = 1000000000000000000000000000000000000$	144 - 20303	1224 - 21373		
Moon + SD	104 76 + 25 20			70.25
Median	104.76 ± 25.29	102.91 ± 24.00	0.0040	76.20
	96.00	97.00	0.3340	
	67 - 294	60 - 220		
Calcium (8.6-10.6 mmol/L)^^	0.40	0.07.0.47		77.00
Mean ± SD	9.10 ± 0.60	9.07 ± 0.47		77.83
Median	9.10	9.05	0.2190	
Min - Max	3.00 - 10.36	7.40 - 10.31		
Gamma % (10.7-20.3%)**				
Mean ± SD	15.05 ± 3.21	15.57 ± 3.81		66.04
Median	14.80	15.10	0.0669	
Min - Max	7.30 - 27.40	4.60 - 33.50		
Total Protein (6.0-8.0 g/dL)**				
Mean ± SD	7.12 ± 0.54	7.14 ± 0.75		
Median	7.20	7.20	0.837	
Min - Max	4.00 - 8.50	0.79 - 9.40		
LDH (125-220 U/L)**				
Mean ± SD	173.61 ± 38.85	183.05 ± 46.51		63.20
Median	171.00	172.50	0.1236	
Min - Max	41 - 397	91 - 403		
MCV (82-94 fl)**		0. 100		
Mean + SD	93 40 + 5 71	92 09 + 5 64		59 02
Median	94.00	92.65	0 0044	00.02
Min - May	65 30 - 106 90	61 80 - 104 60	0.0044	
Hemoglobin (Hab)	00.00 100.00	01.00 104.00		
(1/-18 a/dl)**				
$M_{\text{op}} + SD$	$1/21 \pm 1.50$	12 92 ± 1 70		59.22
Median	14.51 ± 1.59	13.03 ± 1.70	0.0042	50.22
Min - Max	9 20 19 6	7 60 19 0	0.0042	
BDW (12 170/)**	0.20 - 10.0	7.00 - 10.0		
Moon + SD	14 29 + 1 41	14 64 1 1 44		57 74
Median	14.20 ± 1.41	14.04 ± 1.44	0.0000	57.74
	14.00	14.30	0.0020	
Will - Wax	12.10 - 20.40	12.40 - 21.00		
Hematocrite (Hct) (42-52%)**	40.04 + 4.70	40.50 . 07.40		F7 40
Mean ± SD	42.84 ± 4.73	43.50 ± 27.12	0.0400	57.40
Median	43.10	42.40	0.0189	
	24.30 - 55.90	25.80 - 401.00		
Red blood cell count (RBC) (4.5-5.5 ×				
106/L)^*	4.00 0.50	4 50 0 50		50.00
Mean ± SD	4.60 ± 0.56	4.52 ± 0.56		56.06
Median	4.63	4.56	0.1955	
Min - Max	2.55 - 6.55	2.93 - 6.29		
Albumin (3.4-4.6 g/dL)**				
Mean ± SD	3.90 ± 0.35	3.88 ± 0.34		56.02
Median	3.93	3.91	0.3425	
Min – Max	2.19 – 4.69	2.68 – 4.67		
PT (9.5-13.5 seconds)**				
Mean ± SD	12.56 ± 7.37	12.67 ± 4.63		55.56
Median	11.20	11.45	0.0013	
Min - Max	9.30 - 109.00	9.70 - 41.70		
Cholesterol (120-200 mg/dL)**				
Mean ± SD	179.02 ± 41.54	170.84 ± 39.56		54.78
Median	177.00	169.50	0.0636	
Min - Max	92 - 322	74 - 314		
MCH (27-31 pg)**				

Mean ± SD	31.23 ± 2.23	30.69 ± 2.17		54.26
Median Min - Max	31.30 20.20 - 37.00	30.75 18 10 - 35 60	0.0034	
White blood cell (WBC)	20.20 - 37.00	10.10 - 35.00		
(4.0-10.8 × 103/I)**				
Mean ± SD	7.36 ± 2.13	7.43 ± 1.96		54.19
Median	7.08	7.02	0.6376	
Min - Max	3.15 - 16.68	3.67 - 14.80		
GGI (5.0-50 U/L)**	44.02 + 58.20	40.01 + 44.56		ED 40
Median	44.02 ± 50.30	42.21 ± 44.00 30	0 3761	55.45
Min - Max	5 - 767	9 - 377	0.5701	
ALP (40-129 U/L)**	0 101	0 011		
Mean ± SD	77.98 ± 31.32	77.98 ± 31.32		52.84
Median	71	71	0.0251	
Min - Max	24 - 331	24 - 331		
PT % (80-120%)**				
Mean ± SD Median	100.06 ± 21.96	96.25 ± 21.32	0.0007	52.77
Min - Max	104 17 - 151	100	0.0027	
Albumin % (55.80-66.10%)**	17 - 171	10-101		
Mean ± SD	54.70 ± 4.06	54.14 ± 4.48		51.90
Median	54.60	54.25	0.1348	
Min - Max	39.10 - 64.50	39.80 - 64.80		
Uric acid (3.4-7 mg/dL)**				
Mean ± SD	5.43 ± 1.39	5.52 ± 1.42		51.60
Median Min Max	5.30	5.40	0.5175	
Min - Max Tryalicerides (~150 mg/dl)**	2.30 - 11.90	2.09 - 10.40		
Mean + SD	130 86 + 73 63	126 90 + 61 80		49 64
Median	115.00	105.50	0.8841	-0.0-
Min - Max	34 - 467	38 - 356		
Alfa 1 (0.15-0.40 g/dL)**				
Mean ± SD	0.18 ± 0.04	0.20 ± 0.10		49.20
Median Min Max	0.17	0.18	0.0006	
MIN - Max	0.08 - 0.36	0.09 - 1.34		
Mean + SD	19 48 + 14 63	20.08 + 24.66		49 01
Median	17	16	0.0481	10.01
Min - Max	6 - 196	3 - 283		
Potassium (3.5-5.0 mmol/L)**				
Mean ± SD	4.57 ± 6.70	4.15 ± 0.46		48.49
Median Min Max	4.10	4.10	0.669	
$\frac{1}{1000} = \frac{1}{1000} = 1$	2.80 - 108.00	2.82 - 5.60		
Mean + SD	12 67 + 11 61	17 31 + 14 88		46.00
Median	10	12	0.0005	10.00
Min - Max	2 - 83	2 - 83		
Alfa 1 % (1.0-3.0%)**				
Mean ± SD	2.49 ± 0.74	2.65 ± 0.76		45.85
Median	2.40	2.55	0.0015	
WIN - Max Creatining (0.5-1.2 mg/dl.)**	1.10 - 7.80	1.20 - 7.90		
Mean + SD	1 10 + 0 57	1 29 + 1 18		45 45
Median	0.98	1.00	0,1980	
Min - Max	0.59 - 6.40	0.55 - 9.85		
Alfa 2 % (9.5-14.4%)**				
Mean ± SD	12.94 ± 2.01	13.08 ± 2.13		44.53
Median	12.80	12.90	0.4256	
	7.70 - 23.40	6.30 - 20.80		
Alta 2 (U.45-1.U g/dL)**				

Mean ± SD	0.92 ± 0.17	0.94 ± 0.17		44.47
Median	0.91	0.91	0.3132	
Min - Max	0.25 - 1.59	0.47 - 1.60		
Fibringen (170-410 mg/dL)**	0.20			
Mean + SD	329 51 + 67 36	351 62 + 90 86		43 87
Median	325	325	0.0158	10.07
Min - Max	198 - 554	105 - 856	0.0100	
Beta (0 55-1 10 g/dL)**	100 001	100 000		
Mean + SD	1 05 + 0 16	1.05 ± 0.16		0 5053
Median	1.05	1.05 ± 0.10	0 5053	0.0000
Min - May	0.52 - 1.76	0.52 - 1.76	0.0000	
Rota % (8 6-15 6%)**	0.52 - 1.70	0.52 - 1.70		
$M_{0,20} + SD$	14 75 ± 1 77	1151 ± 172		42.06
Median	14.75 ± 1.77	14.54 ± 1.75	0 2260	43.00
	10.1 22.80	14.50	0.2209	
WIII - WIAX	10.1 - 23.60	10.4 - 19.90		
A/G (1.00-1.00)	1 22 + 0 20	1 20 . 0 22		44.70
Median	1.22 ± 0.20	1.20 ± 0.22	0 4 4 4 0	41.76
Min Mou	1.20	1.18	0.1119	
Min - Max	0.64 - 1.82	0.66 - 1.84		
Eosinophilis (0-0.80 × 103/L)**	0.40	0.04 4.00		44.50
Mean ± SD	0.19 ± 0.13	0.34 ± 1.62	0.0070	41.52
Median	0.17	0.17	0.0850	
Min - Max	0.00 - 1.30	0.00 - 22.0		
Phosphorous (2.7-4.5 mmol/L)**				
Mean ± SD	3.59 ± 13.30	2.79 ± 0.62		41.27
Median	2.70	2.70	0.6103	
Min - Max	1.00 - 209.00	1.70 - 6.30		
Linphocytes				
(0.9-4.0 × 103/L)**				
Mean ± SD	1.83 ± 0.54	1.78 ± 0.67		40.66
Median	1.77	1.77	0.3852	
Min - Max	0.70 - 3.76	0.54 - 8.11		
Monocytes % (3.4-9%)**				
Mean ± SD	8.51 ± 1.71	8.58 ± 1.66		37.65
Median	8.40	8.40	0.9987	
Min - Max	1.30 – 15.20	4.70 – 15.1		
Neutrophils				
(1.50-8 × 103/L)**				
Mean ± SD	4.57 ± 1.47	4.62 ± 1.37		37.32
Median	4.38	4.38	0.7579	
Min - Max	1.96 - 12.48	2.07 - 11.78		
Monocytes (0.2-1 × 103/L)**				
Mean ± SD	0.61 ± 0.17	0.62 ± 0.16		36.86
Median	0.59	0.59	0.4575	
Min - Max	0.12 - 1.21	0.34 - 1.26		
Sodium (135-145 mmol/L)**				
Mean ± SD	140.72 ± 9.14	141.40 ± 2.44		36.37
Median	141.00	141.0	0.5823	
Min - Max	3.80 – 149.00	132.00 - 148.00		
Eosinophilis % (0-8%)**				
Mean ± SD	2.71 ± 1.72	3.04 ± 2.11		36.09
Median	2.50	2.50	0.0993	
Min - Max	0.00 - 15.10	0.00 - 14.10		
Linphocytes % (20-45%)**		-		
Mean ± SD	25.47 + 6.46	24.47 ± 6.80		36.09
Median	24.50	24.50	0.0925	20100
Min - Max	7.20 - 49.00	6.60 - 61 20	0.0020	
MCHC (32-37 g/dl)**	1.20 10.00	0.00 01.20		
Mean + SD	33 29 + 2 08	33.32 ± 0.76		35 17
Median	33 40	33.30	0 3241	00.17
Min - May	3 70 <u>-</u> 35 50	20 20 - 25 50	0.0241	
	5.70 - 55.50	29.00 - 00.00		

Basophilis (0-0.20 × 103/L)**				
Mean ± SD	0.04 ± 0.02	0.04 ± 0.02		34.78
Median	0.04	0.04	0.3140	
Min - Max	0.01 - 0.13	0.00 - 0.17		
Neutrophils % (40-74%)**				
Mean ± SD	62.51 ± 7.46	62.51 ± 7.46		34.19
Median	63.25	63.25	0.4632	
Min - Max	36.4 - 91.30	36.4 - 91.30		
APTT (24-38 seconds)**				
Mean ± SD	31.70 ± 10.38	31.32 ± 4.75		33.43
Median	30.50	30.30	0.5361	
Min - Max	0.19 - 178.10	23.00 - 68.10		
INR (0.2-1.2)**				
Mean ± SD	1.09 ± 0.34	1.13 ± 0.39		32.48
Median	1.00	1.00	0.7037	
Min - Max	0.80 - 4.20	0.90 - 3.70		
Cloryte (95-110 mmol/L)**				
Mean ± SD	104.71 ± 6.92	105.15 ± 3.25		32.30
Median	105.00	105.00	0.7649	
Min - Max	8.67 – 114.00	91.00 - 116.00		
APTT ratio (0.70-1.28 ratio)**				
Mean ± SD	1.08 ± 0.73	1.03 ± 0.15		32.03
Median	1.00	1.00	0.7032	
Min - Max	0.41 - 11.04	0.76 - 2.13		
Basophilis % (0-1.50%)**				
Mean ± SD	0.58 ± 0.22	0.58 ± 0.22		31.21
Median	0.55	0.55	0.5283	
Min - Max	0.10 - 1.70	0.10 - 1.70		

**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request.

In third column, in bold and italics Wilcoxon p-values ≤ 0.05 . In fourth column, in bold VIM values >57.

