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Sommario

La seguente tesi è il completamento di un percorso di dottorato ambientato nel campo della mecca-
nobiologia. Tale ambito di ricerca necessita competenze che sono fortemente interdisciplinari che
attraversano ambiti specifici della biologia, della chimica, della fisica e dell’ingegneria. Pertanto,
una fruttuosa collaborazione tra due gruppi di ricerca appartenenti all’Università degli Studi di
Brescia e guidati dai Professori Alberto Salvadori (Dipartimento di Ingegneria Meccanica e Indu-
striale - DIMI) e Stefania Mitola (Dipartimento di Medicina Molecolare e Traslazionale - DMMT)
si è dimostrata essenziale nell’affrontare un tema così profondamente intersettoriale.

L’obiettivo del presente manoscritto è generare modelli matematici capaci di interpretare e predire
le osservazioni sperimentali costruite in modelli biologici che sono finalizzati allo studio dell’an-
giogenesi (a livello cellulare), ovvero la crescita di nuovi vasi sanguigni da quelli già esistenti. Tale
fenomeno, che può essere fisiologico e/o patologico, viene innescato dall’interazione chimica tra
specifici fattori di crescita (ligandi) e distinte proteine transmembranali (recettori) presenti sulla
membrana cellulare delle cellule endoteliali (CE) ricoprenti la parete interna dei vasi sanguigni. In
particolare, sono state affrontate le dinamiche di due recettori: VEGFR-2 e intregrina. Il primo è il
principale regolatore dell’innesco dello stimolo angiogenico all’interno di una CE; questo stimolo,
che porta alla proliferazione e alla migrazione delle CE, viene attivato dall’interazione chimica di
VEGFR2 con ligandi canonici come VEGF-A o non canonici come gremlin. Il secondo recettore,
è rappresentato dalla molecola primaria d’adesione nelle CE; esso sostiene lo scambio di impulsi
meccanici con l’ambiente extracellulare attraverso l’interazione con molecole presenti nella matri-
ce extracellulare (MEC) come la fibronectina o il fibrinogeno.

Pertanto, è stato costruito un modello biologico con l’intento di comprendere come VEGFR2 e in-
tegrina vengano reclutati e ricollocati sulla membrana cellulare di una CE da parte dei corrispettivi
ligandi. Di conseguenza, diversi esperimenti in-vitro sono stati effettuati su una singola CE ada-
giata su un substrato rigido arricchito con ligandi immobilizzati. Infatti, nonostante le conoscenze
biologiche riguardo questi recettori siano ampie, lo studio della loro ricollocazione è ancora caren-
te. Nel caso in esame, è possibile osservare come la dinamica recettoriale sia fortemente influenza-
ta dall’interazione chimica recettore-ligando, dalla motilità delle proteine transmembranali e dalla
meccanica cellulare. Nello specifico, i dati mostrano come il primo contatto cellula-substrato porti
ad una immediata formazione di complessi che successivamente aumentano grazie all’incremento
della superficie di contatto tra membrana cellulare e substrato in seguito al fenomeno dell’acca-
sciamento della CE sul substrato stesso e alla diffusione dei recettori. Tale fenomeno permane e
domina la parte terminale dell’esperimento durante la quale la geometria della cellula è sostanzial-
mente invariata.
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Nel corso del corrente manoscritto sono stati proposti due modelli multifisici paradigmatici co-
struiti sulla base di due formulazioni termodinamicamente coerenti. Le equazioni che governano
questi modelli risultano da uno studio complesso delle leggi fisiche che guidano la realtà sperimen-
tale. Tali formulazioni sono state adattate agli esperimenti sopra menzionati al fine di descrivere la
diffusione di recettori liberi sulla membrana cellulare durante il progressivo accasciamento mec-
canico di una CE, includendo la loro capacità di interagire chimicamente con ligandi immobili
ricoprenti il substrato a contatto con la cellula stessa. Tali modelli hanno la capacità di descrivere
l’esaurimento dei recettori liberi sulla membrana cellulare a favore della generazione di complessi
che inducono una cascata di segnali intracellulari volti ad innescare lo stimolo angiogenico. Nel-
lo specifico, nel primo modello, grazie ad un’ipotesi semplificativa della dinamica di contatto tra
cellula e substrato chiamata meccanica surrogata, si è codificato il processo chemo-diffusivo del-
le proteine transmembranali su una geometria cellulare assunta come sferica e rigida. Il secondo
modello invece, considera la deformabiltà meccanica della cellula in grandi deformazioni e il pro-
cesso di formazione di protrusioni cellulari (lamellopodi) sostenuto dall’evoluzione del reticolo di
actina all’interno del citoplasma di una CE.
Infine, le equazioni governanti entrambe le formulazioni sono determinate nella loro forma forte
ed in seguito rimodellate nella corrispondente forma debole al fine di essere discretizzate numeri-
camente ed implementate nel software deal.ii (https://www.dealii.org/), ovvero una libreria C++ e
open source che supporta la creazione di codici ad elementi finiti e di calcolo ad alte prestazioni.

Un’analisi approfondita del concetto di equilibrio termodinamico è preliminare alla costruzione
di qualsiasi modello fisico, a maggior ragione per descrivere stati di non equilibrio termodina-
mico. Tali argomentazioni sono affrontate nella parte finale della tesi dove è riassunto il lavoro
svolto durante l’ esperienza all’estero, dell’autore della tesi, presso il Dipartimento di Ingegneria
dell’Università di Cambridge sotto la supervisione del Professor Vikram Deshpande. Durante ta-
le periodo, finanziato dalla Fondazione Guido Berlucchi attraverso la borsa di studio denominata
Young Researchers Mobility Programme, l’argomento di studio è stato codificare termodinami-
camente, attraverso un modello di meccanica statistica, il concetto di equilibrio omeostatico e le
contestuali fluttuazioni esibite dalle cellule.
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Chapter 1

Introduction

Mechanobiology is an emerging subject of the science of living matter1 that focuses on the study
of biological responses by cells to mechanical stimuli [2]. Particularly, it arises from the aware-
ness that mechanical signals play a fundamental role in several biological processes, revealing an
interconnected and complex reality. Investigations in such an intersectoral scenario require in-
terdisciplinary skills, including physics, engineering, and biology, which must be merged with
accuracy and competence. Multidisciplinarity assumes a profound understanding of the method-
ologies that the individual disciplines have built during the centuries. Therefore, without any desire
to be exhaustive in the solution of the topic, I will provide a brief introduction and some food for
thought on the main difficulties that arise in mechanobiology, including a description of the topics
that will be addressed in the current thesis.

1.1 Mechanobiological insight
Intuitively and instinctively, it is spontaneous to associate the majority of biological phenomena
with biochemical processes that regulate the evolution and state of living organisms. However,

1Preliminary and fundamental to address this topic is to understand the main differences between animate and
inanimate matter. Taking cues from [1] (pages 2-4) it is possible to provide four characteristics of living beings able
to distinguish them from non-living organisms:

• a specifically defined complexity: living matters have a recursive complexity specific for each species living
on Earth. Such a characteristic implicitly states that a huge amount of information has to be transferred from
generation to generation. Today we know that such information is strictly correlated with the DNA;

• the ability for growth and regeneration: living beings have the ability to grow and heal their own injuries.
These processes are a prelude to sophisticated chemical processes that transform inanimate matter and energy,
taken from the outside world, into organic matter. All this occurs in standard conditions: room temperature,
atmospheric pressure, pH close to neutrality, and an almost total absence of electrical charges. This is the
reason for the existence of the catalyst enzymes that, in a very specific way, accelerate chemical reactions that
would otherwise take times incompatible with life;

• the capacity to reproduce: every living being arises from others, which transfer at the new generation their
genetic information;

• adaptation to the environment: random mutations of the genetic patrimony of a given species, can prove to be
favorable or unfavorable to survival in an environment that can also change over time. This process triggers
the natural selection mechanism which is the basis of Darwin’s theory of evolution.
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there are cases in which a strong mechanical sensitivity of the human body is revealed (as for frac-
tures to bones and trauma to tissue or surgical repairs or tympanic membrane) [3] (pages 4-8).

Arguably, it’s less intuitive grasping that in many cases during a biological process, at the cel-
lular level, the same systems change and actively respond to changes in mechanical forces. In
mechanobiology, a substantial and fundamental distinction must be made between biological sys-
tems that have mechanical functions (e.g. tympanic membrane, skeletal system, etc.) and biolog-
ical systems that actively respond to mechanical stimuli at the cellular level [3] (pages 4-8). Fig.
1.1 shows the process of intravasation2 of a cancer cell in a blood vessel (early stages of metastasis
of cancer).

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: A sequence of frames taken from a time-lapse video (adapted from
https://youtu.be/6URUH4y8dbE) of a tumor cell (red) within a zebrafish blood vessel (green). Here
we can observe how the cancer cell is able to adhere and then penetrated to a vessel wall.

2characteristic phenomenon of the phases of metastasis of a tumor, corresponds to the invasion of a blood (or
lymphatic) vessel by tumor cells.
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It strikes how the process of metastasization of a cancer cell is characterized by a high number of
mechanical phenomena: cancer cell large deformations, cell-blood vessel contact dynamic (adhe-
sion, migration, and intravasation), fluid-structure interactions (blood fluid, which is notoriously
a non-Newtonian fluid), etc. These, which are extremely complex mechanical problems individu-
ally, are characteristic of many other physiological and/or pathological biological processes.
All the cells that make up the human body are sensitive to mechanical stimuli and actively organize
themselves to bear them. Hence, from this assumption, it is possible to come to the conclusion that
there is no aspect of life that is not directly or indirectly influenced by the mechanics. Even the car-
dinal phenomena of the reproduction of a virus within the human body, that nowadays determine
many aspects of our life, are characterized by a sequence of mechanical events. To reproduce,
a virus must transfer a cargo of genetic material into the host cells and it does by means of two
mechanisms (membrane fusion and endocytosis) of which one of these is certainly mechanically
mediated (endocytosis) [3].

1.2 Thermodynamics: a meta-discipline
In accordance with what has been said so far, we recognize in thermodynamics all the characteris-
tics necessary to provide a pervasive scientific background and the ability to link several fields of
physics and engineering. Such a perspective is not innovative rather it is shared by many influential
scientists in the last few decades.

Einstein, the father of relativity theory, was also a grandmaster of thermodynamics, and in one
of his famous citations, he stated that: “A law is more impressive the greater the simplicity of its
premises, the more different are the kinds of things it relates, and the more extended its range of
applicability. Thermodynamics is the only physical theory of universal content, which I am con-
vinced, that within the framework of applicability of its basic concepts will never be overthrown.”.

Probably, Einstein’s devotion for thermodynamics is correlated to the following very interesting
perspective provide by Bejan in his work [4]: "...the object of thermodynamics is “any system”
(with any imaginable boundary, any interactions, and any constitution)...".

Referring to a continuum thermodynamics framework (a topic that plays a pivotal role in the cur-
rent work), we mentioned two definitions that highlight the role of thermodynamics in this field.
The former is provided by the authors of the book [5] (see the Preface):"...Together, continuum me-
chanics and thermodynamics form the fundamental theory lying at the heart of many disciplines in
sciences and engineering...". The second one is always given by the book [5] (page 129) but actu-
ally inherited from Callen’s book [6], state that: "Thermodynamics is the study of the restrictions
on the possible properties of matter that follow from the symmetry properties of the fundamental
laws of physics".

Hence, we will approach mechanobiology by means of consistent thermodynamic frames that pro-
vide the theoretical backdrop at every mathematical model presented in this thesis. Such model-
ings are the simplified representation of a complex and interconnected reality; sometimes different
formulations arise from the attempt to describe the same phenomenologies but from alternative
viewpoints, depending on the purpose and the aspect of reality that we are interested in under-
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standing, describing, predicting.

Think of the angiogenesis system, which is a branched structure incredibly challenging to describe
(see Fig. 1.2).
Such topics are a great example of how nature could be intricated and knotty. According to some
interesting works by Bejan (constructal law3), these structures are created and evolved in order to
optimize flows (or from another point of view, they could be driven by the tendency to increase the
production of entropy - Steepest Entropy Ascent [8] ). However there is no blood vessel equal to
the other, and again we have an enormous internal complexity.

Figure 1.2: New capillary formation in response to wounding. The intricate new blood vessel for-
mation is depicted. New capillaries generation could be triggered to favor wound healing. Adapted
from [9].

It would therefore seem impossible that models for such different aspects of reality could have
commonalities. Richard Feynman calls them in one of his famous lectures [10] "The Great Con-
servation Principles". The generality of these principles, which are closely related to the subjects
of thermodynamics, is further proof of the pervasiveness of this discipline. Hopefully, thermody-
namics would be the discipline acting as a lock pick and provide the mathematical tools to conform
to the vision of living matter given by Paul A. Weiss in his 1960 lecture: “lest our necessary and
highly successful preoccupation with cell fragments and fractions obscure the fact that the cell
is not just an inert playground for a few almighty masterminding molecules, but is a system, a
hierarchically ordered system, of mutually interdependent species of molecules, molecular group-
ings, and supramolecular entities; and that life, through cell life, depends on the order of their
interactions” [11].

3For a finite-size flow system to persist in time (to live) it must evolve such that it provides greater and greater
access to the currents that flow through it [7]

11



1.2.1 Statistical mechanics and continuum thermodynamics
Two complementary approaches will be adopted during the thesis, namely the continuum thermo-
dynamics theory (Part II and III) and the statistical mechanics scheme (Part IV and conclusions 10).

Continuum thermodynamics is a theoretical framework able to draws conclusions from fundamen-
tal principles based on experience and so deduced from phenomenologies at the macro-scale (also
called phenomenological approach), i.e. with no information with regard to the microscopic as-
pects of the matter.

The aim of statistical mechanics is to bridge the microscopical description of the matter and the
macroscopical one (everyday life scale) [12]. Such a goal is perfectly embodied by the Boltzmann
formula S(E,V,N) = kB lnW(E,V,N), which connect the entropy (S, i.e. a macroscopic state vari-
able) with the possible number of the microstates associated to a given one macro [12].

It is evident how the two above mentioned theories seems antithetic; nevertheless, together, they
provide a very powerful tool for the interpretation and prediction of biological experimental re-
sults.
Typically, continuum thermodynamics allows doing precise calculations involving a few state vari-
ables4. Statistical mechanics, instead, provides details on how the physics of the micro-constituents
rule the macroscopic observables, and so how matter microscopically works (attribute that a coarse-
grained procedure does not permit) [13] (pages 3-4). Therefore, the matching of these two schemes
could provide massive improvements of the current knowledge on the physical laws ruling living
systems.

The capability of by statistical mechanics to connect macroscopical quantities and the motion of
the micro-components of a system, is, inside mechanobiology, employed to elucidate the crucial
physical mechanisms of the cytoskeletal activity.
Hence, by relying on the description of cytoskeletal polymers interaction by statistically-based the-
ory it is possible to match and enrich the phenomenological description of the mechanical behavior
of a cell. Consistently, cell constituents (e.g. cytoskeletal networks rather than cellular organelles),
are unavoidably affected by thermal fluctuations, due to their sizes are close to the thermodynamic
limit.

Actually, throughout this thesis, specifically in the Part IV, we will provide a further method to
exploit the statistical mechanics architecture, which will be a real paradigmatic change in the study
of cellular activities.

In order to satisfy either the several observations that attest to cells fluctuating response during
in-vitro experiments and in order to bypass the uncertainty and ignorance on the determination of
all intracellular processes that happen in every biological phenomenon (lack of information), it has
been introduced in the paper [14], a statistical mechanics framework for living cells. Such a theory

4Following the book [5] (page 133), it is possible to found the following definition of state variable: "The macro-
scopic observables that are well defined and single-valued when the system is in a state of thermodynamic equilibrium
are called state variables. Those state variables which are related to the kinematics of the system (volume, strain, etc.)
are called kinematic state variables."
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allow the accounting of a very relevant concept, cellular homeostasis.

Intriguingly, in the end, aided by these considerations, we can infer how the study of cell mechan-
ical behavior can really (and radically) change some paradigms of mechanics, that from decades
have persisted, up to affirm that "the cell is an applied mechanics grand challenge" [3] (pages 8-9).

1.3 Motivations and research objectives of the current work
The current work, aims at building multi-physical models able to describe, interpret, and predict
the key mechanisms that rule the angiogenic stimulus inside endothelial cells. Such an aim is
reached by means of a multidisciplinary sodality between the group of biologists headed by Pro-
fessor Stefania Mitola (Department of Molecular and Translational Medicine of the University of
Brescia) and the group of engineers led by Professor Alberto Salvadori (Department of Mechanical
and Industrial Engineering of the University of Brescia). The former group focuses on the exper-
imental models’ formulation, whereas the latter, manages the mathematical models’ elaboration.
The present work has to be included in a broader framework; indeed, this project is the first step
of a long term-plan, concerning several multiphysics models able to describe the main phases of
the metastasis of cancer (briefly summarized in Fig. 1.3). We have identified tumor angiogenesis5

as the first phase of our goal. The reason is that it plays a pivotal role at the very early stage of
metastasis of cancer.

5Tumor angiogenesis is a pathological condition presented in many cancer diseases that reassume the phenom-
ena of the new blood vessel formation from preexisting one, connected with the cancer growth, proliferation, and
metastasis.
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Figure 1.3: The drawing depicts some of the main events characterizing the process of metastasis
of a cancer. Importantly, tumor angiogenesis plays a relevant role at the early stage of metastasis
of cancer. Courtesy of Dr. Elisabetta Grillo

In fact, a solid tumor (see cancer cell aggregate in Fig. 1.3), to grow and survive, needs to ex-
change nutrients and waste with the surrounding environment. Such a process owing to the growth
of new blood vessels from preexisting ones (angiogenesis) that sprinkle the tumor mass allowing
it to survive. This phenomenon is triggered by the release of specific growth factors (also called
ligands) by the tumor cells, which stimulate endothelial cells (the cells that cover the inner wall of
blood vessels Figs. 1.4) to initiate the process of angiogenesis. The new blood vessels that envelop
the tumor mass can favor its survival but also support the migration of the cancer cells, initiating
the process called metastasis.
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Figure 1.4: The diameters of vascular channels are here depicted as well as the corresponding com-
position and cell typology. The role and placement of endothelial cells in each of these structures
(arteries - veins, arterioles - venules, and capillaries) are relevant for the current thesis. Adapted
from [15]

1.3.1 Research objectives
The main aim of the current research is to build mathematical models able to describe, predict,
and interpret the phenomenology that characterizes the triggering of the angiogenic stimulus at the
cellular level, specifying the role of the mechanical behavior of ECs in these processes. Accord-
ing to this, we analyze angiogenesis from the perspective of a single endothelial cell (EC) setting
in-vitro experiment, where we can observe and study the relocation and recruitment of VEGFR-2,
and other receptors like integrin, during the mechanical spreading of this EC on a ligands-coated
substrate. We are aware that enhancing the knowledge about the dynamics of VEGFR-2 and inte-
grins can lead to major improvements of the pro- and anti-angiogenic therapies.
In fact, despite these models represent a very early step of a series of patterns characterizing the
phenomenon of tumor metastasis, they can be adapted to all those processes, pathological or phys-
iological, in which angiogenesis plays a major role, either pro- or anti-angiogenic strategy. An-
giogenesis, at the molecular level, is ruled mainly by the VEGFR2 activation and polarization;
hence, studying the interaction of this receptor with co-receptors and corresponding ligands, could
be used to find a way to switch-off or switch-on the angiogenic stimulus as needed. Indeed, the
identification of the laws that regulate VEGFR2 and integrin polarization could, ultimately, open
new perspectives toward developing innovative anti- or pro-angiogenic strategies.

The thesis has been divided into four distinct yet connected Parts.

In Part I, we offer a description of the basic notions of biology necessary and functional to under-
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stand the experimental phenomenologies that will be defined and then modeled in the subsequent
parts. Specifically, this segment of the thesis will contain, in addition to the biological background
(chapter 2), a section (2.5) describing the state of the art (to the best of our knowledge) correspond-
ing to the cell mechanical patterns existents in literature. This is the prelude to the introduction to
the further Parts, wherein it will be developed and deeply described our way to undertake and study
cell mechanics, particularly, when it is coupled with the chemo-diffusive activities of proteins on
the cell membrane of ECs.

In the successive two Parts of the thesis, II and III, we will deal with the construction of multi-
physics models embedded in the field of continuum thermodynamics. Specifically, in the former
one part, we build a chemo-transport thermodynamically consistent model, in which the mechani-
cal behavior of an EC is appropriately codified, in our formulation, by the aid of the Surrogated me-
chanics hypothesis (cell membrane rigid and spheric). This means describing the complex mecha-
nism of contact dynamics between the cell membrane and its microenvironment through the intro-
duction of a fictitious source term in the mass balance equations of chemical species (see chapter
3). In the third part instead, we set a thermodynamically motivated chemo-transport-mechanical
formulation, hence a model that mathematically accounts for the real mechanical behavior of EC.
In detail, we provide a description of the mechanical passive and active (involving actin polymer-
ization) behavior of this kind of cell, and so a one-way coupled framework describing membrane
dynamics (see chapter 6).

Consequently, we will write the corresponding weak formulation of governing equations, with the
related numerical discretization (implemented in deal.ii framework6 - https://www.dealii.org/ -) for
the surrogated mechanics formulation as well as for a large deformation framework (proposed in
Part III). Finally, through the co-design between in-vitro (show and motivated in chapter 4) and
in-silico experiments, we are capable to provide insight on the relocation and recruitment of VEGF
(with or without genetic mutations) and integrin receptor on a cell membrane that remains rigid
and spheric (see chapter 5) or that advects (see chapters 7 and 8). Furthermore, having a model in
which mechanical behaviors are described, it will be possible to quantify the forces that regulate
the adhesion and the mechanical spreading of an EC.

In the end, through the Part IV, we provide a paradigmatic change in the cell mechanical descrip-
tion of living cells, able to account for their tendency to reach the so-called (dynamic) homeostatic
equilibrium and based on the formulation inherited by the work [14]. Effectively, this part of the
thesis arises from a collaboration with Professor Vikram Deshpande of the Department of Engi-
neering of the University of Cambridge and financed by a scholarship provided by Guido Berlucchi
Foundation (Young Researchers Mobility Programme)7, of whom the author of the thesis is grate-
ful.
Specifically, in [14] it is assumed that cells are entropic and so that they manifest fluctuations in or-
der to support the homeostasis; such an attitude is here modeled accounting for a specific internal
constraint during entropy maximisation procedure for the definition of homeostatic equilibrium.
In this part of the thesis, we offer an exhaustive introduction on the innovative formulation here

6deal.ii is an open-source C + + software library that supports the creation of high performance computing finite
element codes.

7Experience abroad, which was prematurely interrupted after 2 months on the six planned, due to coronavirus
pandemic.
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described (see sections 1.2.1 and 9.1), aimed at understanding the section (9.2) where the corre-
sponding numerical results on the behavior of the cell, constrained to maintain an elliptic shape,
are shown.
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Part I

Biological background
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Chapter 2

Biological background

The study and understanding of the process that leads to the triggering of the angiogenic stimulus
can be the starting point for improving all anti- and pro-angiogenic therapies. In order to do that,
we have focused on the behavior of a single Endothelial Cell (EC) and on its interaction with the
surrounding microenvironment (different according to the experimental condition - in vivo or in-
vitro-).

Therefore, the aim of the current chapter is to provide a background of biological notions, suitable
summarized, in order to understand the biological goal of the thesis. We start with the introduction
of the general morphology of a eukaryotic cell (section 2.1), pointing out the description of the
components that are relevant for our scopes (cell membrane (section 2.1.1), cytoskeleton (section
2.1.2), and some of their molecules). Subsequently, the growth factors and the extracellular ma-
trix (ECM) are introduced and defined (sections 2.2.1 and 2.2.2 respectively). Finally, a suitable
designation of transmembrane proteins is provided in section 2.3, in order to be able to include a
final and exhaustive description of the tissue vascularization machinery (section 2.4). Indeed, we
must bear in mind that we are interested in angiogenesis at the molecular level that actually is not
an event confined inside an EC rather involves multiple interconnections among several kinds of
cells and ECM as well.

2.1 Morphology of a eukaryotic cell
A botanist, Mathias Schleiden, in 1830 was the first scientist that gave the exact designation of
an eukaryotic cell [1]. He noted, inside the vegetal tissues, the correct characteristic arrangement
of this type of cell having identified both cytoplasm and nucleus [1]. Actually, this recognition
was corroborated by the presence of the cellulose wall that well delineates the boundaries of these
kinds of cells, differently by the animal ones, that for this reason, they took a long time more
to be certified and observed [1]. About this, was Theodor Schwann, a zoologist, to observe an
animal eukaryotic cell, for the first time, from cartilage tissue. Such an event was favored by a
high presence of extracellular matrix material that facilitated a well define contours of the cells
into this biological substance [1]. Together, Schleiden and Schwann proposed the cellular theory,
which is grounded on three postulates:

• cells constitute every living organism on the planet Earth [1];
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• the primary unit of such organisms are cells [1];

• the division of pre-existing cells generate new cells (actually, this statement was proposed
by Rudolf Virchow later) [1].

The degree of complexity of a cell is very high and although some mechanisms are now known to
the scientific community, there are just as many that are unknown or unclear.

The endothelial cell is a eukaryotic cell (see Fig. 2.1) and as such, it is made of two main portions:
the cytoplasm and the nucleus. The first is enclosed inside the cell membrane and it is made by
several compartments call cytoplasmatic organelles, which are the following: rough and smooth
endoplasmic reticulum (RER and SER respectively), the Golgi apparatus, the mitochondria, the
lysosomes, and the peroxisomes. Beyond the organelles, there is a further compartment inside the
cytoplasm, i.e. a fluid matrix called cytosol that represents about half of the volume of a cell and
50 % of the mass of the cytoplasm, where several cell processes actually happen [1]. In early ob-
servations, it was thought that the cytosol was simply a colloid, devoid of any structure, in which
cell organelles fluctuate [1]. Nowadays, it has been understood that this cellular compartment, is
actually structured and stabilized by a tridimensional proteins matrix called the cytoskeleton [1].
These proteins are arranged as filaments and fibers able to organize themself in a matrix in order
to confer mechanical stability to the whole cell. Intriguingly, the cytoskeletal matrix connects the
nucleus with the cell membrane, up to connecting such a structural matrix with the extracellular
microenvironment [1].
Finally, the second portion composing the cell, i.e. the nucleus, is the place where the majority of
the genetic heritage is located inside the cell. Such a compartment is split by a double membrane
by the cytoplasm and its presence makes it possible to discriminate eukaryotic cells from prokary-
otic cells [1] (page 6 and chapter 3).

Figure 2.1: A characteristic animal cell is shown in this drawing. Adapted from [9]
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2.1.1 The cellular membrane and its domains
Now we want to focus on a further organelle [1], [9] (page 88 and page 649, respectively), that is
also the main regulator for every interaction between the cell and the extracellular environment,
namely the cell membrane (thickness about 5 nm [9] (page 566). Interestingly, cell membrane
presides over the homeostasis [1] (page 90) and works also as an insulator with shiftable resistance
able to rule an electric signal by means of the flux in/out of specific ions [16].

Figure 2.2: Cell membrane architecture through proteins and lipids representations is depicted by
means of this three-dimensional drawing. Adapted from [9]

Lipids such as cholesterol and phospholipids are the main constituents of the cellular membrane
jointly with sugar and proteins, and all together can generate glycolipid and/or glycoprotein com-
plexes. In particular, phosphoric acid and two fatty acids united to glycerol give rise to phos-
pholipids (amphipathic molecules). Interestingly, these are usually enriched by choline or serine
(electrically charged molecule), which generate the hydrophilic group polar, differently by the ap-
olar one denoted by the two fatty acids [17]. Consequently, owing to the diverse polarities present
in the phospholipids, borns the so-called lipid bilayer, with hydrophilic heads oriented towards the
cytoplasm and the ECM (internal and external sides of the cell respectively) and hydrophobic tails
paired on the inside of the membrane.
A profound asymmetry of the lipid bilayer determines several important qualities of the cell mem-
brane. Indeed, the differences in charge, fluidity, or phase transition are guaranteed by an asym-
metrical arrangement of these phospholipids in the membrane. Also, this implicitly leads to an
asymmetry in the orientation of the membrane proteins themself [18].

Cholesterol, a further pivotal constituent of the plasma membrane, has the role, inside the mem-
brane, to regulate its physical properties. In fact, it has an apolar tail with a rigid polar head with
rings. A reduction of protein and lipid motility, as well as membrane permeability and molecular
surface, can be a consequence of cellular membrane cholesterol integration, orthogonally inserted
into the membrane [18].
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Concerning proteins, they can be classified considering the way in which they bind the membrane,
specifically it is possible to distinguish integral, peripherals, and superficial proteins. The first ones
are characterized by the fact they cross one or more times the lipid bilayer and the only way to sep-
arate them from the membrane is to dissolve it. Frequently a a-helix structure or sometimes a
folded b -sheets are the hydrophobic domains that traverse the membrane. The second ones instead
are interconnected with the membrane by means of weak interactions and they are partially im-
mersed in the membrane itself. Such proteins can be dissociated from the lipid bilayer with the aid
of polar substances. Finally, the last typology sees proteins that are associated with the membrane
by means of bonds with glycolipids or lipids.
Moreover, membrane proteins can also work as channel proteins allowing some kinds of molecules
to cross the membrane itself [19]. Carbohydrates are the last constituent of the membrane and they
exist as chemical groups affiliated to glycoproteins and glycolipids. Finally, we can state that: ion
exchange, cell-ECM interaction, and cell-cell interplay, as well as the molecules uptake and sig-
naling transduction, are among the major functions performed by proteins and glycoproteins [16].

The non-homogeneous distribution exhibit by the cellular membrane, either in time and space,
revealed by the lipids and protein distributions, appear highly dynamic. Such dynamism is char-
acteristic at multiple spatial scales and is necessary in order to organize an opportune cellular
response to different biochemical and mechanical inputs.
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2.1.1.1 Lipid rafts and caveolae

Proteins and lipids thicken in peculiar areas of the membrane called membrane domains. The dis-
covery of the dynamical nature of these components and their non-homogeneity has been imposed
an overcoming of the model of the plasmatic membrane as a "fluid mosaic" proposed by Singer
and Nicholson in the 1972 [20]. Such domains have a specific biological task and so far, their
theoretical prediction is not been possible. Hereto, only two kinds of domains have been observed,
i.e. short-range structures at protein or lipid base [21, 22, 23]. Usually, intracellular proteins are
relevant components of those domains delineate by protein scaffolds and play an important role in
the confinement and internalization of transmembrane proteins [24]. Lipid rafts are a clear instance
of lipid-based ordered structures. These are made up of cholesterol, sphingolipids, and numerous
proteins, that can be integral or alternatively anchored by glycolipids [23] (doi: 10.1038/42408).

Lipid rafts are planar structures, whose size varies dynamically between tens and hundreds of
nanometers, are anchored to about 35% of the proteins present on the cell membrane. Not only
that, about one-third of this 35% are transmembrane proteins [25], which are stabilized by struc-
tures such as lipid rafts possessing a greater density and thickness than the surrounding membrane
[26]. Such a characteristic of the lipid rafts favors the chemical interaction between a transmem-
brane protein with co-receptors or second intracellular messengers. This happens inasmuch as the
interplay with lipid rafts slow-down the diffusivity of these transmembrane proteins until they are
immobilized.
Particular types of lipid rafts are identified in caveolae, whose non-planar (flask) structure gives
the cell membrane the ability to lengthen, when required, acting as a real "reserve" of the mem-
brane itself [27, 28]. This structure has a size that is around 50-100 nanometers [29] and is due
to the presence of caveolins 1,2,3 and cavine. The former deform the oligomers interacting with
lipid rafts resulting in bending of the cell membrane (transduction of a mechanical signal); the
second stabilize this peculiar structure. Could exist a correlation between caveolae and endocy-
tosis although it is not necessary [30]. In conformity with well-defined conditions, caveolae can
support the internalization of the membrane proteins and fill a fundamental role in the mechanical
characterization of the cell membrane. Nevertheless, nowadays the general agreement is that they
are primarily stable membrane domains [29].

2.1.2 The cytoskeleton
Generally, a eukaryotic cell, and therefore also an EC, during its movement is able to stand-up to
deformation and shape chancing thanks to the cytoskeleton [11]. This is a complex network of fila-
ments and tubules that dynamically evolve, provide at the cell the mechanical properties necessary
for carrying out of the biological processes interest, and confer to the cell the spatial organiza-
tion conforms at the extracellular state. The cytoskeleton is prevalently made up of three kinds
of networks: actin filaments, microtubules, and intermediate filaments [9] (chapter 16). These
three architectures are distinguishable owing to different functions, polarity, mechanical stiffness,
assembly-dynamics, and finally molecular motors with which they are connected.

Actin filaments are strictly correlated with the shape management of the cell surface with deci-
sive effects on the locomotion of the whole-cell. The microtubules, instead, play a pivotal role in
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the intracellular transport and cell division (mitotic spindle) as well as fixing membrane-enclosed
organelles. Finally, the intermediate filaments have the utility of reinforcing the cytoskeletal struc-
ture confers mechanical strength [9] (chapter 16), [31] (chapter 1).
All these are interconnected to each other and are capable of support and generate physical forces
affecting local mechanical features and whole cellular attitude. Moreover, intriguingly, fate, shape,
and functions of a cell, could be arranged by long-lived cytoskeletal structure acting as an epige-
netic determinant [11].

Figure 2.3: This drawing shows how the actin-rich cortex promotes cell-motion inside protrudes
lamellipodia. Importantly, if the actin polymerization in the actin cortex allowing the push-forward
of the cell, in the rear of the cell, contraction happens (correlated with myosin activity). Moreover,
a pivotal role is played by focal adhesions which anchor the cell to the substrate, granting their
forces exchange, required to cell for motion. Adapted from [9]

It is possible to catch three main functions provided by the cytoskeleton [11]:

• biochemically and physically connector of the cell with the surrounding environment;
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• spatial organizer of what is present inside the cell;

• force generator able to move the cell and make it change shape.

These tasks are absolved with the help of several organelles and a plethora of cytoplasmic proteins.
Although the cytoskeleton is frequently labeled as the "skeleton" of the cell this should not lead to
thinking that it is a static structure. On the contrary, is a really dynamic arrangement able to adapt
to the environmental characteristics, ruled by a continuous flux of each regulatory protein [11].

Importantly, we know that many pivotal building blocks of the cytoskeletal network have been
discovered and characterized in-vitro experiments. Nowadays, by means of advanced light mi-
croscopy, scientists are determining the evolution in space and time of these proteins during spe-
cific biological processes (e.g cell motility and cell division) [11]. Specifically, actin is one of the
fundamental proteins that form the cytoskeleton, being its polymerizes the main way for generating
filaments inside the cells. Remarkably, have been found a huge number of molecules (a number
larger than 150 proteins) that embeds actin-binding domains. For instance, the WAVE complex is
a macromolecular aggregate constituted by a series of actin controllers supporting at the edge of
moving cells the assembly of actin filament network [11].

In the remainder of the section, we will list the major constituents of the cytoskeleton and we
connecting them to their task inside the cytoskeletal network. According to [11] we need to stress
three notions on the subjects:

• spatial signals and physical limitations rule self-assembly of matrix constituents giving rise
the long-range order;

• physical features of the cell are driven by the arrangement of the cytoskeleton;

• cellular behavior either at short- that long-timescale could be affected by the matrix-bound
to the surrounding microenvironment

2.1.2.1 The microtubules

Among the above-mentioned matrix, the microtubule one is surely the stiffest and it certainly has
the most complicated dynamics of assembly and disassembly [11]. The microtubule’s persistence
length, a mechanical feature identifying the flexibility of a filament (proportional with its stiff-
ness), is very large compared to its true length (⇠ 5 mm [11]), which entails that microtubules can
assume an almost linear trajectory that crosses the whole-cell [11]. This is true despite this kind
of structures are known to be sensitive, and so buckling, to the compressive cargo [11]. Micro-
tubule’s rigidity is a property that can corroborate many biological functions. For instance, in the
course of the interphase, namely that period of the cellular cycle antecedent to the cellular division,
microtubules have a radial arrangement; in this way, thay can work as the main road and fulcrum
for intracellular traffic [11]. Not only that, throughout the cellular chromosomes separating cycle
(mitosis), the microtubule matrix organizes itself in order to form the mitotic spindle, namely a
real machine capable of tracking down and line up chromosomes [11]. Interestingly, the ability of
the mitotic spindle to do this is correlated to the dynamics of the assembly of each microtubule.
Importantly, a microtubule is undergone dynamic instability, i.e. it may switch between the rapidly

8



shrinking states to the stably growing and vice-versa [11]. Unstableness allows quick rearrange-
ment of the microtubule matrix, leading to a massive improvement in cellular space exploration of
these molecules [11]. Consequently, this instability induces an impressive sensitiveness enhance-
ment that could be 1000-fold rapid than can exhibit a classical biopolymer [11]. In fact, a polymer
is usually responsive to the activity of regulatory proteins, the variation of cellular, as well as its
subassembly components concentration [11].

2.1.2.2 The role of actin monomer and the actin filaments network

Actin has a preeminent role in the cytoskeleton activity. It is one of its prevalent components and
its filaments are placed mainly in the cortex (actin cortex, located under the plasma membrane)
[31] (chapter 1). Monomeric globular subunits (G-actin) are generated and placed inside the cyto-
plasm. Here, their polymerization engenders actin filaments (F-actin) which actively participate in
cell motility. Such filaments generating the forces necessary for the locomotions by means of two
paradigmatic mechanisms: polymerization and the actin-myosin contraction [31] (chapter 1).
The first one provides the force against the cell membrane able to produce cell protrusion through-
out cell migration. The second one confers at the cell, by the aid of myosin II, the contractile
features required during motility. Myosin II is a motor protein that converts the energy of ATP hy-
drolysis into mechanical work [31] (chapter 1). In fact, similarly to microtubules and differently to
intermediate filaments, actin filaments are polarized polymers. This means that either microtubule
that actin filaments have, at the molecular level, an asymmetrical arrangement, resulting in proper
trails for molecular motors [11]. Specifically, if for the actin filaments we have denoted the myosin
proteins as molecular motors, for what concern the microtubules these turn out to be the members
of dynein or kinesin families [11]. Moreover, these motors can also act as transporters through the
microtubules-rails among different intracellular compartments [11]. For instance, the microtubule-
associated motors play a pivotal role in their array arrangements, either during the interphase that
throughout the mitotic spindle [11]. Instead, from the actin-myosin interaction arise the bundles
of contractile filaments called stress fibers (SFs), able to make several kinds of cells contract in
many biological processes. SFs generation is strictly connected to either the Rho-A signaling and
the force exerted by the SFs itself as well [31] (chapter 1).
Intriguingly, there are further peculiar differences between the actin filaments network and the mi-
crotubules ones [11]. Firstly, actin filaments do not shift between polymerization and depolymer-
ization discrete states as we happen for microtubules. Secondly, microtubules have an arrangement
that sets organize around one or two focal points, whereas actin filaments net is always in dynamic
evolution, it assembles and disassembles, as a consequence of the signaling activeness scheme [11].

The actin filaments are polymers certainly fewer stiff than microtubules [11]. In a completely coun-
terintuitive way, such a feature does not affect the ability of actin filaments to assemble themself
in a well structured and stiff arrangement that, mainly happens, thanks to the existence of many
crosslinkers (such as a-Actinin [32]). Polymeric structures base on actin filaments can be given
rise, among the other, isotropic or branched rather than the above mentioned bundled networks
(see SFs) [11].
Particularly, in order to assist the development of filopodial protrusions, usually during chemotaxis
and cell-cell communication, a network of bundles of aligned filaments arise. Differently, into the
frontier of a motile cell, a generation of a net of branched filaments, result to be necessary in order
to produce either the force able to modify the cell shape and to prop the front line itself [11]. Such a
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mechanism of support is made possible by the ability of actin filaments to elongate by means of the
adding of the nucleotide-bound monomers [11]. These, continuing to join at the actin filaments,
allow them steady extensions.
For instance, as an answer to the signaling downstream induce by chemotaxis, guided by the cell-
surface receptors, we observe in the frontier of crawling leukocytes, a formation of branched actin
filament networks [11]. Consistently, in fibroblast, integrin-ligand interaction guide the arrange-
ment of SFs [11]. Focal adhesions (FAs see section 2.1.2.2.1) are usually located at the ends of SFs
and such adhesion sites arise for unloading the contractile forces exerts by these bundles filaments,
on the ECM, or vice-versa.

Furthermore, other complex interactions involving actin filaments happen when these interplay
with members of the cofilin family (disassembly factors) or the formin family (polymerases) [11].
In the end, among the many biological processes supported by the actin cytoskeletal filaments,
there is a recognizable mechanobiology interest phenomenon call endocytosis, namely a mech-
anism that allows the cells to embed extracellular molecules. In order to efficacy conclude this
process, the portion of membrane involve in this phenomenon, release a signal able to induce the
local actin filaments assembly. In this way, the network can support that portion of the membrane
ready to become an endocytic vesicle and so internalize it [11]. Interestingly, endocytosis is one of
the mechanisms that can sustain the viral replication cycle. In fact, viruses are not cells and so they
can not exploit the cellular division machinery to reproduce themself. Therefore, for the purpose
of surviving and replicate, viruses need to make use of the metabolism of cells that host them. In
fact, with the aim to inoculated and then replay their genome, some viruses have firstly to attach
to the cell membrane (receptors-mediated process) and then enter inside the cell. Depending on
the kind of virus, exist different way in which this can happen, one of these is just about guided by
endocytosis.

The filaments of actin that cover the inner side of the cell membrane have several functions in
cell activity. In fact, besides it confers to the cell the suitable shape adapting to the morphology
evolution of the cell itself, the cell cortex plays a key role in vehicular transmembrane proteins
inside a specific domain (such as Ras proteins [33]). Here, transmembrane proteins can improve
their interaction with other proteins [34, 35, 36, 37]. Such statements are sustained by experimen-
tal evidence that should show how the protein complex formation induces the lipid engagement
and later the rafts formation [38, 39, 40, 41, 42]. In fact, is possible to induce instability and
precariousness of the cluster proteins through deprivation of cholesterol or/and by hindering the
remodeling of cortical actin [43]. It is conceivable that small lipids rafts (tens of nanometers) arise
from the clustering of proteins and lipids, which subsequently at activator stimuli develop until the
generation of mature lipid rafts with the aim to become macromolecular signaler (e.g. cell-cell
adhesion complexes, immunological synapses, and structures driving the migrating cells ) [43].

2.1.2.2.1 Focal adhesions and stress fibers Focal adhesions (FAs) are complex clusters of pro-
tein whose (dynamic) structure evolves in response to the chemo-mechanical interactions between
components of the ECM (e.g. fibrinogen and fibronectin) and actin bundles of the cytoskeleton
(see subsection 2.1.2.2). Such an interplay is mediated by means of the transmembrane protein
called integrin confers at FAs the ability to be actual adhesion sites transducing either mechanical
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that chemical cues. It has to be clear that integrins are linked to the actin bundles of the cytoskele-
ton by means of a plaque of multi-proteins, located in the area adjacent to the inner side of the cell
membrane, that actively belongs to the cluster macromolecular domain of the FAs; these could be
talin, kindlin, vinculin, paxillin, focal adhesion kinase (FaK), numerous others [9] (pages 863-867
and 952-956 and 1079-1081), [31] (chapter 1).

The size, position of FAs are determined by the organization of the cytoskeletal machinery, the
signaling properties, as well as the responsiveness of cells at the substrate characteristics. Hence,
the mechanical features of the ECM/substrate are strictly correlated with the dynamic of the gener-
ation of FAs and SFs as well, pointing out again, that the conduct of a cell is not limited to its own
singular attitude, rather to active interaction with the rest of the extracellular microenvironment,
in order to maintain the homeostatic state. Intriguingly, altogether these mechanisms affect, either
in-vivo that in-vitro, the cell differentiation, and proliferation.
Ventral (the most common) and dorsal FAs arise at the end of SFs which are the main structure
able to provide intracellular contractility at the cells.
Evidently, mechanical forces experienced by cells within tissues can dramatically modulate cell
signaling and behavior. Consequently, interaction involving FAs can lead to several biological re-
sponses like cytoskeletal reorganization, cell motility cell death or growth, and gene expression
(communication with the cell nucleus). During cell migration, FAs arise to contain the cell mem-
brane contraction and favors the formation of protrusion at the front of the cell. Cell adhesion as
well is promoted by FAs which allows suitable stability for the cell shape. Focal adhesions guide
the cytoskeletal reorganization during ECs motility, and consequently are pivotal for the cellular
morphology regulation [44].

2.1.2.3 The intermediate filaments

Among all the three cytoskeletal matrix constituents, intermediate filaments are surely the less stiff.
Consistent with this, they work largely better to tensile load than the compressive one [11]. Inter-
mediate filament arrangements can take advantage of by microtubules or actin filaments interplay
[11]. In fact, crosslinks among intermediate filaments rather than the other networks forming the
cytoskeleton are frequently, and specifically, plectins are the proteins devoted to this reticulation.
Intriguingly, mechanical stress induces intermediate filament formations. In fact, it is possible
to observe how the generation of keratin intermediate filaments, allow the epithelial cells of the
respiratory tract to support shear stress [11]. Importantly, different from microtubules and actin
filaments, intermediate filaments can not prop the molecular motors directed motion inasmuch un-
polarized polymers. Finally, we mention the class of intermediate filaments called polymerized
nuclear lamins [11]. These support the eukaryotic nucleus mechanical integrity and equivalently
important, at the origin of mitosis, their phosphorylation due to cyclin-dependent kinases provides
the stimuli that lead to the nuclear-envelop collapse [11].
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2.2 The cellular microenvironment

2.2.1 The growth factors
Growth factors are signaling molecules able to diffuse in the intracellular space and ECM. These
can trigger and support many biological processes for many kinds of cells (including ECs). Usu-
ally, these molecules are secreted by nearby cells, as well as glands and tissues rather than tumor
cells. Importantly, whoever it is the organic entity that secretes and releases them into the sur-
rounding environment, it does in order to draw some specific biological advantage. For instance,
we can think of the growth factors released by cancer cells in response to a state of hypoxia of a
solid tumor. These trigger a subsequent generation of blood vessels that will allow the tumor itself
to continue to grow and develop. Anyhow, all the angiogenesis-dependent diseases are character-
ized by the uncontrolled release of angiogenic growth factors, leading to EC activation.

Growth factors, by binding their cognate cell surface receptors during angiogenesis, are responsi-
ble for the activation of signaling pathways that sustain cell survival, proliferation, and migration
[45]. Practically, ECM can govern cell behavior managing cytokines and growth factors (e.g. vas-
cular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth
factor-2 (FGF2), insulin-like growth factor receptor-1 (IGF1R), and transforming-growth factor-
b1 (TGFb11) [46]), among which there are those necessary for physiological and pathological
angiogenesis. Moreover, although growth factors are considered soluble molecules, many of them
bind extracellular matrix components leading to the formation of immobilized ECM-bound com-
plexes. Hence, immobilized (within ECM network) growth factors, maintain long-term stimulation
of target cells (growth factors that work like chemoattractants and mitogens [46]), mostly if they
achieve high local concentration, and so, preserving the ability to recruit their specific signaling
receptors (e.g. TKR and integrins) [31] (chapter 1).

Effectively, TKR-integrins cross-talk (exhaustively explained in section 2.3.2) affects cellular re-
sponses, through a fine adjustment. Moreover, cell migration, which usually is correlated to cel-
lular contractility, leads to an incremental strengthening of the ECM and the tissue in general.
Therefore, cellular contractility favors the generation of actin bundles which, through integrins,
discharge traction forces on the ECM; as a consequence, ECM reacts by becoming more rigid,
inducing an increment in the traction forces, supporting the growth and therefore the survival of
the cells [31] (chapter 1).

2.2.1.1 The cystine-knot proteins family (CK)

In the current work, we will focus on two main groups of growth factors: the Dan and VEGF
family, both belonging to the cystine-knot proteins family. Particularly, it has been a priority for us
to study the member of the VEGF family VEGF-A, and the component of the group of the BMP
(bone morphogenetic protein) antagonists called gremlin-1 [47, 48].

VEGF-A form part of the VEGFs family that is composed of another four members (VEGF-B,
VEGF-C, VEGF-D, and VEGF-E). We have concentrated on VEGF-A inasmuch as is the most
important specific mitogen for the ECs inside the blood vessels. Such a ligand has several iso-
forms correlative to the number of amino acids exhibits; VEGF-A165 is the most prevalent in the
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human body. It, once generated, pervades the tissues and goes to settle adjacent to the ECs stimu-
lating them to migrate (chemotaxis). VEGF-A is accumulated in the extracellular matrix, inducing
the recruitment of VEGFR-2 at the basal portion of the basal membrane, receptor dimerization,
and the activation of intracellular signaling through a series of phosphorylations.
Moreover, this ligand is overexposed in several kinds of tumor, and its interaction with ECs induce
a succession of phenomena that lead to angiogenesis facilitating the vascular permeability [31]
(chapter 1).
Interestingly, the EC response to this ligand differs upon its physical state. Upon VEGF stim-
ulation, the phosphorylation grade of VEGFR-2 is slighter in confluent cells compared to that
observed in sparse cells [49].

Gremlin-1, instead, is a non-canonical ligand for VEGFR2 [50]. Also, it is a member of C-terminal
cystine-knot proteins (CTCK) and an antagonist of the BMP, which is, instead, part of the group
of the growth factor cystine-knots proteins called TGF-b .
Recently it has been proved that gremlin-1 induce angiogenesis either in-vivo that in-vitro [51, 52,
53]. This is a new role for this protein that so far was known as a controller of bone formation
during human growth. Hence, gremlin-1 becomes an agonist for VEGFR2 and it could play a fun-
damental role in tumor angiogenesis, being, in addition, a protein generated by tumor endothelium
[31] (chapter 1).

2.2.2 ECM and its components
All the cells have a continuous talk with the microenvironment circling them; they dynamically
evolve together with the surroundings through the exchange of cues (e.g. biochemical and biome-
chanical) aiming to absolve specific biological processes and compliance with the homeostasis of
the cells, tissues, and hence body. Several biological behaviors are connected with the microme-
chanical signals among ECM and cells, among these, we have the invasion, neoplastic evolution,
and metastases [54]. The sensitivity of the target cells to these factors is modulated by the microen-
vironment. Hence, ECM plays multiple roles on cells and particularly on ECs that are stably adhere
to it; in fact, as well as establishing mechanical support, it can influence their mobility, shape, po-
larity, and even differentiation [31] (chapter 1). The cellular response to ECM biophysical stimuli,
including the mechanical ones [3], depends on the hierarchy of the mechano-chemical systems
which provide adhesion receptors (such as integrins), intracellular focal adhesions, cytoskeletal
networks, and molecular motors. Integrin (properly explained in the section 2.3.2), namely a large
family of transmembrane heterodimeric receptors, allows cells the possibility to dialogue, inter-
operate, and perceive the ECM [31] (chapter 1). Integrins play a relevant role in many cellular
phenomena; in fact, besides aiding the mechanical support of ECs, their engagement leads to an
intracellular signaling cascade that is the kick-off of several biological processes.

Following, a description of the main components of ECM together with a suitable characterization
of the transmembrane protein called integrin are therefore provided below with the aim to render
clear the adhesion mechanism ruling the cells.

The extracellular matrix, composed of the substance developed by eukaryotes cells inside the hu-
man body, is an elaborate network of macromolecules that plays different roles at the service of the
tissues (supports to the skeleton, dermis, tendons, etc.) and cells (actively participation at cellular
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adhesion, motility, and migration) that constitute it [1] (page 120).
Collagens with elastins, laminins, fibronectin, growth factors, and matrix metalloproteases (MMPs)
are among the principal constituents of the ECM. Moreover, ECM is made by a hydrated compound
gel of glycosaminoglycans (GAGs) and proteoglycans (among others HSPGs), whose interlinking
protein fibers are embeds in the matrix network [46, 31] (chapter 1). Other non-fibrous glyco-
proteins (thrombospondins) are contained in ECM with members of the hemostatic system (von
Willebrand factor (vWF), fibrinogen, and vitronectin), as well as specific growth factor associated
proteins (insulin-like growth factor binding proteins) [31, 55, 56].

ECM is not a static entity; in fact, it undergoes continuous remodeling, with the breakdown that
constantly happens by proteases (particularly metalloproteases) [57]. Importantly, every molecule
constituent of the ECM has specific skills that determine its structural, chemical, and mechanical
characteristics relevant to the blood vessel function and vascular activity [46].

Actually, ECM is prevalently defined by a collagen scaffold, with variability on the type of this
protein (different families); the remanent molecules are anchored to the scaffold itself and they are
able to interact with the cells embedded or neighbor to the ECM [57].
Inside the vascular wall, it has been found 13 collagen family members, on 28 that has been discov-
ered so far inside the matrix. ECs, vascular smooth muscle cells (VSMCs), and fibroblast produce
and interact with this matrix protein, which is the most copious among those exhibit by the ECM
[46]. For instance, VSMCs migration and growth is induced by the interplay with collagen 1. Not
only that, this interaction stimulates the generation of matrix-degrading enzymes, MMP2 as well
[46].
Collagen mechanical (tensile) strength is granted by fibrils, i.e. the way in which the triple-stranded
helical structure of collagen itself is organized [46]. Particularly, collagen can bind to other proteins
(e.g. fibronectin), with the aim to maintain ECM. Such interactions allow either the stabilization
of fibronectin itself when a mechanical load is present that the government of the assembly of col-
lagen [46].

However, ECM is predominantly made by GAGs (e.g. hyaluronan and heparan sulfate), namely
a set of elements of disaccharides that repeat themself like unramified chains. Arising from the
covalent link of GAG chains with a protein core are the proteoglycans (e.g. syndecan, versican,
and aggrecan) [46], that result to be pivotal in preserving tissue hydration. The reason for that is
correlated to the fact that proteoglycans can assume large dimensions and so move a high amount
of volume of water [46]. Moreover, they have the peculiarity to interplay with other ECM proteins
among which integrins, growth factors, cytokines, and chemokines [46]. Such interactions can
corroborate to modulate several cellular processes and govern the signal transduction as well as
the in/out of molecules from the ECM itself [46].

A further molecules embedded inside the ECM is the elastin, i.e. a pivotal protein for the preser-
vation of the structure and the elasticity of the vessel walls. This protein is first synthesized as a
monomer (greatly soluble) call tropoelastin (precursor of elastin) and then reticulate into insoluble
elastin fibers after post-translational modification [46]. Tropoelastin can induce, in ECs, the pro-
duction of endothelial nitric oxide synthase (eNOS). Such phenomena can trigger the consequent
liberation of nitric oxide (NO), a relevant molecule in the vascular system inasmuch able to provide
protective functions at the blood vessel [46].
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Inside the matrix are also present proteases (i.e. MMPs) produced by ECs, VSMCs, and fibrob-
lasts. These are enzymes able to deteriorate the ECM proteins and therefore capable of liberating
the so-called growth factors and cytokines. Such a process leads to the bioactive shard formations
adapted to provide the blood vessel reshape [46]. Contextual with MMPs (MMP1, 2, and 9 are
the most frequent types in the vessel walls) there are the tissue inhibitors of metalloproteinases
(TIMPs). The latter is necessary to counterbalance the MMPs generated through the ECM-cell
interplays, highlighting a biological mechanism that allows sustaining homeostasis [46].

A further ECM relevant molecule is fibronectin (dimer), namely, a large glycoprotein (with nu-
merous isoforms) and part of the constituent fibers of the matrix itself [46]. On the ECM it is
present as fibronectin fibrils, they produced on the cell surface by means of an integrin-mediated
process, proving that these two proteins, jointly with other molecules, generate a pivotal network
for the signaling during vessel formation [46]. It has been proved that the inhibition of fibronectin
synthesization leads to a diminution of the generation of ECM by VSMC, cellular proliferation,
vascular remodeling, as well as the correct regulation of the collagen I formation [46].
Moreover, fibronectin is also identify as a specific ligand of integrins possessing the a5 � b1 sub-
units [9] (pages 1066-1068 and 1076-1077).

Another important molecule is fibrinogen, i.e. a member of the hemostatic system that is usually
located inside the ECM. This protein interacts with the b3 and a||b �b3 integrins that are present on
platelets and so fundamental in blood coagulation [9] (pages 1076-1077). Also, a careful analysis
of the value of fibrinogen present in the blood lumen could be revealed severe infections in the
patience.
The use and purpose that fibronectin and fibrinogen will have within future experimental and nu-
merical models will be clarified in the next chapters.

2.3 Transmembrane proteins

2.3.1 Receptors Tyrosine Kinase
A very important class of transmembrane proteins is represented by the Receptors Tyrosine Kinase
(RTK). These have an N-terminal extracellular domain that favors interaction with growth factors
(but also with cytokines and hormones) and a C-terminal intracellular domain important to the
intracellular activities of the receptors [58]. RTK/extracellular microenvironment interaction rules
and induces several intracellular signaling such as migration, growth, differentiation, and cellular
metabolism [59]. RTK are monomers that, thanks to the chemical interplay with ligands, dimerize
reaching self-phosphorylation [60], [61], [62]. Actually, experimental pieces of evidence show that
dimerization can happen without ligands as well, inside of micro and macro membrane-domains,
but with lower probability [63]. RTK distribution and signaling are governed by membrane dy-
namics. Ligand/RTK interaction induces receptors redistribution on the cell membrane, leading to
the relocation and the modulation of receptor activities in blood vessels during angiogenic events.
Accordingly, it has been suggested that aberrant spatial regulation of RTKs may play a role in
cancer progression. In this context, the cortical cytoskeleton, the actin filaments, and other cy-
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toskeletal components closely apposed to the plasma membrane, surely play a role not only in cell
adhesion and motility, growth, endocytosis, exocytosis, signal transduction but also in driving re-
ceptor motion on the membrane, internalization, and receptor recycling (lateral adjustment of the
RTK). These membrane-associated components are parts of dynamic structures involved in stabi-
lizing membrane (and thus of the cell homeostasis).
Interestingly, exist just about 20 subfamilies of receptors with tyrosine kinase activity [64]. Among
all these families exist the VEGFR one, to which it belongs VEGFR2, an integral membrane pro-
tein that we will deal with extensively in the course of the thesis and in the next sections.

2.3.1.1 VEGFR-2 and its spatial regulation

VEGFR2 (210 � 230 KDa) is a protein usually expressed in several kinds of cells, such as ECs
and some kinds of cancer cells. VEGFR2 is the main pro-angiogenic receptor expressed by these
cells, playing a pivotal role in neovessel formation. In fact, VEGFR2-ligands interplay allows a
conformational change of the kinase domain of the receptor, revealing the sites where ATP can
bind [65, 66, 67, 68]. Subsequently, we will see how the ligands VEGF-A [69] and gremlin [51]
can induce the polarization of VEGFR-2. Specifically, these interactions include a homodimeriza-
tion or heterodimerization of the transmembrane protein and consequently lead to phosphorylation
and an intracellular signaling cascade that rules the triggering of the above mentioned angiogenic
stimulus and so the prelude of cellular proliferation and migration. For instance, during tumor
angiogenesis VEGFR2 is overexposed either from endothelial cells, that form the nearby blood
vessels at the tumoral mass, that from the cancer cells themself that are able to multiply in conse-
quence of VEGFR2 activation. We can conclude that VEGF/VEGFR2 system may play a dual role
during tumor progression, by modulating both stromal and parenchymal tumor compartments.

Cytoskeleton activities are also correlated with the pursuits of VEGFR2 which act on improv-
ing the permeability of the vascular plexus favoring intracellular pores generation (phenomenol-
ogy that could be related to caveolae activities) and the transient opening of paracellular junctions
[70, 71]. Moreover, caveolae could favor the internalization of VEGFR2. During this phenomenon,
VEGFR2 can manifest its activation releasing its intracellular signaling from the endosome com-
partment favoring some second messengers activation like Akt, and, in the end, it can be degraded
or recycled on the membrane [72, 73, 74, 75, 76].

It is hence evident how the VEGFR2 spatial regulation is pivotal to manage the magnitude of
extracellular stimuli for all that cells able to overexpose it. Inside lipids rafts, VEGFR2 can be
stabilized and could chemically interplay with co-receptors such as integrin.

2.3.1.2 Co-receptors for VEGFR2

It is known how the adhesion to different ECM can modulate the VEGFR-2 response [52, 69]. Such
distinctive features may be attributed to the VEGFR-2 association with different transmembrane
proteins, which form distinct multi-molecular complexes that interact with cytosolic transducers.
Effectively, VEGFR-2 forms a complex with Ve-Cadherin and b -catenin into cell-cell contacts
[77], with the vascular endothelial-phosphotyrosine phosphatase (VE-PTP) into cell-cell junctions
[78], with neuropilin 1 [79] and avb3 in lipid raft domains [52]. As we will see in the section 2.3.2
avb3, integrin mediates cell-matrix interactions, and, similarly to VEGFR-2, transmits "outside-in"
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cues to the cell, which triggers a large array of intracellular signaling events. Interestingly, It has
been also proved that integrin participates in VEGFR-2 full activation, sparking the propagation
of intracellular signaling cascades that affect the cell mechanical response. This correlation shows
to be particularly efficient in prolonging and strengthening the intracellular signal released by the
VEGFR-2-Ligand complex [52, 80, 51].

However, avb3 integrin is one of the most important survival systems for nascent vessels and par-
ticipates in the full activation of VEGFR-2 triggered by VEGF-A or gremlin, which are important
angiogenic inducers in the tumor, inflammation, and tissue regeneration. Although the role of pro-
ductive crosstalk between VEGFR-2 and avb3 in the angiogenic response is well characterized in
terms of intracellular signaling, ECs migration, and proliferation, the effects of complex formation
on the membrane dynamic of both receptors is still missing.

2.3.1.3 Somatic mutations of VEGFR2

In recent years, the expression of VEGFR2 on tumor cells, including lung cancer, neuroendocrine
neoplasm, and melanoma has been reported, thus suggesting a direct role of the VEGF/VEGFR2
system in tumor biology. VEGFR2 is expressed by 78 � 89% of tumor cells in advanced-stage
melanomas [81], which show increased adhesiveness to the vascular wall, invasivity of the ECM,
and even ability to shape functional channels similar to vascular vessels (vasculogenic mimicry).

Genetic mutations play a fundamental role in the study of tumors. In fact, somatic mutations have
a key role to discriminate cancer cells from the "healthy" cells surrounding the tumor. Such mu-
tations act on the DNA altering it; in a sense, we can state that cancer is a genetic disease [9]
(chapter 20). Concerning VEGFR2 correlations with cancer evolutions, we push forward our stud-
ies on several human cancer, accounting for some possible mutations in the kinase domain of this
RTK receptor.

VEGFR2 mutations correlated to cancers are identified by means of Next-generation sequencing
analysis [82, 83, 84]. Such mutations, that including the substitutions D717V, G800D/R, L840F,
G843D, S925F, R1022Q, L1049W, S1100F, and R1032Q (the most recurrent one), could be asso-
ciated with an altered response to targeted drugs and/or to cancer growth. Among these just men-
tioned there are those that can support, in a xenograft model of colon cancer, tumor growth, such as
D717V, G800D/R, G843D, S925F, R1022Q, R1032Q, and S1100F [82, 83, 84]. Whereas L840F
mutation can promote, in colon cancer patients, therapy refractoriness [82, 85]. Interestingly, it
has been shown that treatment with pazopanib stimulates a good metabolic response in a patient
with metastatic basal cell carcinoma expressing the mutation of VEGFR2, specifically substitution
R1032Q (where 1032 indicates the position of the mutation in the kinase domain of VEGFR2) of
[84]. Significantly, low levels of phospho-KDR and phospho-MAPK make-believe to a consider-
ably decrease receptor (exhibiting R1032Q substitution) functioning. Nevertheless, when they are
exposed to VEGF, VEGFR2-R1032Q expressed in cancer cells, trigger cancer growth.
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2.3.2 Integrin, an adhesion molecule
Integrin is a further transmembrane protein that plays a key role in many physiological and patho-
logical manifestations, including angiogenesis; indeed, its spatial distribution on the cell surface
can have massive consequences on the mechanical evolution of the EC [31] (chapter 1).

Integrin is a dimer made by b� and a� chain genes. Different combinations of the 8 different
b� with the 18 a� give rise to the 24 kinds of integrins present in the human body [9] (chapter
19). Its own flexible structure allows it to be an adhesive dynamic machine playing a pivotal role
in chemo-mechanical transduction signaling. avb3 integrin mediates cell-matrix interactions, and,
similarly to VEGFR-2, transmits "outside-in" signals to the cell, which triggers a large array of
intracellular signaling events. Effectively, the tension discharged by the SFs through the FAs, and
therefore on the integrins, give rise to a mechanical signal that strengthens the protein cluster itself
and therefore at the signal as well emanating from it.
Integrins intervene in the correct activation of cytokine. Particularly, for triggering the pathway
Erk1/Erk2 MAP kinase that mainly ruling the ECs proliferation [86]. Moreover, adhesion induces
a further important channel of signaling activation, namely the Erk1/Erk2 MAP kinase pathway
that supports ECs survival in favor of apoptosis [86]. It can therefore be observed that without the
contribution of adherence to the ECM the ECs undergo apoptosis [86].

avb3 exists in an inactive form with a bent-clasped conformation (low-affinity integrin), in an
activable form with an unbent-clasped conformation or in an active form with an unbent and un-
clasped conformation (high-affinity configuration) [87, 88, 89]. The conformation and the affin-
ity of avb3 for its ligands fibrin(ogen), fibronectin, thrombospondin, von Willebrand factor, and
vitronectin are subjected to short-term modulation by phorbol esters, Mn2+, ADP, vascular en-
dothelial growth factor, basic fibroblast growth factor, and elevations in intracellular cyclic AMP
(cAMP) [90]. It is crucial to understand, for the aim of the current thesis, that integrin that chemi-
cally interplays with ECM ligands are found in the active state, whereas we infer in a low confor-
mation during the interaction, like co-receptor, with the VEGFR2 inside the lipid rafts.

Integrin involvement can activate several signaling pathways inside the cell, among the others
the most note are: Src, focal adhesion kinase (FAK), MAPKs, Rho-GTPase, phosphoinositide-
3-kinase (PI3K) [31]. Moreover, integrins expression, together with ECM arrangement, have the
ability to regulate the responsiveness, in the course of angiogenesis, of EC to growth factors [31].
In fact, it is common in biology to assist at the phenomenon called crosstalk, namely that phe-
nomenon wherein one or more members involved in a specific signal transduction path can be
implicated in another distinct pathway. Consistently with our aims, a clear example of crosstalk is
provided by tyrosine kinase receptor (TKR) and integrins [31]. Specifically, integrin and VEGFR2,
which follow two different paths of signaling transduction, interact, and relate to each other in
order to optimize their own behavior increasing the regulation of cellular riposte. Interestingly,
VEGF, and FGF ligands, which usually guide angiogenesis, are also regulated and sustains by
avb3�integrin [31].
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2.4 Tissue Vascularization
Every cell in the human body has to be stocked with oxygen and nutrients and at the same time free
oneself from the waste substances like carbon dioxin. The apparatus that performs this task is the
cardio-circulatory system through a closed system of blood vessels (arteries, arterioles, capillaries,
venules, and veins [46]). Usually, the majority of blood vessels are formed by three distinct layers:
tunica intima, tunica media, and tunica adventitia. The first one is a real primary defense barrier
against the spill of blood lumen and itis composed of a monolayer of ECs that is backed, in the
sub-endothelial-space, by connective tissue [46]. The second one, split by the first by means of the
internal elastic lamina, is composed principally of VSMCs and a circular manner arrangement of
elastic and connective tissues. Such a layer can be of massive importance in blood pressure con-
trol, thanks to the constrict and dilate activities of VSMCs [46]. Fibroblast and connective tissue
fibers make up the tunica adventitia, which is externally bounded by the external elastic lamina
[46]. Despite these structures are easily found to surround many types of blood vessels, it is pos-
sible to observe existing cases wherein such an articulate architecture is not present. In fact, the
capillaries, namely the smallest ones among the blood vessels, are made by mural cells known as
pericytes that encircle by a thin tube of ECs [46].

The blood vessels resulting to be a prerequisite for the normal development of tissue and arise
through two processes: vasculogenesis and angiogenesis (also named neovascularization). Vascu-
logenesis occurs in the embryo, where new vessels form de novo via the assembly of endothelial
cells (ECs) precursors (angioblasts) [91], giving rise to a primitive vascular plexus. Subsequently,
to generate a mature vasculature, vessels originate from the primary plexus by either intussuscep-
tive or sprouting angiogenesis. These are phenomena correlated to the growth and branching of
vessels resulting from the stimulation of the ECs that covers the inner wall of the already existing
blood vessels [9] (chapter 22). Explicitly, partition and growth of blood vessels in-situ are what
characterizes intussusceptive angiogenesis. In contrast, sprouting angiogenesis involves mecha-
nisms that require the development of a blood vessel branch guided by a tip cell (see 2.4) that is
stimulated by specific signaling proteins (also called growth factors or ligands) [31] (chapter 1).

Figure 2.4: A new blood vessel (capillary) arises owing to the phenomenon called sprouting an-
giogenesis. This process is guided by an endothelial tip cell that promotes the advancement of the
capillary sprout. Adapted from [9]
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It is therefore clear how the birth of new blood vessels can play a pivotal role in many byologi-
cal processes of the human body, both physiological and pathological. Effectively, angiogenesis
plays a major role in tissues’ growth, scarring of wounds, and repairing processes connected with
the menstrual cycle (physiological phenomena), as at the same time in numerous diseases such as
ischemia (e.g. acute limb ischemia, coronary artery ischemia, cardiac ischemia, and cerebral is-
chemia), cancer (both solid1 and hematological tumors), and chronic inflammation like rheumatoid
arthritis, Crohn’s disease, and diabetic retinopathy [31] (chapter 1). Moreover, such phenomena
are corroborated by the fact that, in a vertebrate, it is possible to observe that the majority of cells
in most tissues are close to a blood capillary (approximately 50–100 µm) [9] (chapter 22).

A first potential classification of angiogenic phenomena arises from the experimental remark of the
previous biological processes (particularly the pathological ones); in fact, it is possible to observe
that some of these diseases are connected with a reduction of vascular perfusion (e.g. ischemia),
others with an excess of revascularization (e.g. tumor angiogenesis2). Therefore, in the former
case, the triggering of the angiogenetic implantation is desirable inasmuch phenomenon necessary
for the reconstitution of the health of a tissue, in the second case has to be defused. Such a charac-
terization is ineludible and crucial at the same time, such that plays a relevant role in the choice of
medical strategy to fight the above-mentioned diseases. Two juxtaposed medical strategies arose
after these considerations, i.e. the so-called pro- and anti-angiogenic therapies, which intervene in
the balancing among the pro- and anti-angiogenic signals. It is therefore understood how govern-
ing the angiogenic system can bring considerable advantages both in the case in which it is desired
to be triggered and in the case in which it is desired to disable it [31] (chapter 1).

2.4.1 Therapeutic Angiogenesis and Vasculogenesis

Pro-angiogenic strategies are therapies that have the aim to improve or recover, the vascular net-
work in response to reduced vascular perfusion that leads to a state of hypoxia that causes the
degeneration of tissue. Just think of tissue engineering, wherein, at the early stages of tissue im-
plantation, if it is not well perfused (and therefore oxygenated), it can rapidly degenerate to death.
A further example concerns wound healing in diabetic conditions or even tissues that due to is-
chemias are subjected to a decrease of vascular perfusion [31] (chapter 1).

Anti-angiogenic strategies have the opposite aim of the previous ones, i.e. to drastically reduce the
onset of the angiogenic stimuli. Such a goal is common to every therapeutic strategy that has to
defeat diseases that benefit from the uncontrolled growth of blood vessels. As already mentioned,
in many cases, cancer is sustained by the growth of new vessels that favors their survival, develop-
ment, and diffusion (metastatic cancer) inside the human body [31] (chapter 1).

1 The observation by Tannock [92] that the vasculature is in rapid proliferation within the tumor was followed a
few years later by the work of Folkman who postulated that the growth of new blood vessels is an essential requirement
for tumors to grow beyond a certain size.

2It has to be clear that hypoxia generally induces angiogenesis. Therefore, in all cells in which hypoxia occurs,
the production of vascular endothelial growth factor (VEGF) is stimulated; this acts on endothelial cells inducing
proliferation and new revascularization of the hypoxic tissue [9] (chapter 22)
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2.4.2 The angiogenic stimulus at the molecular level

Figure 2.5: In this drawing, the multistep processes connected to blood vessel formation is de-
picted. Adapted from [91]

A monolayer of quiescent ECs covers the inner surface of blood vessels and their tight connec-
tion is guaranteed by means of the so-called tight cell adhesion junctions. The endothelium is
surrounded by an extracellular matrix (ECM), namely the vascular basement membrane, consti-
tuted mainly by proteins and proteoglycans (among the others: collagen type IV, lamins, perlecan,
and heparan sulfate proteoglycan [86]), that confers shape and stability to the blood vessel. In the
basement of the membrane are incorporated accessory cells, among others there are smooth muscle
cells and pericytes (also known as mural cells); this kind of cells monitoring the development and
the maturation, and at the same time providing stability, at the ECs. Hence, several kinds of cells
and proteins (soluble factors, ECM components, and surface receptors) are involved (see Fig 2.5)
in sprouting angiogenesis but mainly ECs have a pivotal role. [31] (chapter 1).

From here on we focus on how the sprouting angiogenesis process can alter the state of undis-
turbed blood vessels, highlighting how this complex multistep phenomenon producing an impres-
sive change in vessel morphology.

During hypoxia, inflammation, or tumor growth, the release of angiogenic signals (including the
Vascular Endothelial Growth Factor (VEGF) and fibroblast growth factor (FGF) ) causes the de-
tachment of pericytes from the vessel wall, the loosening of inter-endothelial cell contacts, and the
increase of vascular permeability [93]. The lack of oxygen inside a tissue effectively leads to the
augmentation, basically inside any kind of cell, of a specific transcription factor, i.e. the so-called
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hypoxia-inducible factor 1a (HIF1a). HIF1a induces gene transcription of specific genes neces-
sary in a shortage of oxygen state (e.g. Vegf and other genes) that practically cause the secretion
of angiogenic inducers like VEGF [9] (chapter 22) (see 2.6).

Figure 2.6: This drawing depicts how the VEGF secretion is favor by a state of hypoxia. Adapted
from [9].

These early events allow the extravasation of serum proteins such as urokinase plasminogen ac-
tivator (uPA) and matrix metalloproteases (MMPs) from the vascular lumen, concurring to the
disruption of the endothelial basement membrane. This first stage of angiogenesis, wherein we at-
tested degradation of the vascular basement membrane and activation of quiescent ECs [86], opens
the doors to the second stage, i.e. the migration and proliferation of ECs within provisional ECM
[86]. In fact, MMPs can degrade collagen and other constituents of the extracellular matrix and
so break up the basement membrane barrier, providing the necessary space for ECs to migrate [91].

Next, upon stimulation with angiogenic factors, quiescent ECs acquire a characteristic “angiogenic
phenotype”. Activated ECs modify their morphology, proliferate, and migrate into the stroma
following the concentration of the angiogenic stimuli (chemotactic migration). During this process,
avb3-integrin tailored expressed on the surface of ECs play a key role, by providing them with
the ability to adhere to the ECM, by interacting with proteases, and modulating the activity of
angiogenic factors. avb3-integrins are receptors susceptible to Arg-Gly-Asp (RGD), i.e. a peptide
motive present in many matrix components (among others fibrinogen and fibronectin), that favor
the cell adhesion on the ECM and so play a pivotal role in cell migration. Although integrin
activity is usually correlated to the mechanical interaction between EC and ECM, the inhibition on
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the newly formed blood vessel birth played by its antagonist proves that these adhesion molecules
are significant for the good success of the sprouting angiogenesis itself [91].
After migration and proliferation, ECs have to assemble and forming new nascent tubes (third
stage). Assemble is roled by endothelial cell-cell contacts (favor, for example, by the transmem-
brane glycoprotein E-selectin). Finally, progressive remodeling of the nascent EC tubes and the
recruitment of mural cells provide stability and regulate perfusion. In fact, ECs nascent tubes are
not stable and recruitment of mesenchymal cells (which can differentiate in pericytes) is neces-
sary in order to consolidate them. Precisely, recruitment is triggered by specif growth factors (e.g.
Platelet-derived growth factor PDGF, particularly the PDGF-BB isoform), that are also released by
ECs [94] in their microenvironment. Therefore, the ECs tubes uncovered by pericytes are disman-
tled whereas those covered are progressive stabilized [91].

2.4.3 Endothelial cells interactions during angiogenesis
All the cells have a continuous talk with the microenvironment circling them. Usually, an EC lo-
cated in the inner wall of blood vessels actively interacts with different biological entities: other
cells (e.g. other ECs, Vascular Smooth Muscle Cells), the ECM, and the blood flow and everything
that is carried by it. These ways to interface with the environment, which imply different ways
of the single EC to interplay with the surrounding microenvironment (cell-cell interactions, cell-
matrix interaction, fluid-structure interactions), involve a huge degree of chemical and physical
interactions engaged during the angiogenic process.

It has to be clear that frequently, in biology, the shape of a biological entity is intertwined with its
function. In such a framework ECs are no exception. In fact, ECs that cover the inner side of blood
vessels, are in closed contact with the flowing lumen, which, therefore, can exchange mechanical
cues with these kinds of cells [32]. Precisely, ECs present an elongated form inside the blood
vessels, namely aligned with the blood flux direction. Instead, they often assume a cuboidal shape,
near branches, and bifurcations manifesting none preferential proclivity [44].
Normally, ECs can undergo high-shear laminar flow in straight sections of the arterial organiza-
tion, as well as low-shear disturbed flow upon the arterial branches [32]. The latter because of the
existence of secondary vortices flows could be also the causes of atherosclerosis and endothelial
dysfunction [32].

Concerning in-vitro experiments studying SFs inside human aortic endothelial cells (HAECs), it is
possible to reproduce the above mentioned in-vivo conditions (disturbed flow, and laminar flow),
by means of a microfluidic system, as well as the static condition on Petri dishes [32]. Interest-
ingly, SF inside HAECs subjected to laminar flow are directed as the flux itself (orientation angles
among 0–30�) [32]. Vice-versa, with disturbed flow conditions, SF are orthogonally oriented with
respect to the flow (orientation angles among 60–90�) [32]. Finally, according to statical condi-
tion, it is possible to ascertain that SF are randomly oriented [11, 32] Moreover, a slow return at
the random expression of SF is expected when an interruption of the mechanical stimulus (shear
load) is applied [11].

Membrane tension susceptibility of the ECs and muscle cells are insignificant either at the stretch-
ing that at osmotic swelling [29]. Therefore, applying a load on the plasma membrane an instanta-
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neous membrane tension buffering happens. This is due to the ATP and the flattening of caveolae
(actin-independent). Interestingly, flattening is joined with a quick dismantling of the caveolar
architecture [29]. This is corroborated by free diffusion of caveolins, in less a 30 s, in the cell
membrane [29]. Eliminating the load on the lipid bilayer, we can see a regained of the initial con-
centration of caveolae, letting us imagine a reversible behavior [29]. Nonetheless, if disassembly is
guided only from the mechanical state of the membrane, reassembly is actin- and ATP-dependent
[29]. Importantly, caveolar flattening is actin cytoskeleton independent only in the first few min-
utes of the mechanical stress. Yet, it has been shown that SF as well can control trafficking and
caveolae flattening [29]. Finally, it is possible to assist after a long time of observation, to a rear-
rangement of the cytoskeleton, behavior that surrogate caveolae clearing why not all caveolae are
solicited at the beginning of the load history [29].

Interestingly, it is has been observed in bovine aortic ECs that, in an integrin-kinase-dependent
and src kinase-dependent way, Cav1 is engaged and phosphorylated with integrin complexes [29].
Not only that, Cav1 and caveolae are also pivotal in murine intact blood vessels where they support
either the long-term mechano-transduction that the rapid one [29]. Moreover, the persistent effect
of the blood shear flux is the cause of an increment of the density of caveolae on the ECs surface.
This phenomenon is connected with the triggering of MAPK and endothelial nitric oxide synthase
(eNOS) [29]. Caveolae are generally prominently present in many kinds of cells subjected to me-
chanical constraints/loads and, among these, there are surely the ECs that cover the inner wall of
the in-vivo blood vessels, which are undergone shear stress owing to blood flux [29].

Most notably, it has been observed [95] how, during the adhesion of non-embedded bovine aortic
ECs on Formvar-coated gold grids, a restructuring of the cytoplasmic system happen [95]. Partic-
ularly, it has been denoted four successive phases. During the first one cell membrane spread and
of the unstructured cytoplasmic matrix occurs [95]. Nextly, propagation of microfilament bundles,
microtubules happens, namely the diffusion of the cytoplasmic fiber system (second phase) [95].
After that, we witness the alinement of microfilament bundles contextually with the microtubules
arrangement as radial tracts (third stage) [95]. Finally, following these stellate tracts, a centripetal
shift of the organelles has been observed (last stage) [95].
Anyhow, among all the ways that ECs can communicate with the environment, we are interested in
that mediated by the receptor-ligand chemical interaction, particularly VEGFR2-VEGF-A/gremlin
and integrin-fibronectin/fibrinogen.
We have already mentioned how ligands play a pivotal role in the mechanism of chemotaxis, hap-
totaxis, and mechanotaxis; namely, those mechanisms that rule the directional migration of ECs
during angiogenesis following a gradient of soluble chemoattractants, immobilized ligands, and
mechanical forces, respectively [31] (chapter 1), [96].

According to this, in the current thesis, we will prioritize the EC-ECM interaction (and at its exper-
imental modeling) stressing how the molecular interactions between transmembrane proteins on
the cell membrane of an EC and the molecules embedded in the ECM are the basis of the processes
of formation of new blood vessels. In fact, ECM plays a pivotal role in every phase of angiogene-
sis provide structural supports to ECs, conferring molecular signaling necessary to guides the new
blood vessel formation, and offering itself as an immobilizing scaffold for cytokines [86].
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2.4.3.1 The role of ECM during angiogenesis

It has been proved that more than half of the mass of the blood vessels wall is made by ECM [46].
Particularly, ECM is placed within the space among the tunica layers and cells and, it is generated
(or better synthesized) by ECs VSMCs and fibroblasts. Interestingly, in a capillaries structure, the
basement membrane (i.e. a narrow stratum of ECM) is positioned among ECs and pericytes [46].
Accordingly, ECs can be subjected to various types of stimulations that require the mediation of
integrins (e.g. integrin-collagen I interactions role the new formations of capillaries [46]); for this
reason, different integrins, corresponding to diverse physio/pathological conditions, can provide
the required flexibility to organize the cellular response.

During in-vitro experiments (despite the absence of in-vivo validations) it is possible to attest the
ability of concentration gradients of constituent elements of the ECM (haptotaxis) to induce cell
motility of ECs independently by angiogenic cytokines [86]. In the end, it is possible to state that
migration of ECs during sprouting angiogenic mechanism, is connected to a reaction to either a
gradient of angiogenic cytokine (chemotaxis) that a gradient of ECM constituents (haptotaxis) [86].

ECM does not play only the role of structural supports for the cellular components but also is cru-
cial in the initializing of several stimuli (e.g. biochemical and biomechanical) that are pivotal for
many biological processes both physiological that pathological [31] (page 8). In fact, ECM plays
the role of a storage reservoir of growth factors for vasculature cells [46]. Such behavior hap-
pens by means of sequestering, binding, and finally accumulating available signaling molecules by
ECM, that according to this kind of attitude, acts just as a "reservoir".

Although the pivotal role cover by ECM during ECs proliferation, migration, and survival has been
demonstrated, there is little clarity in the identification of the single contributes of ECM members.
Nevertheless, experimental evidence shows how multiple ECM constituents can cooperate in order
to improve the promotion of ECs survival [86].

As is evident, angiogenesis follows a well-documented, in the current scientific literature, trigger
mechanism. Nevertheless, although the importance of the role of VEGFR2 in the management of
the angiogenic stimulus is widely recognized, the understanding and identification of the laws that
govern its dynamic behavior on the cell membrane, during the activation phase of ECs, are still
poorly understood.