In Table 3, using the entire sample of 423 patients, we first compute the descriptive statistics (mean \pm SD, median, min-max) for each biomarker stratifying for the dichotomized diameter:

$$I_{diameter} = \begin{cases} 1 \text{ if diameter is } \ge 55 \text{ mm} \Rightarrow \text{LAAA} \\ 0 \text{ otherwise} \Rightarrow \text{S/MAAA} \end{cases}$$

Then, we perform the Wilcoxon test, identifying 15 biomarkers (out of 55) which are significantly different (*p-value* < 0.05) in the two sub-populations defined by $I_{diameter}$ (in Figure 1 they are identified by bars with grey background). Second, we run an ensemble method where each weak learner is a tree which partitions the covariates space into disjoint regions (called nodes), homogeneous respect the outcome by means of a series of subsequent splits. In detail, we use the Random Forest, namely a robust method [20; ²¹], where $I_{diameter}$ is the outcome and X is the matrix of 423 patients for 55 biomarkers. We then extract the relative Variable Importance Measure (VIM) identifying the biomarkers that more impact on the prediction of $I_{diameter}$. The algorithm selects 14 biomarkers with a VIM >57

as shown in the last column of Table 3 (values in bold) and in Figure 1 (bars with black dots). The cut-off (VIM>57) chosen for the variable selection is close to 60 (as suggested in [22]), selecting 25% of the variables. When comparing results obtained by these two different procedures (p-value<0.05 for Wilcoxon test and VIM>57 for Random Forest), only six biomarkers were jointly chosen: CK, ALT, MCV, Hemoglobin (Hgb), RDW, Hematocrite (Hct) The selected biomarkers are used as covariates in a new optimization algorithm (belonging to the operational research field), the LP-based classification trees, grown on the training set of 381 patients, in order to classify the dichotomic variable Idiameter.

Figure 1: Barplot for the Relative Variable Importance extracted from the Random Forest This Figure visualizes the Relative Variable Importance Measure (VIM) extracted from a Random Forest where the outcome is the dichotomized diameter (*I*_{diameter}) and the covariates are the 55 analytes. It is grown on a training set of 381 patients which contains the same percentage of S/M and L diameter of the entire sample. It represents a ranking from the most (CK with a VIM=100) to the less (Basophilis % with a VIM=31.21) important variable. Near the analyte name, we report the p-value obtained by the Wilcoxon test applied in the two sub-populations defined by *I*_{diameter} (patient with S/M vs L AAA). Asterisk denotes the significative p-values (<0.05). In detail:

- The 14 bars with black dots are in correspondence of the analytes with a relative VIM>57. We choose this cut-off in
 order to maintain the 25% of the variables.
- The 15 grey bars are in correspondence of the analytes with Wilcoxon *p*-values < 0.05 (denoted also by an asterisk).
- When bars have both gray background and black dots, it means that the corresponding analytes (CK, ALT, MCV, Hgb, RDW, Hct) are jointly selected by the relative VIM>57 and the Wilcoxon test (*p*-values < 0.05).
- The 32 white bars denote analytes that have a relative VIM<57, jointly with Wilcoxon p-values > 0.05.

Table S.1 an S.2 of Supplementary Materials, report the descriptive statistics (mean \pm SD, median, min-max) computed in training and test set, respectively, for each biomarker stratifying for Idiameter. It is evident that, training reproduces accurately what observed in the entire sample. In detail, the Wilcoxon test identifies almost the same biomarkers as significantly different (pvalue < 0.05) in the two sub-populations defined by $I_{diameter}$. On the contrary, the test set does not reflect what happens in the training set. In fact, only five biomarkers are significantly different in the two subpopulation's S/M and L: PT, PT%, ESR, INR and Fibrinogen (the latter arises only in the test set) and none of them correspond with the six analytes identified by VIM and Random Forest.

We proposed two options: the first LP-tree was grown using only one biomarker at each node (see Figure 2 which is similar to the output of a decision tree); the second using a linear

combination of the six biomarkers at each node for defining splits and thresholds. In the first case, we obtained an interpretable classifier whose specifity (ability to detect patients with S/M AAA) is 81% (CI: 77%- 85%) in the training set but decreases to 75% (CI: 58%- 88%) in the test set (42 patients not used during the training). In the second case, the LP-based tree loses the interpretability (representation) of a single tree and it correctly identifies 73% (CI: 68%-78%) of S/M AAA patients in the training set. But, most important, when it is validated on the test set, surprisingly, the specificity increases up to 79% (CI: 67%- 92%), validating our score on fresh data. Note that test set is not homogeneous respect the training set and, regardless of this aspect, the performance of last LP-tree is good in detecting S/M AAA. Hence, due to the aim of this study, we focused our attention on this second output.

Figure 2: The LP-based classification trees where only one biomarker is chosen at each node

This figure reports the LP-tree obtained in the special case when we use only one biomarker for each split. Relative to the more popular classification tree, the resulting partition represents a global optimum, since the splitting variables, and corresponding thresholds, are computed by solving a linear programming problem. In more depth, white rectangles display the selected variables, while grey branches the corresponding thresholds which split (at each step) the observations within the two subsamples. Grey ovals (which corresponds to the "nodes" in the decision tree theory) represent the final partition; they report the classification attributed to each observation that fell into that node. This model was not used in the discussion, since its specificity (aim of this paper) out of sample was lower (75%) respect the specificity of the LP-tree where at each node a linear combination of biomarkers is chosen (79%).

Vezzoli Marika et al., AJCRAR, 2021, 4:18

Figure 3: The interface of the EASE Score

The EASE Score is an Excel-file based macro (file available upon request). It is programmed starting from the LP-tree that uses at each node a linear combination of the 6 biomarkers selected in previous analyses. It has been designed to remedy the loss of interpretability of a single tree.

Panel A reports the interface of the macro. In grey cells, physicians insert analytes values; then, pressing the black button, they obtain the AAA classification of a patient.

Panel B reports a real example of a patient: after inserting the values of its exams, we obtain the classification of his/her AAA (in this case S/M).

Missing values are advised but, just in case, they are imputed with the median value of the missing analyte computed on the entire sample of 423 patients.

To overcome the loose of interpretability, the LPbased tree is traduced into an easy tool useful for physicians, called EASE score (Figure 3). It is a macro contained in an Excel file. For each new patient, the physician inserts the six biomarkers values (CK, ALT, MCV, Hgb, RDW, Hct) in the corresponding grey cells, and, pressing the black button, obtains the AAA classification as S/M or L. Obviously, missing values are not recommended but, just in case of an omitted value, the macro automatically imputes the median value of the missing analyte computed on the 423 patients. Figure 3.A and 3.B reports report the interface of the score and an example of classification computed on a real patient, respectively.

Discussion

In this paper we propose an Easy Affordable Statistical and Economic method that use

routine blood analysis for the follow up of patients with S/M AAA and avoid unnecessary cost for health care system since the current strategy of using morphologic imaging as a stand-alone approach has a number or limitations, in particular for S/M AAA^[3; 10]. First, imaging may not always be feasible, as variations in patient characteristics, such as obesity, meteorism or renal impairment, may prove prohibitive. Second ultrasound is a method that is operator dependent while CT is more accurate but has the drawback of exposing the patient to ionizing radiation and intravenous contrast and is also more expensive ^[23; 24]. Furthermore, both the approach above mentioned are exams that require waiting time with indirect costs for patients but also for health care system since, different authors have demonstrated that S/M AAA with similar initial diameter can vary significantly in growth pattern

^[25; 23]. A more complete ability to monitor S/M AAA may allow significant streamlining of current management practice, which involves prolonged intermittent imaging. Different authors have used mathematical model using more complex factors as expansion rate, mechanical stress, wall stiffness ^[2; 26]. These variables have technical limitations mainly due to the difficulties of the analyses that require trained operators not available in all hospitals. Hence, since we were looking for something economic and easy to use and understandable, we decide to focus our attention on routine exams performed by these patients to build our score. We avoid the search in the biological matrix of extra lead markers that are mostly represented in the literature since, at the time of this writing, the clinical value of these markers remains unknown and none of them is used in the clinical practice even if different models have been proposed [16; 14]. In order to determine the biomarkers that identifies S/M or L AAA, we used (jointly with the Wilcoxon test) a Random Forest of regression trees. It extrapolates information from a dataset where each subject is composed by a set of features associated to a class (S/M or L). Many methodologies have been proposed to deal with problems of this type. For example, in [27] authors evaluated 179 classifiers arising from 17 families over 121 data sets. One of the main findings is that Random Forest is the best classifiers since it achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets.

One of the innovations of our process is that the biomarkers used in this paper are jointly selected by the Wilcoxon test and Random Forest, without considering the previous literature. Differently from most of the approaches that have investigated specific molecules believed to be critical in AAA formation and progression, such as inflammatory markers or proteolytic enzymes, we decide to use high-throughput techniques to test different putative markers in an unbiased manner.

Recently, many papers use the machine learning approach for analysing clinical data ^{[28; 29; 30;} ^{21]}, but we are pioneers in the AAA field in combining approaches coming from machine learning and operational research. Our new LPtree based algorithm provides, for each patient, the diameter classification (S/M or L) based on the selected biomarkers. This is an easy and effective tool to quickly and cheaply obtain predictions based on basic information collected on patients.

Relative to the more popular classification tree, the resulting partition represents a global optimum, since all the splitting variables, and corresponding thresholds, are computed by solving iteratively a linear programming problem that provide the best path from the treetop to the final nodes. As in decision tree, at each split, patients are separates in two classes. Final nodes provide a classification of each subject, minimizing the error in predicting the right class (S/M or L). The approach extends those proposed in ^[31] and ^[32].

Armed with the small but robust panel of biomarkers and the LP-based classification tree, we obtain a classificator able to identify (out of sample, namely on fresh data) 79% (CI: 67%-92%) of S/M AAA patients that do not progressed into L AAA and therefore do not require useless exams.

The advantages of our procedure are different: first, we use, as biological matrix, blood (entire blood and plasma) that differently from molecules expressed within diseased tissue are easier to be sample. Furthermore, we did not choose new biomarkers, but we build our score by using routine exams that these patients afford in their follow up with no additional cost for health care system neither for patients. Moreover the 6 biomarkers that we use for our score can be prescribed by a generalist doctor and can be performed also in small and periphery laboratories since are commonly request and the commercialization of common reagents has contributed to the standardization and reproducibility. Furthermore, these exams are not expensive and patients do not waste time on waiting list. Very intriguing, the biomarkers we found to be important for the prediction of the AAA diameter, are not the most cited in the literature and the

value of biomarkers are often in the normal range: none of them must be necessary out of the reference range. This could be due the fact that most researches are based on case-control studies, furthermore, in a multifactorial disease such as AAA, it seems unlikely that observed pathologies result from an important change in the expression of a single molecules. Rather, we believe that the AAA phenotype results from the concerted actions of large numbers of molecules over a prolonged period that could be detected, in part, by our approach.

A limit of this study is the 21% of false positive (patients S/M classified as L). Probably, introducing more sophisticated markers or other attributes, we will reduce this percentage.

Anyhow, given the international opinion regarding the importance of biomarkers in AAA, the finding of this study serves as a primer to stimulate interest for further validation by external cohorts. In fact, we could not divide our cohort in 3 subsamples (training, test and validating) since it does not reach 1000 subjects that is the number recommended for this procedure. For Anyhow, using our score, it is possible to avoid, for 79% of patients with S / M AAA, unnecessary examinations or to use the classification for scheduling the imaging timing, personalizing the surveillance intervals. To deliver on this promise, more comprehensive screening studies with large-scale validation of identified putative biological markers are needed.