2.5 Mathematical models on the cellular mechanics
Receptor-mediated interplay with the ECM, drive cell migration, spreading, and adhesion in the
course of processes such as wound healing as well as tissue regeneration. Cell shape, motility,
growth, and proliferation, evolve, hence, by means of the mutual interactions among ECM, growth
factors, and cytokines. Also, cell morphology is dictated by tractions exerted by cellular receptors
on the ECM, highlighting the important role of cell-substrate interactions in cell activities [97].
Mechanical aspects of cell deformation have been treated more extensively by many authors. The
mechanical response of the cell during its spreading has been attributed merely to the lipid mem-
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brane (by means of the underlying cortical actin network) in several contributions. In the so-called
active gel theory [98, 99, 100, 101], the lipid membranes are regarded as two-dimensional liquid
crystals whose structure is conferred by the oriented lipid molecules, through an approach appar-
ently originated in [102]. General cell-substrate contact conditions have been developed for lipid
membranes interacting with curved substrates along their edges in [103], through a variational en-
ergy principle. The same authors extended these ideas to the electromechanics of lipid bilayers in
[104], accounting for flexo-electricity so to include deformations in the presence of applied elec-
tric fields, as well as to include the effects of a continuous distribution of transmembrane proteins
[105].

Cell adhesion is one of the most common and widely studied biological processes wherein recep-
tor dynamics cover a significant role. Both cell-cell and cell-substrate adhesion can be likewise
analyzed, insofar a fixed surface can be viewed as either a tissue substrate or as the symmetry
plane between two identical cells with compatible binders [106]. To the best of our knowledge,
among the first works on cell adhesion, the pioneering studies of Bell [107] and co-workers [108]
have paved the way to study and develop models devoted to describe such biological process.
Here, the variation in receptors density was accounted in a thermodynamic framework for cell-cell
adhesion mediated by receptor-ligand binding, and the competition between attractive receptor-
ligand interactions and repulsive electrostatic interaction was investigated in the adhesion process.
During those same years, Goldstein, Wofsy, and Bell [109] studied the interaction of low-density
lipoprotein (LDL) receptors with coated pits and compared the presented theoretical study with
experiments. They evaluated both the 2-D diffusion limits for the forward rate constant for the
binding of an LDL receptor to a coated pit on a human fibroblast and the meantime an LDL recep-
tor spends on the cell surface before being captured by a coated pit. It is worth noting that, few
months later the first work proposed by Bell [107], Dembo and Goldstein presented a theoretical
study of equilibrium binding of symmetric bivalent haptens to cell surface antibody wherein 2-D
antibody molecules diffuse in the plane of cell surface not intersecting to each other [110].

Lee et al. [111] studied the balance between electromigration and mutual diffusion of cell surface
receptors, by means of an application of a sinusoidal electric field. A finite-difference mathe-
matical model was proposed for describing charged receptor transport in the plane of the plasma
membrane. Boulbitch et al. [112] accounted for receptor dynamics in the study of a giant vesicle
membrane adhesion on a substrate. The displacement of the front of the tight adhesion region was
analyzed showing a time dependence on ligands concentration. Freund and Lin [106] analyzed
the process of transient growth of an adhesion zone due to receptors dynamic, starting from an
initially curved elastic plate, by adopting the constitutive assumption that receptors diffuse at a
speed proportional to the local gradient in chemical potential. Such a model was also adopted
for investigating the expansion of a circular adhesion zone by accounting for insufficient receptors
density to overcome the repulsive barrier which provides resistance to cell adhesion [113]. Based
on this framework, the adhesive receptor-ligand interactions were taken into account by proposing
the adhesion-traction separation model, which provides an additional contribution to the flux of
receptors otherwise merely governed by Fickian diffusion. Indeed, the role of non-specific force
was here accounted for considering a driving force for the recruitment of receptors towards the
adhesion front. It was therefore presumed that the diffusion flux as a consequence of the attrac-
tive traction exerted by the ligands on the substrate is proportional to the traction tangential to

26



the membrane surface [114]. Such model, developed for studying vesicles adhesion, was further
enriched [115] for performing computer simulations of attachment-detachment of a red blood cell
to a substrate, and a novel chemical reaction equation was proposed for specific receptor-ligand
interactions. A similar assumption concerning a flux of receptors driven by a force was adopted
by Golestaneh and Nadler [116] for studying adhesion and deformation of small biological cells.
Here, receptor diffusion due to receptor-receptor interactions was assumed to be driven by Fick’s
Law, whereas a nonlinear binding force, based on charge-induced dipole interaction, was assumed
to model the flux generated by receptor-ligand interactions. Additionally, the effect of the presence
of receptors on the deformation and adhesion of the cell membrane was accounted for through the
introduction of spontaneous area dilation.

Mechano-sensitive cellular contractility models that account for the stress fibers (SFs) reorganiza-
tion in the bulk of the cell have also been proposed in a number of phenomenological models (to
cite a few see the large repertoire of Deshpande and co-workers [117, 118, 119, 120, 121, 122, 123],
as well as [124, 125] ).
In 2008 Deshpande and co-workers proposed a biomechanical model for coupling cell contractility
with the generation of focal adhesion (FA) [118], which was then widely used, and broadened, in
later years. Here, the diffusion of low-affinity integrins along the cell membrane was accounted
for in a three-fold FA model wherein low and high-affinity integrins are in thermodynamic equi-
librium, low-affinity integrins diffuse on the cell membrane and the contractile forces generated
by the stress fibers (SFs) are in mechanical equilibrium and change the free energies of the inte-
grins. The mobility of low-affinity integrins was likewise taken into account in devising a signaling
model, based on the generation of IP3 molecules during focal adhesion growth, for coupling stress
fiber contractility and mechano-sensitive focal adhesion models [126]. The same framework was
used by Ronan et al. [122, 123] for investigating and simulating the role of the actin cytoskeleton
in compression resistance of cells and cell adhesion.
Vigliotti et al. [127] investigated the response of osteoblasts on grooved substrates by means of
a model that accounts for the cooperative feedback between intracellular signaling, FA develop-
ment, and SF contractility. This last one thermodynamically based SF model [127] was adapted
by McEvoy et al. [128] for implementing a non-local finite element setting, also accounting for
global conservation cytoskeletal proteins within the cell, global conservation of binding integrins
on the cell membrane, and adhesion limiting ligand density on the substrate surface. With the aim
to summarize the model proposed in Deshpande et al. [119, 129], and to show some results ob-
tained with it, McMeeking and Deshpande [121] presented a user element bio-chemo-mechanical
model installed in a finite element code for simulating cell behavior in vitro. Such model targets
contractility, adhesion, signaling, and cytoskeleton formation and, focused on actomyosin SFs, re-
modeling. It has been used to describe some experiments either of inspiration for the development
of their models or that have been successfully simulated.

Receptors dynamic along cell membrane is also involved in other biological phenomena, e.g. in
endocytosis and exocytosis, a crucial process of entering and leaving of viruses and bioparticles
in animal cells. In this regard, based on the mathematical framework developed in [106, 113],
Gao, Shi and Freund [130], presented a receptor-mediated endocytosis study for analyzing how
a cell membrane with diffusive mobile receptors wraps around a cylindrical or spherical particle
coated with compatible ligands. A similar study was performed by Decuzzi and Ferrari [131] for
accounting for the endocytosis of non-spherical particles, considering elliptical cylindrical ones, in
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a continuum energetic approach. The same model proposed in [130] was re-presented by Gao in
an overview aimed to develop a systematic, multiscale theoretical framework for modeling uptake
and release of nanoparticles in human and animal cells [132]. To the best of our knowledge, the
latest work concerning receptor driven endocytosis regards a numerical simulation of the influence
of the binder mobility in the viral entry driven by receptor diffusion, described by a diffusion dif-
ferential equation with two boundary conditions, i.e. the former for the flux balance and the latter
for energy balance at the adhesion front [133].

Of the most recent papers wherein receptor dynamics along the cell membrane was accounted,
the hypothesis that cell surface-associated caveolae may participate in mechanotransduction was
investigated by Shin et al. [134]. Exploiting, at low Reynolds numbers, the equation of motion for
the flow of plasma and presuming no slip-condition on the membrane, they examined the fluid flow
in and around caveolae. Liberman et al. [135] elucidated the interactions between single cells by
means of the use of an agent-based model. They implemented a realistic cell-cell interaction model
based on biophysical principles, validated the model against the results of a mean-field model of
Notch receptors and ligands in two neighboring cells, and tested the effect of filopodial geometry
on Notch signaling. Carotenuto et al. [136], in order to investigate how ligand-receptor interac-
tions along with the cell membrane trigger raft formation, developed a multiphysics approach that
relied on the interaction among energetics, multiscale geometrical changes, and mass balance of
active G-protein-coupled receptors (GPCRs), and Multidrug Resistance Proteins (MRPs). Based
on the fact that lipid rafts often serve as an entry port for viruses, such a model may help in better
understanding membrane-mediated phenomena such as the novel debated COVID-19 virus-cell
interaction. Bubba et al. [137] proposed a discrete model of chemotaxis that takes into account
possible alterations in cellular motility. Here, the coupling between a discrete-time biased random
walk on a regular lattice and a discrete balance equation for the concentration of chemoattractant
governs cell movement.

Two recent publications [138, 139] have been devoted to the modeling and simulation of VEGF re-
ceptors recruitment in angiogenesis, adopting strong simplifying assumptions on the mechanics of
the lipid membrane. Specifically, it was taken as rigid, surrogating the effects of the change in ge-
ometry through a suitable fictitious source term of the ligand within the chemo-diffusive equations.
Such model has been recently broadened in [140] wherein the concurrent membrane dynamics of
both VEGFR-2 and integrins was accounted in order to identify how ligands stimulation induces
the polarization of receptors in cell protrusions and in the basal aspect of endothelial cells plated
on a ligand-enriched extracellular matrix.

The present thesis deals with the motion of the same receptors on a cell membrane, accounting
for different physics (chemical affinity, mechanical deformations, transport on the membrane, long
and short-range electronic interactions), and for the mechanical deformation in the bulk of the cell.
Whereas all processes that take place on the membrane are influenced by the bulk deformation,
two-ways coupling may not occur, i.e. the mechanical deformation of the nucleus and of the
cytosol may not be significantly influenced by receptors recruitment on the membrane.
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Part II

Model formulation with a "surrogated"
mechanical description
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Recent technological advances made available a large number of experimental data in biology. On
one hand, this is a motivation for great excitement. On the other, it pushes interpretative abilities
to the limit. For this sake, the ability of multi-physics models to predict the time-space evolution
of complex processes and to unravel their intimate nature is more and more becoming of pivotal
importance in science3.

In the present part of the thesis, we provide a contribution in understanding how VEGFR-2 and
integrins regulate tumor angiogenesis, by means of a chemo-transport-mechanical model, set in
the thermodynamics of continua, that actually is an extension of our earliest formulations ([140])
shown in the works [138], [139].

This model couples three chemical reactions (see 3.1.1) to continuity equations for mass (see
3.1.2), energy, and entropy (see 3.2.1 and 3.2.2, respectively). Thermodynamic restrictions (Clausius-
Duhem inequality) set limits for the Helmholtz free-energy (see 3.2.3), and ultimately, on consti-
tutive relations (see 3.2.4).
Two simplifying assumptions are taken in this large section of the thesis and will be removed in
the next: surrogated mechanics (see 3.1.3) and infinitely fast kinetics (see 3.3). By the first one,
the cell-substrate contact dynamics is surrogated by means of a fictitious term in the mass balance
equations of the ligands. The second makes chemical reactions always at equilibrium; such a sce-
nario stems from experimental evidence, which shows that the time required to reach the chemical
equilibrium is orders of magnitude lower than the timescale of all other physical processes.

The formal derivation of the governing equations has been achieved both in strong and weak forms
(see 3.4.1, 5.1, and 5.2). Such a weak form naturally leads to a semi-discrete problem, by approxi-
mating the space-time unknown scalar concentration fields into suitable finite-dimensional spaces,
thus rephrasing the weak form into a system of ordinary differential equations, whose solution
is an approximation of the exact solution for each instant. A Backward Euler scheme for the fi-
nite element approximation of the chemo-transport model has been implemented. To avoid poor
computational accuracy, numerical simulations require a very small time discretization step, thus
leading to a very high computational cost in properly capturing the spreading process. The time-
dependent partial differential equations have been therefore rephrased in order to apply higher-
order time integration schemes. The non-linear discretized equations have been implemented in
the deal.ii framework (https://www.dealii.org/), an open-source C+ + software library that sup-
ports the creation of high performance computing finite element codes. The different time scales
that characterize the chemical, mechanical and diffusive phenomena lead to a clear identification
of three predominant phases of the trapping of free receptors by the corresponding ligands. The
time-space evolution of the receptor dynamics has been discussed at large in the simulation chap-
ters (3.4 and 5).

Specifically, in the first chapter of this part of the thesis (chapter 3), we present the upgrade of
the multiphysics model at the case wherein manifold chemical reactions are involved among the
proteins belonging to the lipid bilayer and those in the extracellular matrix. In the second one

3What is said here is closely connected what Professor Gretar Tryggvason (Department Head Mechanical Engi-
neering and Charles A. Miller Jr. Distinguished Professor at Johns Hopkins University) has declared in his famous
citation: "Simple, single-physics problems, have already been solved by our generation".
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(chapter 3.4), instead, we test the numerical capacity of this model, studying the in-silico results
without any comparison with experimental outcomes. Over the course of the third chapter (chapter
4), instead, we will introduce some experimental results such as the time-lapse microscopy analysis
adhesion assays rather than FRAP analysis, in order to identify what are the numerical values of
the material parameters and data that we want to reply by means of in-silico analysis. Finally, in
the last chapter (chapter 5), through a co-design among numerical and experimental resultants, we
are able to provide further insight into identifications on the laws that rule the receptor-dynamics
of VEGFR2 and integrin during angiogenesis.
Intriguingly, equations that govern the problem of the relocation of VEGFR-2 and integrin motion
on the membrane, driven by their specific ligands, will ultimately be expressed in a strong and
dimensionless formalism, in terms of four space-time unknown scalar concentration fields in the
chapter 3.4, while will be rephrased in a six scalar concentration fields in the chapter 5.
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Chapter 3

A model of integrin and VEGF receptors
recruitment on endothelial cells

Uncontrolled release of angiogenic growth factors can lead to EC activation in angiogenesis-
dependent diseases. Growth factors and extracellular matrix components chemical binding leads
to the formation of immobilized ECM-bound complexes. Among these, VEGF-A [69] and gremlin
[51, 138] are produced by tumor or inflammatory cells and accumulate in ECM, in order to interact
with its tyrosine kinase receptor VEGFR-2 and causing its polarization. Moreover, ECM-anchored
VEGF or gremlin induces the recruitment of VEGFR-2 at the basal portion of the basal membrane,
receptor dimerization, and the activation of intracellular signaling through a series of phosphory-
lations.

Actually, VEGFR-2 response could be affected by adhesion to different kinds of ECMs [52],
[69]. Such distinctive features may be attributed to the VEGFR-2 association with different trans-
membrane proteins, which form distinct multi-molecular complexes that interact with cytosolic
transducers. Particularly, we are interested in avb3 integrin, which participates in the full activa-
tion of VEGFR-2 triggered by gremlin. It has been proved, in fact, that integrin participates in
VEGFR-2 full activation, sparking the propagation of intracellular signaling cascades that affect
the cell mechanical response. This correlation shows to be particularly efficient in prolonging
and strengthening the intracellular signal released by the VEGFR-2-Ligand complex. Intriguingly,
in this macromolecular complex, avb3 integrin is found in a low-affinity configuration. avb3 in-
tegrin also mediates directly cell-matrix interactions by means of specific receptor-ligand (e.g.
fibrin(ogen), fibronectin) interaction, where usually it manifests a high-affinity configuration. In
fact, similarly to VEGFR-2, integrin transmits "outside-in" signals to the cell, which trigger a large
array of intracellular signaling events, including the organization of the mechanical response of the
EC.

Although the role of productive crosstalk between VEGFR-2 and avb3 in the angiogenic response
is well characterized in terms of intracellular signaling, ECs migration, and proliferation, the ef-
fects of complex formation on the membrane dynamic of both receptors is still missing.

Hence, starting from imaging experimental data and a rigorous thermodynamic approach [141], we
modeled in recent publications [138], [139] the relocation of VEGFR-2 on ECs membrane during
the angiogenic process. The developed chemo-transport-mechanics model captures the VEGFR-
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2 recruitment at the basal portion of EC inside active blood vessels and highlights three different
phases in receptor relocation, driven by three main regulatory factors: extracellular ligand/receptor
chemical interaction, cell mechanical deformation, and receptor diffusion.

Particularly, In the present part of the chapter, we aim at theoretically modeling the interplay
between VEGFR-2, avb3 in its different conformations, VEGFR-A or gremlin, and ECM compo-
nents (e.g. fibronectin and fibrinogen). The receptor dynamics is combined with the cell mechan-
ical deformation and with the chemical interactions in the framework of the thermodynamics of
continua [142].

Nomenclature

Notation
Vectors ~a will be denoted by an over-right-arrow, second-order tensors A,a by bold face. This
notation does not apply to operators.

Operators
- the symbol tr [� ] denotes the trace operator
- the symbol div [� ] denotes the divergence operator in the current configuration, i.e. div

h
~f
i

=

∂ fi/∂xi
- the symbol divP [� ] denotes the divergence operator restricted at the surface P in the current
configuration
- the symbol Div [� ] denotes the referential divergence operator, i.e. Div

h
~f
i

= ∂ fi/∂Xi

- the symbol DivPR [� ] denotes the referential divergence operator restricted at the surface PR

- the symbol — [� ] denotes the gradient operator in the current configuration
- the symbol —P [� ] denotes the gradient operator restricted at the surface P in the current config-
uration
- the symbol Grad [� ] denotes the referential gradient operator
- the symbol GradPR [� ] denotes the referential gradient operator restricted at the surface PR

- the symbol curl [� ] denotes the curl operator in the current configuration
- the symbol Curl [� ] denotes the curl operator in the referential configuration
- the symbol D [� ] denotes the Laplace operator in the current configuration
- the symbol DP [� ] denotes the Laplace operator restricted at the surface P in the current config-
uration
- the symbol

a
[�] denotes the Laplace operator in the referential configuration

- the symbol
a

PR
[� ] denotes the Laplace operator restricted at the surface PR in the referential

configuration
- the symbol · denotes the single contraction of two vectors
- the symbol : denotes the double contraction of two tensors
- the symbol ⌦ denotes the tensor product between two vectors
- the symbol ⇥ denotes the vector or cross product between two vectors
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- the symbols ||~a||2, ||A||2 denote the squared norm of vector ~a or tensor A
- the symbol T denotes transposition of a tensor
- the symbol �1 denotes the inverse of a tensor

Variables and fields
- the symbol t denotes time
- the symbol W(t) 2 R3 denotes a volume that advects, where referential counterparts inherit the
subscript R
- the symbol ∂W(t) denotes the surface of W(t), where referential counterparts inherit the subscript
R
- the symbol P(t) ⇢ ∂W(t) denotes a part of ∂W(t), where referential counterparts inherit the sub-
script R
- the symbol ∂P(t) denotes the boundary of P(t), where referential counterparts inherit the sub-
script R
- the symbol~vadv(~x, t) denotes the velocity of advection at place~x and time t
- the symbol~n(~x, t) denotes the outward normal at place~x and time t
- the symbol~t?(~x, t) denotes the normal to the curve ∂P(t) at a generic place~x and time t
- the symbol~tq(~x, t) denotes the vector tangent to the curve ∂P(t) at a generic place~x and time t
- the symbol l(~x, t) denotes the velocity gradient at place~x and time t
- the symbol d(~x, t) denotes the stretching at place~x and time t
- the symbol F (~X , t) denotes the deformation gradient at point ~X and time t
- the symbol C(~X , t) denotes the right Cauchy-Green tensor at point ~X and time t
- the symbol P (~X , t) denotes the first Piola stress tensor at point ~X and time t
- the symbol J(~X , t) denotes the determinant det[F ] at point ~X and time t
- the symbol j(~X , t) denotes the areal jacobian at point ~X and time t
- the symbol~nR(~X , t) denotes the outward normal at point ~X and time t
- the symbol 1 denotes the identity matrix

- the symbol ce denotes the molarity of a generic species e
- the symbol VE denotes the the rate in number of molecules per unit area per unit time at which
species e is generated by sources.
- the symbol se denotes the rate of generation/depletion of molecules e per unit volume per unit of
time, non-correlated with the chemical reaction
- the symbol~he denotes the molar flux of a generic species e
- the symbol µu

e denotes the change in specific energy provided by a unit supply of moles of a
generic species e
- the symbol µh

e denotes the change in specific entropy provided by a unit supply of moles of a
generic species e
- the symbol µe denotes the chemical potential of a generic species e
- the symbol cmax

e denotes the saturation limit of a generic species e
- the symbol Je denotes the non-dimensional ratio between the concentration of a generic species
e and cmax

e
- the symbol Pe

e denotes the Peclet number of a generic species e
- the symbol w denotes the reaction rate of a reaction
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- the symbol A denotes the affinity of a reaction
- the symbols k f and kb denote the kinetic constants of the forward and backward reaction
- the symbols DG0(T ) denotes the standard Gibbs free-energy of formation
- the symbols Keq denotes the equilibrium constant

Constants and parameters
- the symbol kB denotes the Boltzmann constant
- the symbol NA denotes the Avogadro’s number
- the symbol R denotes the universal gas constant
- the symbol u| denotes the receptor mobility
- the symbol D| denotes the receptor diffusivity
- the symbol c denotes the exchange parameter
- the symbol a denotes the infinitely fast kinetics parameter

3.1 Modeling VEGFR-2 and Integrin motion is driven by their
specific ligands

The equations that model the motion of integrins and VEGFR-2 on the lipid membrane are de-
tailed in this section. The relocation of these proteins is assumed to take place merely along the
lipid bilayer, i.e. internalization processes as well as the supply of proteins from the cytosol are
neglected. Governing equations emanate from a chemo-transport-mechanical model in terms of
balance equations coupled to thermodynamic restrictions. These two items will be separately dealt
with in the next two subsections.

3.1.1 Chemical reactions
Proteins relocation could be guided by their corresponding ligands, i.e. VEGF-A or gremlin for
VEGFR-2 and fibronectin or fibrinogen for integrins. The interactions between ligands and recep-
tors are modeled as three chemical reactions, accompanied by the mass balance equations. They
are defined on the cell membrane, which will be henceforth denoted with W .

The first chemical reaction

V +LV

k1
f

�
k1

b

C1 (3.1)

describes the interaction between VEGFR-2 (V ) and VEGF-A or gremlin (LV ), which provides
complex C1 and induces a cascade of intracellular signals that ultimately lead to the activation of
angiogenesis. Reaction (3.1) alone was studied thoroughly in the two publications [138] and [139].
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The second chemical reaction

I+C1

k2
f

�
k2

b

C2 (3.2)

depicts the interplay between the complex C1, supplied by reaction (3.1), and the integrin receptors
I. Reaction 3.2 ultimately provides another complex, denoted with C2, which supports and allows
the long-term VEGFR-2 phosphorylation.

The last chemical reaction that this thesis concerns with, i.e.

I+LI

k3
f

�
k3

b

IhLI|{z}
C3

(3.3)

accounts for the interaction between the diffusing, not engaged integrin receptors (I) with fi-
bronectin (or fibrinogen) (LI), which leads to the formation of complex C3. The subscript h em-
phasizes that integrin molecules bound to fibronectin (or fibrinogen) within the complex C3 are in
a high-affinity state, i.e. they are transmembrane proteins that manifest modest relocation propen-
sity on the lipid bilayer. Reaction (3.3) induces a cascade of intracellular signals, which lead to
the formation of macromolecular clusters (so-called focal adhesions) through which mechanical
forces and regulatory signals are transmitted between the ECM and ECs.

3.1.2 Mass balance equations
In order to include the rate of reactions (3.1) - (3.3), depicted in section 3.1.1, into appropriate
mass balance equations, the three chemical reactions will be here stated in the following abstract
form

aA+bB
k f
�
kb

cC , (3.4)

where A represents a protein that is free to move on the cell membrane (e.g. receptors or trans-
membrane proteins), B an immobilized molecule (ligands or fixed complexes), while C is the cor-
respondent product. Parameters a, b, and c are the specific stoichiometric coefficients. Eq. (3.4)
pinpoints that the trapping mechanism presented in [141] is triggered by means of the chemical
affinity between a molecule free to diffuse on the cell membrane, later trapped due to chemically
binds, by a further molecule that here has mobility equal to zero.

The mass balance equation for the generic species E = A,B,C is defined as follows

d
dt

Z

P(t)
cE(~x, t)dA = �

I

∂P(t)
~hE ·~t? dl +

Z

P(t)
VE(~x, t)dA , (3.5)

on a subpart P(t) of the membrane, as shown in Fig. 3.1. In eq. (3.5), vector~t? is normal to the
curve ∂P(t) at a generic point~x on the cell membrane. As shown in Fig. 3.1, the so-called (mobile)
trihedron of Frenet is completed by the vectors~n and~tq, i.e. the cell membrane unit normal and the
vector tangent to the curve ∂P(t), respectively. Furthermore:
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• cE is the molarity of species E (i.e. the number of molecules per unit area);

• ~hE is the mass flux in terms of molecules, i.e. the number of molecules of species E measured
per unit length per unit time, and is a tangent vector field on the membrane;

• VE is the rate in number of molecules per unit area per unit time at which species E is
generated by sources.

�R

�(t)

P(t)

�P(t)

s

⃗x

⃗X

PR

�( ⃗X , t)

(a)

P(t)

�P(t)

~x

~n(~x, t)

~n(~y, t)

~t�(~y, t)

~t�(~y, t)

~y

s

(b)

Figure 3.1: Notation. (a) The reference body WR and the deformed body W(t). Note that~x 2 P(t)
implies ~X 2 PR. (b) Frenet frame at point~y 2 ∂P(t) and the normal vector~n at point~x 2 P(t).

Exploiting Stokes’ theorem, the line integral in equation (3.5) can be written as
I

∂P
~hE ·~t? dl =

I

∂P
~hE · (~tq ⇥~n)dl =

I

∂P
(~n⇥~hE) ·~tq dl =

I

∂P
(~n⇥~hE) · ~dl =

Z

P

curl
h
~n⇥~hE

i
·~ndA .

By denoting (see Appendix D - section D.1.1 -) as usual with

divP
h
~hE

i
= curl

h
~n⇥~hE

i
·~n ,

the mass balance equation can be finally recast in the form

d
dt

Z

P(t)
cE(~x, t)dA+

Z

P(t)
divP

h
~hE

i
dA =

Z

P(t)
VE(~x, t)dA . (3.6)

It is straightforward to show that Reynold’s theorem on P(t) (see next part for an exhaustive de-
scription of the subject, section 6.2.1) reads as follows:

d
dt

Z

P(t)
cE dA =

Z

P(t)

dcE

d t
+ cE divP [~vadv(~x, t) ] dA , (3.7)
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where~vadv(~x, t) is the velocity of advection at point~x and time t. Replacing eq. (3.7) into eq. (3.6)
leads to localize the mass balance equation (3.5) for species E at point~x and time t in the form

dcE

d t
+ cE divP [~vadv(~x, t) ]+divP

h
~hE

i
= VE(~x, t) , (3.8)

which can be pulled back to a reference configuration using standard arguments of continuum
mechanics [142] as follows

∂cER

∂ t
+ DivP

h
~hER

i
= VER(~X , t) , (3.9)

where the subscript R denotes quantities in the reference configuration.
Separating in the contribution VER(~X , t) the source term given by the chemical reaction (3.4), from
other possible physical phenomena, we derive:

∂cER

∂ t
+ DivP

h
~hER

i
= sER

⇣
~X , t
⌘

� e w(3.4)
R

⇣
~X , t
⌘

, (3.10)

where:

• w(3.4)
R is the reaction rate of the reaction (3.4);

• sER represents a rate of generation/depletion of molecules E per unit volume per unit of time,
non-correlated with the chemical reaction (3.4).

Parameters e = a, b, �c represent the stoichiometric coefficients that account for the positive sign
for reactants and negative for the product (see [143]).

In this part of the thesis, however, we will follow a different path of reasoning, borrowed from
[138] and [139].

3.1.3 Surrogated mechanics
Describing the evolution of the geometry of the cell membrane is a complex task, a result of in-
tricate biological phenomena that couple purely membrane events with others arising in the bulk
of the cell. From a mechanical point of view, this corresponds to consider two limit behaviors,
namely, consider either the cell membranes like the surface of a deformable body or a stand-alone
structure with shell behavior (see 2.5).

In the first case, we are implicitly assuming that the cell membrane evolution is the mere result
of deformation that arises from the bulk of the cell. Usually, these deformations are the result of
the interaction between an active and passive behavior of the activity of the cell. The first one is
the result of the cytoskeleton machinery (e.g. stress fibers activity). The second one is due to the
mechanical properties of the individual components of the cell which passively respond to external
loads as in usual, non-active, materials.

In the second case, it is implicitly meant that the cell membrane has specific mechanical properties,
usually conferred by the so-called cell cortex, i.e. a protein net in support of the cell membrane
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itself.

However, the cell is living matter, its composition and its attitudes adapt according to the state
of the surrounding environment which, in turn, is modified by the behavior of the cell itself, in
a continuous dance that aims at the dynamic equilibrium called homeostasis. Hence, the prob-
lem is not to establish which of the two models is the most correct, rather the most suitable to
describe the behavior of the type of cell of interest, accounting of the specificity of the biologi-
cal process to be described. For the current part and for the rest of the thesis, we believe that the
first case, which considers the cell membrane as the surface of a deforming body, the most suitable.

The geometrical evolution of the cell during its spreading on the substrate is matched with the
relocation of receptors along the lipid membrane. Mathematically, the coupling occurs through the
velocity of advection in eq. (3.8) and through the mass supply VER(~X , t) in eq. (3.9). Specifically,
the latter accounts for the spreading by setting the amount of the cell geometry that, being in con-
tact with the substrate, interacts with ligands, ensuring that the chemical reaction (3.4) takes place.

Notwithstanding, in this part, we adopt a paradigmatic simplification in the study of the mechanical
behavior of an EC. Accordingly, we decided to introduce the hypothesis of surrogate mechanics,
already assumed in the works [138, 139] and [140]. Such assumption will be removed in Part III.
Surrogate mechanics means that the evolution of the cell-substrate contact dynamic is codified by
means of a calibrated source of ligands inserted in the mass balance equations. In such a view, the
geometrical evolution of the cell membrane will be neglected and the cell maintains the shape of
a rigid sphere for the duration of the analysis. Henceforth, following the standard imposed by the
surrogated mechanics hypothesis„ the subscript R will be neglected, inasmuch, under this assump-
tion, there is no difference between imposing the mass balance equation in the current or in the
reference configuration (~x ⌘ ~X).

Therefore, a priori given supplies of ligands LV and LI (see the reactions (3.1) - (3.3)), cali-
brated from experimental investigations of the mechanics of cell spreading, implicitly considers
the membrane-substrate contact dynamics. We chose this form1

sLV (x, t) =
cLV

t
H

h
t � x

v

i
H

h
t � t +

x
v

i
, (3.11a)

sLI(x, t) =
cLI

t
H

h
t � x

v

i
H

h
t � t +

x
v

i
, (3.11b)

where:

• cLV and cLI are the concentrations of substrate immobilized ligands;

• H[�] is the Heaviside step function;

• t f is the time experimentally required to a complete mechanical deformation;

1Following this path of reasoning, the identification of a reference configuration is unnecessary. Therefore, the
suffix R will be removed from now on. The notation divP [ ] is equivalent to DivP [ ].
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• v =
pr
2t f

is the velocity of the mechanical deformation (assumed constant up to t f );

• r is the cell radius;

• t ⌧ t f is a parameter that identifies a finite time required for chemical binding;

• x is the curvilinear abscissa on the meridian plane of the sphere;

By this approach, the relocation of receptors can be solved without numerical simulations of the
real spreading process. Whereby questionable quantitative response is expected, the physics of the
relocation of receptors is captured with fidelity.
Application of the surrogated mechanics approach to equations (3.4) and (3.10) finally leads to the
following set of paradigmatic mass balance equations

∂cA

∂ t
+divP

h
~hA

i
+a w((3.4)) = sA , (3.12a)

∂cB

∂ t
+divP

h
~hB

i
+b w((3.4)) = sB , (3.12b)

∂cC

∂ t
+divP

h
~hC

i
� c w((3.4)) = sC . (3.12c)

Clearly, in the set of equations (3.12), the source sB (ligand) is strictly correlated with the cell-
substrate contact dynamic, but what about sA and sC? sA and sC could be linked to other biological
phenomena. For instance, correct calibration of these components could describe the up or down-
regulation of proteins on the cell membrane, i.e., the decrease or increase of the amount of protein
on the cell membrane owing to internalization of the invaginations present on the lipid bilayer or
the exposure of vesicles present in the cytosol. Nevertheless, it has to be clear that in the current
thesis, the terms sA and sC are always set equal to zero.

Hence, thanks to assumptions that the ligands on the substrate are not free to move (mass fluxes
equal to zero), and neither are the complex molecules after activation, it follows that equations
(3.12) particularize to the integrin - VEGFR reactions (3.1) - (3.3) in the following form:

∂cV

∂ t
+divP

h
~hV

i
+w((3.1)) = 0 , (3.13a)

∂cLV

∂ t
+w((3.1)) = sLV , (3.13b)

∂cC1

∂ t
�w((3.1)) +w((3.2)) = 0 , (3.13c)

∂cC2

∂ t
�w((3.2)) = 0 , (3.13d)

∂cI

∂ t
+divP

h
~hI

i
+w((3.3)) +w((3.2)) = 0 , (3.13e)

∂cLI

∂ t
+w((3.3)) = sLI , (3.13f)

∂cC3

∂ t
�w((3.3)) = 0 , (3.13g)
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(3.13h)

where, henceforth, for reasons of brevity, the reaction rates will be renamed as follow:

w((3.1)) = w(1) , w((3.2)) = w(2) , w((3.3)) = w(3) . (3.14)

3.2 Construction of a thermodynamically consistent model
Due to the hypothesis of surrogated mechanics, similarly to the hypothesis of small displacements,
the reference and current configurations will be completely superimposable. From this considera-
tion, it follows that specific properties could be defined both for a unit of mass and unit of surface,
without appreciable differences.

3.2.1 Energy Balance
As discussed in [141], the energy balance reads:

dU(P)

dt
= Wu(P)+Qu(P)+Tu(P) , (3.15)

where:

• P ⇢ W is an arbitrary sub-region inside W,

• U denotes the net internal energy associated to P, defined as follows:

U(P) =
Z

P

u dA ; (3.16)

• Wu is the power that arises from the mechanical interaction, here equal to zero because of
surrogated mechanics hypothesis;

• Qu is the power due to heat interaction:

Qu =
Z

P

bqdA�
Z

∂P

~q ·~ndl , (3.17)

where bq is the heat supply by external agents and ~q is the heat flux vector;

• Tu is the power associated with the mass transfer interaction:

Tu =
Z

P

µu
LI

sLI dA+
Z

P

µu
LV

sLV dA�
Z

∂P

⇣
µu

I
~hI

⌘
·~ndl �

Z

∂P

⇣
µu

V
~hV

⌘
·~ndl , (3.18)

in which µu
d denotes the change in specific energy provided by a unit supply of moles of

species d = I,V .
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A standard application of the surface divergence theorem (see Appendix D - section D.1.1 -) leads
to the following:

Qu =
Z

P

bqdA�
Z

P

divP [~q]dA , (3.19a)

Tu =
Z

P

µu
LI

sLI dA+
Z

P

µu
LV

sLV dA�
Z

P

divP
h
µu

I
~hI

i
dA�

Z

P

divP
h
µu

V
~hV

i
dA . (3.19b)

By doing so, the first law of thermodynamics assumes the expression:
Z

P

du
dt

dA =
Z

P

bqdA�
Z

P

divP [~q]dA+

+
Z

P

µu
LI

sLI dA+
Z

P

µu
LV

sLV dA�
Z

P

divP
h
µu

I
~hI

i
dA�

Z

P

divP
h
µu

V
~hV

i
dA .

(3.20)

Finally, the local form of the first principle is here deduced considering that P is an arbitrary sub-
region inside W, therefore:

du
dt

= bq �divP [~q]+ µu
LI

sLI + µu
LV

sLV �divP
h
µu

I
~hI

i
�divP

h
µu

V
~hV

i
. (3.21)

3.2.2 Entropy balance equations
A suitable interpretation of the second law of thermodynamics is here presented by showing the
interplay among the internal production of entropy with the contribution arising from the heat and
mass interaction as follows:

dS(P)

dt
= Qh(P)+Th(P)+

dSirr(P)

dt
. (3.22)

Where:

• S expresses the net internal entropy of P,

• Qh denotes the entropy per unit time due to heat interaction:

Qh =
Z

P

bq

T
dA�

Z

∂P

~q
T

·~ndl , (3.23)

in which T is the temperature;

• Th is the entropy per unit time due to mass interaction:

Th =
Z

P

µh
LI

sLI dA+
Z

P

µh
LV

sLV dA�
Z

∂P

⇣
µh

I
~hI

⌘
·~ndl �

Z

∂P

⇣
µh

V
~hV

⌘
·~ndl , (3.24)

wherein the scalar µh
d denotes the change in specific entropy provided by a unit supply of

moles of species d = I,V ;
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• Sirr is the entropy produced inside P and owing to the second law of thermodynamics states

that:
dSirr

dt
� 0.

Standard application of the divergence theorem set on a the sub-surface P, leads to:

Z

P

⇢
ds
dt

�
bq

T
+divP


~q
T

�
� µh

LI
sLI � µh

LV
sLV +divP

h
µh

I
~hI

i
+divP

h
µh

V
~hV

i�
dA � 0 . (3.25)

In the local form:

ds
dt

�
bq

T
+divP


~q
T

�
� µh

LI
sLI � µh

LV
sLV +divP

h
µh

I
~hI

i
+divP

h
µh

V
~hV

i
� 0 . (3.26)

Multiplying by T and after simple algebra on the divP


~q
T

�
, we obtain:

T
ds
dt

�bq +divP [~q]� 1
T

~q ·—P [T ]+

�T µh
LI

sLI �T µh
LV

sLV +T divP
h
µh

I
~hI

i
+T divP

h
µh

V
~hV

i
� 0 .

(3.27)

Hence, comparing (3.27) with (3.21) through the terms bq +divP [~q], we attain:

T
ds
dt

� du
dt

+ sLI

⇣
µu

LI
�T µh

LI

⌘

| {z }
µLI

+sLV

⇣
µu

LV
�T µh

LV

⌘

| {z }
µLV

+

�

8
><

>:
—P

⇥
µu

I �T µh
I
⇤
·~hI +

�
µu

I �T µh
I
�

| {z }
µI

divP
h
~hI

i
9
>=

>;

�

8
><

>:
—P

⇥
µu

V �T µh
V
⇤
·~hV +

�
µu

V �T µh
V
�

| {z }
µV

divP
h
~hV

i
9
>=

>;

� 1
T

n
~q+T µh

I
~hI +T µh

V
~hV

o

| {z }
~q

·—P [T ] � 0 ,

(3.28)

and:
T

ds
dt

� du
dt

+ sLI (µLI)+ sLV (µLV )� 1
T
~q ·—P [T ]+

�
n

—P [µI] ·~hI +(µI)divP
h
~hI

io
+

�
n

—P [µV ] ·~hV +(µV )divP
h
~hV

io
� 0 .

(3.29)
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We can reformulated equation (3.29) as follows:

T
ds
dt

� du
dt

�—P [µI] ·~hI �—P [µV ] ·~hV � 1
T
~q ·—P [T ]+

+µLI

⇢
∂cLI

∂ t
+w(3)

�
+ µLV

⇢
∂cLV

∂ t
+w(1)

�
+

+µI

⇢
∂cI

∂ t
+w(3) +w(2)

�
+ µV

⇢
∂cV

∂ t
+w(1)

�
+

+µC1

⇢
∂cC1

∂ t
�w(1) +w(2)

�
+ µC2

⇢
∂cC2

∂ t
�w(2)

�
+

+µC3

⇢
∂cC3

∂ t
�w(3)

�
� 0 ,

(3.30)

A1 = �µV � µLV + µC1 ,

A2 = �µI � µC1 + µC2 ,

A3 = �µI � µLI + µC3 ,

(3.31)

the entropy imbalance finally result:

T
ds
dt

� du
dt

�—P [µI] ·~hI �—P [µV ] ·~hV � 1
T
~q ·—P [T ]+ µg

∂cg
∂ t

+

�w(1)A1 �w(2)A2 �w(3)A3 � 0 ,
where g = LI, LV , I, V, C1, C2, C3 .

(3.32)

3.2.3 Thermodynamic restrictions
In a continuum field description and under the hypothesis of surrogated mechanics, we can state
that the Helmholtz free-energy density (y) has the following features:

y = y(T,cg) �! dy
dt

=
∂y
∂T

∂T
∂ t

+
∂y
∂cg

∂cg
∂ t

y = u�T s �! dy
dt

=
du
dt

� dT
dt

s� ds
dt

T
(3.33)

T
ds
dt

� du
dt

= �∂T
∂ t

s� ∂y
∂T

∂T
∂ t

� ∂y
∂cg

∂cg
∂ t

= �(
∂y
∂T

+ s)
∂T
∂ t

� ∂y
∂cg

∂cg
∂ t

(3.34)

Identifying the quantities T
ds
dt

� du
dt

, either in the expression (3.32) that in (3.34), we can couple
them and deduce the so-called Clausius-Duhem inequality:

(µg � ∂y
∂cg

)
∂cg
∂ t

� (
∂y
∂T

+ s)
∂T
∂ t

�—P [µI] ·~hI+

�—P [µV ] ·~hV � 1
T
~q ·—P [T ]�w(1)A1 �w(2)A2 �w(3)A3 � 0 .