References

- [1] Sakalihasan, N. et al. Abdominal aortic aneurysms. Nat. Rev. Dis. Primer 4, 34 (2018).
- [2] Tang, A. et al. Morphologic evaluation of ruptured and symptomatic abdominal aortic aneurysm by three-dimensional modeling. J. Vasc. Surg. 59, 894-902.e3 (2014).
- [3] Thompson, S. G. et al. Systematic review and meta-analysis of the growth and rupture rates of small abdominal aortic aneurysms: implications for surveillance intervals and their cost-effectiveness. Health Technol. Assess. Winch. Engl. 17, 1–118 (2013).
- [4] Lederle, F. A. et al. Multicentre study of abdominal aortic aneurysm measurement and enlargement. Br. J. Surg. 102, 1480-1487 (2015).
- [5] Flondell-Sité, D., Lindblad, B., Kölbel, T. & Gottsäter, A. Cytokines and systemic biomarkers AJCRAR: https://escipub.com/american-journal-of-cardiology-research-and-reviews/

are related to the size of abdominal aortic aneurysms. Cytokine 46, 211-215 (2009).

- [6] Wanhainen, A. et al. Editor's Choice European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 57, 8-93 (2019).
- [7] Garrafa, E. et al. Prediction of abdominal aortic aneurysm calcification by means of variation of highsensitivity C-reactive protein. JRSM Cardiovasc. Dis. 5, 2048004016682177 (2016).
- [8] Mussa, F. F. Screening for abdominal aortic aneurysm. J. Vasc. Surg. 62, 774-778 (2015).
- [9] Guirguis-Blake, J. M., Beil, T. L., Senger, C. A. & Whitlock, E. P. Ultrasonography screening for abdominal aortic aneurysms: a systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 160, 321-329 (2014).
- [10] Lindholt, J. S., Vammen, S., Fasting, H. & Henneberg, E. W. Psychological consequences of screening for abdominal aortic aneurysm and conservative treatment of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 20, 79-83 (2000).
- [11] Garrafa, E. et al. Association between human parainfluenza virus type 1 and smoking history in patients with an abdominal aortic aneurysm. J. Med. Virol. 85, 99-104 (2013).
- [12] Stather, P. W. et al. Meta-analysis and meta-regression analysis of biomarkers for abdominal aortic aneurysm. Br. J. Surg. 101, 1358-1372 (2014).
- [13] Vezzoli, M., Bonardelli, S., Peroni, M., Ravanelli, M. & Garrafa, E. A Simple Blood Test, Such as Complete Blood Count, Can Predict Calcification Grade of Abdominal Aortic Aneurysm. Int. J. Vasc. Med. 2017, 1370751 (2017).
- [14] Moris, D. et al. Novel biomarkers of abdominal aortic aneurysm disease: identifying gaps and dispelling misperceptions. BioMed Res. Int. 2014, 925840 (2014).
- [15] Jalalzadeh, H. et al. Inflammation as a Predictor of Abdominal Aortic Aneurysm Growth and Rupture: A Systematic Review of Imaging Biomarkers. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 52, 333-342 (2016).
- [16] Wanhainen, A., Mani, K. & Golledge, J. Surrogate Markers of Abdominal Aortic Aneurysm Progression. Arterioscler. Thromb. Vasc. Biol. 36, 236-244 (2016).
- [17] Garrafa, E. & Bonardelli, S. Re 'Calcification of Thoracic and Abdominal Aneurysms is Associated with Mortality and Morbidity'. Abdominal Aortic Aneurysm Calcification: Are Biochemical Markers a Missing Piece of the Puzzle? Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 55, 900

(2018).

- [18] Lindberg, S., Zarrouk, M., Holst, J. & Gottsäter, A. Inflammatory markers associated with abdominal aortic aneurysm. *Eur. Cytokine Netw.* 27, 75–80 (2016).
- [19] Hao, W. et al. A mathematical model of aortic aneurysm formation. *PloS One* 12, e0170807 (2017).
- [20] Savona, R. & Vezzoli, M. Fitting and Forecasting Sovereign Defaults using Multiple Risk Signals. *Oxf. Bull. Econ. Stat.* 77, 66–92 (2015).
- [21] Doglietto, F. *et al.* Factors Associated With Surgical Mortality and Complications Among Patients With and Without Coronavirus Disease 2019 (COVID-19) in Italy. *JAMA Surg.* (2020) doi:10.1001/jamasurg.2020.2713.
- [22] Carpita, M. & Vezzoli, M. Statistical evidence of the subjective work quality: the fairness drivers of the job satisfaction. *Electron. J. Appl. Stat. Anal.* 5, 89–107 (2012).
- [23] Evangelista, A. Imaging aortic aneurysmal disease. *Heart Br. Card. Soc.* 100, 909–915 (2014).
- [24] Collins, J. T., Boros, M. J. & Combs, K. Ultrasound surveillance of endovascular aneurysm repair: a safe modality versus computed tomography. *Ann. Vasc. Surg.* 21, 671–675 (2007).
- [25] Armstrong, P. A. *et al.* Optimizing compliance, efficiency, and safety during surveillance of small abdominal aortic aneurysms. *J. Vasc. Surg.* 46, 190– 195; discussion 195-196 (2007).
- [26] Salman, H. E., Ramazanli, B., Yavuz, M. M. & Yalcin, H. C. Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using

Computational and Experimental Techniques. *Front. Bioeng. Biotechnol.* 7, 111 (2019).

- [27] Fernandez-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 15, 3133–3181 (2014).
- [28] Deo Rahul C. Machine Learning in Medicine. *Circulation* 132, 1920–1930 (2015).
- [29] Giger, M. L. Machine Learning in Medical Imaging. J. Am. Coll. Radiol. JACR 15, 512–520 (2018).
- [30] Vezzoli, M. *et al.* RERT: A Novel Regression Tree Approach to Predict Extrauterine Disease in Endometrial Carcinoma Patients. *Sci. Rep.* 7, 10528 (2017).
- [31] Bennett, K. P. Decision Tree Construction Via Linear Programming. in *Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society Conference* 97–101 (M. Evans, 1992).
- [32] Street, W. N. Oblique Multicategory Decision Trees Using Nonlinear Programming. *Inf. J. Comput.* 17, 25–31 (2005).
- [33] Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. *Classification and Regression Trees*. (Taylor & Francis, 1984).
- [34] Breiman, L. Random Forests. *Mach. Learn.* 45, 5– 32 (2001).
- [35] Mangasarian, O. L. Linear and Nonlinear Separation of Patterns by Linear Programming. *Oper. Res.* 13, 444–452 (1965).
- [36] Mangasarian, O. Multisurface method of pattern separation. *IEEE Trans. Inf. Theory* 14, 801–807 (1968).

Analytes (Variables, Biomarkers, co- variates) Diameter < 55 (S/M) Diameter < 25 (S/M) TOTAL Numere 381 p-value Creatine kinase (CK) (20-170 UL)" 109.20 ± 103.12 189.55 ± 1036.61 143.79 ± 684.52 0.0355 Mean ± SD 109.20 ± 103.12 189.55 ± 1036.61 143.79 ± 684.52 0.0355 Median 26.00 23.1201 13 - 13201 0.0355 Alanine transaminase (ALT) 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Min - Max 110 - 122 7 - 163 188.00 0.5504 Min - Max 110 - 24 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 0.5504 Min - Max 11275.04 ± 10841.30 ± 11088.00 0.5504 Min - Max 11274.00 11133.00 11274.00 0.1558 Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.88 0.23 - 38.00 0.21 - 38.00 0.21 - 38.00 Glucose (CP-100 mg/dL)" Median <	Vezzoli Marika et al., AJCRAR, 2021, 4:18						
(Variables, Biomarkers, co- variates) (S/N) (L) IOUAL nsati_1=164 Norm=381 Creatine kinase (CK) (20-170 U/L)" 109.20 ± 103.12 189.55 ± 1036.61 143.79 ± 684.52 0.0355 Median 86.00 77.00 13 - 13201 13 - 13201 0.0355 Min - Max 13 - 1061 23 - 13201 13 - 13201 0.0355 Maine transaminase (ALT) (5-50 U/L)" 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) Median 24.00 22.00 23.00 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.05504 Median 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400-15500 U/L)" 11275.04 ± 10841.30 ± 11088.34 ± 0.1558 Min - Max 104 - 20363 1288 - 19531 144 - 20363 0.554 Total Bilirubin (0.30-1.20 mg/dL)" 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 <t< th=""><th>Analytes</th><th>Diameter < 55</th><th>Diameter ≥ 55</th><th>TOTAL</th><th>p-value</th></t<>	Analytes	Diameter < 55	Diameter ≥ 55	TOTAL	p-value		
variates) n _{train} sw=217 n _{train} = 164 N _{train} = 381 Creatine kinase (CK) (20-170 UL)" 109.20 ± 103.12 189.55 ± 103.61 143.79 ± 684.52 0.0355 Mealan 86.00 77.00 82.00 0.0355 Min - Max 13 - 1061 23 - 13201 13 - 13201 0.0355 Atanine transaminase (ALT) (5-50 U/L)" 2 26.67 (15.32) 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Virol (10 - 010 U/L)" 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 180.00 0.5504 Mean a SD 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 180.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) 2945.56 3045.02 2982.55 1558 Median 11274.00 11133.00 11274.00 0.1558 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.23 - 38.00 0.21 - 38.00 Glucose (70-100 mg/dL)" Mean ± SD	(Variables, Biomarkers, co-	(S/M)	(L)	TOTAL			
Creatine kinase (CK) (20-T70 U/L)" I09.20 ± 103.12 86.00 I89.55 ± 1036.61 I43.79 ± 684.52 82.00 0.0355 Mean ± SD 13 - 1061 23 - 13201 I3 - 13201 0.0355 Alanine transaminase (ALT) (5-50 U/L)" 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) 0.0096 Mean ± SD 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) 0.0096 Mean ± SD 11 - 123 7 - 163 7 - 163 7 - 163 Platelet (PTL) 113.78.0 193.28 ± 58.16 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 Chollnesterase (CHE) (6400 - 15500 U/L)" 11275.04 ± 10841.30 ± 11088.34 ± (0.30 - 120 mg/dL)" Mean ± SD 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median 0.127 + 0.08 0.21 - 38.00 0.21 - 38.00 0.21 - 38.00 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.220 - 38.00 Min - Max 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 0.4250 Min - Max 0.70 ± 0.42 0.90 ± 2	variates)	n _{train S/M} =217	<i>n_{train}</i> ∟=164	N _{train} =381			
(20-170 UL)" 109.20 ± 103.12 189.55 ± 1036.61 143.79 ± 684.52 Median 86.00 77.00 13 - 13201 13 - 13201 Alanine transaminase (ALT) 23 - 13201 13 - 13201 0.0355 Median 24.00 22.00 23.00 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Meat as D 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400 - 1550 0.01)" 11275.04 ± 10841.30 ± 2992.55 Median 11274.00 11133.00 11274.00 0.1558 Min - Max 0.41 - 20363 1288 - 19531 144 - 20363 1288 - 19531 Median 0.60 0.57 0.59 0.4250 Min - Max 0.421 - 3.08 0.23 - 38.00	Creatine kinase (CK)						
Nean ± SD 109.20 ± 103.12 189.55 ± 1036.61 143.79 ± 684.52 0.0355 Median 86.00 77.00 82.00 0.0355 Alanine transaminase (ALT) 23 · 13201 13 - 13201 13 - 13201 0.0355 Mean ± SD 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) 0.0096 Mean ± SD 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Mean ± SD 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400 - 15500 UL)' 11028.34 ± 2945.56 3045.02 2992.55 Median 11275.04 ± 10841.30 ± 1108.34 ± 294.56 3045.02 2992.55 Median 0.60 0.57 0.59 0.4250 0.157 0.59 Min - Max 144 - 20363 1288 - 19531 144 - 20363 1288 - 19531 144 - 20363 102.93	(20-170 U/L)**						
Median 66.00 77.00 82.00 0.0355 Min - Max 13 - 1061 23 - 13201 13 - 13201 13 - 13201 Alanine transaminase (ALT) (5-50 U/L)" 26.21 ± 17.93 26.67 (15.32) 0.0096 Median 24.00 22.00 23.00 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0504 Median 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400 - 15500 U/L)" 10841.30 ± 11088.34 ± 0.1558 Min - Max 11275.04 ± 10841.30 ± 11088.34 ± 0.1558 Min - Max 11274.00 11133.00 11274.00 0.1558 Min - Max 0.60 0.57 0.59 0.4250 Min - Max 0.60 0.57 0.	Mean ± SD	109.20 ± 103.12	189.55 ± 1036.61	143.79 ± 684.52			
Nin - Max 13 - 1061 23 - 13201 13 - 13201 Alanine transaminase (ALT) (5-50 U/L)" 7 13 - 13201 13 - 13201 Mean ± SD 27.02 ± 13.04 26.21 ± 17.93 22.667 (15.32) 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Platelet (PTL) (130-400 × 10 ³ UL)" 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400 - 15500 UL)" 11275.04 ± 10841.30 ± 11088.34 ± (0.30-1.20 mg/dL)" 11274.00 1113.00 11274.00 0.1558 Min - Max 144 - 20363 1288 - 19531 144 - 20363 104.250 Total Bilirubin 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.2450 Min - Max 0.50 + 0.52 9.07 ± 0.46 9.08 ± 0.55 0.2393 Median 9.10 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36<	Median	86.00	77.00	82.00	0.0355		
Alanine transaminase (ALT) (S-50 U/L)" 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) Mean ± SD 27.02 ± 13.04 26.21 ± 17.93 26.67 (15.32) Median 11 - 123 7 - 163 7 - 163 Platelet (PTL) (130-400 x 10 ⁹ U/L)" 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 Mean ± SD 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 Mean ± SD 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 Median 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 CHolinesterase (CHE) (440-15500 U/L)" 11084.30 ± 11088.34 ± 2992.55 Median 11275.04 ± 10841.30 ± 1108.80 0.1558 Min - Max 144 - 20363 1284 - 1953 144 - 20363 1284 - 1953 Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 3.00 0.21 - 38.00 0.2939 Min - Max 0.21 - 30.8 9.7 ± 0.42 0.90 ± 0.62 60 - 220 60 - 294 0.2939	Min - Max	13 - 1061	23 - 13201	13 - 13201			
(6-50 U/L)" 26.21 ± 17.93 26.67 (15.32) Median 24.00 22.00 23.00 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Median 188.00 187.50 188.00 0.5504 Median 188.00 11 - 0.0 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400 - 15500 U/L)" 11275.04 ± 10841.30 ± 11088.34 ± 2992.55 Median 11274.00 11133.00 11274.00 0.1558 0.1558 Median 1142 - 20363 1288 - 19631 144 - 20363 1284 - 1953 0.4250 Min - Max 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 0.4250 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.21 - 38.00 0.21 - 38.00 0.2239 Min - Max 0.90 ± 0.62 9.07 ± 0.46 9.08	Alanine transaminase (ALT)						
Mean ± SD 27.02 ± 13.04 24.00 26.67 (15.32) 22.00 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 0.0096 Platelet (PTL) (130-400 × 10 ³ U/L)" 11 123 7 - 163 7 - 163 0.0096 Mean ± SD 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 0.5504 Mean ± SD 187.50 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400-15500 U/L)" 11183.00 11274.00 0.1558 Min - Max 144 - 20363 1288 + 19531 144 - 20363 1284 + 1.95 Median 11274.00 11133.00 11274.00 0.1558 Min - Max 0.41 - 30.08 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.2393 Glucose (70-100 mg/dL)" Meat ± 5D 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 0.3720 Meat ± SD 0.90 ± 0.62 9.07 ± 0.46	(5-50 U/L) ^{**}						
Median 24.00 22.00 23.00 0.0096 Min - Max 11 - 123 7 - 163 7 - 163 7 - 163 Platelet (PTL) (130-400 x 10° U/L)" (190.42 ± 54.79) 197.07 ± 62.32 193.28 ± 58.16 0.5504 Median 188.00 187.50 188.00 0.5504 Median 188.00 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) 10841.30 ± 11088.34 ± 0.5504 Median 11275.04 ± 10841.30 ± 11088.34 ± 0.5554 Median 11274.00 11133.00 11274.00 0.1558 Median 11274.00 11133.00 11274.00 0.557 Otal Billrubin 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 0.4250 Median 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.299 Glucose (70-100 mg/dL)" Mean ± SD 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median 9.10 9.08 ± 0.55 9.01 0.3720 0.3720 Min - Max <td< th=""><th>Mean ± SD</th><th>27.02 ± 13.04</th><th>26.21 ± 17.93</th><th>26.67 (15.32)</th><th></th></td<>	Mean ± SD	27.02 ± 13.04	26.21 ± 17.93	26.67 (15.32)			
Min - Max 11 - 123 7 - 163 7 - 163 Platelet (PTL) (130-400 × 10 ³ U/L)" 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 Median 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400-15500 U/L)" 10841.30 ± 11088.34 ± 2945.56 Min - Max 144 - 20363 1288 - 19531 144 - 20363 1288 - 19531 Total Bilirubin 0.070 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 0.4250 Min - Max 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.23 - 38.00 Glucose (70-100 mg/dL)" Median 98.00 97.00 98.00 0.2939 Min - Max 67 - 294 60 - 220 60 - 294 0.3720 Calcium (8.6-10.6 mmol/L)" 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 9.10 Median 9.10 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 <th>Median</th> <th>24.00</th> <th>22.00</th> <th>23.00</th> <th>0.0096</th>	Median	24.00	22.00	23.00	0.0096		
Platelet (PTL) (130-40x 10 ³ U/L)" 190.42 ± 54.79 197.07 ± 62.32 193.28 ± 58.16 Mean ± SD 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400-15500 U/L)" 11275.04 ± 10841.30 ± 11088.34 ± 2945.56 3045.02 2992.55 Median 11274.00 11133.00 11274.00 0.1558 0.1528 Median 1024.2 ± 59.1 1088.13.00 11274.00 0.1558 Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.221 Glucose (70-100 mg/dL)" 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 Median Median 9.800 97.00 98.00 0.2939 0.221 - 38.00 0.2939 Min - Max 67 - 294 60 - 220 60 - 294 0.3720 Calcium (8.6-10.6 mmol/L)" 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median Mean ± SD 9.10 9.02 0.255.90 4.60 - 33.50 0.1260	Min - Max	11 - 123	7 - 163	7 - 163			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Mean ± SD 190.42±54.79 197.07±62.32 193.28±83.16 195.04±88.10 Median 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 0.5504 Cholinesterase (CHE) (6400-15500 U/L)" 11275.04 ± 10841.30 ± 11088.34 ± Q345.56 3045.02 2992.55 114274.00 0.1558 Min - Max 1144 - 20363 1288 - 19531 144 - 20363 144 - 20363 Total Bilirubin 0.60 0.57 0.59 0.4250 Mean ± SD 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median Mean ± SD 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median Mean ± SD 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.23 - 38.00 0.21 - 38.00 Glucose (70-100 mg/dL)" Mean ± SD 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 0.23 - 38.00 0.23 - 38.00 0.23 - 38.00 0.23 - 38.00 0.23 - 38.00 0.23 - 38.00 0.23 - 38.00 0.29 - 38.01 0.3720	(130-400 × 10° U/L)	400 40 54 70	407.07 00.00				
Median 188.00 187.50 188.00 0.5504 Min - Max 78 - 420 11.00 - 449.00 11 - 449 Cholinesterase (CHE) 11275.04 ± 10841.30 ± 11088.34 ± (6400-15500 U/L)" 2945.56 3045.02 2992.55 Median 11274.00 11133.00 11274.00 0.1558 Min - Max 144 - 20363 1288 - 19531 144 - 20363 1288 - 19531 Total Bilirubin 0.30 + 1.20 mg/dL)" 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 3.80 0.23 - 38.00 0.21 - 3.80 Glucose (70-100 mg/dL)" Mean ± SD 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 0.2939 Min - Max 67 - 294 60 - 220 60 - 294 0.300 - 0.2939 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 0.29 ± 3.76 Gamma % (10.7-20.3%)" Total ± 3.20	Mean ± SD	190.42 ± 54.79	197.07 ± 62.32	193.28 ± 58.16	0 5504		
Nin - Max $78 - 420$ $11.00 - 449.00$ $11 - 449$ (6400-15500 U/L)" I	Min Max	188.00	187.50	188.00	0.5504		
Cholmesterase (cher) (e400-15500 U/L)" 11275.04 ± 2945.56 10841.30 ± 3045.02 11088.34 ± 2925.55 Median 11274.00 11133.00 11274.00 0.1558 Min - Max 144 - 20363 1288 - 19531 144 - 20363 1 Total Bilirubin 0.60 0.57 0.59 0.4250 Mean ± SD 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median Mean ± SD 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.21 - 38.00 Glucose (70-100 mg/dL)" 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 Median Mean ± SD 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 Median Mean ± SD 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 Median Mean ± SD 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median Mean ± SD 9.10 9.08 9.10 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 Median Mean ± SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46	Min - Max	78 - 420	11.00 - 449.00	11 - 449			
Notes 11275.04 ± 10841.30 ± 11088.34 ± 2945.56 3045.02 2992.55 Median 11274.00 11133.00 11274.00 Min - Max 144 - 20363 1288 - 19531 144 - 20363 Total Bilirubin 0.0 11274.00 0.1558 Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.21 - 38.00 Glucose (70-100 mg/dL)" Median 98.00 97.00 98.00 0.23 - 38.00 0.23 - 38.00 0.2939 Min - Max 67 - 294 60 - 220 60 - 294 60 - 294 60 - 294 Calcium (8.6-10.6 mmol/L)" 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median Mean ± SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 Median Mean ± SD 15.10 ± 3.20 15.10 ± 1.40 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 Total Protein (6.0-8.0 g/dL)" 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.	Cholinesterase (CHE)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean + SD	11275 04 +	10841 30 +	11088 34 +			
Median 11274.00 11133.00 11274.00 0.1558 Min - Max 144 - 20363 1288 - 19531 144 - 20363 0.1558 Total Bilirubin (0.30-1.20 mg/dL)" 0.070 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.21 - 38.00 Glucose (70-100 mg/dL)" Median 98.00 97.00 98.00 0.2399 Min - Max 67 - 294 60 - 220 60 - 294 0.3720 Calcium (8.6-10.6 mmol/L)" 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 9.08 ± 0.55 Median 9.10 9.08 9.10 0.3720 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 1260 Min - Max 7.20 7.20 7.20 0.8858 Min - Max 4.00 - 8.50 0.79 - 9.40 0.79 - 9.40 0.2967 <		2945.56	3045.02	2992.55			
Min - Max 144 - 20363 1288 - 19531 144 - 20363 Total Bilirubin (0.30-1.20 mg/dL)" 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.21 - 38.00 Glucose (70-100 mg/dL)" Mean ± SD 105.29 ± 25.91 102.93 ± 24.49 98.00 0.2939 Min - Max 67 - 294 60 - 220 60 - 294 0.2939 0.3720 Min - Max 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 1.260 Min - Max 7.20 7.20 7.20 0.8858 0.1260 Min - Max 4.00 - 8.50 0.79 - 9.40 0.79 - 9.40 0.2967 0.8858 Mean ± SD 7.14 ± 0.55 7.15 ± 0.76 7	Median	11274.00	11133.00	11274.00	0.1558		
Total Bilirubin (0.30-1.20 mg/dL)" Mean \pm SD0.70 \pm 0.420.90 \pm 2.940.78 \pm 1.95Median0.600.570.590.4250Min - Max0.21 - 3.080.23 - 38.000.21 - 38.000.21 - 38.00Glucose (70-100 mg/dL)" Mean \pm SD105.29 \pm 25.91102.93 \pm 24.49104.27 \pm 25.30Median98.0097.0098.000.2939Min - Max67 - 29460 - 22060 - 294Calcium (8.6-10.6 mmol/L)" Mean \pm SD9.09 \pm 0.629.07 \pm 0.469.08 \pm 0.55Median9.109.089.100.3720Min - Max3.00 - 10.367.40 - 10.113.00 - 10.36Gamma % (10.7-20.3%)" Mean \pm SD15.10 \pm 3.2015.54 \pm 3.7715.29 \pm 3.46Median14.9015.1014.900.1260Min - Max7.30 - 25.904.60 - 33.504.60 - 33.50Total Protein (6.0-8.0 g/dL)" Min - Max7.14 \pm 0.557.15 \pm 0.767.14 \pm 0.65Median7.207.207.200.8858Min - Max4.00 - 8.500.79 - 9.400.79 - 9.40Lactate Dehydrogenase (LDH) (125-220 U/L)" Mean \pm SD174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean Corpuscular Value (MCV) (82-94 fl)" Mean \pm SD93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 1	Min - Max	144 - 20363	1288 - 19531	144 - 20363			
	Total Bilirubin						
Mean \pm SD 0.70 ± 0.42 0.90 ± 2.94 0.78 ± 1.95 Median 0.60 0.57 0.78 ± 1.95 Median $0.21 - 3.08$ $0.23 - 38.00$ $0.21 - 38.00$ Glucose (70-100 mg/dL)" $0.98.00$ $0.23 - 38.00$ $0.21 - 38.00$ Mean \pm SD 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 Median 98.00 97.00 98.00 0.2939 Min - Max $67 - 294$ $60 - 220$ $60 - 294$ Calcium (8.6-10.6 mmol/L)" 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median 9.10 9.08 9.10 0.3720 Min - Max $3.00 - 10.36$ $7.40 - 10.11$ $3.00 - 10.36$ Gamma % (10.7-20.3%)" 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 Mean \pm SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 Median 14.90 15.10 14.90 0.1260 Min - Max $7.30 - 25.90$ $4.60 - 33.50$ $4.60 - 33.50$ Total Protein (6.0-8.0 g/dL)" Max $4.00 - 8.50$ $0.79 - 9.40$ $0.79 - 9.40$ Lactate Dehydrogenase 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 $Median$ Mean \pm SD 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 $Median$ Mean \pm SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Mean \pm SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 92.90 <t< th=""><th>(0.30-1.20 mg/dL)^{**}</th><th></th><th></th><th></th><th></th></t<>	(0.30-1.20 mg/dL) ^{**}						
Median 0.60 0.57 0.59 0.4250 Min - Max 0.21 - 3.08 0.23 - 38.00 0.21 - 38.00 0.21 - 38.00 Glucose (70-100 mg/dL)" 105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 0.2939 Median 98.00 97.00 98.00 0.2939 Min - Max 67 - 294 60 - 220 60 - 294 0.2939 Calcium (8.6-10.6 mmol/L)" 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 0.3720 Mean ± SD 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 0.3720 Gamma % (10.7-20.3%)" Median 14.90 15.10 14.90 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 4.60 - 33.50 1260 Min - Max 7.20 7.20 7.20 0.8858 0.79 - 9.40 0.79 - 9.40 0.2967 Lactate Dehydrogenase (LDH) (125-220 U/L)" Image: Singe:	Mean ± SD	0.70 ± 0.42	0.90 ± 2.94	0.78 ± 1.95			
Min - Max $0.21 - 3.08$ $0.23 - 38.00$ $0.21 - 38.00$ Glucose (70-100 mg/dL)"105.29 ± 25.91 102.93 ± 24.49 104.27 ± 25.30 Median98.0097.0098.00 0.2939 Min - Max $67 - 294$ $60 - 220$ $60 - 294$ Calcium (8.6-10.6 mmol/L)"9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median 9.10 9.08 9.10 0.3720 Min - Max $3.00 - 10.36$ $7.40 - 10.11$ $3.00 - 10.36$ Gamma % (10.7-20.3%)"15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 Median14.90 15.10 14.90 0.1260 Min - Max $7.30 - 25.90$ $4.60 - 33.50$ $4.60 - 33.50$ Total Protein (6.0-8.0 g/dL)"7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 Median 7.20 7.20 7.20 0.8858 Min - Max $4.00 - 8.50$ $0.79 - 9.40$ $0.79 - 9.40$ Lactate Dehydrogenase174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 Median171.00 172.00 171.00 0.2967 Min - Max $41 - 397$ $91 - 379$ $41.00 - 397.00$ Mean \pm SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Mean \pm SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070	Median	0.60	0.57	0.59	0.4250		
Glucose (70-100 mg/dL)" Mean \pm SD105.29 \pm 25.91102.93 \pm 24.49104.27 \pm 25.30Median98.0097.0098.000.2939Min - Max67 - 29460 - 22060 - 294Calcium (8.6-10.6 mmol/L)" Mean \pm SD9.09 \pm 0.629.07 \pm 0.469.08 \pm 0.55Median9.109.089.100.3720Min - Max3.00 - 10.367.40 - 10.113.00 - 10.36Gamma % (10.7-20.3%)" Mean \pm SD15.10 \pm 3.2015.54 \pm 3.7715.29 \pm 3.46Median14.9015.1014.900.1260Min - Max7.30 - 25.904.60 - 33.504.60 - 33.50Total Protein (6.0-8.0 g/dL)" Mean \pm SD7.14 \pm 0.557.15 \pm 0.767.14 \pm 0.65Median7.207.207.200.8858Min - Max4.00 - 8.500.79 - 9.400.79 - 9.40Lactate Dehydrogenase (LDH) (125-220 U/L)"174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean \pm SD93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Mean \pm SD93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070	Min - Max	0.21 - 3.08	0.23 - 38.00	0.21 – 38.00			
Mean \pm SD105.29 \pm 25.91102.93 \pm 24.49104.27 \pm 25.30Median98.0097.0098.000.2939Min - Max67 - 29460 - 22060 - 294Calcium (8.6-10.6 mmol/L)"9.09 \pm 0.629.07 \pm 0.469.08 \pm 0.55Median9.109.089.100.3720Min - Max3.00 - 10.367.40 - 10.113.00 - 10.36Gamma % (10.7-20.3%)"15.10 \pm 3.2015.54 \pm 3.7715.29 \pm 3.46Mean \pm SD15.10 \pm 3.2015.54 \pm 3.7715.29 \pm 3.46Median14.9015.1014.900.1260Min - Max7.30 - 25.904.60 - 33.504.60 - 33.50Total Protein (6.0-8.0 g/dL)"7.14 \pm 0.557.15 \pm 0.767.14 \pm 0.65Median7.207.207.200.8858Min - Max4.00 - 8.500.79 - 9.400.79 - 9.40Latate Dehydrogenase174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Mean \pm SD174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Mean \pm SD93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070	Glucose (70-100 mg/dL)**						
Median 98.00 97.00 98.00 0.2939 Min - Max 67 - 294 60 - 220 60 - 294 60 - 294 Calcium (8.6-10.6 mmol/L)" 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 9.08 ± 0.55 Median 9.10 9.08 ± 0.55 9.10 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 Gamma % (10.7-20.3%)" Mean ± SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 Median 14.90 15.10 14.90 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 0.1260 Min - Max 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 0.79 - 9.40 0.79 - 9.40 Lactate Dehydrogenase 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 0.2967 Median 171.00 172.00 171.00 0.2967 Mean ± SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 0.0070 Mean ± SD 93.80 92.65 92.90 0.0070	Mean ± SD	105.29 ± 25.91	102.93 ± 24.49	104.27 ± 25.30			
Min - Max $67 - 294$ $60 - 220$ $60 - 294$ Calcium (8.6-10.6 mmol/L)" Mean ± SD 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median 9.10 9.08 9.10 0.3720 Min - Max $3.00 - 10.36$ $7.40 - 10.11$ $3.00 - 10.36$ Gamma % (10.7-20.3%)" Mean ± SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 MedianMean ± SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 MedianMean ± SD $7.30 - 25.90$ $4.60 - 33.50$ $4.60 - 33.50$ Total Protein (6.0-8.0 g/dL)" Mean ± SD 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 MedianMean ± SD 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 Median 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 Median 171.00 172.00 171.00 0.2967 Mean ± SD 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 Median 171.00 172.00 171.00 0.2967 Mean ± SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Mean ± SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070	Median	98.00	97.00	98.00	0.2939		
Calcum (8.6-10.6 mmol/L) Mean \pm SD9.09 \pm 0.629.07 \pm 0.469.08 \pm 0.55Median9.109.089.100.3720Min - Max3.00 - 10.367.40 - 10.113.00 - 10.36Gamma % (10.7-20.3%)" Mean \pm SD15.10 \pm 3.2015.54 \pm 3.7715.29 \pm 3.46Median14.9015.1014.900.1260Min - Max7.30 - 25.904.60 - 33.504.60 - 33.50Total Protein (6.0-8.0 g/dL)" Mean \pm SD7.14 \pm 0.557.15 \pm 0.767.14 \pm 0.65Median7.207.207.200.8858Min - Max4.00 - 8.500.79 - 9.400.79 - 9.40Lactate Dehydrogenase (LDH) (125-220 U/L)"174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean \pm SD93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90		67 - 294	60 - 220	60 - 294			
Mean ± SD 9.09 ± 0.62 9.07 ± 0.46 9.08 ± 0.55 Median 9.10 9.08 9.10 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 0.3720 Gamma % (10.7-20.3%)" 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 0.1260 Median 14.90 15.10 14.90 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 0.1260 Men ± SD 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 0.8858 Mean ± SD 7.20 7.20 0.8858 0.79 - 9.40 0.79 - 9.40 Lactate Dehydrogenase (LDH) (125-220 U/L)" 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 0.2967 Min - Max 41 - 397 91 - 379 41.00 - 397.00 0.2967 Mean ± SD 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 0.2967 Mean ± SD 174.09 ± 37.86 180.65 ± 41.57 170.00 0.2967 Mean ± SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83	Calcium (8.6-10.6 mmol/L)	0.00 . 0.00	0.07 . 0.40				
Median 9.10 9.08 9.10 0.3720 Min - Max 3.00 - 10.36 7.40 - 10.11 3.00 - 10.36 Gamma % (10.7-20.3%)" 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 Median 14.90 15.10 14.90 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 0.1260 Min - Max 7.30 - 25.90 4.60 - 33.50 4.60 - 33.50 0.1260 Median 7.20 7.15 ± 0.76 7.14 ± 0.65 7.14 ± 0.65 Median 7.20 7.20 7.20 0.8858 Min - Max 4.00 - 8.50 0.79 - 9.40 0.79 - 9.40 0.8858 Min - Max 4.00 - 8.50 0.79 - 9.40 0.79 - 9.40 0.2967 Lactate Dehydrogenase 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 0.2967 Mean ± SD 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 0.2967 Median 171.00 172.00 171.00 0.2967 Min - Max 41 - 397 91 - 379 41.00 - 397.00 0.0070 Mean ± SD 93.80	Median	9.09 ± 0.62	9.07 ± 0.46	9.08 ± 0.55	0.0700		
Imax 3.00 ± 10.30 7.40 ± 10.11 3.00 ± 10.30 Gamma % (10.7-20.3%)" Mean \pm SD 15.10 ± 3.20 15.54 ± 3.77 15.29 ± 3.46 Median 14.90 15.10 14.90 0.1260 Min - Max $7.30 - 25.90$ $4.60 - 33.50$ $4.60 - 33.50$ Total Protein (6.0-8.0 g/dL)" Mean \pm SD 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 Median 7.20 7.20 7.20 $0.79 - 9.40$ Lactate Dehydrogenase (LDH) (125-220 U/L)" 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 Median 171.00 172.00 171.00 0.2967 Min - Max $41 - 397$ $91 - 379$ $41.00 - 397.00$ Mean \pm SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Min - Max $65.30 - 106.90$ $61.80 - 102.70$ $61.80 - 106.90$	Min - Max	9.10 3.00 - 10.36	9.00 7.40 - 10.11	9.10 3.00 - 10.36	0.3720		
Mean \pm SD15.10 \pm 3.2015.54 \pm 3.7715.29 \pm 3.46Median14.9015.1014.900.1260Min - Max7.30 - 25.904.60 - 33.504.60 - 33.50Total Protein (6.0-8.0 g/dL)"7.14 \pm 0.557.15 \pm 0.767.14 \pm 0.65Median7.207.207.200.8858Min - Max4.00 - 8.500.79 - 9.400.79 - 9.40Lactate Dehydrogenase174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean \pm SD93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90	Gamma % (10 7-20 3%)**	0.00 10.00	7.40 10.11	0.00 10.00			
Median14.9015.1014.900.1260Min - Max $7.30 - 25.90$ $4.60 - 33.50$ $4.60 - 33.50$ $4.60 - 33.50$ Total Protein (6.0-8.0 g/dL)"7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 Median 7.20 7.20 7.20 0.8858 Min - Max $4.00 - 8.50$ $0.79 - 9.40$ $0.79 - 9.40$ Lactate Dehydrogenase174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 Median 171.00 172.00 171.00 0.2967 Mean \pm SD 174.397 $91 - 379$ $41.00 - 397.00$ Mean Corpuscular Value 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Min - Max $65.30 - 106.90$ $61.80 - 102.70$ $61.80 - 106.90$	Mean ± SD	15.10 ± 3.20	15.54 ± 3.77	15.29 ± 3.46			
Min - Max $7.30 - 25.90$ $4.60 - 33.50$ $4.60 - 33.50$ Total Protein (6.0-8.0 g/dL)" 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 Mean \pm SD 7.14 ± 0.55 7.15 ± 0.76 7.14 ± 0.65 Median 7.20 7.20 7.20 0.8858 Min - Max $4.00 - 8.50$ $0.79 - 9.40$ $0.79 - 9.40$ Lactate Dehydrogenase (LDH) (125-220 U/L)" 174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 Median 171.00 172.00 171.00 0.2967 Min - Max $41 - 397$ $91 - 379$ $41.00 - 397.00$ Mean \pm SD 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Min - Max $65.30 - 106.90$ $61.80 - 102.70$ $61.80 - 106.90$	Median	14.90	15.10	14.90	0.1260		
Total Protein (6.0-8.0 g/dL)** Mean \pm SD7.14 \pm 0.557.15 \pm 0.767.14 \pm 0.65Median7.207.207.200.8858Min - Max4.00 - 8.500.79 - 9.400.79 - 9.400.79 - 9.40Lactate Dehydrogenase (LDH) (125-220 U/L)**174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean \pm SD93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90	Min - Max	7.30 - 25.90	4.60 - 33.50	4.60 - 33.50			
Mean \pm SD7.14 \pm 0.557.15 \pm 0.767.14 \pm 0.650.8858Median7.207.207.200.8858Min - Max4.00 - 8.500.79 - 9.400.79 - 9.400.8858Lactate Dehydrogenase (LDH) (125-220 U/L)**174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean \pm SD93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90	Total Protein (6.0-8.0 g/dL)**						
Median7.207.207.200.8858Min - Max4.00 - 8.50 $0.79 - 9.40$ $0.79 - 9.40$ $0.79 - 9.40$ Lactate Dehydrogenase (LDH) (125-220 U/L)"174.09 ± 37.86180.65 ± 41.57176.91 ± 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean ± SD93.24 ± 5.8591.91 ± 5.7392.67 ± 5.83Median93.8092.6592.900.0070	Mean ± SD	7.14 ± 0.55	7.15 ± 0.76	7.14 ± 0.65			
Min - Max $4.00 - 8.50$ $0.79 - 9.40$ $0.79 - 9.40$ Lactate Dehydrogenase (LDH) (125-220 U/L)**174.09 ± 37.86 180.65 ± 41.57 176.91 ± 39.58 Median171.00172.00171.00 0.2967 Min - Max41 - 39791 - 37941.00 - 397.00Mean ± SD93.24 ± 5.8591.91 ± 5.7392.67 ± 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90	Median	7.20	7.20	7.20	0.8858		
Lactate Dehydrogenase (LDH) (125-220 U/L)**Image: marked line line line line line line line line	Min - Max	4.00 - 8.50	0.79 - 9.40	0.79 - 9.40			
(LDH) (125-220 U/L)**174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean Corpuscular Value (MCV) (82-94 fl)**93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90	Lactate Dehydrogenase						
Mean \pm SD174.09 \pm 37.86180.65 \pm 41.57176.91 \pm 39.58Median171.00172.00171.000.2967Min - Max41 - 39791 - 37941.00 - 397.00Mean Corpuscular Value (MCV) (82-94 fl)**93.24 \pm 5.8591.91 \pm 5.7392.67 \pm 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90	(LDH) (125-220 U/L)**						
Median 171.00 172.00 171.00 0.2967 Min - Max $41 - 397$ $91 - 379$ $41.00 - 397.00$ Mean Corpuscular Value (MCV) (82-94 fl)** 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Min - Max $65.30 - 106.90$ $61.80 - 102.70$ $61.80 - 106.90$	Mean ± SD	174.09 ± 37.86	180.65 ± 41.57	176.91 ± 39.58			
Min - Max 41 - 397 91 - 379 41.00 - 397.00 Mean Corpuscular Value (MCV) (82-94 fl)** 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Min - Max 65.30 - 106.90 61.80 - 102.70 61.80 - 106.90	Median	171.00	172.00	171.00	0.2967		
Mean Corpuscular Value (MCV) $(82-94 \text{ fl})^{**}$ 93.24 ± 5.8591.91 ± 5.7392.67 ± 5.83Median93.8092.6592.900.0070Min - Max65.30 - 106.9061.80 - 102.7061.80 - 106.90	Min - Max	41 - 397	91 - 379	41.00 - 397.00			
(inc v) (o2-34 ii) 93.24 ± 5.85 91.91 ± 5.73 92.67 ± 5.83 Median 93.80 92.65 92.90 0.0070 Min - Max 65.30 - 106.90 61.80 - 102.70 61.80 - 106.90							
Median 93.80 92.65 92.90 0.0070 Min - Max 65.30 - 106.90 61.80 - 102.70 61.80 - 106.90	$\frac{(1000 V)(02-34 II)}{Mean + SD}$	03 21 + 5 25	01 01 + 5 72	02 67 ± 5 92			
Min - Max 65.30 - 106.90 61.80 - 102.70 61.80 - 106.90	Median	33.24 ± 3.03 03 20	91.91 ± 0.73 02.65	32.01 ± 0.00 02 00	0 0070		
	Min - Max	65.30 - 106.90	61.80 - 102.70	61.80 - 106.90	0.0070		