(3.35)
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The time derivative of T and cg appears linearly in the (3.35); consequently, this inequality must

hold for any value of
∂T
∂ t

and
∂cg
∂ t

. Consequently:

µg =
∂y
∂cg

, s = �∂y
∂T

. (3.36)

As a result, µg acquires the meaning of chemical potential and hence A1, A2, A3 of the affinity
of the reactions (3.1),(3.2), and (3.3) respectively. Finally, the Clausius-Duhem inequality (3.35)
became:

�—P [µI] ·~hI �—P [µV ] ·~hV +| {z }
diffusive

� 1
T
~q ·—P [T ]

| {z }
thermal

�w(1)A1 �w(2)A2 �w(3)A3| {z }
chemical

� 0 .
(3.37)

i.e. the so-called Clausius-Plank inequality. Because the thermodynamic forces of different tenso-
rial order do not couple (Curie symmetry principle [144] (pages 33-34)), the (3.35) can be written
separately as:

�—P [µI] ·~hI �—P [µV ] ·~hV � 1
T
~q ·—P [T ] � 0 ,

�w(1)A1 �w(2)A2 �w(3)A3 � 0 .
(3.38)

3.2.3.1 Expression of µu and µh as a function of Helmholtz free energy

In this section, we want to establish the expressions of µu and µh as a function of the Helmholtz
free-energy density y . It is known from the previous section that entropy is a function of cg and
T (see relations (3.36)) and so, also the internal energy density (usually in the form u = u(s,cg)),
becomes a function of the same state variable. Hence:

u = u(s(T,cg),cg) and y = u�T s
=)

y(cg ,T ) = u(s(T,cg),cg)�T s(cg ,T )

(3.39)

Owing to the definition of the Helmholtz free-energy density, we deduce:

dy =
∂u
∂ s

∂ s
∂cg

dcg +
∂u
∂ s

∂ s
∂T

dT +
∂u
∂cg

dcg �dT s�T
∂ s
∂cg

dcg �T
∂ s
∂T

dT ,

∂y
∂cg

?????
T

=
∂u
∂ s

∂ s
∂cg

?????
T

+
∂u
∂cg

?????
T

�T
∂ s
∂cg

?????
T

.

(3.40)

Similarly, for the internal energy, it is found that

du(s(cg ,T ),cg) =
∂u
∂ s

✓
∂ s
∂cg

dcg +
∂ s
∂T

dT
◆

+
∂u
∂cg

dcg ,

du
dcg

=
∂u
∂ s

∂ s
∂cg

+
∂u
∂cg

.

(3.41)
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Therefore, taking advantage of the expression
∂u
∂ s

∂ s
∂cg

?????
T

+
∂u
∂cg

?????
T

, embedded into expressions

(3.40) and (3.41), it is trivial to see that:

∂y
∂cg

?????
T

=
du
dcg

�T
∂ s
∂cg

?????
T

. (3.42)

Knowing the Eqs. (3.36) and the relations µg = µu
g �T µh

g , it is easy to deduce:

∂y
∂cg

?????
T

=
du
dcg

�T
∂

∂cg

0

@�
∂y(T,cg)

∂T

?????
cg

1

A , (3.43)

∂y
∂cg

=
du
dcg

+T
∂

∂cg

✓
∂y(T,cg)

∂T

◆
, (3.44)

and, consequently, the following expressions:

µh
g =

∂ s(T,cg)

∂cg

?????
T

= � ∂
∂cg

∂y(T,cg)

∂T
= � ∂

∂T
∂y(T,cg)

∂cg
= � ∂

∂T
µg(T,cg) , (3.45)

µu
g = µg +T µh

g =
∂y(cg ,T )

∂cg

?????
T

�T
∂

∂T
µg(cg ,T ) =

du
dcg

, (3.46)

that are consistent with the local form of the first principle and the Gibbs relation2. In fact, it holds:

∂y
∂cg

=
du
dcg

+T
∂

∂cg

∂y
∂T

=
∂u
∂cg

+
∂u
∂ s

∂ s
∂cg| {z }

T
∂ s
∂cg

+T
∂

∂cg

∂y
∂T

| {z }

�
∂ s
∂cg

=
∂u
∂cg

= µg .

(3.47)

According to the expression yg = µg = µu
g �T µh

g , it is worth:

µh
g = � ∂ 2y

∂cg∂T
and µu

g =
∂y
∂cg

�T
∂ 2y

∂cg∂T
. (3.48)

A further way to prove that µu
g and µh

g are not partial properties is given in the Appendix C (see
section C.2.1).

3.2.3.2 Dependence on the temperature gradient

In view of the expression~q =~q+T µh
I
~hI +T µh

V
~hV , the following identity:

�~hI ·—P[µI]�~hV ·—P[µV ]� 1
T
~q ·—P[T ] =

= �~hI(—P[µI]+ µh
I —P[T ])�~hV (—P[µV ]+ µh

V —P[T ])� 1
T

~q ·—P[T ]
(3.49)

2Gibbs relations under the hypothesis of surrogate mechanics: u = u(s,ci) and so du = T ds+ µidci.
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holds.
Combining the expression (3.49) with the properties of the —P operator3, the subsequent relations
arise:

—P[µd ] = —P


∂y(T,cg)

∂cd

�
=

∂
∂cd

⇥
—Py(T,cg)

⇤
=

∂
∂cd


∂y
∂T

—P[T ]+
∂y
∂cg

—P[cg ]

�
,

—P[µd ]+ µh
d —P[T ] =

∂ 2y
∂cd ∂T

—P[T ]+
∂ 2y

∂cd ∂cg
—P[cg ]�T

∂ 2y
∂cd ∂T

=
∂ 2y

∂cd ∂cg
—P[cg ] ,

where d = I,V, and g = I,LI,V,LV ,C1,C2,C3.

(3.52)

Finally, by means of the relations (3.48) and (3.49), we can show that the expressions —P[µI] +
µh

I —P[T ] and —P[µV ]+ µh
V —P[T ] are independent upon the gradient of temperature.

—P[µI]+ µh
I —P[T ] =

∂ 2y
∂c2

I
—P[cI]+

∂ 2y
∂cI∂ci

—P[ci ] ,

where i = LI, LV , V, C1, C2, C3 ,
(3.53)

—P[µV ]+ µh
V —P[T ] =

∂ 2y
∂c2

V
—P[cV ]+

∂ 2y
∂cV ∂ck

—P[ck ] ,

where k = LI, LV , I, C1, C2, C3 .
(3.54)

3.2.4 Constitutive theory
We can deduce the structure of the constitutive relations of the problem at hand starting from the
Clausius-Duhem inequality (3.35). We rewrote the (3.37) as follows:

8
<

:
� 1

T
~q ·—P[T ]�—P[µI] ·~hI �—P[µV ] ·~hV � 0 ,

�w(1)A1 �w(2)A2 �w(3)A3 � 0 .
(3.55)

Considering that —P[µI]+ µh
I —P[T ] does not depend on the temperature gradient, we deduce from

the (3.55) that

� 1
T

~q ·—P[T ]�~hI ·
�
—P[µI]+ µh

I —P[T ]
�
�~hV ·

�
—P[µV ]+ µh

V —P[T ]
�

� 0 , (3.56a)

�w(1)A1 �w(2)A2 �w(3)A3 � 0 . (3.56b)

3Properties of the operator —P for the following generic functions f (y,z) and g(~u,~v):

—P f (y,z) =
∂ f
∂y

—P[y]+
∂ f
∂ z

—P[z] , (3.50)

—P[g(~u,~v)] =
∂g
∂~u

—P[~u]+
∂g
∂~v

—P[~v] , (3.51)

see also the Appendix D (see section D.2.5).
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3.2.4.1 Flows and generalized forces

Equilibrium systems played a relevant role throughout the history of thermodynamic; nevertheless,
assisted only by the equilibrium framework, we could describe very few phenomena observed in
nature. However, the whole theoretical structure that supports equilibrium thermodynamics ex-
tends to non-equilibrium states that remain locally close to equilibrium. This is the so-called local-
equilibrium hypothesis, wherein the intensive variable is now a function of the position [145]. A
state variable can be defined as a function of the position if its fluctuations are small compared to
the value of the variable itself [145] (page 217). In a thermodynamic of continua framework4, at
each continuum particle5 [5] (page 71), the intensive variables such as, for instance, strain, stresses,
temperature, pressure, concentrations, etc., have to be homogeneous inside the infinitesimal vol-
ume defined at the neighborhood of the particles.

Describing processes outside the field of thermodynamic equilibrium implies an explicit expression
of the term which represents the production of entropy [146].

dSirr

dt
= s = Â

i
JiGi � 0 with i an irreversible process . (3.57)

Where:

• s is the local production of entropy [145] (page 224);

• Ji are the rates of variation of the processes involved, i.e. flows ( heat flow, chemical reac-
tions, diffusion, ... );

• Gi are generalized forces (temperature gradient, affinities, gradients of chemical potentials,
...);

• Ji = 0 and Gi = 0 at thermodynamic equilibrium.

Actually, Eq. (3.57) is not an explicit expression of the entropy production; further assumptions
are necessary to reach this aim.
For instance, close to equilibrium, it seems entirely legitimate to assume linear and homogeneous
correlations between flows and forces (theory called "linear thermodynamics of irreversible pro-
cess" [146]):

Ji = Li jG j . (3.58)

The assumptions are based on awareness arisen from experimental evidence that led to the no-
torious empirical laws of Fourier, Ohm, and Fick [145] (page 227), [146]. The linear thermo-
dynamics of irreversible process6 is a theory characterized by the so-called Onsager reciprocity
relation (Li j = L ji - wherein, phenomenological coefficients are evaluated at equilibrium - [145]

4Citing by [5] (page 169): By accepting the “continuum assumptions” and the existence of state variable fields,
we are in fact accepting the postulate of local thermodynamic equilibrium. This postulate states that the local and
instantaneous relations between thermodynamic quantities in a system out of equilibrium are the same as for a uniform
system in equilibrium.

5We are implicitly accepting the continuity hypothesis
6Another interesting result belonging to this theory is the theorem of the minimum entropy produced (it applies to

stationary states close to equilibrium that need much more restrictive assumptions than the Onsager relations) [145].
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(page 230)) [145] (pages 228-230). Such relations are due to Onsager in his milestone work [147]
on the "principle of microscopic reversibility" (see the book [145] - pages 205-211 and 228-230
-). Further discussions on the topic, embedded in the field of the thermodynamics of continuum,
are provided by [5] - pages 190-191 - and [144] (chapter 4, 6, 9). In the Steepest Entropy Ascent
Principle7 [8], [148], the Onsager principle, becomes a particular case.
In addition to the symmetry condition Li j = L ji, it is possible to infer, thanks to Curie’s Principle
(see [144] (page 5 and chapter 6)), that not all couplings between flows and forces are likely [145]
(page 230); this is due to spatial symmetries of the material system that impose that the thermody-
namic force of different tensorial order can not couple (see [144] (page 5 and chapter 6)).

Back to the Eq. (3.56a) and assuming that all phenomena can be described through linear relation-
ships between flows and generalized forces (Onsager’s relations), we come to write:

(
~hd = �Md

�
—P[µd ]+ µh

d —P[T ]
�

where d = I,V.

~q = �K—P[T ] .
(3.59)

where Md and K are respectively the positive defined mobility and heat conductivity tensor. The
two reciprocal phenomena Dufur and Soret effects, describing mutual action of the gradient of
chemical species concentration on temperature and the gradient temperature on concentrations
(thermophoresis), are not accounted for in this thesis, owing to the hypothesis of isothermal pro-
cesses that here we embrace. Hence, placing —P[T ] =~0, we focus on the mobility tensor, which is
definite as:

Md = u|d cmax
d Jd (1�Jd )1 [149] , (3.60)

where the saturation limit of receptors is taken into account by means of Jd =
cd

cmax
d

. Trough the

definition (3.60), we satisfy the request that the two different phases, that is cd = 0 and cd = cmax
d

(saturation) have vanishing mobilities.
u|d is the so-called receptor mobility, namely the average velocity when applying a force of 1 N/mol,
regardless of the origin of the force. Also, we assume that u|d and Jd don’t change throughout the
time.

3.2.4.2 The expression of the Helmholtz free energy density

We assume that the ECs in our in-vitro experiments are undergoing isothermal processes exclu-
sively, and in the next section, we will add a further hypothesis concerning the chemical equilib-
rium of the species involved in this model. Under the hypothesis of isothermal processes

y(cg) = y0 +ydiff(cg) . (3.61)

In the current thermodynamics framework, we observe a total set-up made by an EC (closed sys-
tem) in thermal equilibrium with a thermal bath ("reservoir"). As usual in continuum thermody-

7This principle together with Zigler’s maximum entropy production principle, and the principle of entropy pro-
duction invariance under time reversal, provide methods to how deduced Onsager relations without ergodic hypothesis
[148]
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namics, for this kind of problem (T, suitable kinematics state variables8, c) is the more appropri-
ate thermodynamics variables capable to describe the evolution of the system (EC), which reach the
thermodynamic equilibrium in correspondence of the minimum values assumed by the Helmholtz
free-energy y = y(T, suitable kinematics state variables, c) [12]. Under the surrogated mechan-
ics assumption and assuming isothermal processes, the number of the thermodynamics variables
are reduced to the only chemical species concentrations y = y(c) (see expression (3.61)). The cor-
relation between the entropy function of an isolated system and the function density of microstates
(W), is very well known in a statistical mechanics scheme. Furthermore, when a two-state system,
as in the case of the trapping model used here and well definite in the paper [141], W corresponds
to the number of molecular configurations [141, 150]. Similarly to what has been deduced for the
number of interstitial species atoms in an ideal crystalline lattice [141], via Stirling’s approxima-
tion, we offer the following expression for the combination formula for the potential conformations
of proteins concentrations on a cell membrane:

Wg =
h
J Jg

g
�
1�Jg

�(1�Jg)
i�NAcmax

g
, (3.62)

where NA is the Avogadro’s number and g = I,V,LV ,LI,C1,C2,C3. By means the Boltzmann’s
equation we obtain:

hdiff
g = kB ln

⇥
Wg
⇤

= kB ln
h
J Jg

g
�
1�Jg

�(1�Jg)
i�NAcmax

g

= �kBNA| {z }
R

cmax
g
�
Jg ln

⇥
Jg
⇤
+
�
1�Jg

�
ln
⇥
1�Jg

⇤�
.

(3.63)

Again, similarly to what has been done for mobile guest atoms interplaying with a host medium
[141], [149], [151], we introduce ydiff for the continuum approximation of mixing for the current
problem:

ydiff(cg) = µ0
g �T hdiff

g +RT cmax
g Jg

�
1�Jg

�
c , (3.64)

where µ0
b corresponds to the reference values of each chemical potentials and c is a real constant,

that specifies the energy of interaction among mobile species (receptors) and the fixed ones (ligands
or complexes) [141]. Specifically, the reference chemical potentials are correlated with the trap
binding-energy (DET [141]) and the equilibrium constant via:

DET
(3.1) = µV + µLV � µC1 = kBT ln

h
K(3.1)

eq

i
,

DET
(3.2) = µI + µC1 � µC2 = kBT ln

h
K(3.2)

eq

i
,

DET
(3.3) = µI + µLI � µC3 = kBT ln

h
K(3.3)

eq

i
,

(3.65)

where the trap binding-energy is the negative of DG0, namely the so-called Gibbs free-energy
change [141]. The (3.64) takes into account both the energetic interaction that the entropy of
mixing, which contributes is equal to zero if the exchange parameter (c = 0) [141, 150] is equal

8The kinematic state variables are those state variables connected with the position and shape of the system (i.e.
its motion). Usually, in continuum thermodynamics, these could be the Volume or the elements of the Lagrangian
strain tensor [5]
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to zero. This happens when all the chemical interplay among ligands and receptors are equivalent
[141].

Now, we limit our study at the constituents d = I,V assuming the parameter c = 0:

yd (cd ) = µ0
d cd +RT cmax

d [Jd ln(Jd )+(1�Jd ) ln(1�Jd )] ,

µd =
∂yd (cd )

∂cd
= µ0

d +RT [ln(Jd )� ln(1�Jd )] .
(3.66)

Since~hd is related to the gradient of the chemical potentials (see 3.59 considering that —P[T ] =~0),
one writes:

—P[µd ] = RT
1

Jd
—P[Jd ]+RT

1
(1�Jd )

—P[Jd ] = RT
1

cmax
d

1
Jd (1�Jd )

—P[cd ] ,

~hd = �u|d cmax
d Jd (1�Jd )I—P[µd ] = �u|d RT —P[cd ] = � D|d|{z}

diffusivity

—P[cd ] ,
(3.67)

which are the well known Fick’s constitutive equations, that in extenso can be written as

~hI = �D| I—P [cI ] (3.68a)
~hV = �D|V —P[cV ] . (3.68b)

Fick’s constitutive relations satisfy thermodynamic restrictions as long as diffusivities are positive
definite, as well known (see an extended motivation in [142] (pages 382-383)). Note, though, that
in the current formulation the gradient operator in equations (3.68) is defined on the surface, i.e.

—P [c ] = — [c ]� (~n·— [c ])~n . (3.69)

—P [c ] is, hence, the projected gradient operator of a scalar field c, pointing out how, in the current
formulation, the mobile proteins are constrained to remain on the spherical surface P.

3.3 Chemical kinetics
The chemical kinetics of the paradigmatic reaction (3.4), after the surrogated mechanics hypothe-
sis, is modeled as for ideal systems via the law of mass action [144] (pages 204-206):

w(3.4) = k f


JB

(1�JB)

�b  JA

(1�JA)

�a
� kb


JC

(1�JC)

�c
. (3.70)

In eq. (3.70), JA denotes the non-dimensional ratio between the concentration of species A and its
amount cmax

A at saturation,
JA = cA/cmax

A ,

similarly JB and JC for species B and C.
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The expression (3.70) could be upgraded accounting for the hypothesis of a dilute solution, which
is here supported by experimental evidence that shows how species concentration remains far from
saturation limit in their own binding sites.
Therefore, under this specific condition, (1�JA) ⇠ 1 (the same for species B and C) and the mass
action law (3.70) simplifies as

w(3.4) = k̃ f [cB]b [cA]a � k̃b [cC]c , (3.71)

having denoted with

k̃ f =
k f

[cmax
B ]b

⇥
cmax

A
⇤a , k̃b =

kb⇥
cmax

C
⇤c .

3.3.1 Infinitely fast kinetics
We observe that the interaction kinetics of these proteins is orders of magnitude faster than the
mechanical spreading of the cell and the diffusion of the free molecules on the cell membrane.
This makes us infer that the concentrations of the species [A], [B], and [C] can be assumed at chem-
ical equilibrium at all times, i.e. w(3.4) = 0, namely leads us to formulate the infinitely fast kinetic
hypothesis.

3.3.1.1 The necessary conditions for chemical equilibrium

The necessary conditions for chemical equilibrium are well expressed in [143] by:

Â
i

n j
i µi(T,c�

g) = 0 , (3.72)

where n j
i is the stoichiometric coefficient of the generic i-th constituent in the chemical reaction

j-th, T is temperature and c�
g the concentrations of constituents at the equilibrium state. Finally,

µi = µii +RT ln(ai), represents the chemical potential of a non-ideal solution with µii the chemical
potential for the corresponding pure substance and ai the activity of the generic species i [143].
At the chemical equilibrium, chemical kinetics for a non-ideal solution is ruled by:

Â
i

n j
i [µii +RT ln(ai)] = 0 ,

� 1
RT Â

i
n j

i µii = Â
i

n j
i ln(ai) = Â

i
ln(ai)

n j
i ,

exp

"
�

D
�
G0(T )

�
j

RT

#
= ’

i
(ai)

n j
i .

(3.73)

Afterward, assuming that ai depend only on Ji in the following way ai =
Ji

1�Ji
,

K j
eq = exp

"
�

D
�
G0(T )

�
j

RT

#
= ’

i

✓
Ji

1�Ji

◆n j
i

, (3.74)
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where D
�
G0(T )

�
j and K j

eq are the standard Gibbs free-energy of formation and the constant of
equilibrium of the j � th chemical reaction, respectively [143].

3.3.1.2 A new governing equation

Hence, at chemical equilibrium, as w(3.4) = 0, the concentrations in eq. (3.70) obey the relation

k f

kb
=


J eq

C
1�J eq

C

�c 1�J eq
A

J eq
A

�a 1�J eq
B

J eq
B

�b

= K(3.4)
eq , (3.75)

which defines the constant of equilibrium K(3.4)
eq of reaction (3.4).

Making reference again to the paradigmatic equation (3.71), the concentration of complex cC is
linked to the others in the case of infinitely fast kinetics.
Far from saturation, equating the reaction rate to zero, i.e. w(3.4) = 0, implies

[cCR ]
c =

[cA]a [cB]b

a(3.4)
, (3.76)

a(3.4) =
k̃b

k̃ f
=

h
cmax

CA

ia
[cmax

B ]b

⇥
cmax

C
⇤c

1

K(3.4)
eq

. (3.77)

Consequently, the infinitely fast kinetics hypothesis, Eq. (3.76), acquires the dignity of a governing
equation like Eq. (3.10).

3.4 Governing equations and their numerical discretization

3.4.1 Governing equations
The paradigmatic problem (3.12) in the surrogated mechanics approach can be written in terms of
concentrations after imposing that species B and C are immobile, that the Fick law (3.68a) relates
the mass flux~hA to the concentration cA, and either imposing the mass action law in the form (3.70)
( (3.71) when far from saturation ) or assuming infinitely fast kinetics in the form (3.76). In this
last case, the two concentrations cA and cB describe the problem, as follows:

∂cA

∂ t

⇣
1+

cB

a

⌘
+

cA

a
∂cB

∂ t
+divP [�D|A—P [cA ] ] = 0 , (3.78a)

∂cB

∂ t

⇣
1+

cA

a

⌘
+

cB

a
∂cA

∂ t
= sB . (3.78b)

Parameter a depicts the influence of chemistry at infinitely fast kinetics. D|A is the parameter as-
sociated with the diffusion process of the species A on the surface. sB, instead, is a function that
accounts for mechanics, in a surrogated way. All these multi-physics processes impact the dis-
cretization parameters for the numerical simulation.
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Equations (3.78) can be properly rephrased to model to the integrin - VEGFR reactions (3.1)-
(3.3). Four unknown fields, cI(~x, t), cLI(~x, t), cV (~x, t), cLV (~x, t) describe the evolution of the system
through the following non-linear partial differential equations:

∂cLV

∂ t

✓
1+

cV

a1
+

cV

a1

cI

a2

◆
+

cV cLV

a1a2

∂cI

∂ t
+

∂cV

∂ t

✓
cLV

a1
+

cLV

a1

cI

a2

◆
� sLV = 0 , (3.79a)

∂cV

∂ t
+divP [�D|V —P [cV ] ]� ∂cLV

∂ t
+ sLV = 0 , (3.79b)

∂cI

∂ t

✓
1+

cV cLV

a1a2

◆
+divP [�D| I—P [cI ] ]�

∂cLI

∂ t
+

cI

a2

cLV

a1

∂cV

∂ t
+

cI

a2

cV

a1

∂cLV

∂ t
+ sLI = 0 , (3.79c)

∂cLI

∂ t

✓
1+

cI

a3

◆
+

cLI

a3

∂cI

∂ t
� sLI = 0 . (3.79d)

Initial conditions are dictated by experimental evidences and model assumptions and hold:

cI(~x,0) =? molecules/µm2, cLI(~x,0) = 0 molecules/µm2,

cV (~x,0) =? molecules/µm2, cLV (~x,0) = 0 molecules/µm2 ,
(3.80)

where the numerical values of the initial concentrations of VEGFR2 and integrin, at this point of
the thesis, are still unknowns (for this reason denoted with "?" in eq. 3.80) but will be appropriately
deduced in chapter 4.

3.4.1.1 Dimensionless Equations

The interplay among the multi-physics processes in the governing equations (3.79) can be cap-
tured in a dimensionless formulation. To this aim, denote with Ld a reference length, with td
a problem timescale, with cbulk a reference concentration, and finally, define the dimensionless
(starred) amounts

~x = Ld~x? , t = td t? , cA = cbulk c?
A , ai = cbulka?

i .

with i = 1,2,3. Exploiting the simple identities

∂cA

∂ t
=

cbulk

td
∂c?

A
∂ t?

, sA =
cbulk

td
s?

A , (3.81a)

—P [ca ] =
cbulk

Ld
—?
P

[c?
A ] , divP [ f ] =

1
Ld

div?
P
[ f ] . (3.81b)

and defining the Peclet number [152] for a generic species A as

PA
e =

L2
d

D|A td
,

the following dimensionless governing equations of the problem come out:

∂c?
LV

∂ t?

✓
1+

c?
V

a?
1

+
c?

V
a?

1

cI?

a?
2

◆
+

c?
V c?

LV

a?
1 a?

2

∂c?
I

∂ t?
+

∂c?
V

∂ t?

✓c?
LV

a?
1

+
c?

LV

a?
1

c?
I

a?
2

◆
� s?

LV
= 0 , (3.82a)
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I
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These initial values PDEs will be solved for the unknown fields c?
LV

, c?
V , c?

I , and c?
LI

once initial and
boundary conditions will be given. Whereby the transport process is ruled by the Peclet numbers
PV

e and PI
e, other dimensionless amounts control chemistry (the three parameters a?

i ) and spreading
(s?

LV
and s?

LI
). The ratios between those numbers define the limiting factors during the evolution in

time of the whole system. It will be clarified in discussing the numerical approximation of problem
(3.82), that stems from its weak form.

3.4.1.2 Weak formulation and finite elements discretization

Formally speaking, the weak formulation is obtained after the multiplication of the strong form of
the governing equations by a suitable set of time-independent test functions (expressed here with
a superposed caret), and performing an integration upon the domain, exploiting Green’s formula
with the aim of reducing the order of differentiation. Such a weak form, in terms of the unknown
fields c?

LV
, c?

V , c?
I , and c?

LI
, reads as follows:
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[ ĉ?

V ]+
1
PI

e
—?
P

[c?
I ] ·—?

P
[ ĉ?
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� ĉ?
V s?

LV
� ĉ?
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+ ĉ?
LI

s?
LI
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Note that there is no contribution defined on the boundary because the cell membrane W is a closed
surface. The problem to be solved can be written in a more abstract setting: we seek for unknown
fields c?

G(~x?, t?) - with G denoting LV , V , I, or LI - in the functional space V
[0,t?f ] that satisfy initial

conditions c?
G(~x?,0) = c0

?
G(~x?) such that

a
✓⇢

∂
∂ t?

c?
G(~x?, t?), c?

G(~x?, t?)
�

, ĉ?
G(~x?)

◆
= ( fG(~x?, t?), ĉ?

G(~x?)) , (3.84)

for all ĉ?
G(~x?) that belong to a suitable functional space V. In the abstract form (3.84), a(·, ·) is

non-linear functional (3.83) and ( f ,c) denotes the standard scalar product between f and c. The
identification of the functional spaces V[0,t?f ],V falls beyond the scope of the thesis.

The weak form (3.84) naturally leads to a semi-discrete problem, by approximating the space V by
a finite dimensional space Vh. To this aim, unknown fields c?

G(~x?, t?) - with G denoting LV , V , I,
or LI - will be approximated as a product of separated variables, by means of a basis {jG

i (~x?)} of
spatial shape functions and nodal unknowns that depend solely on time

ch
?
G(~x?, t?) = jG

i (~x?) c?G
i (t?) . (3.85)
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The Einstein summation convention is taken for repeated indexes. The semi-discrete approximate
problem reads as follows: given c0h

?
G(~x?) a suitable approximation of the initial datum c0

?
G(~x?),

for each t? 2 [0, t?f ] find ch
?
G such that

a
✓

jG
j (~x?)

⇢
∂

∂ t?
c?G

j (t?), c?G
j (t?)

�
,jG

i (~x?)

◆
= ( fG(~x?, t?),jG

i (~x?)) . (3.86)

The weak form (3.83) is thus rephrased into the system of ordinary differential equations (3.86),
whose solution is an approximation of the exact solution for each t?.

In order to obtain a full discretization of the weak form (3.83), we consider a uniform mesh for the
time variable t? and define t?n = nDt? with n = 0,1, ..., and Dt? > 0 being the time step. The time
derivative will be replaced by suitable difference quotients

∂c?G
i

∂ t?
'

c?G
i (t?n +D t?)� c?G

i (t?n)

D t?
, (3.87)

thus constructing a sequence cn
h
?
A(~x?) that approximates the exact solution c?

G(~x?, t?n) [152]. Making
recourse to the Backward Euler method leads to the non-linear problem depicted in Appendix A.

The Backward Euler scheme for the finite element approximation of the chemo-transport model
was implemented exploiting the high-performance computing open-source library deal.ii
(https://www.dealii.org/).
Numerical simulations have shown that it is mandatory to use a very small time discretization step
Dt? when a first-order accuracy numerical integration scheme is used. The limiting time scale is
imposed by the mechanical deformation of the cell (identified within the equations by the terms of
fictitious sources s?

LV
and s?

LI
). Therefore, properly capturing the spreading process leads to a very

high computational cost.

The time-dependent partial differential equations (3.82) can be conveniently rephrased in order to
apply higher order time integration schemes. A variable change will be adopted, namely

c?
A = c?

LV
+ c?

C1
+ c?

C2
, c?

B = c?
V � c?

LV
, c?

D = c?
I + c?

C2
� c?

LI , (3.88)

having denoted with
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2
, c?
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I c?

LI
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3

. (3.89)

Simple algebra leads to the following set of time-dependent PDEs,

∂c?
A

∂ t?
� s?

LV
= 0 , (3.90a)

∂c?
B
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� 1

PV
e

div?
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P
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= 0 , (3.90b)

∂c?
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� 1

PI
e
div?

P
[—?

P
[c?

I ] ]+ s?
LI = 0 , (3.90c)
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∂c?
E

∂ t?
� s?

LI = 0 . (3.90d)

subject to the constraints

c?
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V (a?
2 + c?

I )+ c?
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1 a?
2 �a?

2 c?
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I c?
B)�a?

1 a?
2 (c?
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A) = 0 (3.91a)
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I (a?
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1 a?
2 c?

D +a?
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2 a?
3 +a?

3 c?
V c?

V �a?
3 c?

V c?
B)+

�a?
1 a?

2 a?
3 (c?

E + c?
D) = 0 , (3.91b)

and initial conditions

c?
A(0) = 0 , c?

B(0) =
?

cbulk
, c?

D(0) =
?

cbulk
, c?

E(0) = 0 , (3.92)

where the symbol "?" means that the numerical value of the concentrations cB and cD are not known
yet. In fact, such values will be defined once the initial concentrations of VEGFR2 and integrin will
be suitably introduced in chapter 4, further considering that c?

LV
(0) = c?

LV
(0) = c?

LI
(0) = c?

C1
(0) =

c?
C2

(0) = c?
C3

(0) = 0 inasmuch, at instant t = 0 s, there is no contact between the cell membrane and
the ligands coated substrate. Analytical integration of (3.90a) and (3.90d) together with relevant
initial conditions (3.92) leads to:

c?
A(~x?, t?) = S?

LV
(~x?, t?) , c?

E(~x?, t?) = S?
LI

(~x?, t?) ,

where S?
LV

and S?
LI

are the integral over time of the source terms. They correspond to the value of
ligands that at every instant t? are in contact with the cell membrane at point ~x? due to the (sur-
rogated) mechanics of spreading and are also available for the reaction with relevant counterparts.
As such, they shall be assumed as experimental data, whereby the source terms s?

LV
and s?

LI
are

much harder to identify.

Since c?
A and c?

E have been analytically solved, the weak form of problem (3.90) can be recast in a
standard [152] abstract setting: we seek for unknown fields c?

Z(~x?, t?) - with Z denoting B or D - in
the functional space V[0,t?f ] that satisfy initial conditions (3.92) and subject to the constraints (3.91)
such that

∂
∂ t?

b(c?
Z(~x?, t?), ĉ?

Z(~x?))+a(c?
Z(~x?, t?), ĉ?

Z(~x?)) = ( fZ(~x?, t?), ĉ?
Z(~x?)) , (3.93)

for all ĉ?
Z(~x?) that belong to a suitable functional space V. In the abstract form (3.93), a(·, ·) and

b(·, ·) are the usual bilinear forms of the Laplace operator written on a non-Riemann manifold P
?.

The weak form (3.93) can be conveniently integrated in time, providing the following approxima-
tion scheme

b(c?
Z(~x?, t?n), ĉ?

Z(~x?))�b
�
c?

Z(~x?, t?n�1), ĉ
?
Z(~x?)

�

+
Z t?n
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a(c?
Z(~x?,t?), ĉ?

Z(~x?))dt? = (
Z t?n

t?n�1

fZ(~x?,t?)dt?, ĉ?
Z(~x?)) , (3.94)

for all ĉ?
Z(~x?), whereby c?

Z(~x?,t?) must satisfy initial conditions (3.92) and is subject to the con-
straints (3.91). Note that the integral

Z t?n

t?n�1

fZ(~x?,t?)dt?
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is given in closed form and involves the functions S?
LV

(~x?, t?) and S?
LI

(~x?, t?) evaluated in t?n�1 and
t?n . In view of this feature, the contribution of cell spreading in terms of surrogated mechanics is
captured with high accuracy, whereas the accuracy in the approximation of the transport term

Z t?n

t?n�1

a(c?
Z(~x?,t?), ĉ?

Z(~x?))dt?

appears not to require too small time steps in view of the longer timescale of the diffusivity com-
pared to the other two physics involved (see also the similar conclusions reached in [138]). The ex-
tended version of the weak form (3.94) is following depicted. Specifically, the (3.90a) and (3.90d)
are firstly analytically integrated in time (with

R t
0 sLV (~x,t)dt = SLV (~x, t) and

R t
0 sLI(~x,t)dt = SLI(~x, t)

see section B.1.1) and then they have been write in a weak form and discretized through the (3.85).
For what concerns the weak formulations corresponding to (3.90b), and (3.90c), instead, has been
done either a spatial and temporal discretization. The first one by means of the (3.85), i.e. approx-
imating the unknown concentrations fields through the product of the separated variables: spatial
shape functions, and nodal unknowns that depend solely on time. The second one, subdividing
the time span interval [0, t] into n steps, it has been possible to deduce the expressions (3.96) and
(3.97) integrating between the steps [tn�1, tn], where a Newton-Cotes quadrature formula has ap-
plied (see (3.101) and (3.102)) to the diffusive terms. Finally, the corresponding weak formulation
of the constraints (3.91a), and (3.91b), have been discretized by the finite element method giving
expressions (3.99) and (3.100).
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Second Equation (3.90b)
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Third Equation (3.90c)
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Fourth Equation (3.90d)
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Fifth Equation (3.91a)
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Sixth Equation (3.91b)
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In which the following Newton-Cotes quadrature formula will be given:
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Finally, it is possible deduce the follow six equations:

First equation (3.90a)
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Second equation (3.90b)
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Third equation (3.90c)
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Fourth equation (3.90d)
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Fifth equation (3.91a)
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Sixth equation (3.91b)
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The discretized weak formulations here presented led to the results presented in Appendix B; here,
exploiting the high-performance computing library deal.ii ( see https://www.dealii.org ), has been
implemented a fully coupled Newton-Raphson solver for the solution of this set of approximated
expressions. These numerical outcomes are appropriately based on experimental parameters, al-
though they are slightly different from those that we will deduce in the next chapter 4. These
preliminary results (those of Appendix B) stem from our first approach of a multiple chemical re-
actions problem (see [140]), and they have provided a qualitative conclusion on how VEGFR2 and
integrin can evolve in time when both are recruited in the basal side of an EC spread on a substrate
enriched of ligands. Nonetheless, the non-linearities introduced by the change of variables (3.88),
specifically owing to the expressions (3.91a) and (3.91b), give rise to several computational prob-
lems that have been overtaken by the formulations presented in chapter 5. Here, a further way to
implement the balance equations (3.13) has been performed.
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Chapter 4

Experimental data and constitutive
parameters

In the current chapter, we present a scenario of the experimental results that we want to replay by
means of in-silico simulation, and contextually, the value of the constitutive parameters that the
multi-fields model needs. Specifically, some of these have been deduced by the group of biologists
guided by Professor Stefania Mitola, and others inferred from literature. Importantly, Professor
Stefania Mitola and Dr. Cosetta Ravelli realized, in the newborn “Imaging core facility” of the
Preventive and Personalized Medicine Laboratory of the University of Brescia, imaging experi-
ments. Moreover, those variables that we will be not able to quantify experimentally will be the
specific subject of calibration, in chapter 5, throughout the co-designing of experimental and nu-
merical simulations.

Single-molecule (SM) imaging, as well as bulk (or ensemble) fluorescence imaging, are two com-
binable experimental approaches, through which it is possible to examine the receptor dynamics
on the cell membrane.

FRAP (see Appendix E.1), namely Fluorescence recovery after photobleaching is surely among the
most noted ensemble techniques available to examine the receptor dynamics on the cell membrane.
This methodology provides that a fluorescent protein is fused with the molecule under study, al-
lowing to visualize its mobility on the cell membrane [9] (chapter 9). Particularly, specific regions
of the cell membrane are bleached (bleached region - ROI -) by means of a laser beam, in order
to achieve pieces of information through the calculation of time necessary to recover the fluores-
cence in the ROI itself. Specifically, the amount of immobile and mobile fraction, as well as the
diffusivity of molecules of interest on the cell membrane, are guaranteed by FRAP. However, only
averaged information, in time and space, on a large number of fluorescent particles, is provided by
this method. Moreover, if molecules can not migrate in ROI, only through the aid of FRAP we are
not able to understand the reason for this peculiar behavior [9] (chapter 10).

Qualitative and quantitatively pieces of knowledge of the trajectories and so of the evolution in
time of the single-molecule position, are guaranteed by SM imaging and tracking (single-particle
tracking, SPT - see Appendix E.3 -). This methodology works trailing single-molecules movement
by video microscopy, by labeling it with antibodies matched with fluorescent coloring or minute
gold particles [9] (chapter 10). Importantly, the particle path could actually reveal the key mecha-
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nisms of molecule dynamics, including membrane lateral movements.

We can not neglect further experimental methodologies, namely the Surface Plasmon Resonance
(SPR - see Appendix E.4 -), FRET analysis (see Appendix E.1), and Time-lapse imaging (see next
section 4.1). The first provides key results in the affinity measurements among molecules and in
the association and dissociation constant rate of specific chemical reactions. Hence, equilibrium
binding and interaction kinetics analysis is possible by means of SPR. The second one allows us
to study molecular structures of biological molecules, as well as protein interactions on the cell
membrane. The last one allows the study of the spatial and temporal evolution of the labeled pro-
tein on the cell membrane by means of a series of photograms.

Following we provide a brief introduction to the management of the above-mentioned experimental
methodologies and their results. Such a specification is deemed necessary in order to understand
how practically work the experimental setting of a biological experiment with the aim to grasp how
to deduce the experimental parameters characterizing our mathematical models.

4.1 Experimental data on time-lapse analysis adhesion assays

4.1.1 Experimental insight
Either spatial that temporal information is enclosed in the so-called time-lapse experiments. In
fact, thanks to an incessant development over the years of the tools available to biologists (e.g
electronic imaging sensor, labeling methods, and light microscopy), we dispose of sensitive time-
lapse imaging of cells and single molecules [31] (chapter 2).

It is possible to resume the time-lapse imaging studies in the following four successive steps [31]
(chapter 2):

• programming of the experiments and gaining of the image data;

• preprocessing of the data in order to reduce and correct both systemic and random errors;

• data analysis identifying the molecules of interest for the study;

• reconstruction of the trajectories and analysis of the experimental results in order to validate
the hypotheses underlying the experimental model, refute them, or deduce new knowledge.

Time-lapse analysis adhesion assays have been setting in order to prove the recruitment of VEGFR2
by the non-canonical ligand gremlin (henceforth called the experiment "type one"). Contextually,
a further experiment (henceforth called the experiment "type two"), similar to the "type one", has
been set up replacing gremlin with the specific integrin ligand, fibrinogen.

It has to be clear, that for the current work of thesis, the "type one" is always the experiment that
embeds and describes the aims of the biological model, namely, in this case, the prove of VEGFR2
recruitment due to the presence of gremlin on the substrate. Viceversa, the "type two", is the so
so-called control experiment. Such an experiment is necessary to prove that the recruitment of
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VEGFR2 happens due to gremlin and not for another biological factor. In fact, in biology, we
can not practically obtain absolute deductions from a single experiment, rather we need to build
a further one (experiment "type two"), which ensures that what we are seeing, is a specific phe-
nomenon of the experiment "type one". Particularly, for the purpose of attesting to the recruiting
of VEGFR2 by gremlin, a control experiment is arranged to show how VEGFR2 is not recruited
when fibrinogen (a non-specific ligand for this receptor) coat the substrate.

VEGFR2 is not the only molecule labeled in these adhesion experiments. Indeed, either in the
experiment "type one" that "type two", we take a view of the dynamic of a further receptor, i.e. in-
tegrin. Therefore, both VEGFR2 and integrin have been fused with suitable fluorescence molecules
in order to allow the biologists to follow their movements on the cell membrane.

In the end, what we observe is that in the experiment "type one" (Fig. 4.1), gremlin recruits
VEGFR2, and interestingly, also integrin is engaged by these ligands, even if this takes place only
after longer times of observation. On the contrary, instead, in the experiment "type two" (Fig. 4.2),
the integrin recruitment by fibrinogen happens rapidly, but no VEGFR2 engagement is detected
(see [51], and [52]).

Figure 4.1: Fluorescence intensity time evolution of VEGFR2 and integrin perceived at the basal
side of ECs lying on a substrate enriched of gremlin (experiment "type one") [52]. Importantly,
both VEGFR2 and integrin are recruited by this ligand, even if the latter only for long periods of
observation [52].
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Figure 4.2: Fluorescence intensity time evolution of VEGFR2 and integrin perceived at the basal
side of ECs lying on a substrate enriched of fibrinogen (experiment "type two") [52]. Importantly,
integrin is recruited from this ligand as opposed to VEGFR2 which shows no affinity [52].

Summing up:

• gremlin induces recruitment of both VEGFR2 and integrin (after a long time);

• fibrinogen induces only integrin relocation but not VEGFR2.

4.1.1.1 Experimental evidence of receptors colocalization

Immunofluorescence experiments [51] and [52], shown VEGFR2 and integrin interactions in sub-
cellular structures. Hence, using three different markers, either in triple and double colocalization,
it has been proved that VEGFR-2 and integrin are located inside the same membrane structures.

Such a procedure has been possible owing to the features of GM1, namely a lipid that is part of the
cell membrane. Indeed, GM1 is recruited in denser structures, from the lipidic point of view, where
VEGFR2 is stabilized and the intracellular signaling takes place. Hence, from these experiments
in colocalization, emerges two interesting data. The first shows that 33% of VEGFR2 located on
the basal side of the cell is colocalized with the integrin receptor. The second one, instead, displays
how the 13% of integrin placed in the cell-substrate contact zone is touching with VEGFR2. Im-
portantly, these percentages refer to the final arrangement of proteins on ECs during experimental
trials (i.e. t = 7200 s).