Hemoglobin (Hgb)				
(14-18 g/dl) ^{**}				
Mean ± SD	14.30 ± 1.58	13.79 ± 1.73	14.08 ± 1.66	
Median	14.50	14.05	14.30	0.0049
Min - Max	8.20 - 18.60	7.60 - 18.00	7.60 - 18.60	
RDW (12-17%)**				
Mean ± SD	14.31 ±1.45	14.64 ± 1.44	14.46 ± 1.45	
Median	14.00	14.30	14.20	0.0043
Min - Max	12.10 - 26.40	12.40 - 21.00	12.10 - 26.40	
Hematocrite (Hct) (42-52%)**				
Mean ± SD	42.81 ± 4.67	43.59 ± 28.55	43.15 ± 19.03	
Median	43.10	42.40	42.70	0.0215
Min - Max	24.30 - 55.90	25.80 - 401.00	24.30 - 401.00	
Red blood cell count (RBC)				
(4.5-5.5 × 10 ⁶ /mL) ^{**}				
Mean ± SD	4.61 ± 0.55	4.51 ± 0.58	4.57 ± 0.56	
Median	4.63	4.58	4.61	0.1852
Min - Max	2.55 - 6.55	2.93 - 6.29	2.55 - 6.55	
Albumin (3.4-4.6 g/dL)**				
Mean ± SD	3.90 ± 0.34	3.88 ± 0.33	3.89 ± 0.34	
Median	3.93	3.91	3.93	0.3455
Min – Max	2.19 - 4.66	2.68 - 4.67	2.19 - 4.67	
PT (9.5-13.5 seconds)**				
Mean ± SD	12.72 ± 7.75	12.52 ± 4.44	12.63 ± 6.52	
Median	11.20	11.40	11.30	0.0139
Min - Max	9.30 - 109.00	9.70 - 41.70	9.30 - 109.00	
Cholesterol (120-200 mg/dL)**				
Mean ± SD	179.06 ± 41.62	169.94 ± 38.70	175.13 ± 40.59	
Median	176.00	169.50	173.00	0.0543
Min - Max	92.00 - 322.00	74.00 - 314.00	74.00 - 322.00	
MCH (27-31 pg)**				
Mean ± SD	31.16 ± 2.29	30.63 ± 2.23	30.93 ± 2.28	
Median	31.30	30.70	31.20	0.0068
Min - Max	20.20 - 37.00	18.10 - 35.60	18.10 - 37.00	
White blood cell (WBC)				
(4.0-10.8 × 10 ³ /ml)**				
Mean ± SD	7.42 ± 2.16	7.36 ± 1.87	7.39 ± 2.04	
Median	7.08	6.98	7.04	0.9993
Min - Max	3.15 - 16.68	3.67 - 14.37	3.15 - 16.68	
GGT (5.0-50 U/L)		40.07 00.00		
Mean ± SD	43.31 ± 59.66	40.67 ± 38.09	42.17 ± 51.45	0.5040
	31.00	30.00	31.00	0.5249
	11 - 76	9 - 289	9 - 767	
ALP (40-129 U/L)	77.05 . 00.00	04.05 . 44.50	00 50 . 05 75	
Medier	77.35 ± 30.38	84.85 ± 41.52	80.38 ± 33.73	0.0404
	71.00	78.00	75.00	0.0164
WIN - Wax	24 - 331	39 - 453	24 - 453	
$r = \frac{1}{2} (00 - 120\%)$	00 00 . 22 25	06.09 . 20 51	09 10 - 01 50	
Median	30.30 ± 22.23	30.30 ± 20.31	30.12 ± 21.32	0 0270
Min - May	103.00	100.00	103.00	0.0279
Albumin % (55 90-66 10%)**	14 - 101	10 - 137	14 - 131	
Mean + SD	51 61 + 2 06	5/ 10 + / 52	51 11 + 1 21	
Median	57.04 ± 3.80 51.10	54.10 ± 4.02	54.40	0 1559
	30 10 - 64 50	20 20 - 64 20	30 10 - 61 20	0.1000
	53.10 - 04.50	J9.00 - 04.00	33.10 - 04.00	

Uric acid (3.4-7 mg/dL)**				
Mean + SD	5 42 + 1 42	5 48 + 1 45	5 45 + 1 43	
Median	5 29	5 30	5.30	0 7511
Min - Max	2 30 - 11 90	2 09 - 10 40	2 09 - 11 90	011011
Tryalicerides (<150 mg/dL)**	2.00 11.00	2.00 10.40	2.00 11.00	
	107 00 . 70 00	100.05 .01.00		
Median ± SD	127.00 ± 70.03	120.00 ± 01.92	127.05 ± 07.00	0.0044
wedian	112.00	105.00	111.00	0.9341
	34 - 453	38 - 356	34 - 453	
Alfa 1 (0.15-0.40 g/dL)				
Mean ± SD	0.18 ± 0.04	0.20 ± 0.10	0.19 ± 0.07	
Median	0.17	0.19	0.18	0.0006
Min - Max	0.08 - 0.36	0.09 - 1.34	0.08 - 1.34	
AST (5.0-50 U/L)**				
Mean ± SD	19.65 ± 15.26	19.99 ± 25.66	19.80 ± 20.37	
Median	17.00	16.00	16.00	0.0299
Min - Max	7 - 196	3 - 283	3 - 283	
Potassium (3.5-5.0 mmol/L)**				
Mean ± SD	4.61 ± 7.07	4.16 ± 0.47	4.42 ± 5.34	
Median	4.10	4.19	4.10	0.3559
Min - Max	2.80 - 108.00	2.82 - 5.60	2.80 - 108.00	
ESR (< 20 mm/h)**				
Mean + SD	12 54 + 10 89	17 20 + 15 08	14 55 + 13 05	
Median	10.00	12.00	11.00	0 0028
	2 00 - 75 00	2 00 - 83 00	2 00 - 83 00	0.0020
10111 - 1010	2.00 - 73.00	2.00 - 03.00	2.00 - 03.00	
Alla 1 % (1.0-3.0%)	2 50 1 0 75	0.67 . 0.70	2.59 . 0.76	
Medier	2.50 ± 0.75	2.07 ± 0.78	2.58 ± 0.76	0.0000
	2.40	2.60	2.50	0.0022
	1.10 - 7.80	1.20 - 7.90	1.10 - 7.90	
Creatinine (0.5-1.2 mg/dL)				
	1.11 ± 0.59	1.32 ± 1.24	1.20 ± 0.93	
	0.98	1.00	0.99	0.1327
	0.59 - 6.40	0.55 - 9.85	0.55 - 9.85	
Alfa 2 % (9.5-14.4%)				
Mean ± SD	12.91 ± 1.91	13.11 ± 2.05	13.00 ± 1.97	
Median	12.80	12.95	12.80	0.2898
Min - Max	7.70 - 18.70	6.30 - 19.40	6.30 - 19.40	
Alfa 2 (0.45-1.0 g/dL)**				
Mean ± SD	0.92 ± 0.16	0.94 ± 0.16	0.93 ± 0.16	
Median	0.91	0.92	0.91	0.1835
Min - Max	0.25 - 1.46	0.47 - 1.60	0.25 - 1.60	
Fibrinogen (170-410 mg/dL)**				
Mean ± SD	330.96 ± 68.54	351.30 ± 93.45	339.72 ± 80.73	
Median	325.00	325.00	325.00	0.0630
Min - Max	198 - 554	105 - 856	105 - 856	
Beta (0.55-1.10 g/dL)**				
Mean ± SD	1.06 ± 0.16	1.05 ± 0.17	1.05 ± 0.16	
Median	1.05	1.05	1.05	0.5419
Min - Max	0.52 - 1.76	0.71 - 1.48	0.52 - 1.76	
Beta % (8.6-15.6%)**				
Mean ± SD	14.78 ± 1.77	14.57 ± 1.70	14.69 ± 1.74	
Median	14.60	14.50	14.60	0.2736
Min - Max	10.10 - 23.80	11.10 - 18.80	10.10 - 23.80	0.2.00
A/G (1 08-1 86)**	10110 20100	11110 10.00	10110 20100	
Mean + SD	1 22 + 0 19	1 20 + 0 22	1 21 + 0 21	
Median	1 10	1 17	1 10	0 1 2 9 7
weulaii	1.19	1.17	1.19	0.1207