Actually, Immunofluorescence and colocalization experiments do not have the precision to guar-
antee direct observations of the physical interaction of the VEGFR2-complex and integrin. In fact,
through this type of experiment, we can only estimate how much of a VEGFR2 population is re-
cruited overall, and how much it is not. To demonstrate the direct interaction between VEGFR2
and integrin, biologists have means like FRET, a system that goes to the scale of a few angstroms.
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In the end, hence, having proved by FRET the physical interaction between VEGFR-2-gramlin-
complex and integrin, we can consider the estimates with immunofluorescence and colocalization,
valid.

4.2 Biologically observation corroborate model parameters
Analyzing the current experimental data it will be possible to formulate preliminary hypotheses
that will support the simplified drafting of constitutive relations. Such relations respect the ther-
modynamic constraints imposed by the inequalities (3.55).

4.2.1 Values of diffusivity for VEGFR2 and integrin
VEGFR2 and integrin are transmembrane proteins able to move laterally (lateral diffusion) on the
lipid bilayer providing. Lateral diffusion is a relevant ability for these receptors in order to become
the main regulators of angiogenic and mechanics intracellular signaling, respectively (see chapter
2). Therefore, the measure of such a parameter is a pivotal biological goal for the current thesis.

Receptors dynamics have suffered impressive improvement afterward the development of Green
and Red Fluorescent Protein (GFP and DsRED) from jellyfish Aequorea victoria and anemone Dis-
cosoma striata respectively. These fluorescent proteins are bind to the receptors and subsequently,
they re-emit light once excited with the aid of beam light. In this way, interaction, mobility, and
concentrations of receptors have been observed [31] (chapter 2).

The expression (3.10) is a compact notation that could describe three multiple mass balance equa-
tions, one for each costituent involved in the reaction (3.4). It has already been said that A is a free
protein able to diffuse on the cell membrane, whereas B a fixed protein linked to a substrate able to
bind A and trap it. Consequently, the respective complex C is assumed not capable of diffuse on the
cell membrane. In agreement with this, the flux terms correlated with B and C assume the following
values: ~hB =~hC =~0. Different considerations must be made for A, where its mass balance equa-
tion needs a constitutive law able to correlate the mass fluxes with the respective concentrations
of species. This task is accomplished thanks to Fick’s law (as well-motivated in section 3.2.4) by
means of the relation (3.67) that here assume the following structure:~hA = �D|AGradP [cA ]. Where
D|A is the so-called diffusivity, a material parameter that will be quantified through the experiments
implemented by biologists (FRAP analysis), and that, in the current model, it will be assumed
independent by the variables (~x, t). Consequently, the set of equations represented by the (3.12), it
will be written like a function of only concentrations.

Concerning VEGFR2 and integrin, we observe in [138] (for VEGFR2) and we deduce from [153]
(for integrin), the following values of diffusivities:
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Table 4.1: Numerical values of both free diffusivities and confined diffusivities are tabulated either
for VEGFR2 that integrin, respectively.

Recptor Free diffusivity Confined diffusivity Units

VEGFR2 0.198 0.052
µm2

s

Integrin 0.289 0.043
µm2

s

Actually, concerning the adhesion molecule, the experiments in [153] involve b3-integrin and they
are done on platelets; the reason derives from the fact that in platelets there are very few types
of integrins and mainly b3, unlike the EC. However, this is not an b3 associated with av, so it is
not conformationally exactly what we need, but it is an approximation that we consider acceptable.

The distinction between free diffusivity and confined diffusivity derives from the behavior that the
receptors assume once engaged by the immobilized ligands. Specifically, henceforth, we call free
the diffusivity of a receptor that is interplaying with none ligand, and we call confined the diffusiv-
ity of a receptor that is interacting with the correspondent binder. The latter definition is corrobo-
rated by the experimental observation of the trajectory of the receptor which is, juxtaposed, limited
around the ligands. Such behavior, confirmed by the numerical result show in Tab. 4.1, supports,
in the first instance, the trapping behavior defined in the previous chapters.

4.3 Further experimental considerations
We need now to introduce further consideration on the chemical reactions (3.1) - (3.3), particularly
on their stochiometric expression.

It is known that the activity of the VEGFR2 is connected with the angiogenic stimuli; in this sec-
tion, we are interested in the VEGFR2-gremlin interaction (first chemical reaction (3.1)), where
gremlin is a non-canonical ligand for VEGFR2. The reduction to a single event characterizing the
processes of triggering angiogenesis makes clear the idea that VEGFR2 get a pivotal role in the
management of this phenomenon, but can underestimate its complexity.

In this regard, it has been shown that further transmembrane receptors co-participate in angiogenic
stimulation (see 2.3.1.2), with the aim, for example, of making it more long-lasting and stable. This
is the task that has been recognized for the integrin, which, binding with the VEGFR2-gremlin-
complex (second chemical reaction (3.2)), increases its intracellular signal. Also, integrin plays a
fundamental role in regulating the adhesion and migration processes of ECs during angiogenesis.
In this circumstance this transmembrane protein binds with specific ligands, creating protein clus-
ters that give rise to the formation of focal adhesions. At these adhesion points, the cell and the
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substrate actively exchange mechanical forces. In particular, in this part of the thesis, we focus on
the integrin-fibrinogen interaction (third chemical reaction of interest (3.3)).

Below we will deepen some biological issues related to these three chemical reactions, deducing
important information for the purposes of in-silico modeling.

4.3.1 VEGFR2-gremlin chemical reaction
The stoichiometry of the chemical reaction between VEGFR2 and gremlin and its main regulator
mechanisms are well known. VEGFR2 is a single molecule, a monomer, which during the phe-
nomenon of angiogenesis is overexposed on the cell membrane of an EC in order to intensify the
angiogenic signal. Gremlin interacts with a VEGFR2 monomer causing a conformation change
of the latter. This change allows the dimerization of the receptor and, therefore, its activation.
Gremlin itself turns out to be a dimer, and this characteristic assists the dimerization process of
VEGFR2. Consequently, a single complex C1 is composed of two VEGFR2 and two gremlin
monomers. However, owing to the technological tools in the experiments, it is possible to follow
and trace the individual monomers of VEGFR2 on the cell membrane. This means that we have
experimental data that express the diffusion and reaction of a single monomer of VEGFR2. Hence,
in light of this, the following stoichiometry is assumed:

VEGFR2| {z }
V

+Gremlin| {z }
LV

k f
�
kb

C1 . (4.1)

It must, therefore, be clear that the complex identified in the reaction (4.1) is only half of the real
one.

The material parameters related to this chemical reaction, including those connected to the hypoth-
esis of surrogated mechanics, have been used in in-silico experiments shown in Appendix B.1 and
work [140].
Nevertheless, a further parameter has to be determined, namely the concentration of ligands effec-
tively available to interact with the free receptors on the cell membrane. In fact, not all gremlin
present on the substrate is in the ideal conditions to favor chemical interaction with VEGFR2 (e.g.
favorable orientation of the molecules) and their amount needs to be calibrated through the in-silico
analysis processes.

4.3.2 Integrin-fibrinogen chemical reaction
Similarly to (4.1), the chemical reaction (4.2) describes the interaction between a receptor (inte-
grin), free to relocate itself on the cell membrane of EC, and a ligand (fibrinogen), assumed fixed
on the substrate. The mechanism leading to the entrapment of VEGFR2 and integrin receptors
with the corresponding ligands, gremlin, and fibrinogen, from our point of view, is totally analo-
gous. Also, experimental evidence legitimizes us to assume a one-to-one relationship between the
receptor molecules and those of the ligands, confirming the following relationship:

Integrin| {z }
I

+Fibrinogen| {z }
LI

k f
�
kb

C3 . (4.2)
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Moreover, from experimental observation it can be deduced that the timing of receptor-ligand bind
and the mechanical spreading time, are aligned to the experiment on gremlin, therefore t = 1 s and
t f = 600 s. Consequently, also the radius r = 20µm of the spreading EC remains unchanged from
the previous case. Standard Gibbs free energy is here inherited from the work [154] and adapted

by assuming the value DG(4.2)
0 = �44000

J
mol

. The current equilibrium constant hence assumes
the following expression:

K(4.2)
eq =

"
�

DG(4.2)
0

RT

#
= 25716896.47906 (4.3)

where T = 310.15 K and R = 8.314462618
J

K mol
.

Accepting the hypothesis that the concentration of complex and receptor are equal at saturation is
valid ([cmax

I ] =
h
cmax

C3

i
), all that remains is to deduce

⇥
cmax

LI

⇤
. Such a value is derivable from the pa-

per [155]. In this work, soluble fibrinogen dimers for SPR experiments have been used. The molec-
ular weight of this dimer results to be 330 kDa, which is equivalent to 0.000000000547990700763866 ng.
The concentration for immobilization in SPR can be considered about 9

ng
mm2 . What we want to

calculate is the number of molecules per µm2, therefore:

⇥
cmax

LI

⇤
=

9
5.479907⇥10�10 10�6 = 16423.6364

molecules
µm2 (4.4)

a(4.2) =
⇥
cmax

LI

⇤ 1

K(4.1)
eq

(4.5)

Finally, we assume for integrin an initial homogeneous concentration on the surface of EC in

suspension equal to c0
I = 1.25

molecules
µm2 . This is deducible from the total value of molecules of

integrin on the cell membrane of an EC, equal to 6.2⇥103 suggested by [156].
Once again, as in the case of VEGFR2 and gremlin, the only parameter that needs calibration is
the actual quantity of ligands interacting with the free receptors.

4.3.2.1 Integrin-VEGFR2-Gremlin-Complex Chemical reaction

In this paragraph, we discuss the chemical reaction that describes the interaction between the
VEGFR2-Gremlin complex and integrin. By its nature, such a chemical reaction makes sense
if and only if, in our model, is coupled with the (4.1). The trapping mechanism, in this reac-
tion, is triggered by the affinity between the free integrin receptor and the C1 complex (given by
the (4.1) reaction), which is anchored to the substrate through the fixed ligands. If on one hand,
VEGFR2-ligands interactions have been studied extensively over the years, on the other, the chem-
ical reaction (4.6), exhibits multiple lacks of knowledge. Stoichiometry is not a priori known, and
the study of chemical kinetics reserves several complications. Not only that, deduce from ex-
perimental evidence the values of the saturation concentrations of the molecules involved in this
chemical reaction is a very complicated purpose to achieve.

In first approximations, in order to deal with this chemical reaction, we assume that the stoichio-
metric coefficient f is equal to one, and the diffusivity, necessary to describe the free relocation of
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integrin is equal to that introduced for the chemical reaction (4.2). Therefore:

d integrin| {z }
I

+e C1

k f
�
kb

f C2 , (4.6)

a(4.6) =
[cmax

I ]d
h
cmax

C1

ie

h
cmax

C2

i 1

K(4.6)
eq

, (4.7)

where either the saturation limits and the equilibrium constant are unknown. This makes the cal-
ibration of the a(4.6) parameter together with the stoichiometry of the reaction (4.6) the main
objective for this section.

Also, it must be clear that the integrins involved in C2 and C3 exhibit different conformation states:
i.e. bent-clasped (low-affinity state) and unbent and unclasped conformation state (high-affinity
state) respectively [87], [88], [89].

4.3.3 Summary of biological objectives and parameters values
In the end, from a biological viewpoint, it was achieved a double aim: first, to prove that the
VEGFR2 is recruited in the basal side of an EC that spreads on a substrate coated by gremlin.
Second, the demonstrations of how integrin promotes the long-lasting activation and polarization
of VEGFR2 initially triggered by gremlin. Specifically, these phenomena have been described in
the following works [157], [51], [52], and also in [31], and here reexamined in section 4.1.

At the end of this chapter, we have collected almost the total amount of material parameters neces-
sary for the purpose of the numerical simulation, and by means of the Tab. 4.2 and 4.3 we propose
a suitable summarization:
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Table 4.2: Model papameters

Material

parameters

values Units

D|V 0.198 µm2/s

D| I 0.289 µm2/s

a(4.1) 0.04519 mol./µm2

a(4.2) 0.00062 mol./µm2

a(4.6) unknown mol./µm2

sLV unknown mol./(s µm2)

sLI unknown mol./(s µm2)

Table 4.3: Initial concentrations

Initial

concentrations

values Units

c0
V 4.8 mol./µm2

c0
I 1.25 mol./µm2

c0
LV

0 mol./µm2

c0
LI

0 mol./µm2

c0
C1

0 mol./µm2

c0
C2

0 mol./µm2

c0
C3

0 mol./µm2
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Chapter 5

Numerical simulations provide insights into
the relocation of integrins and VEGF
receptor on a lipid membrane

By co-designing experimental (base on [52] and on the whole previous chapter in general) and nu-
merical investigation, we decipher the regulatory laws underlying the mechanisms of the VEGFR2-
interaction, either with gremlin that with co-receptors like integrin. The matching of in-vitro and
in-silico experiments, allow us to interpret reality and deduce those material parameters that cannot
be computed by means of experimental analyses.

5.1 Governing Equations
We develop mathematical models able to describe the relocation of VEGFR2 and integrin on the
cell membrane of an EC during its mechanical spreading on a substrate enriched by gremlin or/and
fibrinogen, employing the thermodynamic model built-in chapter 3, namely continuum chemo-
transport thermodynamically consistent model. Such a formulation led to the governing equations
(3.79), which in the current chapter, will be reframed differently with respect to the precedent ones.
Here, we will follow a new strategy where we will reduce the degree of non-linearity introduced
by the equations 3.90 and 3.91 to the detriment of an increasing number of balance equations to
discretized.
The primary goal is therefore to combine the scientific experimental methodology introduced by
biologists, with mathematical modeling provided by engineers and/or physicists (see section 5.2).
In this way, scientific theories addressed to the science of living matter, can be both predicting and
interpreting.

According to the constitutive choices shown in the previous chapter, we can reduce the local form
of governing equations (3.12) as follow:

∂cA

∂ t
(~x, t)�D|A DP [cA (~x, t) ]+a w(3.4) (~x, t) = 0 , (5.1a)

∂cB

∂ t
(~x, t) +b w(3.4) (~x, t) = sB (~x, t) , (5.1b)
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∂cC

∂ t
(~x, t) � c w(3.4) (~x, t) = 0 , (5.1c)

where DP [ ] = divP [—P [ ] ] is the Laplacian operator restricted on the surface. Therefore, supported
by the infinitely fast kinetics and surrogated mechanics hypothesis, we can replace the Eq. (5.1c)
in the Eq. (5.1a) and (5.1b ), and reintroducing the Eq. (3.77), the Eq. (5.1) become:

∂cA

∂ t
(~x, t)�D|A DP [cA (~x, t) ]+

a
c

∂cC

∂ t
(~x, t) = 0 , (5.2a)

∂cB

∂ t
(~x, t) +

b
c

∂cC

∂ t
(~x, t) = sB (~x, t) , (5.2b)

[cC]c =
[cA]a [cB]b

a(3.4)
. (5.2c)

These are the rephrased (with respect to the equations (3.78)) local governing equations for a
multi-physical problem describing trapping phenomena of free molecules A (on a cell membrane),
by means of the fixed molecules B (attached to a substrate), during the spreading of an EC on
specific ligands coated substrate.

5.2 Multi-physical models and numerical results
Four models will be built with the aim to characterize the biological mechanisms, above-describes,
ruling the triggering of the angiogenic stimulus.
The firsts two models will be able to capture the evolution in time of the depletion of a receptor
located on the cell membrane during the spreading of an EC on a substrate coated with a specific
ligand. Hence, supported by the experimental data introduced in the papers [51], [52], we will cal-
ibrate the evolution over time of VEGFR2 when EC adheres to gremlin (experiment "type one"),
and integrin when EC adheres to fibrinogen (experiment "type two"). Through these models, we
will calibrate the respective concentrations of ligands actually interacting with the free membrane
receptors.

The next step will see the construction of a further model that couple the chemical reaction (4.1)
and (4.6). Here, the final objective will be the calibration of a(4.2) parameter and the stoichiometric
coefficients d and e which best interpolate the experimental data that express the relationship of
VEGFR2 and integrin on gremlin substrate.

Finally, a model that takes into account all the chemical reactions (4.1), (4.6), and (4.2) will be set
in order to predict the trend of the receptors recruitment by gremlin and fibrinogen that simultane-
ously and homogeneously cover the substrate on which an EC is spreading.

5.2.1 Weak formulation
In order to do that, weak formulations of the local governing equations of the type (5.2), rendered
dimensionless, are implemented through the open-source finite elements library deal.ii
(https://www.dealii.org/) that exploits high-performance computing technique. The weak forms
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here mentioned can be deduced from (5.2) through a premultiplication of each term for corre-
sponding test functions and subsequent integration on the spatial domain, which in the specific
case, result in the rigid surface identified in Fig. 5.1. The discretization of the unknown field
cE(~x, t) lead to the separation of independent variables~x and t through the following expression:

cE(~x, t) =
n

Â
i=1

jE
i (~x)cE

i (t) , (5.3)

where n is the number of nodes of the tessellation, and jE
i (~x) are the so-called shape functions,

while cE
i (t) the nodal unknowns. Doing that, the partial non-linear differential equations system

became a non-linear ordinary differential equations system (ODE) in the t variable, and by means
of ODE discretization methods, it will be rendered numerically implementable. Therefore, the
weak formulation corresponding to the eq. (5.2) reads:

Z

P

jA
i (~x)jA

j (~x)dA
h
cA
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i
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Z
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i (~x)jA
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+
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(5.4a)

Z

P

jB
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⇥
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(5.4b)

a(3.4)
Z

P
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i (~x)

h
jC

k (~x)
ic
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h
cC

k (tn)
ic
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⇤b dA
h
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k (tn)
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cB
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= 0 ,

(5.4c)

where
tnR

tn�1

sLB
(~x,t)dt will be solved analytically and then implemented, whereas

tnR

tn�1

cA
j (t )dt will

be discretized by means Newton-Cotes quadrature formula and then implemented [140].
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Figure 5.1: Tessellation of the cell membrane consists of 6437 quadrilaterals.

5.2.2 Approximation of eq. (3.11)
To avoid discontinuities, a “gaussian” approximation on the relationships (3.11) has been imple-
mented:

sLV ' aexp[�((t �b)2)/(c2)] , (5.5a)

sLI ' d exp[�((t � e)2)/( f 2)] , (5.5b)

in which the coefficients a, b, c, d, e, f characterize the shape of sLV and sLI .

Time integration can be performed analytically
Z t

0
sLV (~x,t)dt = SLV (~x, t)�SLV (~x,0) =

1
2

ac
p

p(Er f [b/c]�Er f [(b� t)/c]) , (5.6a)
Z t

0
sLI(~x,t)dt = SLI(~x, t)�SLI(~x,0) =

1
2

d f
p

p(Er f [e/ f ]�Er f [(e� t)/ f ]) . (5.6b)

Expressions (5.6) are consistent with the requirements SLV (~x,0) = 0 and SLI(~x,0) = 0.

We approximate the expression (3.11) by means of expression (5.5) that needs to be integrated over
time (see (5.4b)) as shown by the (5.6). Below we can observe at fixed time t = 300 s the shape of
both functions sLB (Fig. 5.2a) and SLB (Fig. 5.2b). Finally, thanks to experimental observation, we
assume that at the end of the mechanical spreading (600 s [138] and [139]), only about 1/3 of the
total amount of the spread cell membrane goes in contact with the substrate (see the trend of sB by
the Fig. 5.3).
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(a) t=300 s

(b) t=300 s

Figure 5.2: Time evolution of the approximated expression of sLB (5.5) and its time integration SLB .
Case with a = 0.3 b = 300 s and c = 40, is here depicted.
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(a) t=0 s (b) t=120 s

(c) t=240 s
(d) t=360 s

(e) t=480 s (f) t=600 s

Figure 5.3: Time evolution of the sB function through six pictures of the in-silico trial. Specifically
at instant t = 0, 120, 240, 360, 600 s.
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5.2.3 Model based on one chemical reaction: VEGFR2-gremlin interaction
As a result of what has been introduced so far, we show the governing equations concerning the
model for the reaction VEGFR2-gremlin:

VEGFR2| {z }
V

+Gremlin| {z }
LV

k f
�
kb

C1 . (5.7)

∂cV

∂ t
�D|V DP [cV ]+

∂cC1

∂ t
= 0 , (5.8a)

∂cLV

∂ t
+

∂cC1

∂ t
= sLV , (5.8b)

[cC1 ] =
[cV ] [cLV ]

a(5.7)
. (5.8c)

In the current model, we want to fit numerical data through the experimental ones, by means of
the calibration of sLV . Basically, that means finding the exact combination of the values of the
parameters characterizing the Eq. (5.5). In an attempt to do this, another experimental datum has
been accounted for. Indeed, experimental evidence shows that EC avoids the complete depletion
of free receptors on its own cell membrane, leaving about 30% of the total amount (about 24000)
on the apical side. This observation is specular to that reported by the work [138] where has been
highlighted that 77% of the VEGFR2 on the cell membrane is free to move on the cell membrane,
while the remaining result to be anchored at the actin filaments of the cytoskeleton and so can
not move. Such data are supported by FRAP analysis, which has displayed a failure recovery of
fluorescence after photobleaching. Interestingly, immobilized receptors (that are not bound to any
ligands) could have a very low diffusivity owing to their interaction with the cytoskeletal filaments
or due to the diffusion impediments caused by other molecules on the lipid bilayer. It has to be
clear, that in the current model such a kind of constraint is not embedded; rather, we need to impose
it externally, playing with the ligand quantities. This kind of approximation is acceptable, if, as
it actually is, through the current models, we are mostly interested in the dynamical evolution of
receptors on the cell membrane rather than their interaction with the cytoskeleton and with the
surrounding environment.

5.2.3.1 The gremlin calculation

Comparing numerical with experimental outcomes (see Tab. 5.1), we obtain the availability of
ligands of 21.2694 molecules/µm2.
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Table 5.1: Co-designing between VEGFR2-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation) is provided. Specifi-
cally, both total and dimensionless quantities are tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 1.8125 1.7470 0.0000 0.0000 0.0674 0.0649
120 2.6775 1.7774 660.6680 0.0557 0.0995 0.0661
240 3.6175 2.0371 2105.2400 0.1774 0.1344 0.0757
360 8.8875 4.5427 3992.4000 0.3364 0.3303 0.1688
480 12.0225 5.1638 6069.1400 0.5113 0.4468 0.1919
600 17.4375 4.0251 7329.1500 0.6175 0.6481 0.1496
720 20.1325 4.3776 8050.8500 0.6783 0.7482 0.1627
840 19.6650 4.4217 8659.5400 0.7296 0.7308 0.1643
960 20.4075 4.5417 9192.9900 0.7745 0.7584 0.1688
1080 22.8600 4.7168 9672.0600 0.8149 0.8496 0.1753
1200 23.0375 5.5135 10108.8000 0.8517 0.8562 0.2049
1320 23.2725 4.8333 10511.0000 0.8856 0.8649 0.1796
1440 24.9150 5.5791 10884.6000 0.9171 0.9260 0.2073
1560 25.8650 4.7980 11233.5000 0.9465 0.9613 0.1783
1680 27.8800 6.0900 11560.8000 0.9740 1.0361 0.2263
1800 26.9075 5.9243 11868.9000 1.0000 1.0000 0.2202
3600 39.2718 18.8742 14967.9000 1.2611 1.4595 0.7014
7200 36.8140 17.3697 16218.7000 1.3665 1.3682 0.6455

where the numerical results correspond to the concentration of the complex generated in the basal
part of the EC, while the experimental one is the evolution over time, on the basal side of the
EC, of the fluorescence of VEGFR2, both normalized to the respective values at time t = 1800 s.
According to this data, at the end of the process (7200 s), 75% of the total amount of VEGFR2 is
located in the basal side of the cell, while 67% of this total amount corresponds to C1.
Likewise of the works [138], [139], here the shape of the experimental curve identifies three-part:
a very short initial plateau, a subsequent steep branch, and, in the end, a long branch of curve
characterized by a lower formation rate of complexes.
Thanks to the multi-physics model we understood that the plateau-phase is correlated with the first
contact phase between membrane and substrate. Practically, the moment we lay down the cell on
the substrate, all the free receptors present in that part of the cell are instantaneously trapped by
gremlin. Subsequently, there is an exposure of VEGFR2 in contact with the substrate due to the
mechanical spreading of the cell, which brings a new portion of the membrane in contact with the
ligands. Finally, we interpret the last process as diffusive-dominant; i.e., free receptors, following
Fick’s Law, are recruited at the basal side of the cell where they are trapped again by gremlin.
A further relevant consideration emerges from the comparison between numerical and experimen-
tal data, namely that the assumption made of sV = 0 would seem correct. In fact, observing Fig.
5.4 we can appreciate how the numerical curve always remains embedded among the error bars of
the numerical one.
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Actually, this can be interpreted in two different ways: either no phenomenon of internalization
and new synthesis (exposure on the cell membrane) of VEGFR2 occur during the adhesion of an
EC on a substrate covered with gremlin or happen but their contributions cancel each other out. We
infer that the second option is the correct one, inasmuch supported by experimental observations
given by biologists. The internalization of VEGFR2, as well as the synthesis of new receptors, are
pivotal phenomena in the process that corroborates the angiogenic stimulus. In the current exper-
iment, the slow synthesis process of new VEGFR2 proteins is compensated by an internalization
phenomenon that starts late with respect to the relocation process of this receptor.

Figure 5.4: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolution in time of the normalized total amount of complexes is depicted.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.5: Basal distribution of complexes at the instant t = 0, 600, 1800, 7200s.
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Below we show two new cases corresponding to different concentrations of available gremlin.

5.2.3.2 High amount of gremlin

In the current section, we approach the case of an EC that spread on a substrate with a concentration
of ligands equal to 42.5389 molecules/µm2 (i.e. doubled with respect to the previous case). In
Tab. 5.2 we compare the evolution in time of the concentration of complex C1 with the fluorescence
of molecules of VEGFR2. Referring to the total amount of receptors (bound or free) at the time
t = 7200 s, we see that 87.72% of these are in contact with the substrate where the 86.35% (of the
total amount) result be bound. Such percentages show that less than 15% of the global amount of
receptors remain on the apical side, violating the biological insights above mentioned.

Table 5.2: Co-designing between VEGFR2-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation), correspondent to a
high amount of gremlin, is provided. Specifically, both the total that dimensionless quantities are
tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 1.8125 1.7470 0.0000 0.0000 0.0674 0.0649
120 2.6775 1.7774 817.0600 0.0630 0.0995 0.0661
240 3.6175 2.0371 2301.7900 0.1774 0.1344 0.0757
360 8.8875 4.5427 4221.5300 0.3254 0.3303 0.1688
480 12.0225 5.1638 6302.9800 0.4858 0.4468 0.1919
600 17.4375 4.0251 7652.2700 0.5898 0.6481 0.1496
720 20.1325 4.3776 8457.4600 0.6519 0.7482 0.1627
840 19.6650 4.4217 9145.7200 0.7049 0.7308 0.1643
960 20.4075 4.5417 9760.7900 0.7523 0.7584 0.1688
1080 22.8600 4.7168 10320.5000 0.7955 0.8496 0.1753
1200 23.0375 5.5135 10835.7000 0.8352 0.8562 0.2049
1320 23.2725 4.8333 11315.0000 0.8721 0.8649 0.1796
1440 24.9150 5.5791 11765.9000 0.9069 0.9260 0.2073
1560 25.8650 4.7980 12190.8000 0.9396 0.9613 0.1783
1680 27.8800 6.0900 12592.5000 0.9706 1.0361 0.2263
1800 26.9075 5.9243 12974.0000 1.0000 1.0000 0.2202
3600 39.2718 18.8742 17090.1000 1.3173 1.4595 0.7014
7200 36.8140 17.3697 20825.0000 1.6051 1.3682 0.6455

What has been discussed so far, has a visual correspondence in the graphic representation in Fig.
5.6 and 5.7. Generally, we can observe how the numerical curve Fig. 5.6 fit less-well the experi-
mental one, compared to 5.4. Such a phenomenon should be consistent with the failure to satisfy
the constraint on the immobilized receptors that previously has been established through a tailored
calibration of the terms sLV . Nonetheless, the C1-curve remains always inside the error-bars and the
shape of the numerical curve is similar to the experimental one. Moreover, by means the Fig. 5.7e,
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we can appreciate how changed the representation of the spatial distribution at the time t = 7200 s
of the concentration complex C1 compared to Fig. 5.5e. Unlike what happens in the 5.2.3.1 section,
we do not see a homogeneous distribution in contact with the substrate of the VEGFR2-gremlin
complexes. On the contrary, due to the excessive availability of ligands, the free receptors that flow
from the apical to the basal part of the cell are immediately trapped. The result is the formation of
a high-intensity ring of C1 concentration on the edge of the extreme contact zone between the cell
membrane and substrate.

Figure 5.6: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolution in time of the normalized total amount of complexes correspondent to a high
amount of gremlin is depicted.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.7: Basal distribution of complexes (C1) at the instant t = 0, 600, 1800, 7200s correspon-
dent to a high amount of gremlin.
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5.2.3.3 Low amount of gremlin

In the current section, we try to understand what happens in the case of a low-amount of ligands
concentration. By analogy with the Tables 5.2 and 5.1 in the Tab. 5.3 we show the trend of the nu-
merical and experimental outcomes when the concentration of ligands is equal to 10.6347 molecules/µm2(i.e.
the half of those shown in 5.2.3.1).

Table 5.3: Co-designing between VEGFR2-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation), correspondent to a
low amount of gremlin, is provided. Specifically, both the total that dimensionless quantities are
tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 1.8125 1.7470 0.0000 0.0000 0.0674 0.0649
120 2.6775 1.7774 395.8180 0.0484 0.0995 0.0661
240 3.6175 2.0371 1724.6600 0.2108 0.1344 0.0757
360 8.8875 4.5427 3597.2400 0.4396 0.3303 0.1688
480 12.0225 5.1638 5665.4000 0.6924 0.4468 0.1919
600 17.4375 4.0251 6713.9400 0.8205 0.6481 0.1496
720 20.1325 4.3776 7173.5700 0.8767 0.7482 0.1627
840 19.6650 4.4217 7495.2000 0.9160 0.7308 0.1643
960 20.4075 4.5417 7725.1600 0.9441 0.7584 0.1688
1080 22.8600 4.7168 7893.0100 0.9646 0.8496 0.1753
1200 23.0375 5.5135 8012.9600 0.9793 0.8562 0.2049
1320 23.2725 4.8333 8086.6300 0.9883 0.8649 0.1796
1440 24.9150 5.5791 8127.7500 0.9933 0.9260 0.2073
1560 25.8650 4.7980 8153.1200 0.9964 0.9613 0.1783
1680 27.8800 6.0900 8170.2700 0.9985 1.0361 0.2263
1800 26.9075 5.9243 8182.6100 1.0000 1.0000 0.2202
3600 39.2718 18.8742 8230.7200 1.0059 1.4595 0.7014
7200 36.8140 17.3697 8236.8700 1.0066 1.3682 0.6455

In Fig. 5.9 we can see a non-well-match between numerical and experimental data. Particularly,
the numerical curve has several values out of the error-bars and its shape is different compared to
the experimental curve.
Therefore, we definitely exclude the values of the concentrations of ligands that are significantly
lower than 21.2694 molecules/µm2, setting such a concentration as the lower bound for the num-
ber of ligands for the current problem.
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Figure 5.8: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolution in time of the normalized total amount of complexes correspondent to a low
amount of gremlin is depicted.

Interestingly, different from Fig. 5.5, and 5.7, due to a low gremlin availability, in Fig. 5.9 it is
possible to observe a full ligands depletion yet at the instant t = 1800 s.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.9: Basal distribution of complexes (C1) at the instant t = 0, 600, 1800, 7200s correspon-
dent to a low amount of gremlin.

89



5.2.4 Model based on one chemical reaction: integrin-fibrinogen interaction
In this section, we study the relocation of integrin when an EC is spreading on the fibrinogen coated
substrate. The generic formulation aforementioned (eq. (5.2)) is below particularized as follows:

integrin| {z }
I

+Fibrinogen| {z }
LI

k f
�
kb

C3 . (5.9)

∂cI

∂ t
�D| I DP [cI ]+

∂cC3

∂ t
= 0 , (5.10a)

∂cLI

∂ t
+

∂cC3

∂ t
= sLI , (5.10b)

[cC3 ] =
[cI] [cLI ]

a(5.9)
. (5.10c)

The mechanism underlying the chemical interaction between integrin and its specific ligand domi-
nates the active part of the mechanical behavior of EC. Specifically, during the interaction with
fibrinogen, integrin changes its own conformation from inactive (low-affinity) to active (high-
affinity), trigger an internal signaling cascade that leads to the generation of adhesion sites in
order to exchange mechanical stimuli between the cell and its microenvironment.

5.2.4.1 The fibrinogen calculation

Below the results of numerical analysis, where, relying on the fact that the molecules of gremlin
and fibrinogen have comparable dimensions (see 4.3.2), we have decided to extend the value of the
availability of ligands of gremlin to fibrinogen (21.2694 molecules/µm2).
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Table 5.4: Co-designing between integrin-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation) is provided. Specifi-
cally, both the total that dimensionless quantities are tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 2.0200 10.3196 0.0000 0.0000 0.0337 0.1720
120 7.0275 11.8379 292.5320 0.0715 0.1172 0.1973
240 17.7100 14.9573 757.3920 0.1851 0.2952 0.2494
360 20.8125 15.7440 1331.1500 0.3253 0.3470 0.2625
480 26.7050 18.4065 1934.3600 0.4727 0.4452 0.3069
600 37.5350 20.3823 2346.8300 0.5735 0.6257 0.3398
720 45.0000 22.2337 2619.1900 0.6400 0.7502 0.3707
840 48.5450 22.8354 2850.8800 0.6966 0.8093 0.3807
960 52.2100 24.0112 3061.3200 0.7480 0.8704 0.4003
1080 55.4000 24.6039 3243.6700 0.7926 0.9236 0.4102
1200 59.3875 26.0124 3420.8300 0.8359 0.9900 0.4336
1320 58.8700 25.5831 3592.0400 0.8777 0.9814 0.4265
1440 57.7225 24.5200 3736.9300 0.9131 0.9623 0.4088
1560 62.0475 25.5762 3859.5100 0.9431 1.0344 0.4264
1680 58.6325 24.3768 3967.2400 0.9694 0.9775 0.4064
1800 59.9850 24.7566 4092.4600 1.0000 1.0000 0.4127
3600 189.6127 53.7018 5287.6300 1.2920 3.1610 0.8953
7200 109.8590 36.9739 6054.5700 1.4794 1.8314 0.6164

Similar to what was done for VEGFR2, either numerical and experimental quantities have been
normalized through their correspondent values at t = 1800 s. In the following, we have fixed in a
graph (Fig. 5.10) the temporal evolution of the above-normalized quantities.

91



Figure 5.10: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolution in time of the normalized total amount of complexes is depicted.

From this analysis, we observe that 97% of the total amount of integrin (about 6300 molecules), of
which 96% of complexes, are located in the basal side of the cell, showing a completely different
result from what emerged to the VEGFR2 study. Comparing this observation with the evidence
arising from Fig. 5.10 we can infer that a new physics is influencing the relocation of this recep-
tor. It is, in fact, possible to see how the model we built intercepts the experimental curve, with
well-approximation, up to t = 1800 s. Differently, after this moment, the behavior of integrin is
not governed, as for VEGFR2, by means of a purely diffusive phenomenon. It would seem evident
that the hypothesis sI = 0 is here not valid.

It is indeed known how huge quantities of integrin are exposed to the cell membrane by means
of vesicles embedded in the inner part of the cell. In fact, dissimilarly from VEGFR2, integrin
is already preformed in these vesicles; therefore, the cell does not need to synthesize them from
scratch and so, these receptors result to be easily available for being exposed on the membrane.
This phenomenon could justify the huge amount of integrin observed at the instant t = 3600 s. We
conclude by inferring that the high affinity between integrin and fibrinogen, together with the low
availability of receptors on the cell membrane at the beginning of the analysis, leads to a quick
depletion of the receptor that, in the reality, could induce a relevant exposition of sI .

Once again it is possible to appreciate the potentiality of a mathematical model applied to biology.
In fact, despite the evident inability to intercept every discrete point of the experimental curve,
the current model can interpret reality discovering that further events, not taken into consideration
inside the framework itself, has to happen to describe the experiment. Intriguingly, we can also
predict the order of magnitude of the quantity of integrin that should be correlated with sI . In
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fact, through an easy dimensionless relationship between the experimental and numerical value at

t = 3600 s, we can deduce the following result:
3.1610
1.2920

= 2.4465. Hence, the number of integrins
that actually are present on the real cell membrane at time t = 3600 s are nearly 2.5 times respect
to that provided by the in-silico simulations (see Tab. 5.4).

(a) t = 0s
(b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.11: Basal distribution of complexes (C3) at the instant t = 0, 600, 1800, 7200s.
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Similar to what is shown in the previous sections, we are going to study what happens at the
numerical outcomes if the substrate is coated with a doubled and then halved ligand concentration
(42.5389 molecules/µm2 and 10.6347 molecules/µm2 respectively).

5.2.4.2 High amount of fibrinogen

The low ratio between the number of receptors available on the cell membrane and the ligands on
the substrate leads to considerably different results to the equivalent VEGFR2-gremlin case. In
fact, Tab. 5.5 and Tab. 5.4 have no substantial differences in the numerical values.

Table 5.5: Co-designing between integrin-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation), correspondent to a
high amount of fibrinogen, is provided. Specifically, both the total that dimensionless quantities
are tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 2.0200 10.3196 0.0000 0.0000 0.0337 0.1720
120 7.0275 11.8379 323.8780 0.0766 0.1172 0.1973
240 17.7100 14.9573 797.7110 0.1886 0.2952 0.2494
360 20.8125 15.7440 1377.5000 0.3257 0.3470 0.2625
480 26.7050 18.4065 1979.2600 0.4680 0.4452 0.3069
600 37.5350 20.3823 2409.4800 0.5697 0.6257 0.3398
720 45.0000 22.2337 2687.1200 0.6353 0.7502 0.3707
840 48.5450 22.8354 2917.6400 0.6898 0.8093 0.3807
960 52.2100 24.0112 3166.3100 0.7486 0.8704 0.4003
1080 55.4000 24.6039 3341.1300 0.7900 0.9236 0.4102
1200 59.3875 26.0124 3490.0000 0.8252 0.9900 0.4336
1320 58.8700 25.5831 3636.5100 0.8598 0.9814 0.4265
1440 57.7225 24.5200 3798.2300 0.8980 0.9623 0.4088
1560 62.0475 25.5762 3961.7600 0.9367 1.0344 0.4264
1680 58.6325 24.3768 4105.3300 0.9706 0.9775 0.4064
1800 59.9850 24.7566 4229.5300 1.0000 1.0000 0.4127
3600 189.6127 53.7018 5428.1700 1.2834 3.1610 0.8953
7200 109.8590 36.9739 6095.5400 1.4412 1.8314 0.6164

Particularly, the main difference is represented in the pictures of Fig. 5.12 and Fig. 5.13e. Here,
the greater amount of ligands, shown in the second figure, leads to a reduction of the width of the
red ring that encircles the EC and, at the same time, an increase in the value of the concentration
of C3.
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Figure 5.12: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolution in time of the normalized total amount of complexes correspondent to a high
amount of fibrinogen is depicted.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.13: Basal distribution of complexes (C3) at the instant t = 0, 600, 1800, 7200s corre-
spondent to a high amount of fibrinogen.
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5.2.4.3 Low amount of fibrinogen

Regarding the case with the availability of ligands equal to 10.6347 molecules/µm2, we can ob-
serve a slight difference in the results already presented in the Tab. 5.6 compared to the 5.4.

Table 5.6: Co-designing between integrin-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation), correspondent to a
low amount of fibrinogen, is provided. Specifically, both the total that dimensionless quantities are
tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 2.0200 10.3196 0.0000 0.0000 0.0337 0.1720
120 7.0275 11.8379 253.4940 0.0642 0.1172 0.1973
240 17.7100 14.9573 709.2570 0.1795 0.2952 0.2494
360 20.8125 15.7440 1276.9600 0.3232 0.3470 0.2625
480 26.7050 18.4065 1881.2800 0.4761 0.4452 0.3069
600 37.5350 20.3823 2280.1400 0.5770 0.6257 0.3398
720 45.0000 22.2337 2539.9100 0.6428 0.7502 0.3707
840 48.5450 22.8354 2752.3900 0.6966 0.8093 0.3807
960 52.2100 24.0112 2963.5000 0.7500 0.8704 0.4003
1080 55.4000 24.6039 3124.8100 0.7908 0.9236 0.4102
1200 59.3875 26.0124 3299.3100 0.8350 0.9900 0.4336
1320 58.8700 25.5831 3428.1600 0.8676 0.9814 0.4265
1440 57.7225 24.5200 3591.3400 0.9089 0.9623 0.4088
1560 62.0475 25.5762 3714.6400 0.9401 1.0344 0.4264
1680 58.6325 24.3768 3825.0000 0.9680 0.9775 0.4064
1800 59.9850 24.7566 3951.4000 1.0000 1.0000 0.4127
3600 189.6127 53.7018 5085.3300 1.2870 3.1610 0.8953
7200 109.8590 36.9739 5905.6700 1.4946 1.8314 0.6164

Everything would hence seem to lead to the same deductions made for the case with a high concen-
tration of fibrinogen and therefore presume the validity of the current model as well. Nevertheless,
we find such an inference unreasonable. In fact, the practical equivalence of the saturation values
between gremlin and fibrinogen (shown in section 4.3.2), suggest similar available concentrations
either for these ligands. Moreover, such a value, for the current in-vitro experiment (see 4.1),
has to be independent of the kind of cell that spread on the substrate, rather is strictly dependent
on the structural characteristic of the molecule of the ligand itself. All together these considera-
tions induce us to infer that, again, the lower-bound for the concentration of available fibrinogen is
21.2694 molecules/µm2.