Vezzoli Marika et al.	AJCRAR,	2021,	4:18
-----------------------	---------	-------	------

Min - Max	0 64 - 1 82	0 66 - 1 84	0 64 - 1 84	1
Fosinophilis	0.01 1.02	0.00 1.01	0.01 1.01	
$(0-0.80 \times 10^{3} / \text{mL})^{**}$				
Mean + SD	0 20 + 0 14	0 35 + 1 71	0 26 + 1 13	
Median	0.17	0.17	0.17	0.1436
Min - Max	0.00 - 1.30	0.00 - 22.00	0.00 - 22.00	011100
Phosphorous			0.00	
(2.7-4.5 mmol/L)**				
Mean ± SD	2.72 ± 0.60	2.82 ± 0.63	2.77 ± 0.62	
Median	2.70	2.70	2.70	0.2261
Min - Max	1.00 - 8.00	1.70 - 6.30	1.00 - 8.00	
Linphocytes				
(0.9-4.0 × 10 ³ /mL)**				
Mean ± SD	1.86 ± 0.54	1.79 ± 0.69	1.83 ± 0.61	
Median	1.77	1.77	1.77	0.2180
Min - Max	0.70 - 3.76	0.54 - 8.11	0.54 - 8.11	
Monocytes % (3.4-9%)**				
Mean ± SD	8.49 ± 1.68	8.62 ± 1.68	8.55 ± 1.68	
Median	8.40	8.40	8.40	0.8799
Min - Max	1.30 - 15.00	4.70 - 15.10	1.30 - 15.10	
Neutrophils				
(1.50-8 × 10³/mL)**				
Mean ± SD	4.59 ± 1.50	4.53 ± 1.22	4.56 ± 1.39	
Median	4.38	4.38	4.38	0.9262
Min - Max	2.04 - 12.48	2.07 - 11.18	2.04 - 12.48	
Monocytes (0.2-1 × 10 ³ /mL) ^{**}	/ - /-			
Mean ± SD	0.61 ± 0.17	0.62 ± 0.16	0.62 ± 0.17	
Median	0.59	0.59	0.59	0.6959
Min - Max	0.12 - 1.21	0.34 - 1.26	0.12 - 1.26	
Sodium (135-145 mmol/L)	4.40.00 + 0.04	4.44.40 . 0.40	4 4 4 0 0 1 7 4 0	
Mean ± SD Median	140.66 ± 9.61	141.49 ± 2.40	141.02 ± 7.43	0.4500
Min - Max	141.00	141.00	141.00	0.4009
Fosinophilis % $(0-8\%)^{**}$	3.00 - 149.00	132.00 - 140.00	3.00 - 149.00	
Mean + SD	2 74 + 1 77	3 09 + 2 19	2 89 + 1 97	
Median	2.74 ± 1.77	2.50	2.00 ± 1.07	0 1079
Min - Max	0.00 - 15.10	0.00 - 14.10	0.00 - 15.10	0.1070
Linphocytes % (20-45%)**	0.00 10110	0.00 1.1.0	0.00 10110	
Mean ± SD	25.63 ± 6.52	24.73 ± 6.76	25.24 ± 6.63	
Median	24.50	24.50	24.50	0.1467
Min - Max	7.20 - 49.00	6.70 - 61.20	6.70 - 61.20	
MCHC (32-37 g/dL)**				
Mean ± SD	33.40 ± 0.83	33.32 ± 0.77	33.36 ± 0.81	
Median	33.40	33.30	33.30	0.4705
Min - Max	30.30 - 35.50	29.30 - 35.50	29.30 - 35.50	
Basophilis (0-0.20 × 10 ³ /mL) ^{**}				
Mean ± SD	0.04 ± 0.02	0.04 ± 0.03	0.04 ± 0.02	
Median	0.04	0.04	0.04	0.6511
Min - Max	0.01 - 0.13	0.00 - 0.17	0.00 - 0.17	
Neutrophils % (40-74%)**				
Mean ± SD	62.34 ± 7.47	62.71 ± 7.57	62.50 ± 7.50	
Median	63.25	63.25	63.25	0.5113
	36.40 - 91.30	29.40 - 86.80	29.40 - 91.30	
APTI (24-38 seconds)	04.00 40.70	04.05 4.04	04.00 0.07	
wiean ± 5D	31.92 ± 10.70	31.35 ± 4.84	31.08 ± 8.67	

Median	30.50	30.30	30.50	0.5854
Min - Max	24.00 - 178.10	23.00 - 68.10	23.00 - 178.10	
INR (0.2-1.2)**				
Mean ± SD	1.10 ± 0.35	1.11 ± 0.37	1.10 ± 0.36	
Median	1.00	1.00	1.00	0.0387
Min - Max	0.80 - 4.20	0.90 - 3.70	0.80 - 4.20	
Cloryte (95-110 mmol/L)**				
Mean ± SD	104.67 ± 7.24	105.22 ± 3.27	104.90 ± 5.87	
Median	105.00	105.00	105.00	0.6355
Min - Max	8.67 - 114.00	91.00 - 116.00	8.67 - 116.00	
APTT ratio				
(0.70-1.28 ratio)**				
Mean ± SD	1.09 ± 0.77	1.03 ± 0.15	1.06 ± 0.59	
Median	1.00	1.00	1.00	0.7290
Min - Max	0.76 - 11.04	0.76 - 2.13	0.76 - 11.04	
Basophilis % (0-1.50%) ^{**}				
Mean ± SD	0.58 ± 0.21	0.62 ± 0.35	0.60 ± 0.28	
Median	0.55	0.55	0.55	0.9211
Min - Max	0.10 - 1.50	0.00 - 3.20	0.00 - 3.20	

Vezzoli Marika et al., AJCRAR, 2021, 4:18

**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request.

In fourth column, in bold and italics Wilcoxon p-values \leq 0.05.

Tabella S.1 Descriptive statistics on each analyte stratified for AAA diameter (S/M vs L) computed in the training sample (381 subjects)

Analytes maintain the same order of Table 3 in the main text. In detail, the Wilcoxon test confirms same results obtained in the entire sample (423 observations), identifying almost the same biomarkers (15 out of 55) significantly different (*p*-value < 0.05) in the two sub-populations defined by $I_{diameter}$.

Vezzoli Marika et al., AJCRAR, 2021, 4:18				
Analytes	Diameter < 55	Diameter ≥ 55		p-value
(Variables, Biomarkers, co-	(S/M)	(L)	TOTAL	
variates)	n _{test S/M} =24	n _{test L} =18	N _{test} =42	
CK (20-170 U/L)**				
Mean \pm SD	113.62 + 103.69	113.17 + 111.58	113.43 + 105.80	
Median	83.00	77.00	82.00	0.7894
Min - Max	34 - 552	41 - 519	34 - 552	
ALT (5-50 U/L)**				
Mean ± SD	24.92 ± 8.55	26.44 ± 14.16	25.57 ± 11.17	
Median	24.00	20.50	22.00	0.6102
Min - Max	8 - 46	14 - 71	8 - 71	
Platelet (PTL)				
(130-400 × 10 ³ U/L)**				
Mean ± SD	185.25 ± 50.47	205.00 ± 51.35	193.71 ± 51.19	
Median	185.00	198.50	189.00	0.2223
Min - Max	87 - 309	119 - 290	87 - 309	
Cholinesterase (CHE)				
(6400-15500 U/L)**				
Mean ± SD	11395.50 ±	11279.39 ±	11345.74 ±	
	3220.16	4450.26	3745.95	
Median	11274.00	11055.50	11274.00	0.7895
Min - Max	5297 - 18101	1224 - 21375	1224 - 21375	
Total Bilirubin				
(0.30-1.20 mg/dL)**				
Mean ± SD	0.72 ± 0.41	0.79 ± 0.36	0.75 ± 0.39	
Median	0.65	0.73	0.65	0.3402
Min - Max	0.22 - 2.21	0.22 - 1.64	0.22 - 2.21	
Glucose (70-100 mg/dL)**				
Mean ± SD	100.00 ± 18.56	102.67 ± 28.80	101.14 ± 23.21	
Median	100.00	100.00	100.00	0.9696
Min - Max	7 - 15	61 - 163	61 - 163	
Calcium (8.6-10.6 mmol/L) ^{**}				
Mean ± SD	9.14 ± 0.42	9.01 ± 0.60	9.08 ± 0.50	
Median	9.25	8.85	9.14	0.3468
Min - Max	8.30 - 9.76	8.15 - 10.31	8.15 - 10.31	
Gamma % (10.7-20.3%)**				
Mean ± SD	14.62 ± 3.39	15.86 ± 4.24	15.15 ± 3.78	
Median	14.10	15.20	14.85	0.1776
Min - Max	10.70 - 27.40	11.30 - 30.60	10.70 - 30.60	
I otal Protein (6.0-8.0 g/dL)				
Mean ± SD	7.01 ± 0.47	7.07 ± 0.61	7.04 ± 0.53	_
Median	7.00	7.20	7.05	0.7595
Min - Max	5.70 - 7.70	5.80 - 8.20	5.70 - 8.20	
LDH (125-220 U/L) ^{**}				
Mean ± SD	169.25 ± 47.56	205.00 ± 76.82	184.57 ± 63.54	
Median	169.00	175.50	170.50	0.1335
	122 - 332	118 - 403	118 - 403	
MCV (82-94 fl)	0470 400	00.00 ·	04.04 4.00	
Mean ± SD	94.78 ± 4.06i	93.69 ± 4.57	94.31 ± 4.26	0.001-
	94.95	93.50	94.45	0.3215
	85.60 - 103.00	86.60 - 104.60	85.60 - 104.60	
(14-18 g/al)		44.05 4.40	44.00 4.50	
Mean ± SD	14.45 ± 1.70	14.25 ± 1.40	14.36 ± 1.56	0.5007
Median	14.40	14.30	14.35	0.5667

Vezzoli Marika et al., AJCRAR	, 2021,	4:18
-------------------------------	---------	------

Min - Max	11.30 - 18.00	12.10 - 17.70	11.30 - 18.00	
RDW (12-17%)**				
Mean ± SD	14.01 ± 0.88	14.61 ± 1.56	14.27 ± 1.24	
Median	14.00	14.20	14.15	0.2627
Min - Max	12.70 - 16.20	12.50 - 19.00	12.50 - 19.00	
Hematocrite (Hct) (42-52%)**				
Mean ± SD	43.08 ± 5.34	42.69 ± 3.99	42.92 ± 4.76	
Median	43.05	42.45	42.50	0.6564
Min - Max	33.80 - 53.60	36.50 - 53.60	33.80 - 53.60	
Red blood cell count (RBC)				
(4.5-5.5 × 10 ⁶ /mL) ^{**}				
Mean ± SD	4.56 ± 0.65	4.56 ± 0.44	4.56 ± 0.57	
Median	4.52	4.52	4.52	0.8888
Min - Max	3.41 - 5.78	3.95 - 5.40	3.41 - 5.78	
Albumin (3.4-4.6 g/dL)**				
Mean ± SD	3.88 ± 0.45	3.85 ± 0.38	3.86 ± 0.42	
Median	3.90	3.88	3.90	0.7314
Min – Max	2.93 - 4.69	2.90 - 4.44	2.90 - 4.69	
PI (9.5-13.5 seconds)		44.00 0.00	40.00	
Mean ± SD	11.18 ± 1.04	14.00 ± 6.09	12.39 ± 4.24	
Median	10.95	11.95	11.40	0.0067
Min - Max	9.80 - 14.30	10.20 - 32.30	9.80 - 32.30	
Cholesterol (120-200 mg/dL)	470 75 . 44 77	470.00 . 47.40	470.00 . 40.50	
Mean ± SD Median	$1/8.75 \pm 41.77$	$1/9.00 \pm 4/.12$	$1/8.86 \pm 43.58$	1 0000
Min Mox	177.50	171.50	175.50	1.0000
$MCH (27.21 \text{ pg})^{**}$	120 - 204	104 - 274	104 - 204	
MCH (27-31 pg) $Mcan + SD$	31 83 ± 1 /3	31 24 ± 1 47	31 58 ± 1 /6	
Median	31 55	31 35	31 45	0 2221
Min - Max	29 20 - 34 30	28 90 - 34 20	28 90 - 34 30	0.2221
White blood cell (WBC)	20.20 0 1.00	20.00 01.20	20.00 01.00	
$(4.0-10.8 \times 10^3/\text{ml})^{**}$				
Mean ± SD	6.82 ± 1.71	8.11 ± 2.63	7.37 ± 2.22	
Median	6.95	8.02	7.22	0.1304
Min - Max	4.06 - 10.40	4.43 - 14.80	4.06 - 14.80	
GGT (5.0-50 U/L)**				
Mean ± SD	50.42 ± 44.72	56.28 ± 83.68	52.93 ± 63.51	
Median	40.50	30.50	33.50	0.4608
Min - Max	5 - 222	14 - 377	5- 377	
ALP (40-129 U/L)**				
Mean ± SD	83.67 ± 39.07	81.28 ± 29.48	82.64 ± 34.90	
Median	81.50	74.00	74.50	0.9190
Min - Max	41 - 217	35- 141	35 - 217	
PT % (80-120%) ^{**}				
Mean ± SD	11.18 ± 1.04	14.00 ± 6.09	12.39 ± 4.24	0.0007
Median	10.95	11.95	11.40	0.0067
IVIIN - IVIAX	9.80 - 14.30	10.20 - 32.30	9.80 - 32.30	
AIDUIIIII % (33.80-00.10%)	55 26 1 4 04	54 40 + 4 22	54 02 1 4 50	
Median	55.20 ± 4.91	54.49 ± 4.25 55 75	54.33 ± 4.33 55 75	0.5169
Min - May	00.00 11 00 - 61 00	00.70 11 00 - 50 50	00.70 /1 00 - 61 00	0.0100
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	41.30 - 01.30	44.00 - 09.00	41.30 - 01.30	
Mean + SD	5 48 + 1 09	5 88 + 1 14	5 65 + 1 12	
Median	5 <u>4</u> 0	5 70	5 55	0 1900
Min - Max	3 40 - 7 60	3 70 - 7 60	3 40 - 7 60	0.1000
	0.70 7.00	0.10 1.00	0.10 1.00	

Tryglicerides (<150 mg/dL)**				
Mean ± SD	158.54 ± 92.51	134.56 ± 61.91	148.26 ± 80.84	
Median	138.50	121.50	131.00	0.3945
Min - Max	61 - 467	57- 252	57 - 467	
Alfa 1 (0.15-0.40 g/dL)**				
Mean ± SD	0.17 ± 0.05	0.17 ± 0.04	0.17 ± 0.04	
Median	0.16	0.17	0.17	0.3251
Min - Max	0.12 - 0.31	0.13 - 0.29	0.12 - 0.31	
AST (5.0-50 U/L)**				
Mean ± SD	17.96 ± 6.70	20.89 ± 12.64	19.21 ± 9.67	
Median	17.50	17.00	17.00	0.9592
Min - Max	6 - 38	13 - 65	6 - 65	
Potassium (3.5-5.0 mmol/L)**				
Mean ± SD	4.15 ± 0.36	4.00 ± 0.36	4.09 ± 0.37	
Median	4.15	3.95	4.05	0.0973
Min - Max	3.50 - 5.10	3.40 - 5.00	3.40 - 5.10	
ESR (< 20 mm/h)**				
Mean ± SD	13.83 ± 17.04	18.28 ± 13.34	15.74 ± 15.55	
Median	9.00	14.00	11.00	0.0104
Min - Max	2 - 83	2 - 61	2 - 83	
Alfa 1 % (1.0-3.0%)**				
Mean ± SD	2.42 ± 0.66	2.48 ± 0.53	2.44 ± 0.60	
Median	2.25	2.50	2.45	0.3375
Min - Max	1.60 - 4.50	1.70 - 4.20	1.60 - 4.50	0.001.0
Creatinine (0.5-1.2 mg/dL)**				
······································	1.08 ± 0.24	1.02 ± 0.21	1.05 ± 0.23	
	1.02	1.00	1.02	0.4923
	0.78 - 1.75	0.74 - 1.69	0.74 - 1.75	01.1020
Alfa 2 % (9.5-14.4%)**				
Mean ± SD	13.21 + 2.83	12.79 + 2.78	13.03 + 2.78	
Median	13.00	12.75	12.75	0.5584
Min - Max	8.30 - 23.40	8.10 - 20.80	8.10 - 23.40	
Alfa 2 (0.45-1.0 g/dL)**				
Mean ± SD	0.93 ± 0.20	0.90 ± 0.20	0.91 ± 0.20	
Median	0.90	0.84	0.89	0.4230
Min - Max	0.59 - 1.59	0.59 - 1.38	0.59 - 1.59	
Fibrinogen (170-410 mg/dL)**				
Mean ± SD	316.46 ± 55.06	354.44 ± 64.50	332.74 ± 61.54	
Median	319.00	332.00	325.00	0.0145
Min - Max	211 - 449	214 - 480	211 - 480	
Beta (0.55-1.10 g/dL)**				
Mean ± SD	1.02 ± 0.14	1.01 ± 0.16	1.01 ± 0.15	
Median	1.02	1.04	1.03	0.8189
Min - Max	0.76 - 1.26	0.74 - 1.31	0.74 - 1.31	
Beta % (8.6-15.6%)**				
Mean ± SD	14.49 ± 1.72	14.29 ± 2.06	14.40 ± 1.85	
Median	14.50	14.50	14.50	0.6022
Min - Max	10.90 - 17.40	10.40 - 19.90	10.40 - 19.90	
A/G (1.08-1.86)**				
Mean ± SD	1.26 ± 0.23	1.21 ± 0.19	1.24 ± 0.21	
Median	1.25	1.26	1.26	0.5250
Min - Max	0.72 - 1.62	0.79 - 1.47	0.72 - 1.62	
Eosinophilis				
(0-0.80 × 10 ³ /mL)**				
Mean ± SD	0.17 ± 0.08	0.20 ± 0.10	0.18 ± 0.09	

Vezzoli Marika et al., AJCRAR, 2021, 4:18

Median	0.17	0.17	0.17	0.2782
Min - Max	0.05 - 0.38	0.02 - 0.39	0.02 - 0.39	
Phosphorous				
(2.7-4.5 mmol/L)**				
Mean ± SD	11.41 ± 42.09	2.50 ± 0.31	7.60 ± 31.84	
Median	2.80	2.45	2.70	0.0576
Min - Max	1.60 - 209.00	1.90 - 2.95	1.60 - 209.00	
Linphocytes				
(0.9-4.0 × 10 ³ /mL) ^{**}				
Mean ± SD	1.63 ± 0.41	1.69 ± 0.42	1.66 ± 0.41	
Median	1.75	1.77	1.77	0.2883
Min - Max	0.86 - 2.56	0.75 - 2.39	0.75 - 2.56	
Monocytes % (3.4-9%)**				
Mean ± SD	8.65 ± 2.00	8.13 ± 1.38	8.43 ± 1.76	
Median	8.35	8.40	8.40	0.6797
Min - Max	6.10 - 15.20	5.80 - 11.00	5.80 - 15.20	
Neutrophils				
(1.50-8 × 10³/mL)**				
Mean ± SD	4.44 ± 1.14	5.42 ± 2.20	4.86 ± 1.73	
Median	4.38	4.38	4.38	0.1635
Min - Max	1.96 - 6.37	3.44 - 11.78	1.96 - 11.78	
Monocytes (0.2-1 × 10 ³ /mL) ^{**}				
Mean ± SD	0.58 ± 0.11	0.64 ± 0.12	0.61 ± 0.12	
Median	0.59	0.59	0.59	0.2455
Min - Max	0.34 - 0.79	0.41 - 0.87	0.34 - 0.87	
Sodium (135-145 mmol/L)**				
Mean ± SD	141.29 ± 2.10	140.56 ± 2.71	140.98 ± 2.37	
Median	141.50	141.00	141.00	0.5963
Min - Max	136 - 145	133 - 143	133 - 145	
Eosinophilis % (0-8%) ^{**}				
Mean ± SD	2.50 ± 1.11	2.62 ± 1.08	2.55 ± 1.08	
Median	2.50	2.50	2.50	0.6676
Min - Max	0.80 - 5.30	0.20 - 4.80	0.20 - 5.30	
Linphocytes % (20-45%)**				
Mean ± SD	24.03 ± 5.82	22.04 ± 6.88	23.18 ± 6.29	
Median	24.50	24.50	24.50	0.3081
Min - Max	14.20 - 35.30	6.60 - 33.00	6.60 - 35.30	
MCHC (32-37 g/dL)**				
Mean ± SD	32.33 ± 6.12	33.37 ± 0.68	32.78 ± 4.64	
Median	33.45	33.35	33.40	0.3393
Min - Max	3.70 - 34.40	32.30 - 35.20	3.70 - 35.20	
Basophilis $(0-0.20 \times 10^3/\text{mL})^{**}$				
Mean ± SD	0.04 ± 0.02	0.05 ± 0.02	0.04 ± 0.02	
Median	0.04	0.04	0.04	0.0893
Min - Max	0.01 - 0.11	0.01 - 0.11	0.01 - 0.11	
Neutrophils % (40-74%) ^{**}				
Mean ± SD	64.07 ± 7.41	66.28 ± 7.91	65.01 ± 7.61	
Median	63.25	63.25	63.25	0.7180
Min - Max	46.60 - 77.30	54.60 - 83.70	46.60 - 83.70	
APTT (24-38 seconds)**				
Mean ± SD	29.73 ± 6.73	31.04 ± 3.90	30.29 ± 5.67	
Median	31.15	30.40	30.60	0.6471
Min - Max	0.19 - 37.00	24.40 - 41.00	0.19 - 41.00	
INR (0.2-1.2)				
Mean ± SD	1.00 ± 0.10	1.23 ± 0.52	1.10 ± 0.36	

Median	1.00	1.06	1.00	0.0050
Min - Max	0.88 - 1.30	0.90 - 2.80	0.88 - 2.80	
Cloryte (95-110 mmol/L)**				
Mean ± SD	105.12 ± 2.80	104.50 ± 3.09	104.86 ± 2.91	
Median	105.50	105.00	105.50	0.6432
Min - Max	99 - 112	98 - 109	98 - 112	
APTT ratio				
(0.70-1.28 ratio) ^{**}				
Mean ± SD	0.99 ± 0.14	1.02 ± 0.13	1.00 ± 0.14	
Median	1.01	0.99	1.01	0.7311
Min - Max	0.41 - 1.20	0.78 - 1.32	0.41 - 1.32	
Basophilis % (0-1.50%)**				
Mean ± SD	0.56 ± 0.33	0.61 ± 0.25	0.58 ± 0.29	
Median	0.53	0.55	0.55	0.1148
Min - Max	0.20 - 1.70	0.10 - 1.10	0.10 - 1.70	

**Denotes variables not normally distributed (Shapiro test>0.05). Data shown upon request.

In fourth column, in bold and italics Wilcoxon p-values \leq 0.05.

Tabella S.2 Descriptive statistics on each analyte stratified for AAA diameter (S/M vs L) computed in the test sample (42 subjects)

Analytes maintain the same order of Table 3 in the main text.

The test set does not reflect what happens in the entire sample and in the training set. In fact, Wilcoxon test identify only 5 biomarkers as significantly different (p-values>0.05) in the two sub-populations S/M AAA vs L AAA. Four of them coincide with those identified in the entire sample of 423 observations, while one differs (Fibrinogen). Anyhow, the LP-based tree grown on linear combination of biomarkers, was validated on this data (not homogeneous with training set), showing good performance in terms of specifity.