Hence, considering the results achieved so far it has been possible to assume that the concentration
of SLV and SLI can not be lower than 21.2694 molecules/µm2. Such a result will be accounted
for in the next model formulations, where no numerical analysis with a concentration of available
ligands lower than this, will be set.
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Figure 5.14: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolution in time of the normalized total amount of complexes correspondent to a low
amount of fibrinogen is depicted.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s
(e) t = 7200s

Figure 5.15: Basal distribution of complexes (C3) at the instant t = 0, 600, 1800, 7200s corre-
spondent to a low amount of fibrinogen.
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5.2.5 Model based on two chemical reactions: integrin interacts with VEGFR2-
gremlin-complex

Experimental evidence showed that integrin promotes long-lasting activation of VEGFR2 [52].
Accordingly, the following chemical reactions are embedded in the framework of our model:

VEGFR2| {z }
V

+Gremlin| {z }
LV

k f
�
kb

C1 , (5.11a)

d Integrin| {z }
I

+e C1

k f
�
kb

C2 . (5.11b)

The governing equations coupled to the chemical reactions 5.11a and 5.11b, reads as follows:

∂cV

∂ t
�D|V DP [cV ]+

∂cC1

∂ t
+ e

∂cC2

∂ t
= 0 , (5.12a)

∂cLV

∂ t
+

∂cC1

∂ t
+ e

∂cC2

∂ t
= sLV , (5.12b)

∂cI

∂ t
�D| I DP [cI ]+d

∂cC2

∂ t
= 0 , (5.12c)

[cC1 ] =
[cV ] [cLV ]

a(5.11a)
, (5.12d)

[cC2 ] =
[cI]

d [cC1 ]
e

a(5.11b)
. (5.12e)

The values calibrated by model 5.2.3 will be here inherited, particularly sLV .
Moreover, the calibration of the parameter a(5.11b) goes hand in hand with that of the stoichiomet-
ric coefficients d and e. In particular, it is shown in the work [52] that, at the end of the experiment
of time-lapse analysis adhesion assay (t = 7200 s), nearly the 33% of VEGFR2, located in the
basal side of the cell, interact with integrin, while about the 13% of integrin, in the same portion
of the cell, is colocalized with VEGFR2 (see section4.1.1.1).
Concerning the stoichiometry that rules the chemical interaction between integrin-VEGFR2-gremlin-
complex, we have neither any information from previous in-silico analysis nor biological pieces
of information. However, in view of the percentages just discussed and of the fact that the initial
number of VEGFR2 is about four times the number of integrin at the initial time, we retain lawful
to infer that the coefficient d is lower, or at least equal, than e.

Finally, the strategy will be to find the most reasonable combination between the values of param-
eters d, e, and a(5.11b) and to evaluate a posteriori the eventually good match between in-silico and
in-vitro simulations.

The best-fitting have been obtained by the following stoichiometric coefficients:
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Table 5.7: In-silico results describing colocalization of VEGFR2 and integrin at the and of the
experiments. Gremlin concentration equal to 21.2694 molecules/µm2

Stoichiometric
coefficients

a(5.11b) % of VEGFR2
colocalized
with integrin

% of integrin
colocalized
with VEGFR2

d = 1, e = 4 0.00138 88.50 88.20
d = 1, e = 2 0.14464 62.05 98.61
d = 1, e = 1 0.04519 31.96 99.05

We notice a fair matching between experimental and numerical data for all three cases above-
showed, but mainly for the cases with e = 1 and e = 2 (see the Fig 5.16, Fig. 5.17 and Fig. 5.18)).

Figure 5.16: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolutions in time of the normalized total amounts of complexes are depicted for d =
e = 1.
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Figure 5.17: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolutions in time of the normalized total amounts of complexes are depicted for d = 1
and e = 2.

Figure 5.18: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolutions in time of the normalized total amounts of complexes are depicted for d = 1
and e = 4.

102



Analyzing the trend of the percentages in Tab. 5.7, we notice two things:

1. little by little e tends to one, the percentage of VEGFR2 in contact with integrin decreases,
and the percentage of integrin that colocalize with VEGFR2 increases;

2. again, as in the case of integrin-fibrinogen interaction (section 5.2.4), we have a strong dis-
crepancy between the experimental and numerical data for times t > 1800 s.

Similarly to section 5.2.4, we have a strong exposure of integrin (embedded in the vesicles inside
the cell), on the cell membrane: a phenomenon that we know neglected in the current framework.
This implies that a comparison between the percentages of colocalization deduced from the numer-
ical outcomes with the experimental ones is not feasible. Indeed, these values are experimentally
evaluated at t = 7200 s but, we already know, for t > 1800 s exists a discrepancy between numer-
ical and experimental data. Therefore, an attempt to compare these data would seem complete in
vain.

Nevertheless, matching the results we can observe how, concerning the case with d = 1 and e = 1,
the percentage of VEGFR2 colocalized with integrin corresponds to the experimental, about 33%,
whereas the data describing how many integrins are interacting with VEGFR2 is completely dif-
ferent. These data corroborate our belief that by incrementing the amount of integrin by means of
the source term sI we may reach a complete fit with the experimental result. Hence, these pieces of
information could be closely related and they make us opt for a one-to-one stoichiometry between
integrin - C1.

Following, we tabling the evolution on time of the depletion of the receptors by the aids of Tab.
8.2 and 8.3 and together the Fig. 5.16.
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Table 5.8: Co-designing between VEGFR2 and integrin fluorescence intensity (in-vitro experi-
ments) and the number of complexes generating on the cell membrane (in-silico simulation), is
provided. Specifically, the total quantities are tabulated.

Time FRAP
VEGFR2

Error bars
VEGFR2

FRAP in-
tegrin

Error bars
integrin

C2 C1

0 1.8125 1.7470 2.0700 1.3727 0.0000 0.0000
120 2.6775 1.7774 2.1825 1.4993 269.3160 671.6870
240 3.6175 2.0371 2.5650 1.3584 714.1570 2125.3170
360 8.8875 4.5427 2.9550 1.4014 1269.7700 4019.9100
480 12.0225 5.1638 3.0775 1.5473 1859.5500 6101.9100
600 17.4375 4.0251 3.8900 1.7371 2271.3600 7363.4200
720 20.1325 4.3776 4.4750 1.6674 2532.8000 8087.9800
840 19.6650 4.4217 5.3775 1.5673 2756.2900 8700.9700
960 20.4075 4.5417 5.9175 1.9579 2954.8100 9238.4600
1080 22.8600 4.7168 6.6400 2.3900 3134.8800 9721.8400
1200 23.0375 5.5135 6.9850 1.9568 3300.1900 10162.4800
1320 23.2725 4.8333 7.8000 2.0404 3453.1300 10568.5800
1440 24.9150 5.5791 7.6800 2.4520 3595.4900 10945.8200
1560 25.8650 4.7980 8.4550 1.9578 3728.4700 11298.3500
1680 27.8800 6.0900 8.8375 2.0512 3853.0400 11629.1000
1800 26.9075 5.9243 9.0225 2.5968 3969.9700 11940.6800
3600 39.2718 18.8742 57.3603 12.2651 5101.3000 15094.6400
7200 36.8140 17.3697 55.5292 10.0477 5832.0000 16382.5000
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Table 5.9: Co-designing between VEGFR2 and integrin fluorescence intensity (in-vitro experi-
ments) and the number of complexes generating on the cell membrane (in-silico simulation), is
provided. Specifically, the dimensionless quantities are tabulated.

Time Adimensional
C2

Adimensional
C1

Adimensional
VEGFR2

Adimensional
error bars
VEGFR2

Adimensional
integrin

Adimensional
error bars
integrin

0 0.0000 0.0000 0.0674 0.0649 0.0769 0.0510
120 0.0226 0.0563 0.0995 0.0661 0.0811 0.0557
240 0.0598 0.1780 0.1344 0.0757 0.0953 0.0505
360 0.1063 0.3367 0.3303 0.1688 0.1098 0.0521
480 0.1557 0.5110 0.4468 0.1919 0.1144 0.0575
600 0.1902 0.6167 0.6481 0.1496 0.1446 0.0646
720 0.2121 0.6773 0.7482 0.1627 0.1663 0.0620
840 0.2308 0.7287 0.7308 0.1643 0.1999 0.0582
960 0.2475 0.7737 0.7584 0.1688 0.2199 0.0728
1080 0.2625 0.8142 0.8496 0.1753 0.2468 0.0888
1200 0.2764 0.8511 0.8562 0.2049 0.2596 0.0727
1320 0.2892 0.8851 0.8649 0.1796 0.2899 0.0758
1440 0.3011 0.9167 0.9260 0.2073 0.2854 0.0911
1560 0.3122 0.9462 0.9613 0.1783 0.3142 0.0728
1680 0.3227 0.9739 1.0361 0.2263 0.3284 0.0762
1800 0.3325 1.0000 1.0000 0.2202 0.3353 0.0965
3600 0.4272 1.2641 1.4595 0.7014 2.1318 0.4558
7200 0.4884 1.3720 1.3682 0.6455 2.0637 0.3734

By analogy with what we did in the section 5.2.4, we compute, by means a ratio between the
experimental and numerical normalized values, how many integrins, should be provided through
sI for find a well-match between numerical and experimental results. In particular, it is trivial to

compute:
2.1318
0.4272

⇠ 4.9898 for t = 3600 s and
2.0637
0.4884

⇠ 4.2253 for t = 7200 s. We can deduce
that at time t = 3600 s we should have a five-time larger amount of integrin in the basal side of the
cell and about four-time at t = 7200 s.

A significant discrepancy, therefore, emerges between the missing values of integrin in the case of
integrins interaction with fibrinogen (about 2 times that expected by the model) and in the case of
interplay with the VEGFR2-Gremlin complex (about 5 times that expected by the model). These
data are very surprising, merely for the fact that the first interaction (involving high-affinity inte-
grin) should lead to a greater demand for integrin receptors in the basal part of the cell compared
to the other chemical reaction mentioned above.

Interestingly, this data can be explained, from an experimental point of view, through the so-called
clustering of integrin receptors at the adhesion sites (focal adhesions). Such a phenomenon can dis-
tort the perceived fluorescence of the receptors during time-lapse analysis, misrepresenting their
experimental interpretation. Consequently, we think that the fluorescence datum, shown in Fig
5.10, underestimates the real quantity of integrins overexpose by the EC, and so, we infer that the
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real quantity can be at least the one calculated in the current section (about 5 times that expected
by the model).

The possibility of correctly calibrating membrane externalization of integrin receptors has impres-
sive importance in order to include in the current models a correct description of the organization
of the cytoskeleton and of the adhesion sites.

Finally, regarding Fig. 5.19 and 5.20, we can observe the complementarities between the pictures
Fig. 5.19e and 5.20e. In fact, the red ring formed by C2 is superimposable with the external zone
of C1, similarly to the results in Appendix B.2.1. Such a phenomenon is supported by the diffusion
of the integrin receptor from the apical to the basal side of the cell.

(a) t = 0s
(b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.19: Basal distribution of complexes (C1) at the instant t = 0, 600, 1800, 7200s.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.20: Basal distribution of complexes (C2) at the instant t = 0, 600, 1800, 7200s.
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5.2.5.1 Model based on two chemical reactions with a high amount of gremlin

Similar to what has just been done in the previous section, we analyze the results drawn from
a numerical model with a high concentration of ligands. Again, the numerical result that better
fitting the experimental ones correspond to the following values of d, e, and a(5.11b).

Table 5.10: In-silico results describing colocalization of VEGFR2 and integrin at the and of the
experiments. Gremlin concentration equal to 42.5389 molecules/µm2

Stoichiometric
coefficients

a(5.11b) % of VEGFR2
colocalized
with integrin

% of integrin
colocalized
with VEGFR2

d = 1, e = 4 0.00138 94.33 95.65
d = 1, e = 2 0.14464 56.28 99.66
d = 1, e = 1 0.04519 27.99 99.40

Figure 5.21: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes correspondent to a high amount of gremlin. Evolutions in time of the normalized total
amounts of complexes are depicted for d = e = 1.
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Figure 5.22: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes correspondent to a high amount of gremlin. Evolutions in time of the normalized total
amounts of complexes are depicted for d = 1 and e = 2.

Figure 5.23: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes correspondent to a high amount of gremlin. Evolutions in time of the normalized total
amounts of complexes are depicted for d = 1 and e = 4.

Through careful observation of Tab. 5.10 and Fig. 5.21, 5.22, and 5.23, we infer that a stoichiom-
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etry one-to-one between d and e is the most desirable. Moreover, comparing the results embedded
in Tab. 5.7 and 5.10 we can appreciate a decrease in the percentage of VEGFR2 colocalized with
integrin in the basal part of the cell, from about 32% to 28%. Hence, would seem that increasing
the availability of ligands in the substrate implies a reduction of the percentage of colocalization of
VEGFR2. This coincides with what observed on the ratio between non-dimensional, experimen-

tal, and numerical quantities, at the temporal instants t = 3600 s
2.1318
0.4024

⇠ 5.2981 and t = 7200 s
2.0637
0.4564

⇠ 4.5222 (see Tab. 5.12).

Table 5.11: Co-designing between VEGFR2 and integrin fluorescence intensity (in-vitro experi-
ments) and the number of complexes generating on the cell membrane (in-silico simulation), cor-
respondent to a high amount of gremlin, is provided. Specifically, the total quantities are tabulated.

Time FRAP
VEGFR2

Error bars
VEGFR2

FRAP in-
tegrin

Error bars
integrin

C2 C1

0 1.8125 1.7470 2.0700 1.3727 0.0000 0.0000
120 2.6775 1.7774 2.1825 1.4993 300.7140 826.7230
240 3.6175 2.0371 2.5650 1.3584 755.0610 2318.6010
360 8.8875 4.5427 2.9550 1.4014 1317.1500 4244.0100
480 12.0225 5.1638 3.0775 1.5473 1906.3700 6328.9200
600 17.4375 4.0251 3.8900 1.7371 2331.3600 7679.3100
720 20.1325 4.3776 4.4750 1.6674 2601.5000 8485.9200
840 19.6650 4.4217 5.3775 1.5673 2831.1800 9177.9800
960 20.4075 4.5417 5.9175 1.9579 3036.2200 9794.3000
1080 22.8600 4.7168 6.6400 2.3900 3222.3400 10357.8700
1200 23.0375 5.5135 6.9850 1.9568 3393.0800 10875.8000
1320 23.2725 4.8333 7.8000 2.0404 3551.1500 11357.6800
1440 24.9150 5.5791 7.6800 2.4520 3698.4200 11810.5500
1560 25.8650 4.7980 8.4550 1.9578 3835.9700 12238.4600
1680 27.8800 6.0900 8.8375 2.0512 3964.6600 12642.7900
1800 26.9075 5.9243 9.0225 2.5968 4085.3800 13026.5300
3600 39.2718 18.8742 57.3603 12.2651 5241.3600 17171.0600
7200 36.8140 17.3697 55.5292 10.0477 5944.7200 20940.2200
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Table 5.12: Co-designing between VEGFR2 and integrin fluorescence intensity (in-vitro experi-
ments) and the number of complexes generating on the cell membrane (in-silico simulation), cor-
respondent to a high amount of gremlin, is provided. Specifically, the dimensionless quantities are
tabulated.

Time Adimensional
C2

Adimensional
C1

Adimensional
VEGFR2

Adimensional
error bars
VEGFR2

Adimensional
integrin

Adimensional
error bars
integrin

0 0.0000 0.0000 0.0674 0.0649 0.0769 0.0510
120 0.0231 0.0635 0.0995 0.0661 0.0811 0.0557
240 0.0580 0.1780 0.1344 0.0757 0.0953 0.0505
360 0.1011 0.3258 0.3303 0.1688 0.1098 0.0521
480 0.1463 0.4858 0.4468 0.1919 0.1144 0.0575
600 0.1790 0.5895 0.6481 0.1496 0.1446 0.0646
720 0.1997 0.6514 0.7482 0.1627 0.1663 0.0620
840 0.2173 0.7046 0.7308 0.1643 0.1999 0.0582
960 0.2331 0.7519 0.7584 0.1688 0.2199 0.0728
1080 0.2474 0.7951 0.8496 0.1753 0.2468 0.0888
1200 0.2605 0.8349 0.8562 0.2049 0.2596 0.0727
1320 0.2726 0.8719 0.8649 0.1796 0.2899 0.0758
1440 0.2839 0.9067 0.9260 0.2073 0.2854 0.0911
1560 0.2945 0.9395 0.9613 0.1783 0.3142 0.0728
1680 0.3044 0.9705 1.0361 0.2263 0.3284 0.0762
1800 0.3136 1.0000 1.0000 0.2202 0.3353 0.0965
3600 0.4024 1.3182 1.4595 0.7014 2.1318 0.4558
7200 0.4564 1.6075 1.3682 0.6455 2.0637 0.3734

The results so far commented leave room for interpretation of the correct concentration of gremlin
which must be available in the substrate, but nevertheless, they provide an estimate of the material
parameters connected to the chemical reaction 5.11b. Moreover, having identified the more prob-
ably stoichiometry with the current models, it will possible to understand how the introduction of
well-calibrated receptor sources, in future works, will affect the value of sLV and the other param-
eters.

Finally, similarly to what is seen in section 5.2.3.2, we observe an increase in the concentration of
complexes with a simultaneous space reduction of the C1 high-intensity band. Again, the reason
is to be attributed to the high-availability of ligands, which trap the free receptors coming from
the apical side of the cell in the external side of the cell-substrate contact zone (see Fig. 5.24 and
5.25).
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.24: Basal distribution of complexes (C1) at the instant t = 0, 600, 1800, 7200s corre-
spondent to a high amount of gremlin.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.25: Basal distribution of complexes (C2) at the instant t = 0, 600, 1800, 7200s corre-
spondent to a high amount of gremlin.
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5.2.6 Model based on three chemical reactions
In line with what has been done so far, we try to extend our work in order to study a fully coupled
model involving all the previous chemical reactions. No parameters need to be calibrated in this
formulation, inasmuch as no in-vitro experiments have been set involving all these species. Hence,
the main goals of the current model are to predict the respective proportionality of concentrations
of the complexes in the case of co-presence of the following chemical interactions (5.13). In order
to do that, further experimental consideration is here introduced, namely that VEGFR2 and integrin
can colocalize only outside the adhesion sites (Focal Adhesion).

V +LV

k f
�
kb

C1 , (5.13a)

I + C1

k f
�
kb

C2 , (5.13b)

I +LI

k f
�
kb

C3 . (5.13c)

∂cV

∂ t
�D|V DP [cV ]+
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∂ t
+
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∂ t
= 0 , (5.14a)
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∂ t
+
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∂ t
+

∂cC2

∂ t
= sLV , (5.14b)

∂cI

∂ t
�D| I DP [cI ]+

∂cC2

∂ t
+

∂cC3

∂ t
= 0 , (5.14c)

∂cLI

∂ t
+

∂cC3

∂ t
= sLI , (5.14d)

[cC1 ] =
[cV ] [cLV ]

a(5.13a)
, (5.14e)

[cC2 ] =
[cI] [cC1 ]

a(5.13b)
, (5.14f)

[cC3 ] =
[cI] [cLI ]

a(5.13c) . (5.14g)

Below, the outcomes are tabulated in Tab. 5.13, and then depicted in Fig. 5.26.
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Table 5.13: Total and dimensionless quantities of complexes generating on the cell membrane
(in-silico simulation), are tabulated.

Time C2 C1 C3 Adimensional
C2

Adimensional
C1

Adimensional
C3

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
120 23.9587 661.3557 288.8260 0.0020 0.0557 0.0243
240 29.2289 2106.3289 750.2990 0.0025 0.1773 0.0632
360 33.7717 3993.7917 1320.2800 0.0028 0.3362 0.1111
480 37.2486 6070.7586 1916.9600 0.0031 0.5110 0.1614
600 126.5970 7332.3770 2262.2500 0.0107 0.6172 0.1904
720 238.3150 8055.6850 2426.7800 0.0201 0.6781 0.2043
840 315.1300 8665.5700 2580.6200 0.0265 0.7294 0.2172
960 379.8290 9199.9390 2709.7600 0.0320 0.7744 0.2281
1080 434.0610 9679.8210 2859.8000 0.0365 0.8148 0.2407
1200 481.7200 10117.3400 2989.0400 0.0405 0.8516 0.2516
1320 526.4700 10520.2700 3102.7900 0.0443 0.8855 0.2612
1440 567.9750 10894.5750 3208.6300 0.0478 0.9170 0.2701
1560 604.5440 11244.0440 3311.0700 0.0509 0.9464 0.2787
1680 636.9160 11571.9160 3417.7800 0.0536 0.9740 0.2877
1800 665.6620 11880.5620 3518.8300 0.0560 1.0000 0.2962
3600 856.2090 14985.0090 4498.1200 0.0721 1.2613 0.3786
7200 701.7660 16237.9660 5361.2800 0.0591 1.3668 0.4513
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Figure 5.26: Numerical (dots with continuous line) outcomes correspondent to the evolutions in
time of the normalized total amounts of complexes are depicted.

116



Forcedly, we will assume valid the inferences built by the previous models. The concurrent ob-
servation in the models 5.2.4 and 5.2.5, of an impressive increase of availability of integrin (after
t > 1800 s), leads us to assume that the same phenomenon is likely to repeat for a problem such
as the one here analyzed. Therefore, every numerical comparison among the complexes values
deduced for times greater than t = 1800 s will be considered meaningless.

In particular, it is interesting to observe the ratio between the normalized values of C2 and C3 at

time t = 1800 s, which turns out to be equal at
0.0560
0.2962

⇠ 0.1892.
The outcomes would seem to confirm a predominance of the integrin-fibrinogen interaction with
respect to integrin-C1, showing a ratio among C2/C3 about 19%, i.e. the quantity of C3 is five-
time larger than C2. This phenomenon is to be caused to the double-contemporary contribution
of a "presumed" higher chemical affinity between integrin-fibrinogen with respect to integrin-C1
and the larger availability of ligands LI compared to C1. We have to use the word "presumed"
because it is very likely that the chemical affinity between integrin and its specific ligand is greater
than that between integrin-C1, but unfortunately, we can not prove it neither experimentally nor
through the current model formulation in a definitive way. Indeed, despite it is possible to calibrate
the parameter a(5.13b) we may not state with certainty if a(5.13b) > a(5.13c) because of the value

of equilibrium constant K(5.13c)
eq or due to the value assume by ratio

cmax
I cmax

C1

cmax
C2

. In fact, we have

not elements for deducing neither the values of cmax
I , cmax

C1
, cmax

C2
nor K(5.13c)

eq . Furthermore, the
hypothesis of a dilute solution as well (as assume in section 3.3.1.2) could be distorting the veracity
of the model response. Nevertheless, the good results obtained in section 5.2.5 make us lean
towards the validity of this hypothesis.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.27: Basal distribution of complexes (C1) at the instant t = 0, 600, 1800, 7200s.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.28: Basal distribution of complexes (C2) at the instant t = 0, 600, 1800, 7200s.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.29: Basal distribution of complexes (C3) at the instant t = 0, 600, 1800, 7200s.
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5.2.6.1 Model based on three chemical reactions with a high amount of ligands

Following, we show the relevant data associated with an availability of ligands equal to 42.5389 molecules/µm2,
both for gremlin and fibrinogen.

Table 5.14: Total and dimensionless quantities of complexes generating on the cell membrane
(in-silico simulation), are tabulated in correspondence of high amounts of gremlin and fibrinogen.

Time C2 C1 C3 Adimensional
C2

Adimensional
C1

Adimensional
C3

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
120 20.1274 817.7314 319.6010 0.0016 0.0630 0.0246
240 23.6757 2302.8357 791.6680 0.0018 0.1774 0.0610
360 26.4551 4222.8351 1369.2700 0.0020 0.3253 0.1055
480 28.2369 6304.4769 1966.4900 0.0022 0.4856 0.1515
600 102.7550 7655.1350 2340.0700 0.0079 0.5896 0.1802
720 213.1870 8461.6770 2507.5600 0.0164 0.6517 0.1931
840 284.6810 9151.0510 2670.9900 0.0219 0.7048 0.2057
960 339.9840 9766.5040 2809.6900 0.0262 0.7522 0.2164
1080 389.6340 10326.9140 2983.1200 0.0300 0.7954 0.2298
1200 431.6720 10842.7720 3135.7500 0.0332 0.8351 0.2415
1320 467.3690 11322.6690 3258.4800 0.0360 0.8721 0.2510
1440 499.6840 11773.8840 3359.3800 0.0385 0.9069 0.2587
1560 529.5940 12199.3940 3454.5400 0.0408 0.9396 0.2661
1680 555.8790 12601.3790 3549.6000 0.0428 0.9706 0.2734
1800 578.4350 12983.1350 3648.6500 0.0446 1.0000 0.2810
3600 673.0810 17101.0810 4749.4400 0.0518 1.3172 0.3658
7200 461.9290 20832.9290 5632.8800 0.0356 1.6046 0.4339
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Figure 5.30: Numerical (dots with continuous line) outcomes correspondent to the evolutions in
time of the normalized total amounts of complexes are depicted in correspondence of high amounts
of gremlin and fibrinogen.

The trend of the curves shown in Fig. 5.30 is completely equivalent to what is seen in Fig. 5.26.
However, through the numerical representation in Tab. 5.14 we can observe how it changed the
ratio between the non-dimension value (at t = 1800 s) assumed by C2 and C3, from the case with
ligands concentration equal to 21.2694 molecules/µm2 to 42.5389 molecules/µm2: i.e., from
0.0560
0.2962

⇠ 0.1892 to
0.0446
0.2810

⇠ 0.1585. This result shows a tendency to decrease the concentra-
tion of integrin in the low-affinity form with respect to the high one when the concentration of
ligands available is greater.

In the end, the numerical model suggests a possible extension of the experimental model that would
allow deducing two biologically important pieces of information: the relationship between the
concentrations of complexes concerning integrin, and once again the values of the concentrations
of the aforementioned ligands.
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(a) t = 0s
(b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.31: Basal distribution of complexes (C1) at the instant t = 0, 600, 1800, 7200s corre-
spondent to a high amount of gremlin and fibrinogen.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s (e) t = 7200s

Figure 5.32: Basal distribution of complexes (C2) at the instant t = 0, 600, 1800, 7200s corre-
spondent to a high amount of gremlin and fibrinogen.
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(a) t = 0s (b) t = 600s

(c) Legend

(d) t = 1800s
(e) t = 7200s

Figure 5.33: Basal distribution of complexes (C3) at the instant t = 0, 600, 1800, 7200s corre-
spondent to a high amount of gremlin and fibrinogen.

In conclusion, it is important to note that Figures 5.11, 5.13, 5.15, 5.24, 5.25, 5.28, 5.29, 5.32, and
5.33 show slight oscillations into the back of the traveling wave. This phenomenon is correlated
either to mesh effects connected to the relationship between the temporal and spatial discretization
step and to the modeling non-linearities, which increases by the close connection between the
governing equations induced by the coupling of the chemical reactions.
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5.2.7 Conclusions
In the current work, a multidisciplinary approach among biologists and engineers was set with the
aim to describe, at the molecular level, the events that arise at the early stages of angiogenesis.
Concurrently to the in-vitro analyses presented in the works [51], [52], and section 4.1, we imple-
mented in the C++ software library called deal.ii (https://www.dealii.org/ - used for solving PDEs
by means of Finite Element codes -) four different patterns based on a multi-physics model ther-
modynamically consistent and framed in the continuum thermodynamics [138], [139] and [140]
and well described in section 3.1. Here, the above-mentioned chemical reactions are described by
means of the trapping model presented in [141], where the trapping mechanism is governed by
the chemical reaction between proteins that are free to move on the cell membrane with molecules
fixed at the substrate.
This combined work led to the quantification of numerous experimental parameters, highlighting
how the availability of a mathematical model changes the way we observe reality.
A gradual approach has been here adopted in order to come to the complete calibration of the
model parameters. Therefore, two models of the four above-mentioned have been set with the
goal to describe a single receptor-ligand chemical reaction. In particular, these models describe
the relocation of a receptor, VEGFR2, or integrin, on the cell membrane of an EC in contact with
a substrate enriched with a specific ligand, respectively gremlin or fibrinogen.
A third model has been built as an extension of the VEGFR2-gremlin model; here, a further chem-
ical reaction has been added, namely that concerning integrin and VEGFR2-gremlin-complex.
Lastly, we have introduced the last model able to couple all the three chemical reactions so far
have been mentioned.

5.2.7.1 Qualitative results

The evolution in time of the curve that describes the evolution of the total amount of complexes
on the basal side of the EC allows distinguishing three characteristic events associated with just as
many physics phenomena: pure chemical (initial contact between the cell and substrated), chemo-
mechanical (until 600 s) and a final mechanism driven primarily by the diffusive properties of
free molecules. All this is correlated with the hypothesis to neglect the receptors’ internaliza-
tion/externalization phenomena inside our model. Indeed, such a hypothesis seems like a legitim
for VEGFR2-gremlin, which is ruled, in its final branch of the curve by a pure diffusive mecha-
nism Fig. 5.5. Viceversa, for what concerns integrin-fibrinogen, we observe a discrepancy with
the experimental results in the same area of the curve, either for integrin-fibrinogen interaction,
that for the one integrin-VEGFR2-gremlin-Complex (Fig. 5.10 and Fig.5.16). However, thanks to
the current model it is possible to approx quantify the lack of receptors in both cases, i.e. 2 times
for integrin in the high-affinity state and 4-5 times for the low one, with respect to the numerical
outcomes. Such a difference in the amount of integrin externalized between the model presented
in section 5.2.4 and 5.2.5, which appears surprising, could be related to possible clustering phe-
nomena of integrin at the sites of adhesion with fibrinogen, which can lead to an underestimation
of the fluorescence of the receptor itself in the problem presented in section 5.2.4. This result
has important consequences in the correct extension of the current model to one describing the
cytoskeletal activity of an EC. Finally, matching all three chemical-reaction exclusively by means
of an in-silico experiment, we can state a prediction on the trend of the curves of depletion of free
receptors when two ligands coexist on the substrate. In this frame, we can predict the probable
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ratio in which each complex could be found respectively to the others. Particularly, it has been
observed that the quantity of complex C3, at instant t = 1800 s, is about five-time C2.

5.2.7.2 Quantitative results

In-silico outcomes allow quantifying the numeric values of several material parameters. This
result is the main reason that forces us to gradually approach the above mentioned four mod-
els, from patterns embedding a single chemical reaction to that with three. In fact, by means of
the model describing only ligand-receptor chemical interaction, we have calibrated the minimum
value of ligands-concentrations that effectively interact with free receptors on the cell membrane:
21.2694 molecules/µm2 both for gremlin and fibrinogen. Having calibrated the appropriate values
the concentrations of ligands available, we moved on to interpreting the results of the two chem-
ical reaction model where it has been possible to deduce a probable stoichiometry between the
molecules of integrin and VEGFR2-gremlin-Complex, that reads as follows:

Integrin| {z }
I

+ C1

k f
�
kb

C2 . (5.15)

The achieved comprehension, in spite of the two major simplifying assumptions taken (infinitely
fast kinetics hypothesis and surrogated mechanics), encourages us to devote efforts towards more
sophisticated formulations (see Part III), so as to further lessen the numerical approximations in-
troduced herein. We will see how this improvement will enhance the predictive capabilities of the
current model by, for instance, properly accounting for the mechanical deformation of the cell.
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Appendix A

Backward Euler formulation

Equation (3.82b)
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Equation (3.82d)
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Equation (3.82a)
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Equation (3.82c)
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Appendix B

Simulations

The relocation of VEGFR-2 and integrin along the cell membrane of an endothelial cell during
its adhesion and spreading onto a ligands-enriched substrate has been simulated implementing a
fully coupled Newton-Raphson solver for the discretized weak form (3.94) exploiting the high
performance computing library deal.ii ( see https://www.dealii.org ).

B.1 Parameters and data
The process was investigated over a time span of t = 3900 s, an adequate extent for the deploy-
ment of the experimentally observed multi-field processes. The parameter t f , which represents the
time required for a complete adhesion, was calibrated as t f = 600 s from experimental pieces of
evidence. Since spreading has been mechanically surrogated in the present note, half of the sphere
that geometrically recovers the shape of the membrane is taken as covered by ligands at time t f .
The finite time required for binding two reactants has been set to t = 1 s.

The size l = 20µm of the radius of the cell-sphere has been deduced from an average of 50 measure-
ments on different endothelial cells [138, 139]. Utilizing two different experimental techniques,
Fluorescence Recovery After Photobleaching (FRAP) and Surface Plasmon Resonance (SPR), the
diffusivity of the VEGFR-2 and the kinetic parameters of gremlin/VEGFR-2 chemical reaction
have been estimated.

Hence, VEGFR2 diffusivity was estimated D|V = 0.198
µm2

s
, as in the work [138].

Through the SPR, we deduce the kinetics parameters and so the standard Gibbs free energy

(DG(1)
0 = �32949.0

J
mol

), that is correlated with the equilibrium constant by the following re-
lation:

K(1)
eq =

"
�

DG(1)
0

RT

#
= 354058.31692 , (B.1)

where T = 310.15 K and R = 8.314462618
J

K mol
are the absolute temperature and the gas con-

stant, respectively. The value of K(1)
eq turns out to be prominent for the current work in order to
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deduce the parameter a(1) =

⇥
cmax

V
⇤h

cmax
LV

i

h
cmax

C1

i 1

K(1)
eq

. Finally, assuming
⇥
cmax

V
⇤
=
h
cmax

C1

i
and comput-

ing (from SPR analysis) the value of cmax
LV

= 16000
molecules

µm2 [138], we can find a(1).

The amount of VEGFR-2 on the cell membrane per µm2 at the beginning of the process (i.e.
24000 molecules [158, 48]), cV (~x,0) = 4.8 molecules

µm2 , come out dividing the number of high-affinity
binding sites for cell surface area.

Consistent with in vitro observations, it has been taken cmax
V = cmax

C1
= cmax

C2
and cmax

I = cmax
C3

. Fur-
thermore, the following parameters have been deduced from preliminary experimental results:

• D| I, is the diffusivity of integrin: here assumed equal to 0.23 µm2

s ;

• K(2)
eq and K(3)

eq , are the equilibrium constants for the chemical reactions (3.2) and (3.3): here
taken equal to K(1)

eq (assumption);

• cI(~x,0), is the initial concentration of free integrin that has been taken to be equal to 8 molecules
µm2

(a value that is reasonably larger than the initial concentration of VEGFR-2 but without ex-
perimental confirmation);

• cmax
LI

and cmax
I , are the saturation limits for the fibronectin (or fibrinogen) and integrin: here

assumed equal to cmax
LV

, the saturation limit for gremlin.

B.1.1 Numerical approximation of sLV and sLI.
To avoid discontinuities, a “gaussian” approximation on the relationships (3.11) has been imple-
mented:

sLV ' aexp[�((t �b)2)/(c2)] , (B.2a)

sLI ' d exp[�((t � e)2)/( f 2)] , (B.2b)

in which the coefficients a, b, c, d, e, f characterize the shape of sLV and sLI .
Time integration can be performed analytically

Z t

0
sLV (~x,t)dt = SLV (~x, t)�SLV (~x,0) =

1
2

ac
p

p(Er f [b/c]�Er f [(b� t)/c]) , (B.3a)
Z t

0
sLI(~x,t)dt = SLI(~x, t)�SLI(~x,0) =

1
2

d f
p

p(Er f [e/ f ]�Er f [(e� t)/ f ]) . (B.3b)

Expressions (B.3) are consistent with the requirements SLV (~x,0) = 0 and SLI(~x,0) = 0.
The function (B.3) provides a supply of ligands, at the end of the cell-substrate contact dynamic
process, equal to 16 molecules

µm2 . Such a total density of ligands is almost as twice as compared to the
initial concentration of integrins (here fixed at 8 molecules

µm2 ) and more than three times compared to
VEGFR-2 (here fixed at 4.8 molecules

µm2 ).
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Figure B.1: Half-sphere tessellation via hexagons.

B.1.2 Discretization of geometry.
The tessellation of the cell membrane consists of 37650 quadrilaterals, uniformly distributed over
the spherical surface. The discretization, depicted in Fig. B.1, remained unchanged throughout the
analysis, with no re-meshing.

B.2 Outcomes
In addition to the values of c?

V and c?
I , which are derived from the linear system solution together

with c?
A,c?

B,c?
D,c?

E , the values of c?
LV

, c?
LI

, c?
C1

, c?
C2

, c?
C3

will be evaluated and converted back into
dimensional quantities, at each Gauss point, during the post-processing, by means of the identities
(3.88) and (3.89).

B.2.1 Evolution in space and in time of free receptors and complexes
The evolution in space and time of free receptors and complexes is regulated by three mecha-
nism: chemistry - chemical interaction among ligands-receptors (chemical reactions (3.1), (3.3))
and receptor-complex (chemical reaction (3.2)), mechanics - mechanical spreading of the cell that
puts ligands into contact with receptors, and diffusion - due to the Brownian motion of unbound re-
ceptors. Chemical reaction (3.2) connects the reactions (3.1) and (3.3). Accordingly, the evolution
in space and time of free receptors is connected to the history of complexes.

B.2.2 Depletion of VEGFR-2
A major depletion of free VEGFR-2 on the entire membrane is observed in numerical simulations
(Fig. B.2): the concentration of free VEGFR-2 decreases from the initial amount (4.8molecules

µm2

) to a value one order of magnitude smaller on the apical side (after 3900 s). Free VEGFR-2
receptors on the basal membrane are essentially absent. Concerning the chemical interactions
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(a) t=0 s (b) t=3900 s

Figure B.2: Comparison between the concentration distribution of VEGFR2 at the initial and final
time of the analyses.

involving VEGFR-2, since there is a much higher quantity of integrin and gremlin than VEGFR-2,
it emerges that:

1. the equilibrium constants of the reactions (3.1) and (3.2), are extremely high (and compara-
ble in magnitude). As such, they favor the production of complexes;

2. when a receptor cV gets in contact with the corresponding ligand cLV , cC1 is immediately
generated;

3. the newly produced complex instantly interacts with the available integrin, giving cC2 .

This chemical-loop concerning cV , cLV , cI, cC1 and cC2 , occurs whenever two reactants of a specific
chemical reaction meet on the cell membrane.

The physics that presides the motion of the reagents changes according to the time of observation
of the events. Because the time scale of the mechanics is much faster than that of diffusion, one dis-
criminates a first chemo-mechanically-dominated period, which begins at the instant t = 0 s (pure
chemo-dominant) and terminates at the end of the mechanical spreading of the cell (t f = 600 s).
During this time, the basal part of the cell completely adheres to the substrate, and the VEGFR-2
receptors get trapped [141] by the ligands.

A second phase, chemo-diffusive-dominated, exists from t = t f until the end of the analysis, at
t = 3900 s. During this period, free receptors diffuse across the cell membrane, from the apical
to the basal side of the cell. As soon as they meet ligands, they are immediately captured on the
substrate.

In order to visualize the overall information mentioned above, a few frames of the evolution of
VEGFR-2 over time are shown in Fig. B.3.
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(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Figure B.3: Distribution of the concentration of the VEGFR-2 at times t =
0, 500, 1000, 2000, 3000, 3900 s.
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B.2.3 Evolution of C1 and C2.
From the frames in Fig. B.4 it is seen that two “rings" of complexes C1 exist on the cell membrane
in contact with ligands.

(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Figure B.4: Distribution of the concentration of the complex cC1 at time t =
0, 500, 1000, 2000, 3000, 3900 s.
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Moving from the pole at the basal side of the cell towards the equatorial area of the sphere,
three homogeneous bands are clearly visible. They show different intensities: medium (about

3.2
molecules

µm2 ), high (about 4.2 molecules
µm2 ) and low (about 2.2

molecules
µm2 ), respectively. These dif-

ferent areas of complexes accumulation generate progressively. The medium zone is essentially
completed at the end of the chemo-mechanical-dominated phase (t f = 600 s), whereupon the two
rings grow throughout the chemo-diffusive-dominated phase.

Once again, we highlight that it is not possible to study the outcome of a single reaction, because
all three are intimately linked. If one considers the distribution of the complex C2, in Fig. B.5, an
accumulation at the edge that delimitates the area of contact between cell and substrate becomes
evident. It is easy to figure out that the low concentration ring for C1 in Fig. B.4 is, at the same
time, a zone for the high accumulation of complex C2.

In fact, C1 would accumulate at the boundary between cell and substrate. This phenomenon has
been illustrated in depth in [138] and motivated by the diffusion of VEGFR-2 from the apical side
toward the basal membrane coupled to the chemical reaction (3.1), which highly favors the pro-
duction of C1. As soon as the latter is formed, reaction (3.2) is triggered and it proceeds until
integrin receptors are available. The latter, however, are rapidly consumed by reactions (3.2) and
(3.3) and once they are fully depleted, C1 cannot be converted to C2 anymore and it stores itself in
its own accumulation ring. Note that in view of the diffusion of VEGFR-2, the C1 accumulation
ring moves in time towards the basal pole of the cell. In conclusion, the complexes cC1 and cC2 ,
evolve driven by a large flow of receptors from the apical part of the cell towards the basal part.
These free receptors, meeting the corresponding reactants in the cell-substrate contact zone, gen-
erate complexes and become trapped. In this regard, it is useful to analyze the trend of the integrin
receptor and the corresponding complex cC3 generated in the chemical reaction (3.3).
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(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Figure B.5: Distribution of the concentration of the complex cC2 at time t =
0, 500, 1000, 2000, 3000, 3900 s.
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B.2.4 Evolution of CI.
The free integrin receptor I and VEGFR-2 undergo a similar evolution1. Free integrin concen-
tration ranges from 8 molecules

µm2 (value at time t = 0 s) to a value of the order of magnitude of
10�1 ÷ 10�2 molecules

µm2 at the end of the analysis, at time t = 3900 s. The reasons for the global
consumption of integrin, visible in Fig. B.6, are to be found in the receptors-ligands chemical
interactions (3.1)-(3.3).

(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Figure B.6: Distribution of the concentration of integrin at time t =
0, 500, 1000, 2000, 3000, 3900 s.

1As for the VEGFR-2, a first chemo-mechanical-dominated period and a following chemo-diffusive-dominated
phase holds for the integrin as well.
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Figures B.5 and B.7 show an accumulation of complexes C2 and C3 at the edge between cell
and substrate. The magnitude of the concentrations is similar because similar are the equilibrium
constants of chemical reactions (3.2) and (3.3) and the saturation limits of integrins and fibronectin
(or fibrinogen). Unlike the complex C1, which shows three homogeneous areas with different
magnitudes, the concentration of C2 and C3 locates in two ( high intensity and low intensity )
zones. Diffusion guides the free integrin and the VEGFR-2 from the apical part towards the basal
one, leading to the accumulation of complexes in a relatively narrow zone of high availability of
ligands and C1. When free integrins cross the border that identifies the cell-substrate contact zone,
they are immediately captured by LI and C1, which have the same affinity with I. The difference
in concentrations between cC3 and cC2 (cC3 ' 14molecules

µm2 is greater than cC2 ' 13.5molecules
µm2 ) is

due to the different physics that supply ligands and C1. The (larger) availability of fibronectin (or
fibrinogen) is provided by the chemo-mechanics, whereas the C1 at hand is generated from 3.1
and in the high-intensity narrow zone is mostly due to the chemo-diffusive phase that causes the
migration of VEGFR-2 from the apical to the basal side of the cell.
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(a) t=0 s (b) t=500 s

(c) t=1000 s (d) t=2000 s

(e) t=3000 s (f) t=3900 s

Figure B.7: Distribution of the concentration of the complex cC3 at time t =
0, 500, 1000, 2000, 3000, 3900 s.
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In the low-intensity zone, cC3 and cC2 reach the values of about 7molecules
µm2 and 2.6molecules

µm2 , respec-
tively. The gap is due again to the larger availability of fibronectin (or fibrinogen) for the reaction
(3.3) compared to the C1 at hand for the reaction (3.2).
It should be emphasized that the flux of integrins is higher than that of VEGFR-2 because D| I is
bigger than D|V and integrins are consumed concurrently by two chemical reactions. The latter
justifies a large concentration gradient of I.

The main aim of this thesis is to provide insights into receptor dynamics through a co-design be-
tween in-vitro and in-silico experiments. This section has allowed testing the goodness of the
multiphysical model presented in chapter 3 by means of in-silico formulations construction. Prac-
tically, we have discretized and then implemented, in a rephrased form (see 3.90 and 3.91), the set
of governing equations 3.82 deduced from the thermodynamically consistent model presented in
paragraph 3.2. However, no comparison has been made with the experimental results, a subject
that we deal with in detail throughout chapter 5. In fact, the numerical analyzes presented in the
current chapter do not correspond to any real biological experiments, although, the model param-
eters that have been introduced in section B.1 are realistic. Hence, satisfied with the results hereto
obtained, through the next two chapters we are preparing to carry out a coordinated approach be-
tween biology and engineering, adapting the formulations constructed so far in order to describe
real in-vitro experiments.
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Appendix C

Partial properties and non-partial
properties

In the current section, we prove, in an alternative way, that the quantities µu and µh are not partial
properties.

Under the hypothesis of simple system (see [143]) and starting from the fundamental relation (see
[143]), it is possible to deduce and arrange the following pivotal expressions (see [143]):

• Gibbs relation

dU = T dS � pdV + µidni where i = 1, ...,r is the number of constituents; (C.1)

• Euler relation

U = T S � pV + µini where i = 1, ...,r is the number of constituents; (C.2)

• Gibbs-Duhem relation

SdT �V d p+nidµi = 0 where i = 1, ...,r is the number of constituents. (C.3)

Thanks to specific hypotheses (see [143]), it is possible to infer, that the knowledge of the single
chemical potentials, written as a function of (T, p,yi), allows calculating all the properties at the
thermodynamic equilibrium state of a multi-constituent system. However, the measurements of
the values of all these chemical potentials are not a small feat. Consequently, any expressions that
link the properties of a system with multiple constituents with the properties of a one-constituent
system are relevant in this framework, resulting in a massive simplification either on the experi-
mental phase that in the theoretical one [143].

For such a system, it will be feasible to express every possible thermodynamic potential Z =
S, U, H,G...1 by means of the following specific partial derivative:

Z = Z(T, p,n) �! zi =

✓
∂Z
∂ni

◆

T,p,n
,

such that: Z(T, p,n) = Â
i

nizi(T, p,y) ,
(C.10)

1Following, a list of some of the possible characteristic function (see [143]) is shown (in addition to the internal
energy U = U(S,V,n) and the entropy S = S(U,V,n):

143



where: yi =
ni

Âi ni
is the mole fraction and µi(T, p,n) = µi(T, p,y) ([143] chapter 17) knowing that

Âi yi = 1.
Hence, zi is the contribution per unit amount of each constituent to the corresponding extensive
property of the multi-constituent "simple" system (see [143]).

C.1 T,p-partial and T,V- partial properties
Now, together with fondamental relations in energetic (U = U(S,V,n)) or entropic form (S =
S(U,V,n)) we dispose of several expressions that define the chemical potential, particularly one
for each characteristic function:

µi = µi(S,V,n) =
∂U(S,V,n)

∂ni

= µi(U,V,n) =
∂S(U,V,n)

∂ni

= µi(S, p,n) =
∂H(S, p,n)

∂ni

= µi(T,V,n) =
∂Y(T,V,n)

∂ni

= µi(T, p,n) =
∂G(T, p,n)

∂ni
.

(C.11)

Starting from G = G(T, p,n) and its differential dG = �SdT +V d p+ µ ·dn and using Maxwell’s
relations (see [143]),we can define the so-called partial properties (see [143]).

partial entropy

si = si(T, p,n) =
∂S(T, p,n)

∂ni
= �∂ 2G(T, p,n)

∂T ∂ni
= �∂ µi(T, p,n)

∂T
,

(C.12)

• enthalpy, define as
H = U + pV . (C.4)

Differentiating the C.4 and coupling it with the Gibbs relation we obtain:

dH = T dS +V d p+ µini, i.e. H = H(S, p,n) . (C.5)

• Helmholtz free-energy, define as
Y = U �T S . (C.6)

Differentiating C.6 and coupling it with Gibbs relation we obtain:

dY = �SdT � pdV + µidni, i.e. Y = Y(T,V,n) . (C.7)

• Gibbs free-energy, define as
G = U �T S + pV . (C.8)

Differentiating C.8 and coupling it with Gibbs relation we obtain:

dG = �SdT +V d p+ µini, G = G(T, p,n) . (C.9)
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where we used the relationship S(T, p.n) = �
✓

∂G(T, p.n)

∂T

◆

p,n
.

partial volume

vi = vi(T, p,n) =
∂V (T, p,n)

∂ni
=

∂ 2G(T, p,n)

∂ p∂ni
=

∂ µi(T, p,n)

∂ p
,

(C.13)

where we used the relationship V (T, p.n) =

✓
∂G(T, p.n)

∂ p

◆

T,n
.

Employing the Gibbs relation C.1, we can further found

partial internal energy

ui = ui(T, p,n) =
∂U(T, p,n)

∂ni
= T si(T, p,n)� pvi(T, p,n)+ µi(T, p,n) =

= �T
∂ µi(T, p,n)

∂T
� p

∂ µi(T, p,n)

∂ p
+ µi(T, p,n) =

"
∂ µi

T
∂ 1

T

#

p,n

� p
∂ µi(T, p,n)

∂ p
.

(C.14)

The relation dH = T dS +V d p+n ·dµ leads to:

partial enthalpy

hi = hi(T, p,n) =
∂H(T, p,n)

∂ni
=

= T si(T, p,n)+ µi(T, p,n) = �T
∂ µi(T, p,n)

∂T
+ µi(T, p,n) =

"
∂ µi

T
∂ 1

T

#

p,n

.

(C.15)

Similarly, using the relationship dY = �SdT � pdV + µ ·dn, we can also find:

partial Helmholtz free-energy

yi = yi(T, p,n) =
∂Y(T, p,n)

∂ni
=

= �pvi(T, p,n)+ µi(T, p,n)

= �p
∂ µi(T, p,n)

∂ p
+ µi(T, p,n) =

"
∂ µi

p

∂ 1
p

#

T,n

,

(C.16)
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and finally2:

partial Gibbs free energy

gi = gi(T, p,n) =
∂G(T, p,n)

∂ni
=

= µi(T, p,n) .

(C.20)

For all of these, the term "partial properties" will be justified in the next paragraph.

C.1.1 Gibbs free energy and Duhem-Margules relation
Let C.21 be the differential of the expression µi(T, p,n).

dµi =

✓
∂ µi

∂T

◆

p,n
dT +

✓
∂ µi

∂ p

◆

T,n
d p+Â

j

✓
∂ µi(T, p,n)

∂n j

◆

T,p,n0
dn j

=

�sidT + vid p+Â
j

✓
∂ µi(T, p,n)

∂n j

◆

T,p,n0
dn j .

(C.21)

2Alternatively, we provide a further way to deduce these partial properties.
Partial energy:

G = U + pV �T S =) G� pV (G)+T S(G) = U(G)

ui = ui(T, p,n) =
∂U(T, p,n)

∂ni
=

=
∂G(T, p,n)

∂ni
� p

∂V (T, p,n)

∂ni
+T

∂S(T, p,n)

∂ni

= T si(T, p,n)� pvi(T, p,n)+ µi(T, p,n) =

ui(T, p,n) = �T
∂ µi(T, p,n)

∂T
� p

∂ µi(T, p,n)

∂ p
+ µi(T, p,n) =

=

"
∂ µi

T

∂ 1
T

#

p,n

� p
∂ µi(T, p,n)

∂ p
.

(C.17)

Partial enthalpy:
G = U + pV �T S =) G+T S(G) = H(G)

hi = hi(T, p,n) =
∂H(T, p,n)

∂ni
=

∂G(T, p,n)

∂ni
+T

∂S(T, p,n)

∂ni

= T si(T, p,n)+ µi(T, p,n)

hi(T, p,n) = �T
∂ µi(T, p,n)

∂T
+ µi(T, p,n) =

"
∂ µi

T

∂ 1
T

#

p,n

.

(C.18)

Partial Helmholtz free-energy:

G = U + pV �T S =) G� pV (G) = Y(G)

yi = yi(T, p,n) =
∂y(T, p,n)

∂ni
=

∂G(T, p,n)

∂ni
� p

∂V (T, p,n)

∂ni

= �pvi(T, p,n)+ µi(T, p,n)

yi(T, p,n) = �p
∂ µi(T, p,n)

∂ p
+ µi(T, p,n) =

"
∂ µi

p

∂ 1
p

#

T,n

.

(C.19)
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By means of Euler relation C.2 and Gibbs-Duhem relation C.3, and with the contribution of the
C.21 we can prove the term "partial properties".
Multiplying the C.21 by ni and making explicit all the summations on the index i and j (where
inside the double summation we swapped the indices), we can see that:

Â
i

nidµi = �Â
i

nisidT +Â
i

nivid p+

+Â
i

ni

"

Â
j

✓
∂ µi(T, p,n)

∂n j

◆

T,p,n0
dn j

#
.

(C.22)

Also, coupling the C.3 with the C.22, it is possible to conclude:

dT

 
S �Â

i
nisi

!
�d p

 
V �Â

i
nivi

!
+

+Â
i

 

Â
j

n j

✓
∂ µi(T, p,n)

∂n j

◆

T,p,n0

!
dni = 0 .

(C.23)

where the terms in brackets must be identically null.

C.1.2 Alternative expression to demonstrate the term partial
Substituting the Euler relation (C.2) in Gibbs free energy definition (C.8), we get:

G = Â
i

niµi . (C.24)

Through the coupling of C.24 with C.20 is trivial deduce G = Âi nigi(T, p,n) = Âi niµi(T, p,n),
whose differentiation becomes:

dG = Â
i

(dniµi +nidµi) , (C.25)

where the expression of dµi has been already inferred in C.21, and so we get:

dG = Â
i

dniµi+

+Â
i

"
ni

 
�sidT + vid p+Â

j

✓
∂ µi(T, p,n)

∂n j

◆

T,p,n0
dn j

!#
.

(C.26)

Finally, comparing C.26 with C.9, we obtain:

Â
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(C.27)
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It follows that the terms in brackets must be identically null and therefore, comparing term to term:

S = Â
i

nisi(T, p,n) = �Â
i

ni

✓
∂ µi

∂T

◆

p,n
,

V = Â
i

nivi(T, p,n) = Â
i

ni

✓
∂ µi

∂ p

◆

T,n
,

Â
j

n j

✓
∂ µi(T, p,n)

∂n j

◆

T,p,n0
= 0 Duhem-Margules equations ,

but also:
U = Â

i
niui(T, pn) ,

Y = Â
i

niyi(T, pn) ,

H = Â
i

nihi(T, pn) .

(C.28)

Therefore, Z = Âi nizi(T, p,n) for Z = S,V,U,H,Y,G and z = s,v,u,h,y,g can be called partial
properties.

C.2 Helmholtz free energy and properties T,V-"partial"
Let’s try to do a similar procedure starting from Y = Y(T,V,n) and from its differential C.7:
dY = �SdT � pdV +µ ·dn, where henceforth the apex ”a” is affixed to identify the T �V -"partial"
properties. Knowing that:

S(T,V n) = �
✓

∂Y
∂T

◆

V,n
,

p(T,V n) = �
✓

∂Y(T,V n)

∂V

◆

T,n
,

µi(T,V n) = �
✓

∂Y(T,V n)

∂ni

◆

T,V,n0
,

(C.29)

we can deduce the following expressions:

T-V entropy

sa
i = sa

i (T,V,n) =
∂S(T,V,n)

∂ni
=

= �∂ 2Y(T,V,n)

∂T ∂ni
= �∂ µi(T,V,n)

∂T

(C.30)

T-V pressure

pa
i = pa

i (T,V,n) =
∂ p(T,V,n)

∂ni
=

�∂ 2Y(T,V,n)

∂V ∂ni
= �∂ µi(T,V,n)

∂V

(C.31)
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Through the Gibbs relation it is possible to find:

T-V energy

ua
i = ua

i (T,V,n) =
∂U(T,V,n)

∂ni
=

= T sa
i (T,V,n)+ µi(T,V,n) = �T

∂ 2Y(T,V,n)

∂T ∂ni
+ µi(T,V,n) =

= �T
∂ µi(T,V,n)

∂T
+ µi(T,V,n)

(C.32)

and using the relation C.5 we also find:

T-V enthalpy

ha
i = ha

i (T,V,n) =
∂H(T,V,n)

∂ni
=

= T sa
i (T,V,n)+V pa

i (T,V,n)+ µi(T,V,n)

(C.33)

By analogy, exploiting the relation C.7:

T-V Helmholtz free-energy

ya
i = ya

i (T,V,n) =
∂Y(T,V,n)

∂ni
= µi(T,V,n)

(C.34)
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Finally, from dG = �SdT +V d p+ µ ·dn it is possibile deduce3:

T-V Gibbs free-energy

ga
i = ga

i (T,V,n) =
∂G(T,V,n)

∂ni
= V pa

i + µi(T,V,n)
(C.38)

Again, similar to section C.1.1, we try to understand if the term "partial properties" is justified in
such a context.
By differentiating the µi = µi(T,V,n), we obtain:

dµi =

✓
∂ µi(T,V,n)

∂T

◆

V,n
dT+

+

✓
∂ µi(T,V,n)

∂V

◆

T,n
dV +Â

j

✓
∂ µi(T,V,n)

∂n j

◆

V,n
dn j ,

dµi = �sa
i dT � pa

i dV +Â
j

∂ µi(T,V,n)

∂n j
dn j .

(C.39)

The Gibbs-Duhem relation becomes:

0 = �SdT +V d p�n ·dµ ,

0 = �[S �Â
i

nisa
i ]dT +[V d p�Â

i
ni pa

i dV ]�Â
j
[Â

i
ni

∂ µi(T,V,n)

∂n j
]dn j , (C.40)

3Alternatively, we provide a further way to deduce these properties.
T-V energy: :

Y = U �T S =) U(Y) = Y+T S(Y) ,

ua
i = ua

i (T,V,n) =
∂U(T,V,n)

∂ni
=

∂Y(T,V,n)

∂ni
+T

∂S(T,V,n)

∂ni
=

= T sa
i (T,V,n)+ µi(T,V,n) = �T

∂ µi(T,V,n)

∂T
+ µi(T,V,n) .

(C.35)

T-V enthalpy:
Y = U �T S = H � pV �T S =) H(Y) = Y+T S(Y)+ p(Y)V

ha
i = ha

i (T,V,n) =
∂H(T,V,n)

∂ni

=
∂Y(T,V,n)

∂ni
+T

∂S(T,V,n)

∂ni
+V

∂ p(T,V,n)

∂ni
=

= T sa
i (T,V,n)+V pa

i (T,V,n)+ µi(T,V,n)

= �T
∂ µi(T,V,n)

∂T
�V

∂ µi(T,V,n)

∂V
+ µi(T,V,n) .

(C.36)

T-V Gibbs free-energy:

G = U �T S + pV = Y+ pV =) G(Y) = Y+ p(Y)V

ga
i = ga

i (T,V,n) =
∂G(T,V,n)

∂ni
=

=
∂Y(T,V,n)

∂ni
+V

∂ p(T,V,n)

∂ni
= V pa

i (T,V,n)+ µi(T,V,n)

= �V
∂ µi(T,V,n)

∂V
+ µi(T,V,n) .

(C.37)
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firstly, we need to express d p in terms of dT,dV , and dni, that is, we have to write the differential
of the equation of state p(T,V,n), let’s write it like this:

d p = a(T,V,n)dT +b (T,V,n)dV +Â
j

g j(T,V,n)dn j , (C.41)

therefore, the Eq. C.40 becomes:

0 = �[S �V a �Â
i

nisa
i ]dT +[V b �Â

i
ni pa

i ]dV

�Â
j
[Â

i
ni

∂ µi(T,V,n)

∂n j
�V g j]dn j ,

(C.42)

where, because the terms in square brackets must be identically null, we obtain:

S = V a(T,V,n)+Â
i

nisa
i (T,V,n) ,

V b (T,V,n) = Â
i

ni pa
i (T,V,n) ,

V g j(T,V,n) = Â
i

ni
∂ µi(T,V,n)

∂n j
.

(C.43)

The relations C.43 are less interpretable than those expressed as a function of Gibbs free energy.

C.2.1 µu
i (T,V,ni) and µh

i (T,V,ni) in the current framework
Now, we would like to connect the current framework, with the one presented in 3.2: In order to
do that, it is necessary comparing the expressions 3.48 with the C.30 and C.32.In fact, unless the
terms n and c these equations are totally equivalent.

µh
i (T,V,ci) = � ∂ 2Y

∂T ∂ci
,

sa
i = sa

i (T,V,n) =
∂S(T,V,n)

∂ni
= �∂ 2Y(T,V,n)

∂T ∂ni
.

(C.44)

µu
i (T,V,ci) =

∂Y
∂ci

�T
∂ 2Y

∂T ∂ci
,

ua
i = ua

i (T,V,n) =
∂U(T,V,n)

∂ni
=

= T sa
i (T,V,n)+ µi(T,V,n) = �T

∂ 2Y(T,V,n)

∂T ∂ni
+

∂Y(T,V,n)

∂ni
.

(C.45)
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Appendix D

Operators

In this section, we want to clarify the mathematical structure of several operators divP[] exploited
in the surrogated mechanics framework.

D.1 Calculation of the divergence and gradient operators on
the surface of a sphere

D.1.1 divP[~h]

We decide to start from a generic mass balance equation, hence:

Z

P

∂c
∂ t

dS = �
Z

∂P

Fdl +
Z

P

sdS , (D.1)

where:

• P and ∂P are respective the surface immersed in a three-dimensional space and its frontier.

• c is the molarity.

• F is flux, identified by the scalar product
R

∂P
Fdl =

R

∂P
~h·~t?dl, in which:

– ~h is the mass flow in terms of moles;

– ~t? is the unit vector along which the flow is projected.

• s is the rate at which species is generated by sources.

Exploiting the properties of the vector product and the mixed product, conjugated to Stokes’ The-
orem, we can derive:

Z

∂P

Fdl =
Z

∂P

~h·~t?dl =
Z

∂P

⇣
~n⇥~h

⌘
·~tkdl =

Z

∂P

⇣
~n⇥~h

⌘
d~l =

Z

P

h
rot
⇣
~n⇥~h

⌘i
·~ndS , (D.2)
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wherein~n is the normal unit vector to the surface P. Following, we focus on the terms:

rot
⇣
~n⇥~h

⌘
= —⇥

⇣
~n⇥~h

⌘

—⇥
⇣
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⌘
=~n

⇣
—·~h

⌘
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⇣
~h·—

⌘
~n� (~n·—)~h

(D.3)
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·~ndS (D.4)

But: h
~h (—·~n)

i
·~n =

h⇣
~h·—

⌘
~n
i
·~n = 0 (D.5)

indeed: h
~h (—·~n)

i
·~n = nq,qhpnp =

⇣
~h·~n
⌘

(—·~n)

this expression is equal to zero if:
⇣
~h·~n
⌘

= 0 or (—·~n) = 0

(D.6)

Actually, in the current framework, the vector flow remains always orthogonal to the normal unit
vector at the surface, hence:

⇣
~h·~n
⌘

= 0.
Concerning the expression np,qhqnp, instead:
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(D.8)
Therefore: Z
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where (~n·—)~h =
⇣
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(D.11)

This entails (~n·—)~h =
⇣

—~h
⌘
~n, and so:
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D.1.2 divP[bc~h]

Similarly, we can write:
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bFdl =
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where thanks to what we have seen in the previous section, we can state that:
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It is known that:
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where:
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Exploiting the conditions on the orthogonality:

[~g (—·~n)] ·~n = [(~g·—)~n] ·~n = 0 , (D.16)

we can infer that:
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It is known that:
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Two distinct cases are identified:

• ~p is perpendicular to~n;

• ~p is not perpendicular to~n.
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D.1.3.1 ~p is perpendicular to~n

We known that:
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D.1.3.2 ~p is not perpendicular to~n
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and
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(D.27)
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D.2 Einstein notation
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By means of Einstein notation, it is possible to express the vectorial product through the operator
Levi-Civita, otherwise known as the Ricci Curbastro operator ei jk.
Remembering that:
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D.2.5 —P[ f (y,z)]
We want to prove that:
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Considering f as a function of vector quantities:
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Appendix E

Experimental insights

E.1 Fluorescence resonance energy transfer (FRET)
Fluorescence resonance energy transfer (FRET) is a further important experimental typology.
Thanks to is possible to investigate the interplay between two protein on the cell membrane, basi-
cally exploiting the emission spectrum characteristic of two different fluorochrome use to labeled
the molecules of interest. Specifically, the donor has to have fluorochrome with an emission spec-
trum that overlaps with the absorption spectrum of fluorochrome of the acceptor. Therefore, if
these two proteins come in contact and bind (making a complex), taking to the two fluorochromes
to a distance closer than 5 nm, by resonance one fluorochrome can transfer energy (from the ab-
sorbed light) to the other. Intriguingly, illuminating the complex at the characteristic wavelength
of the donor, the fluorescence produced has the characteristic wavelength of the acceptor. Finally,
measuring the change in donor fluorescence when it is colocalized with the acceptor, can lead to
the FRET quantification [9] (chapter 9).
Currently, this work has been used to demonstrate the direct interaction between VEGFR2 and
integrin.
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Figure E.1: A specific "X" protein is fuse with a definite blue fluorescent molecule. Similarly, a
further "Y" protein is fuse with distinctive green fluorescent ones. Specifically, if violet light hits
blue proteins, they emit blue light and coherently, if blue light hits green proteins, they emit green
light. Therefore, if "X" and "Y" proteins are interacting, and violet light stimulates blue proteins,
they emit blue light which in turn will excite green proteins owing to green light emissions. Ac-
cordingly, FRET analysis can study when and where two specific proteins are interplaying inside
the cell. Adapted from [9]

E.2 Fluorescence recovery after photobleaching (FRAP)
FRAP is a diffuse methodology in much dynamic application in cellular biology. Cytoskeletal re-
arrangements, mitosis, cellular adhesion, etc. are just a few fields of application of this technique
[159]. Such a procedure provides for the use of a high-intensity laser beam able to bleaching, in a
specific and restricted area on the cell surface, the fluorescence of the labeled receptors. All this is
necessary in order to observe over time, the total or partial reconstitution of the initial fluorescence,
inasmuch as this datum is purely correlated to the lateral diffusion of the receptors (for time-span
observation of minutes) and to the new generation (new synthesis) of receptors (for long time-span
observation). Effectively, the bleaching procedure irreparably damages the fluorescence of the re-
ceptors hit by the laser beam, ensuring that the future measured fluorescence intensity is due to
other molecules. In the current work, FRAP analysis is strictly correlated with the measurement
of two kinetic parameters: the diffusion constant D| and the mobile fraction (Mf ) [31] (chapter 2).

The first one, when neither active transport nor flow insists on the receptor, expresses the rate of
protein motion; indeed, this quantity is correlated with the mean squared displacement of a recep-
tor that moving along a random path in a given observed time.

The second represents the number of fluorescent proteins that can diffuse inside the ROI during
the observation time duration. Not only that, even the percentage of immobilized receptors (im-
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mobile fraction) could be deduced on the basis of the present experiment. In fact, a failure to
recover the initial fluorescence can be caused by the presence of immobile receptors, which not
being able to diffuse remain to occupy the portion of space affected by the laser. Such a relevant
phenomenon could be caused either by cytoskeleton interaction with these immobilized receptors
or, alternatively, due to the presence of diffusion barriers that are responsible for lower mobility
[31] (chapter 2).

The following mathematical expression denotes the fluorescence recovery curve after photobleach-
ing:

It = Mf [1� exp(�tt)] . (E.1)

Where:

• It represents the intensity recovery after a specific t;

• t depicts the instant to whom we do the observation;

• Mf =
I• � Ii

Ii � I0
is the mobile fraction of fluorescent proteins [159];

• Ii is the initial fluorescent;

• I0 is the fluorescence after photobleaching;

• I• is the plateau value reach by the intensity after photobleaching;

• t denotes the frequency correlated at the time necessary to recover half of the maximum
fluorescence.

The diffusivity (D|
⇥
µm2/s

⇤
) value resulting from the following formula (Soumpasis equation

[160]):
D| = 0.224⇤w2/t1/2 , (E.2)

wherein w is the radius of the bleaching area and t1/2 is the span time necessary to reach half of

the final fluorescent intensity (I 1
2
=

I• + I0

2
[159]).

The diffusivity (D| ) arise from FRAP analysis can lead to misleading results. In fact, exist mul-
tiply factors that can impact the diffusivity of a receptor, perhaps making it grow dramatically;
just think at the above-mentioned interaction between transmembrane protein and the cytoskele-
ton, or protein-protein interaction (e.g. interaction with co-receptors) or again the collision with
other kinds of molecules [31] (chapter 2). Therefore, it could be that receptors do not assume the
numerical value predict by the theory (e.g. Stokes-Einstein formula1).

1In a given volume, the diffusion constant of a free particle is given by the following Stoke-Einstein formula

D| =
kBT
6ph l

. Where T denotes the temperature, constant inside a cell, h the solution viscosity, kB is the constant of

Boltzmann, and finally, l represents the radius of the receptor molecule. It seems obvious that following the present
formula only h and l are the variables able to influence the value of D| , but, from what has been said above, we
understand that such a statement is dangerously false. [31] (chapter 2)
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Figure E.2: Main operating mechanisms of FRAP analysis, with which it is possible to detect both
the immobile fraction of the labeled protein and its diffusivity. Adapted from [9]

E.3 Single particle tracking (SPT)
The SPT procedure is based on microscopy techniques (e.g. Total Internal Reflection Fluorescence
Microscopy - TIRFM-). In fact, by marking the receptor with fluorescent molecular groups it is
possible, through acquires a very high number of photograms for the unit time and by means of
computational elaboration, to reconstruct the trajectory of the labeled molecule that diffuses on
the lipid bilayer. Comprehend how a single protein can move along the membrane and compute
its velocity, as is possible through SPT, could make the difference in the interpretation of the ex-
perimental result. Indeed, understand the kind of motion of the receptors, linked with its velocity,
might help to decipher if the receptor is anchored at the cytoskeleton or is undergoing some chem-
ical interaction with co-receptors or ligands. However, a further important feature of this kind of
experiment is the possibility to be able to study how membrane domains can impact the receptor
dynamics [9] (chapters 9 and 10).

E.4 Surface Plasmon Resonance (SPR)
Association and dissociation rate constant as well as equilibrium constant and chemical affinities
are the main kinetics parameters that have been possible to measure and deduces by means of SPR.
SPR provides a real-time (label-free) investigation of the biomolecular interaction [31] (chapter 2),
[161]. Practically, by means of SPR is possible to probe the interplay between a specific kind of
molecule, that is immobilized on the SPR sensor surface, and an analyte in solution, which can, in
this way, studying their affinity [162].

SPR is mainly made by a high refractive index material, cover by a thin metal film (usually gold,
thanks to its inherent stability), and a chamber-flow. Hitting this material with a monochromatic
p-polarized source of light, with an appropriate specific angulation, is possible to induce a physical
phenomenon that causes a surface plasmon generation. Specifically, this happens because of the
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energy that the light transfer to the free electrons of the gold layer. Particularly, we call evanes-
cence wave, that part of the incident light, that for a specific angle of incidence (resonance angles),
is capable of matching with the plasmons(i.e. free oscillating electrons) of the metal film produc-
ing an SPR. Interestingly, the mass concentration on the metal film, measured in resonance units
(RU), affects the SPR signal [161].

Hence, if we let a soluble molecule called analyte fluxing in the flow-chamber shown in Fig. E.3a
over the gold layer (immobilized protein-coated), we can provide a quantification of the kinet-
ics parameters of the chemical reaction involved between the analyte and fixed proteins. In fact,
the (probable) affinity between the immobilized molecules attached at the gold layer and the ana-
lyte, provides a chemical interaction that changes the mass concentration on the metal film E.3b,
inducing, therefore, a variation in the refractive index of the golden layer itself [31] (chapter 2).
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(a) A flow chamber in a customary SPR instrument is here shown. The gold layer is coated by biomolecules
that have a specific affinity with the analyte, which is injected and let flow over the chip surface [31] (chapter
2).

(b) The kinetics constant of the chemical interaction between the immobilized molecules and the analyte
are deducible, owing to continuous monitoring provide by the sensor device [31] (chapter 2).

Figure E.3
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Part III

A large deformations framework describes
membrane dynamics

171



Mechanical modeling of a cell is a very challenging and fascinating task. New unexplored prin-
ciples and laws are hidden behind the mechanical behavior of a living cell, highlighting how ani-
mated matter is different from inanimate one [3] (chapter 1). The cell actively evolves its internal
structure based on the environmental conditions, and so also the progress of mechanical conditions
in the surrounding environment. Cells undergo complex mechanical interplays, such as cell-cell,
cell-substrate, and cell-fluid interactions. Further, any "cell-microenvironment" mechanical inter-
play induces the evolvement and the triggering of polymers that make up the cytoskeleton whose
activities could is affected by the entropic effect. Actually, all the cell components, which are very
small, undergo unavoidably thermal and entropic effects that require explanations given by statis-
tical mechanics [3] (chapter 1).

Typically, the mechanical response within a cell (that is a three-dimensional body), is ruled at the
same time by the coexist of elements with a mainly linear structure (e.g. filaments and bundles of
actin and microtubules) and curvilinear two-dimensional shell-structures (e.g. cell membrane or
lipid rafts), that need to be opportune coordinate to well capture the phenomenology show by the
experiments [3] (chapter 1). This makes the mechanical description of a cell extremely challenging.

Following we present a new theoretical scheme embedded in the continuum thermodynamics
framework (chapter 6) and the corresponding numerical formulations, with the consequently co-
designing of in-silico and in-vitro simulations (chapters 7 and 8). Nevertheless, it has to be clear
that all the constitutive parameters as well as the best stoichiometric arrangement of reactions (4.1),
(4.2), and (4.6) will be inherited from the previous Part of the thesis (chapters 4 and 5).
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Chapter 6

A framework for modeling cells spreading,
motility, and the relocation of proteins on
advecting lipid membranes

The response of cells during spreading and motility is dictated by several multi-physics events,
which are triggered by extracellular cues and occur at different time-scales. For this sake, it is not
completely appropriate to provide a cell with classical notions of the mechanics of materials, as
for “rheology” or “mechanical response”. Rather, a cell is an alive system with constituents that
show a reproducible response, as for the contractility for single stress fibers or for the mechani-
cal response of a biopolymer actin network, but that reorganize in response to external cues in a
non-exactly-predictable and reproducible way. Aware of such complexity, in this note we aim at
formulating a multi-physics framework for modeling cell spreading and motility, accounting for
the relocation of proteins on advecting lipid membranes.

Receptors dynamic along cell membrane is a key factor in several biological phenomena, as for
angiogenesis, tumor metastasis, endocytosis, and exocytosis. Angiogenesis is a multistep process
in which endothelial cells are affected by several extracellular stimuli, including growth factors,
extracellular matrix, and parenchymal and stromal cells. In this process, growth factor recep-
tors, as well as adhesion receptors, convey the extracellular signaling in a coordinate intracellular
pathway promoting cell proliferation, migration, and their reorganization in active vessels [163].
Integrins are a family of cell adhesion receptors that support and modulate several cellular func-
tions required for tumor metastasis. They can directly contribute to the control and progress of
metastatic dissemination. During tumor development, changes in this family of receptors impact
the ability of tumor cells to interact with their environment and enable metastatic cells to convert
to a migratory and invasive phenotype. Integrins regulate each step of the metastasis and affect
tumor cell survival and interaction with changing environments in transit from the primary tumor
to distant target organs [164]. Receptor-mediated endocytosis is a process by which cells absorb
metabolites, hormones, proteins, and, in some cases, viruses by the inward budding of the plasma
membrane (invagination). This process forms vesicles containing the absorbed substances and is
strictly mediated by receptors on the surface of the cell [165].

Whereas uncountable papers have been published on the biology of cells spreading, motility and,
the relocation of proteins on advecting lipid membranes, the mathematical modeling definitely
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lags behind experiments and overall received much less attention. Although nowadays widespread
literature in mechanobiology exists [166], the relocation of proteins and their interaction with
the reorganizing cytoskeleton in the biological phenomena mentioned above is still an ongoing
research topic, let alone the formulation of efficient algorithms and computational solvers for three-
dimensional simulations [167].
In this part of the thesis, we attempt at defining a multi-physics scheme for the modeling of cells
spreading, motility, and the relocation of proteins on advecting lipid membranes, framing the math-
ematical setting within the mechanics and thermodynamics of continua [142], stemming from sem-
inal works [106, 113, 119] and accounting for recent literature, either connected to the endocytosis
of virus in human and animal cells [132, 130, 133] or ligand-receptor mediated raft formation
[136], chemotaxis [137], surface-associated caveolae mechanotransduction [135].

The general framework illustrated in this part of the thesis applies to growth and remodeling, too,
falling within the category of the theory of finite growth according to the terminology defined in
[2]. The chapter is designed as follows. After a nomenclature of the main symbols and the defini-
tion of operators in a Lagrangian setting, we focus in section 6.2 on the relocation and reaction of
receptors on a lipid membrane that advects. The topic is purposely presented in a broad sense, in
order to be applicable to several possible receptors-ligands interactions: specific applications - car-
ried out in [138], [140] and in the companion works embedded in the current work of thesis - deals
with the relocation of vascular endothelial growth factor receptors and integrins during endothelial
cell adhesion and spreading. In spite of the generality, section 6.2 is self-contained and includes
the description of Reynold’s theorem on a surface that advects, of the equations that rule proteins
transport on an advecting lipid membrane, and eventually of the receptors-ligand interactions, in
form of chemical reactions, that take place concurrently with relocation. A rather similar approach
has been taken in section 6.3, which concerns the relocation and reaction of actin to form biopoly-
mers within the cytosol. The mechanical evolution of the cell is discussed afterward in section
6.4: besides stating the classical balance laws (of linear and angular momentum), the section is
accompanied by an extensive discussion on boundary conditions, aimed at showing that Neumann
type of conditions, due to electrostatic interactions, are most likely not responsible for cell spread-
ing and motion in view of the modest amount of energy involved in those interactions compared
to the bulk energy of a cell. We concluded therefore that spreading is a result of extensional and
contractile forces exerted by pseudopodia and the cytoskeleton machinery [97]. Those forces have
been investigated further in section 6.5, where the thermodynamics of receptors’ motion on the
membrane was studied at first up to the constitutive theory and the kinetics of the receptors-ligand
interaction. The analysis of the thermo-chemo-mechanics of cells is the last section of this work:
in it, we highlight the role of strain and stress decompositions in order to model cell adhesion,
protrusion, contractility.

Nomenclature

Notation
Vectors ~a will be denoted by an over-right-arrow, second-order tensors A,a by bold face. This
notation does not apply to operators.

174



Operators
- the symbol tr [� ] denotes the trace operator
- the symbol div [� ] denotes the divergence operator in the current configuration, i.e. div

h
~f
i

=

∂ fi/∂xi
- the symbol divP [� ] denotes the divergence operator restricted at the surface P in the current
configuration
- the symbol Div [� ] denotes the referential divergence operator, i.e. Div

h
~f
i

= ∂ fi/∂Xi

- the symbol DivPR [� ] denotes the referential divergence operator restricted at the surface PR

- the symbol — [� ] denotes the gradient operator in the current configuration
- the symbol —P [� ] denotes the gradient operator restricted at the surface P in the current config-
uration
- the symbol Grad [� ] denotes the referential gradient operator
- the symbol GradPR [� ] denotes the referential gradient operator restricted at the surface PR

- the symbol curl [� ] denotes the curl operator in the current configuration
- the symbol Curl [� ] denotes the curl operator in the referential configuration
- the symbol D [� ] denotes the Laplace operator in the current configuration
- the symbol DP [� ] denotes the Laplace operator restricted at the surface P in the current config-
uration
- the symbol

a
[�] denotes the Laplace operator in the referential configuration

- the symbol
a

PR
[� ] denotes the Laplace operator restricted at the surface PR in the referential

configuration
- the symbol · denotes the single contraction of two vectors
- the symbol : denotes the double contraction of two tensors
- the symbol ⌦ denotes the tensor product between two vectors
- the symbol ⇥ denotes the vector or cross product between two vectors
- the symbols ||~a||2, ||A||2 denote the squared norm of vector ~a or tensor A
- the symbol T denotes transposition of a tensor
- the symbol �1 denotes the inverse of a tensor

Variables and fields
- the symbol t denotes time
- the symbol W(t) 2 R3 denotes a volume that advects, where referential counterparts inherit the
subscript R
- the symbol ∂W(t) denotes the surface of W(t), where referential counterparts inherit the subscript
R
- the symbol P(t) ⇢ ∂W(t) denotes a part of ∂W(t), where referential counterparts inherit the sub-
script R
- the symbol ∂P(t) denotes the boundary of P(t), where referential counterparts inherit the sub-
script R
- the symbol~vadv(~x, t) denotes the velocity of advection at place~x and time t
- the symbol~n(~x, t) denotes the outward normal at place~x and time t
- the symbol~t?(~x, t) denotes the normal to the curve ∂P(t) at a generic place~x and time t
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- the symbol~tq(~x, t) denotes the vector tangent to the curve ∂P(t) at a generic place~x and time t
- the symbol l(~x, t) denotes the velocity gradient at place~x and time t
- the symbol d(~x, t) denotes the stretching at place~x and time t
- the symbol F (~X , t) denotes the deformation gradient at point ~X and time t
- the symbol C(~X , t) denotes the right Cauchy-Green tensor at point ~X and time t
- the symbol P (~X , t) denotes the first Piola stress tensor at point ~X and time t
- the symbol J(~X , t) denotes the determinant det[F ] at point ~X and time t
- the symbol j(~X , t) denotes the areal jacobian at point ~X and time t
- the symbol~nR(~X , t) denotes the outward normal at point ~X and time t
- the symbol~t(~x, t) denotes the contact and surface forces acting on ∂W(t), where referential coun-
terparts inherit the subscript R
- the symbol~b(~x, t) denotes the body forces acting on W(t), where referential counterparts inherit
the subscript R
- the symbol 1 denotes the identity matrix

- the symbol me denotes the molar mass of a generic species e
- the symbol ce denotes the molarity of a generic species e
- the symbol re denotes the density of a generic species e
- the symbol se denotes the mass supply of a generic species e
- the symbol se denotes the molar supply of a generic species e
- the symbol~̄he denotes the density flux of a generic species e
- the symbol~he denotes the molar flux of a generic species e
- the symbol µu

e denotes the change in specific energy provided by a unit supply of moles of a
generic species e
- the symbol µh

e denotes the change in specific entropy provided by a unit supply of moles of a
generic species e
- the symbol µe denotes the chemical potential of a generic species e
- the symbol cmax

e denotes the saturation limit of a generic species e
- the symbol Je denotes the non-dimensional ratio between the concentration of a generic species
e and cmax

e
- the symbol w denotes the reaction rate of a reaction
- the symbol A denotes the affinity of a reaction
- the symbols k f and kb denote the kinetic constants of the forward and backward reaction
- the symbols DG0(T ) denotes the standard Gibbs free-energy of formation
- the symbols Keq denotes the equilibrium constant

Constants and parameters
- the symbol R denotes the universal gas constant
- the symbol u| denotes the receptor mobility
- the symbol D| denotes the receptor diffusivity
- the symbol a denotes the infinitely fast kinetics parameter
- the symbol G denotes the bulk modulus for a regularized NeoHookean formulation
- the symbol k denotes the shear modulus for a regularized NeoHookean formulation
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Figure 6.1: Notation. (a) The reference body WR and the deformed body W(t). Note that~x 2 P(t)
implies ~X 2 PR. (b) Frenet frame at point~y 2 ∂P(t) and the normal vector~n at point~x 2 P(t).

6.1 Definitions
Denote with W(t) a volume that advects, and with ∂W(t) its surface. A spatial point ~x 2 W(t) is
defined as the image of a (material) point ~X in a reference configuration WR through a smooth
function c(~X , t) termed motion [142]. Following [142] (page 61), we will name deformation the
snapshot of a motion at a fixed time t:

ct(~X) = c(~X , t) .

The deformation is assumed to be a one-to-one map. In addition, denoting the deformation gradient
with

F = Grad [ct ] ,

the requirement J = det [F ] > 0 holds. Define on the surface a part P(t) ⇢ ∂W(t) as in Fig. 6.1a,
and consider a scalar function f (~x, t) with~x 2 P(t). Denote with

~vadv(~x, t) = d~x/dt

the velocity of advection at location~x and time t; such a velocity has an arbitrary direction, i.e. it
is not necessarily tangent to ∂W(t).

The Frenet-Serret reference frame at a generic point~y 2 ∂P(t) is defined as in Fig. 6.1b, in terms
of the two unit vectors~tk(~y, t) (tangent) and~t?(~y, t) (normal). The vector~n(~y, t) (binormal) is here
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taken of non-unit length, being the imagine in W(t) of a unit vector~nR in the reference configuration
WR, by means of the contravariant transformation

~n = F�T~nR .

On the other hand, the following covariant transformations hold:
~tkR = F�1~tk , ~t?R = F�1~t? ,

with the obvious implication that ~tkR and ~t?R are not unit vectors. The Frenet formulae holds,
namely:

k~t? = �
∂~tk
∂ s

, t~t? =
∂
∂ s

✓
~n
|~n|

◆
, k~tk � t ~n

|~n| =
∂~t?
∂ s

,

where k denotes the curvature and t the torsion.

The projected gradient operator of a scalar field f on a surface P is defined as follows

—P [ f ] = — [ f ]� ~n ·— [ f ]

|~n|2 ~n , (6.1a)

in the current configuration, whereas in the reference configuration it reads

GradPR [ f ] = Grad [ f ]� ~nR ·Grad [ f ]~nR , (6.1b)

The projected divergence operator of a vector field~v, which has an arbitrary direction, on a surface
P is defined as follows

divP [~v ] = div [~v ]� ~n · l~n
|~n|2 , (6.2a)

DivPR [~vR ] = Div [~v ]� ~nR ·Grad [~vR ]~nR , (6.2b)

in the current and reference configurations, respectively. Tensor l is the gradient of ~v, l = — [~v ].
Note that l in eq. (6.2a) can be replaced by its symmetric part d = sym [ l ], since for any skew-
symmetric tensor w it holds~n ·w~n = 0 . Alternative forms for the projected divergence operators
are

divP [~v ]P = curl


~n
|~n| ⇥~v

�
· ~n
|~n| , DivPR [~v ] = Curl


~nR

|~nR| ⇥~vR

�
· ~nR

|~nR| . (6.3a)

Provided sufficient smoothness, the divergence theorem holds also for advecting membranes, in
the form: Z

P(t)
divP [~g ]P da =

Z

∂P(t)
~g ·~t? d` . (6.4)

The proof of this theorem (see Appendix F.1), as well as for all other theorems not explicitly stated
in this section, can be found in the Appendix F.

Moreover, we will make use of the following identity

d J
p

~nR ·C�1~nR

dt
= J |~n|

✓
div [~vadv ]� ~n ·d~n

|~n|2

◆
, (6.5a)

— [ f~vadv ] = — [ f ] ⌦~vadv + f l , (6.5b)
in deriving the Reynold’s theorem on a surface that advects. The two identities which will be
proved in Appendix F.2.
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6.2 Relocation and reaction of receptors on a lipid membrane
that advects

6.2.1 Reynold’s theorem on a surface that advects
Reynold’s theorem on P(t) reads as follows:

d
dt

Z

P(t)
f da =

Z

P(t)

∂ f
∂ t

+ divP [ f~vadv ] da , (6.6)

where~vadv(~x, t) is the velocity of advection at location~x and time t.

Denote with ~n(~x, t) the outward normal at point ~x and time t, and with d(~x, t) the stretching (i.e.
the symmetric part of the velocity gradient l(~x, t)) at point ~x and time t. Note that the point ~x
is constrained to be in P(t) and similarly its reference counterpart, ~X is constrained to be in PR.
Hence,

d f (~x, t)
dt

=
∂ f (~x, t)

∂ t
+—P [ f (~x, t) ] ·~vadv(~x, t).

To prove eq. (6.6), denote with da the infinitesimal area in P(t) and with daR its counterpart in the
reference configuration PR. They are related by Nanson’s formula

da = j daR ,

where [142, 168]:
j = J |F�T~nR| = J

p
~nR ·C�1~nR . (6.7)

Owing to eq. (6.5b), one writes

d
dt

Z

P(t)
f (~x, t)da =

d
dt

Z

PR

f (j(~X , t), t) J
p

~nR ·C�1~nR daR

=
Z

PR

d f (j(~X , t), t)
dt

J
p

~nR ·C�1~nR daR +
Z

PR

f (j(~X , t), t)
d J
p

~nR ·C�1~nR

dt
daR

=
Z

P(t)

d f (~x, t)
dt

da+
Z

PR

f (j(~X , t), t)
d J
p

~nR ·C�1~nR

dt
daR

=
Z

P(t)

∂ f (~x, t)
∂ t

+—P [ f (~x, t) ] ·~vadv(~x, t)da+
Z

PR

f (j(~X , t), t) J |~n|
✓

div [~vadv ]� ~n ·d~n
|~n|2

◆
daR

=
Z

P(t)

∂ f (~x, t)
∂ t

+—P [ f (~x, t) ] ·~vadv(~x, t) + f (~x, t) div [~vadv(~x, t) ] da ,

whence eq. (6.6) comes out.

By taking f = 1, eq. (6.6) depicts the area evolution of P(t) as

d
dt

Z

P(t)
da =

Z

P(t)
divP [~vadv ] da .

It is intuitive that advection with velocity in the tangent plane has the capacity of modifying the
surface area, however this property is not restricted to tangent advection. In other words, even
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~vadv(~x, t) µ ~n(~x, t) can alter the surface, as for the homothetic expansion of a rubber balloon.
Reynold’s theorem (6.6) can be also restated as

d
dt

Z

P(t)
f (~x, t)da =

Z

P(t)

d f (~x, t)
dt

+ f (~x, t) divP [~vadv ] da . (6.8)

and is a restriction on surfaces of the classical Reynold’s transport relation on volumes ( see [142],
section 16 among others ).

6.2.2 Mass transport on a surface that advects
6.2.2.1 Mass balance in the current configuration for a convecting species

Consider a generic species a at a point ~x on the surface ∂W(t). Species a convects with velocity
~va(~x, t). The latter entails the dragging, or advection, velocity~vadv(~x, t) and another velocity that is
due to many possible physics, as for diffusion or migration. If internalization of species from the
membrane is not allowed, the net velocity~va �~vadv lays in the tangent plane of the membrane and

(~va �~vadv) ·~n = 0 . (6.9)

Since species are modeled on a membrane, which is a two-dimensional manifold, the surface
density ra of species a measures the mass of the species per unit surface. The density flux vector
of species a, denoted with~̄ha, is the product of the surface density times the net velocity of species
a, i.e.

~̄ha = ra (~va �~vadv) . (6.10)
Define on the surface a part P(t) ⇢ ∂W(t) as in Fig. 6.1. The flux of species a across the boundary
∂P(t) is Z

∂P(t)
~̄ha ·~t? d`

and the mass balance of species a in the advecting configuration P(t) reads
d
dt

Z

P(t)
ra(~x, t)da+

Z

∂P(t)
~̄ha ·~t? d` =

Z

P(t)
sa(~x, t)da , (6.11)

where sa(~x, t) is the surface mass supply1 of species a. By means of the divergence theorem (6.4)
and of Reynold’s transport theorem in the form (6.8), balance law (6.11) becomes

Z

P(t)

dra

dt
+ra divP [~vadv ] +divP

h
~̄ha

i
da =

Z

P(t)
sa(~x, t)da .

Since it holds for all P(t), it eventually localizes as
dra

dt
+ra divP [~vadv ] +divP

h
~̄ha

i
= sa(~x, t) . (6.12)

This formulation of the mass conservation law has been considered also in [169]. The mass balance
can be finally written in terms of surface molarity ca (in moles or molecules per unit surface),
by division by the molar or molecular mass (ma) of species a. By denoting with ca = ra/ma,
sa = sa/ma, and~ha =~̄ha/ma the local balance (6.12) becomes

dca

dt
+ ca divP [~vadv ] +divP

h
~ha

i
= sa(~x, t) . (6.13)

1As an example, in biology cells may produce proteins that move to the lipid membranes from the cytosol.
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6.2.2.2 Mass balance in the reference configuration for a convecting species

The mass balance (6.13) can be rephrased in the reference configuration at point ~X and time t. To
this aim, define the reference molarity of species a as

caR(~X , t) = ca(~x(~X , t ), t ) j(~X , t) , (6.14)

the reference flux vector~haR(~X , t) and the reference mass supply saR(~X , t) as

~haR = jF�1~ha(~x(~X , t ), t ) , saR = j sa(~x(~X , t ), t ) , (6.15)

respectively, where [142, 168]:

j = J |F�T~nR| = J
p

~nR ·C�1~nR . (6.16)

The referential form of the mass balance (6.13) can be derived from the mass balance in the form
(6.11), and reads

∂caR

∂ t
+ DivPR

h
~haR

i
= saR . (6.17)

To prove eq. (6.17), consider the mass balance in the form (6.11), yet written in terms of molarity:

d
dt

Z

P(t)
ca(~x, t)da+

Z

∂P(t)
~ha ·~t? d` =

Z

P(t)
sa(~x, t)da , (6.18)

and make use of Nanson’s formula to write

d
dt

Z

P(t)
ca(~x, t)da =

d
dt

Z

P

ca(~X , t) j(~X , t) daR =
Z

P

∂
∂ t

caR(~X , t)daR ,

it will be proved in Appendix F.3 that it holds:

~ha ·~t? d` =~haR ·~t?R d`R , (6.19)

whence the mass balance in the form (6.18) writes in the reference configuration as
Z

P

∂caR

∂ t
daR +

Z

∂P
~haR ·~t?R d`R =

Z

P

saR daR . (6.20)

By means of the divergence theorem (6.4), the latter becomes
Z

P

∂caR

∂ t
+ DivPR

h
~haR

i
daR =

Z

P

saR daR

and since it holds for all P, it eventually localizes as eq. (6.17).
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6.2.3 Relocation and reaction
A two-steps mechanism defines the process of combination and generation of a protein complex.
The first stage wherein the formation of an encounter complex happens, namely where free pro-
teins show few specific interactions and assume many orientations. Whereupon, a second phase
in which the formation of the final complex takes place. It has to be clear that the electrostatic
interactions predominantly govern the encounter complex; importantly, if the orientations of the
reactants are perfectly matched, the final complex is formed, vice-versa if this does not occur, pro-
teins come back to be free [170, 171].

The two steps mechanism which describes the formation of a protein complex reads:

R+L
k1
�
k�1

C⇤ k2
�
k�2

C , (6.21)

where R and L are the receptors (R) and ligands (L) free proteins, C⇤ represents the encounter
complex and C is the final complex. In eq. (6.21), k1 and k�1 are the rate of formation and disso-
lution of the encounter complex, C⇤, whereas k2 and k�2 are the forward and reverse rate constants
for formation of the final complex, C, from C⇤.

Assuming that the formation of the encounter complex occurs whenever R and L are separated
by an encounter distance smaller than r, then k1 = 2Q[D(R)+ D(L)], k�1 = 2[D(R)+ D(L)]r�2.
Here D(R) and D(L) are the translational diffusion constants for protein motion in the membrane
and the equilibrium constant for the encounter step, Kd = Qr2, represents the area of a disk of
radius r [107]. If the concentration of C⇤ is smaller than the concentration of free proteins or
final complexes, it is a good approximation to set dC⇤/dt = 0, leading to the binding-unbinding
interaction

R+L
k f
�
kb

C , (6.22)

most commonly used [107]. A similar approach has been taken in [138, 139] for the relocation
of VEGFR-2 receptors and in [140] for integrins. Coefficients k f and kb are the kinetic constants
of the forward and backward reactions, respectively. The rate of reaction (6.22), denoted with
w(6.22)and measured in [mol

m2s ], quantifies the net formation of (C) on the advecting membrane as
the difference between the forward and backward reactions. Equation (6.17) shall be extended to
account for the reaction (6.22) and tailored to species a = R,L,C.

Receptors (either free or bound into the complex) are distributed along the membrane together
with other lipid species and proteins. They are assumed to freely move laterally, effects due to
steric hindrance are not accounted for. The amount of proteins per unit area that can be placed at
a membrane location~x is thus limited by the actual size of the protein itself. This evidence ushers
the definition of a saturation limit for the species, cmax

a (~x, t).

During their life, cells and their membranes undergo major macroscopic mechanical deformations.
Studies on the red blood cell [172] suggest that the membrane deformation occur at constant area,
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but this evidence does not appear to be supported by experiments in endothelial cells during spread-
ing [97]. Individual protein and phospholipid can easily move laterally within the membrane,
which results in a very low shear stiffness. The fluid mosaic model [20] captures this evidence,
adding a questionable high resistance to areal expansion. Indeed the mechanisms that are in charge
of areal expansion during cell spreading are complex and involve the micro-structural topology2

of the membrane (as for flattening of invaginated membrane domains [173], i.e. the role of the
caveole as membrane surface repository readily made available for fast geometrical evolution as
during filopodia extension). The structure of the lipid membranes, however, induce to suppose that
the saturation concentration cmax

a (~x, t), i.e. the maximum number of moles or molecules per unit
area for any species a, remains unchanged in time in the current configuration. This choice in turn
entails that the number of moles or molecules per unit area in the reference configuration is not
constant and evolves in time following eq. (6.14), i.e.

cmax
aR

(~X , t) = cmax
a (~x(~X , t), t) j(~X , t) . (6.23)

Accordingly, the value of the non-dimensional ratio between the concentration of species a and its
amount cmax

a at saturation,
Ja = ca/cmax

a (6.24)

in the current configuration remains unchanged in the reference configuration

JaR(~X , t) = Ja(~x, t) . (6.25)

The kinetics of reaction (6.22) is modeled as for ideal systems via the law of mass action [144]

w(6.22) = k f
JL

(1�JL)

JR

(1�JR)
� kb

JC

(1�JC)
. (6.26)

At chemical equilibrium, as w(6.22) = 0, the concentrations obey the relation

k f

kb
=

J eq
C

(1�J eq
C )

(1�J eq
R )

J eq
R

(1�J eq
L )

J eq
L

= K(6.22)
eq (6.27)

which defines the constant of equilibrium K(6.22)
eq of reaction (6.22).

Far from the saturation limit, (1 � Ja) ⇠ 1 for all a. Accordingly, the mass action law (6.26)
simplifies as

w(6.22) = k̃ f cL cR � k̃b cC (6.28)

once the new constants

k̃ f = k f (cmax
L cmax

R )�1 , k̃b = kb(cmax
C )�1

are defined.

The diffusion of receptors and the viscous evolution of the cell during adhesion and migration
appear to be much slower than the interaction kinetics, i.e. the time required to reach chemical

2Multiscale investigations, however, fall out of the scope of the present thesis.
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equilibrium is orders of magnitude smaller than the time-scale of other processes. For this reason,
thermodynamic equilibrium may be invoked in place of a transient evolution, thus inferring the
constraint w(6.22) = 0 to the concentrations of species at all times. Far from saturation, equating
(6.28) to zero implies that

cC =
cR cL

a
, (6.29)

having denoted with a the following constant:

a =
k̃b

k̃ f
=

cmax
R cmax

L
cmax

C

1

K(6.22)
eq

. (6.30)

In view of identity (6.29), the two concentrations cR and cL describe the problem in full, and the
concentration of the complex can be deduced a posteriori.

In vivo experiments show that the complex molecules usually have a much smaller mobility than
receptors, perhaps induced by their size. For in vitro experiments [138, 139, 140], ligands are
prevented to flow onto the substrate: given that complex molecules result from the interaction
with immobile ligands, they are macroscopically steady as well. Since receptors move along the
membrane, reaction (6.22) traps mobile receptors and vice-versa [141]. In this work, analogously
to [114] and what has been done in the previous part of the thesis, ligands and complex are assumed
to be motionless, i.e.

~hL =~hC =~0 . (6.31)

The reaction rate w(6.22)(~x, t), being a mass supply, shall transform as sa(~x, t) according to eq.
(6.15). The invariance of Ja with the configuration and the analysis of the mass action law
(6.26) imply that the forward and backward “constants”, which encompass the dimensionality
of w(6.22)(~x, t), are not actually constants in the reference configuration. They rather change with
time and with point ~X according to

k fR(~X , t) = j(~X , t)k f , kbR(~X , t) = j(~X , t)kb (6.32)

with j(~X , t) as in (6.16). The equilibrium constant in the reference configuration, being the ratio
of k fR and kbR remains independent upon the configuration. Eventually, the mass action law (6.26)
in the reference configuration writes

w(6.22)
R = k fR

JL

(1�JL)

JR

(1�JR)
� kbR

JC

(1�JC)
. (6.33)

In view of all considerations made so far, the local form (6.17) of the mass balance specify as
follows ( omitting the dependency upon ~X and t ):

∂cRR

∂ t
+ DivPR

h
~hRR

i
+ w(6.22)

R = sRR , (6.34a)

∂cLR

∂ t
+ w(6.22)

R = 0 , (6.34b)

∂cCR

∂ t
� w(6.22)

R = 0 . (6.34c)
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Equation (6.34a) is defined on the membrane surface ∂WR, where the receptors flow. The supply
sRR accounts for internalization or generation of proteins: it is the amount of receptors that are
generated within the cell and reach the membrane or that internalize. It can be related to the
change in the membrane area through a parameter kRR as

sRR(~X , t) = kRR

∂ j
∂ t

= kRR


|F�T~nR|J tr [ l ] � J

2
1

|F�T~nR| ~nR ·C�1 ∂C
∂ t

C�1~nR

�
. (6.35)

At all points at which ligands and receptors do not interact, the reaction rate w(6.22)
R vanishes.

Equation (6.34b) is rather defined in the location where ligands stand. In vitro, a given amount
of ligands (which can be thought of as the initial condition of eq. (6.34b) are spread upon a
microscope slide. Finally, eq. (6.34c) is defined in the contact zone between the cell and the slide
where reaction (6.22) takes place.

It is convenient to rephrase eq. (6.34b) in terms of the “ligands made available for the reaction”
in place of the “ligands spread on the slide". The former ligands are the ones “felt” at a point on
the membrane as the distance from such a point and the substrate, where ligands are spread out,
becomes sufficiently small.
Such a distance can be understood as a cutoff, within which the formation of an encounter com-
plex, C⇤, becomes possible as a consequence of diffusion, as made clear in [170, 171, 107, 174].
Despite the size of the cutoff distance remains inaccurately estimated, it was established to be
on the order of tens nanometers [107, 106]. It arises form the interplay of attractive and repul-
sive forces between either two cells or a cell and a substrate. Indeed, negative electrical charge
carried by cells generates repulsive electrostatic forces - repulsive barrier - which is further en-
riched by an additional resistance provided by the compression of the glycocalyx proteins. Rather,
electrodynamic van der Waals forces are expected to be attractive [107]. Both van der Waals and
compressive forces are characterized as non-specific long ranged forces, whereas cell adhesion is
generally mediated by the specific short ranged receptor-ligand interactions, which can cause cell
adhesion much more tightly than the non-specific electrical forces [107, 114]. Cells separated by a
distance less than, or equal to, the cutoff distance should form a zone of adhesion with the substrate
by means of local fluctuations in receptors density, so that small regions of increased density can
penetrate through the resisting potential to react with the source of ligands on substrate [106].
This point of view, which corresponds to the picture of tight receptor-ligand bond as a set of weak
non covalent physical interactions [175], is made explicit by a supply function sLR , that vanishes
at long ranges and rapidly reaches the initial concentration of ligands available for the reaction at
short distances

∂cLR

∂ t
+ w(6.22)

R = sLR . (6.36)

The ligand supply sLR(~X , t) becomes available for the reaction during the spreading of the cell. It
seems to be logically related to: i) a gap function between the substrate rich in ligands and the
cell membrane in the current configuration; ii) a lag in time, namely a point-wise function of an
internal variable that activates when the gap function is below some threshold and is related to
the chemical kinetics of the binding-unbinding reaction (6.22). In this form, all three equations
(6.34a), (6.34c), (6.36) can be written on the membrane ~X 2 ∂WR.
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Assuming that the time scale of the chemical reaction is much faster than other processes, the
concentrations of species may be governed by thermodynamic equilibrium at all times. The con-
centration of complex cCR relates then to the others by the equation w(6.22) = 0, which leads to eq.
(6.29) in the current configuration. Making use of mapping (6.14), eq. (6.29) relates the concen-
tration of complex in the reference configuration cCR to the concentration of ligands and receptors
in the same configuration cLR , cRR as follows

cCR =
cRR cLR

aR(~X , t)
, aR(~X , t) = a j(~X , t) , (6.37a)

with constant a defined in eq. (6.30). Transformation (6.37a) is consistent with the assumption
(6.23) made on how saturations transform.

In conclusion, exploiting identity (6.37a), the two concentrations cRR and cLR fully describe the
problem in the assumption of infinitely fast kinetics, whereas the concentration of the complex can
be deduced a posteriori. The two governing equations descend from eqs. (6.34) and read:

∂cRR

∂ t
+

∂cCR

∂ t
+ DivPR

h
~hRR

i
= sRR , ~X 2 ∂WR , (6.37b)

∂cLR

∂ t
+

∂cCR

∂ t
= sLR , ~X 2 ∂WR . (6.37c)

Equations (6.37), with associated initial conditions

cRR(~X ,0) = c0
RR

(~X) , cLR(~X ,0) = 0 , cCR(~X ,0) = 0

and Dirichlet-Neumann boundary conditions define the relocation of receptors that undergo binding-
unbinding reactions on the reference configuration of a membrane that advects. These are balance
equations and as such hold for any constitutive behavior for the mass flux. These equations are
coupled to the mechanical evolution of the cell (i.e. adhesion, spreading, migration) through the
function sLR(~X , t), which “transfers” ligands on the membrane according to the geometry of the
cell.
Generation and/or internalization phenomena of receptors are taking into account by means of the
mass supply sRR(X, t). sRR(X, t), it can be related to the change in the membrane area through a
parameter kRR as:

sRR(X, t) = kRR

∂ j
∂ t

. (6.38)

Now we study the expression
∂ j
∂ t

where j = |F�T nR|J.

∂ j
∂ t

=
∂ |n|
∂ t

J + |n|∂J
∂ t

. (6.39)

From F.19:
d
⇥
J
p

nR ·CnR
⇤

dt
= J|n|


div (vb)� n · (dn)

|n|2

�
. (6.40)
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We know that:
C = FT F C�1 = F�1F�T

l = ḞF�1 lT = F�T ḞT

∂C�1

∂ t
= �C�1 ∂C

∂ t
C�1

n · (dn) = nT dn =
�
F�T nR

�T d
�
F�T nR

�
= nT

RF�1dF�T nR

(6.41)

Now we want to proof that F�1dF�T =
1
2

C�1 ∂C
∂ t

C�1.

1
2

C�1 ∂C
∂ t

C�1 =
1
2

F�1F�T
⇣

ḞT F+FT Ḟ
⌘

F�1F�T =

=
1
2

F�1F�T ḞT FF�1
| {z }

I

F�T +
1
2

F�1 F�T FT
| {z }

I

ḞF�1F�T =

=
1
2

F�1 F�T ḞT
| {z }

lT
F�T +

1
2

F�1 ḞF�1
| {z }

l

F�T = F�1 1
2
�
lT + l

�

| {z }
d

F�T = F�1dF�T

(6.42)

d
⇥
J
p

nR ·CnR
⇤

dt
= J|n| div (vb)� J

n · (dn)

|n| =

= J|F�T nR| div (vb)� J
|F�T nR|

n · (dn) =

= J|F�T nR| div (vb)� J
|F�T nR|

1
2

nR ·C�1 ∂C
∂ t

C�1nR =

J|F�T nR| div (vb)| {z }
Tr(l)

� J
2|F�T nR|

nR ·C�1 ∂C
∂ t

C�1nR

(6.43)

sRR(X, t) = kRR

∂ j
∂ t

= kRR


J|F�T nR|Tr(l)� J

2|F�T nR|
nR ·C�1 ∂C

∂ t
C�1nR

� (6.44)

sR = kR
∂ j
∂ t

= kR


J|F�T nR|Tr(l)� J

2|F�T nR|
nR ·C�1 ∂C

∂ t
C�1nR

�
(6.45)

where we know: sRR = sRJ|F�T nR|.
Thanks to the (6.37a) two governing equations descend from (6.37) and read:

∂cRR

∂ t
+DivPR [hRR ]+

∂cCR

∂ t
= sRR ,

∂cLR

∂ t
+

∂cCR

∂ t
= sLR .

(6.46)

Now we wanto to evalueted the expression
∂cCR

∂ t
. By means of (6.37a) and (6.44):

∂cCR

∂ t
=

∂
∂ t

(cRRcLR)aR � (cRRcLR)
∂aR

∂ t
a2

R
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where:
∂aR

∂ t
= a ∂ j

∂ t
= a


J|F�T nR|Tr(l)� J

2|F�T nR|
nR ·C�1 ∂C

∂ t
C�1nR

�

therefore:

∂cCR

∂ t
=

aRcLR

∂cRR

∂ t
+aRcRR

∂cLR

∂ t
�acRRcLR

∂ j
∂ t

a2
R

=

=
cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t
aR

�
acRRcLR

∂ j
∂ t

a2
R

=

=
cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t
aR

�
acRRcLR


J|F�T nR|Tr(l)� J

2|F�T nR|
nR ·C�1 ∂C

∂ t
C�1nR

�

a2
R

=

=
cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t
aR

�
acRRcLR


J|F�T nR|Tr(l)� J2

2 j
nR ·C�1 ∂C

∂ t
C�1nR

�

a2
R

We focus on the term �
acRRcLR


J|F�T nR|Tr(l)� J2

2 j
nR ·C�1 ∂C

∂ t
C�1nR

�

a2
R

:

first member

� acRRcLRJ|F�T nR|Tr(l)
a2

R
= �cRRcLRTr(l)

aR

second member

acRRcLR

J2

2 j
nR ·C�1 ∂C

∂ t
C�1nR

a2
R

=
a

2a2
R

J2

j
| {z }

1/2aJ|F�T nR|3

cRRcLRnR ·C�1 ∂C
∂ t

C�1nR =

=
cRRcLR

2aJ|F�T nR|3
nR ·C�1 ∂C

∂ t
C�1nR

Finally:

∂cCR

∂ t
=

1
aR


cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t

�
+ cRRcLR

2

64�Tr(l)
aR

+
nR ·C�1 ∂C

∂ t
C�1nR

2aJ|F�T nR|3

3

75=

=
1

aR


cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t

�
+ cRRcLR

2

64�Tr(l)
aR

+
nR ·C�1 ∂C

∂ t
C�1nR

2aR|F�T nR|2

3

75=

=
1

aR


cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t

�
+

cRRcLR

aR

2

64�Tr(l)+
nR ·C�1 ∂C

∂ t
C�1nR

2|F�T nR|2

3

75

(6.47)
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in light of the above, the governing equations 6.46 become:

∂cRR

∂ t
+DivPR [hRR ]+

1
aR


cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t

�
+

cRRcLR

aR

2

64�Tr(l)+
nR ·C�1 ∂C

∂ t
C�1nR

2|F�T nR|2

3

75= sRR ,

∂cLR

∂ t
+

1
aR


cLR

∂cRR

∂ t
+ cRR

∂cLR

∂ t

�
+

cRRcLR

aR

2

64�Tr(l)+
nR ·C�1 ∂C

∂ t
C�1nR

2|F�T nR|2

3

75= sLR .

(6.48)

Such a model could be extend to a further formulation involving more than one chemical reactions,
see next chapters and Appendix G.1.

6.3 Relocation and reaction of actin to form biopolymers
The extensive mathematical description made in section 6.2 will guide the modeling of the reloca-
tion and reaction of actin to form biopolymers in the cytosol, which will be summarized here in a
shorter shape.

Biopolymers are composed of actin, a protein termed globular or G-actin in its monomeric form
and F-actin when it forms filamentous polymers. In turn, actin filaments can bundle to form stress
fibers, or cross-link to form polymer networks that allow the movement of the cell. Polymerization
is usually triggered by extracellular signals. In the case of cell locomotion, for instance, the cell
extends finger-like protrusions by which the cell “feels” the surrounding surface. As done in [129],
the precise details of the signaling pathways are here ignored. Rather, the level of signaling is
assumed given in the reference configuration by a function

C(~X , t) = gi exp
h
�|~x(~X , t)�~yi|

i
exp

�t � ti

q

�
(6.49)

that accounts for the location of discrete signaling points~yi in the surroundings emitting signals of
intensity gi at time ti; q is the decay constant of the signal. This approach in modeling the external
stimulus is similar to the membrane activator in [176]. The transduction of the signal results in
the polymerization of the actin filaments and their cross-linking or bundling. The formation of
single actin filaments can be modeled as a bimolecular reaction similar to (6.21), as in [3]; in
this section, the biopolymer turn-over will be described at a larger scale, involving the interplay
between fundamental units and stress-fibers or pseudopodia, in the form

G
k f
�
kb

F (6.50)

with F denoting either one of the two biopolymers. The network or fiber formation rate of reaction
(6.50), denoted with w(6.50), is influenced by mechanical stresses: stress fibers stability is favored
by tension, for instance. For this reason, the stress tensor enters the chemical potential and the
dissociation reaction of biopolymers. The kinetics of reaction (6.50) is modeled via the law of
mass action, properly extended to account for signaling:

w(6.50)(~X , t) = C(~X , t) k f
JG

(1�JG)
� D(~X , t)kb

JF

(1�JF)
, (6.51)
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having already discussed the meaning of the ratio J in eq. (6.24). Function D accounts for the
role of the stress in the dynamic formation and dissociation of biopolymers, see for instance [129].

6.3.1 Mass transport in the cytosol
Consider a generic species a at a point~x in the cytosol W(t). The mass balance of species a in the
advecting configuration Q(t) localizes as

dra

dt
+ra div [~vadv ]+div

h
~̄ha

i
= sa(~x, t) , (6.52)

with~̄ha and~vadv defined earlier in section 6.2.2.1, ra is the density of species a. The mass balance
can be restated in terms of molarity ca (in moles or molecules per unit volume), by division by
the molar or molecular mass (ma) of species a. By denoting with ca = ra/ma, sa = sa/ma, and
~ha =~̄ha/ma the local balance (6.52) becomes

dca

dt
+ ca div [~vadv ]+div

h
~ha

i
= sa(~x, t) . (6.53)

The latter can be rephrased in the reference configuration at point ~X and time t. To this aim, define
the reference molarity of species a as

caR(~X , t) = ca(~x(~X , t ), t ) J(~X , t) , (6.54)

the reference flux vector~haR(~X , t) and the reference mass supply saR(~X , t) as [142] (page 374)

~haR = JF�1~ha(~x(~X , t ), t ) , saR = J sa(~x(~X , t ), t ) , (6.55)

respectively. The reaction rate w(6.50)(~x, t), being a mass supply, shall transform according to
eq. (6.55)b. The invariance of Ja with the configuration and the analysis of the mass action law
(6.51) imply that the forward and backward “constants”, which encompass the dimensionality of
w(6.50)(~x, t), are not actually constants in the reference configuration. They rather change with time
and with point ~X according to

k fR(~X , t) = J(~X , t)k f , kbR(~X , t) = J(~X , t)kb (6.56)

The ratio k fR/kbR remains independent upon the configuration. The referential form of the mass
balance equations eventually reads

∂cGR

∂ t
+ Div

h
~hGR

i
+ w(6.50)

R = sGR , (6.57a)

∂cFR

∂ t
+ Div

h
~hFR

i
� w(6.50)

R = sFR . (6.57b)

As for the complex molecules, filaments usually have a much smaller mobility than monomers
and might be assumed to be motionless, i.e.

~hF =~hFR =~0 . (6.58)
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The diffusion of monomers appears to be much slower than the interaction kinetics and the con-
centrations of species may be governed by thermodynamic equilibrium at all times [177]. The
concentration of filaments cFR relates then to the monomers by the equation w(6.50) = 0, mediated
by the local amount of signaling and stress. Equations (6.57), with associated initial conditions

cGR(~X ,0) = c0
GR

(~X) , cFR(~X ,0) = 0

and Dirichlet-Neumann boundary conditions define the relocation of monomers that undergo poly-
merization reactions in the reference configuration.

6.4 Mechanical evolution of the cell
Based upon the selection of the mechanisms that are supposed to govern the structural response
of the cell, the balance laws of linear and angular momentum come out. Literature provides two
basic approaches, whether the structural functions are demanded entirely to the cell membrane
[98, 99, 101, 178, 179] or to the development of a cytoskeletal structure within the bulk of the cell
[129, 119, 120, 118, 128, 121, 126, 123, 122, 180] (see also section 2.5). Studies on the red blood
cell [172] suggest that the membrane deformation occur at constant area, but this evidence does
not appear to be supported by experiments in endothelial cells during spreading. The influence
of curvature on the elastic stiffness of the membrane appears to be related to the size of the cell
[116] and seems to be negligible for endothelial cells of diameter ⇠ 10µm. These two evidences
lead to consider the reorganization of the cytoskeleton through a network of actin filaments and
microtubules the main responsible for the mechanical response of endothelial cells, coupled to
a passive behavior dictated by the viscosity of the cytosol as in [129, 119, 180]. Accordingly,
balance of linear and angular momentum will be formulated for the bulk of the cell rather than the
membrane.

Forces in continuum mechanobiology are described spatially by contact forces between adjacent
spatial regions (as for the forces exchanged by the substrate and the cell during adhesion), surface
forces exerted on the boundary of the cell by the environment (as for the receptor-ligand attractive
interaction [107, 108] and repulsive electrostatic interactions), body forces exerted on the interior
points by the environment (as for the gravity or pseudopodia forces that preside migration). Contact
and surface forces, acting on ∂W(t) will be denoted henceforth with~t(~x, t) whereas body forces
will be denoted with~b(~x, t). Their referential counterparts will inherit the subscript R. Throughout
the rest of the current chapter (and subsequent ones), we will neglect inertia forces, although some
authors [181] pinpointed the role of inertia forces during migration. Accordingly, the balance
of linear and angular momentum, which are assumed to hold at each time for all spatial regions
Q(t) ✓ W(t), read:

Z

∂Q(t)
~t(~x, t) da+

Z

Q(t)
~b(~x, t) dv =~0 , (6.59a)

Z

∂Q(t)
~r ⇥~t(~x, t) da+

Z

Q(t)
~r ⇥~b(~x, t) dv =~0 (6.59b)

with ~r denoting the position vector with respect to an arbitrary pole. Classical arguments of
continuum mechanics lead to localize eqs. (6.59) in the reference configuration, in terms of the
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(first) Piola stress tensor P and of the body forces measured per unit volume in the reference body

~bR(~X , t) = J(~X , t)~b(~x(~X , t), t) .

The referential local form of the balance of linear momentum reads

Div [P ]+~bR =~0 , ~X 2 WR . (6.60a)

The first Piola stress tensor P must satisfy the local angular momentum balance

PF T = FP T . (6.60b)

6.4.1 Mechano-biological quantitative investigations on boundary conditions
Contact and surface forces are boundary conditions for problem (6.60a). They emanate from elec-
trostatic long or short-range interactions, from receptor-ligand adhesion forces, as well as from
contact tractions after adhesion. A vast literature [182, 183, 3] has been devoted to quantify the
forces involved in these interaction mechanisms. It emerges that uncertainties remain in the es-
tablishment of realistic values for attraction forces, not surprisingly due to the complexity of the
required experimental tasks.

Studies on the influence of non-specific traction forces in cell adhesion were performed at dif-
ferent time scales, from minutes - as for the spreading of a mouse embryonic fibroblasts on a
matrix-coated surface [184] - to several hours - as for a bovine aortic endothelial cell on polyacry-
lamide gels [97] - for different cell sizes. Analyses refer mostly to the early stage of adhesion: as
pointed out in [114], traction models are helpful under specific conditions and particularly in pre-
dicting isotropic early stage of cell adhesion, which is essentially independent of the cytoskeleton
remodeling. Isotropic spreading is made possible by higher ligands densities; at lower densities
of ligands, cells tend to spread anisotropically, by extending pseudopodia randomly along the cell
membrane [97]. This has been made clear also in modeling micropipette-manipulated red blood
cell attachment-detachment from a substrate [115], which was performed in ⇡ 50 ms showings
that after approximately a third of the adhesion-spreading time, the adhesion-traction forces level
off and to further increase spreading area, receptor diffusion from a remote area of the cell to the
spreading front is required. Roughly the same concept has been explored in [185], dealing with
charged flexible particles that adhere to an oppositely charged rigid substrate due to electrostatic
attraction forces. Surface forces drive the adhesion of small particles. The cell radius in the ref-
erence, unstressed configuration was considered in the micron/sub-micron range 1 µm in [185] or
even smaller 12.5 nm in [116]. According to [113], adhesion and spreading also require transport
of receptors from the apical to the basal part of the cell in order to generate attractive forces.

Initially, we do not account explicitly for integrins, as done in [123] among others, yet we will use
the approaches in [123, 116] to discuss the magnitude of traction forces in cell spreading. Accord-
ing to [116], Neumann tractions emanate from short-range, noncovalent interactions between one
receptor and one ligand due to polarization of a non-polar ligand molecule in the electrostatic field
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of a charged receptor. The binding force on the membrane per unit area in the current configuration
was given as

~t(~x) = �C(KgN +1)((KgN +1)2 +1)g�5
N exp(�2KgN)rrl(~x)~e2 (6.61)

where: gN is the gap between receptors and ligands, rrl(~x) is the minimum concentration of re-
ceptors and ligands at location~x, C is the number of weak noncovalent sub-bonds which form the
interaction between one receptor and one ligand, K is the inverse of the Debye length. It is of
course particularly complex to provide parameters with high accuracy: assuming that the values
provided in [116] apply also to endothelial cells, one would set C = 1.17⇥10�7fNµm�5, K = 1.

Parameter rrl(~x) selected in [116] amounts at 105 receptors per µm2, severely higher than the
concentrations of species that have been measured in [138]. Such a parameter should be considered
as a constant only if it refers to all receptors on the membrane, which is questionable. The protein
transport affects the amount rrl(~x) and couples mechanical deformation in the bulk and chemo-
transport processes on the membrane. The resulting Neumann electrostatic attractive tractions are
plotted with a continuous line in Fig. 6.2.

Figure 6.2: Comparison between binding forces on the membrane per unit area. Continuous line
refers to eq. (6.61) adopted in [116], whereas the dashed line refers to eq. (6.62) used in [123].

These forces decrease when the distance between receptors and ligands grows, and are quite high at
a strictly positive lower bound h0 depicted as the gap between the cell and the substrate at contact.
Authors in [116] suggest h0 = 9.0 ⇥ 10�3µm. Repulsive forces are expected for distances below
such a bound, as in Lennard-Jones potentials, yet this is not the case of equation (6.61). Attractive
forces decay rapidly and at a distance of 0.5µm they amount to a few fN/µm2. Their range being
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so short, it is unlikely that those forces promote the cell spreading unless the characteristic size of
the cell becomes very small (indeed, authors in [116] considered a cell with radius 12.5nm, three
orders of magnitude smaller than the measured radius of an endothelial cell in suspension - about
10µm). Rather, electrostatic interactions grant attachment to the lower µslide once gravitational
effects bring the cell in contact with the slide.
A further corroboration of this statement emerge from the analysis of attractive forces used in [123]
to allow a cell to (partially) spread, namely

~t(~x) = �Q
gN

dp
exp
✓

�gN

dp

◆
~e2 (6.62)

with Q,dp calibrated as 50kPa = 5 ⇥ 107fN/µm2 and 0.13µm, respectively. In order to foster
cell spreading, these attraction forces result 4 orders of magnitude higher than (6.61) - see the
dashed line in 6.2. there is apperently no justification in the literature for such a huge value of the
ligand-receptor binding force acting on such a long-range extent. Rather, these interactions are
followed by the extension of pseudopodia from the cell body. As the cell begins to flatten against
the substrate, it forms additional bonds, rearranges its cytoskeleton to form actin filaments and
bundles, creating new focal adhesions.

In conclusion, surface forces may drive the post-adhesion processes only for small particles as the
ones considered in [185] or [116]. The cell radius in the reference, unstressed configuration was in
the micron/sub-micron range 1 µm in [185] or even smaller 12.5 nm in [116]. For ECs, interaction
forces of electrostatic nature are followed by the extension of pseudopodia from the cell body. As
the cell begins to flatten against the substrate, it forms additional bonds, rearranges its cytoskeleton
to form actin filaments and bundles, creating new focal adhesions. Spreading thus is a result of
extensional and contractile forces exerted by pseudopodia and the cytoskeleton machinery [97].

6.5 Thermodynamics
The quest of the right thermodynamic principles in mechanobiology is, on one hand, far from
being understood and, from a wider perspective, it paves the way to boundless questions of philo-
sophical and ethical nature, as for the establishment of a thermodynamics of life [186], which fall
completely out of the scope of present paper. Major accomplishments have been recently achieved
[14] in formulating fresh concepts that deviate from classical results of thermodynamics of non
equilibrium. In this scientific area, which is nowadays flourishing, new fundamentals assertions
are expected in the years to come. Being aware of these deficiencies, we admit that our formula-
tion of non equilibrium thermodynamics [144, 141] may not be able to capture some principles of
mechanobiology that rule the dynamic of receptors - as for the homeostatic constraint - and we are
prone to deepen our formulation in future studies.

6.5.1 Thermodynamics of receptors motion on the membrane
6.5.1.1 Energy Balance

As in section 6.1, denote with W(t) the advecting cell, and with ∂W(t) its lipid membrane. Consider
an arbitrary region P(t) ⇢ ∂W(t). The first law of thermodynamics represents the balance of the
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interplay among the internal energy of P(t), the heat transferred in P(t) and the power due to mass
exchanged by receptor dynamics on P(t). The energy balance for the problem at hand reads:

dU
dt

(P) = Qu(P)+Tu(P) , (6.63)

where Qu is the power due to heat transfer and Tu is the power due to mass transfer. Denoting with
∂P(t) the bounding closed curve of P(t) (see Fig. 6.1), they read:

Qu =
Z

P

sq da�
I

∂P
~q ·~t? d` (6.64a)

Tu =
Z

P

µu
L sL + µu

R sR da�
I

∂P
µu

R
~hR ·~t? d`

The time variation of net internal energy U thus corresponds to the power expenditure of two exter-
nal agents: a heat contribution Qu where sq is the heat supplied by external agents and~q is the heat
flux vector; a mass contribution Tu in which the scalar uµb denotes the change in specific energy
provided by a unit supply of moles of species b = L,R. Mass supply sL is the push-forward of the
ligand supply sLR(~X , t) defined in eq. (6.36) and~hR is the flux of receptors along the membrane in
the current configuration.

The net internal energy can be denoted in terms of specific internal energy u per unit surface,
namely:

U(P) =
Z

P

uda . (6.65)

Applying the surface divergence theorem (6.4) and mass balances leads from (6.64) to

Qu =
Z

P

sq da�
Z

P

divP [~q ] da Tu =
Z

P

µu
L sL + µu

R sR da�
Z

P

divP
h

µu
R
~hR

i
da , (6.66a)

whence the first law of thermodynamics arises3

d
dt

Z

P

uda =
Z

P

sq �divP [~q ] �divP
h

µu
R
~hR

i
+ µu

L sL + µu
R sR da .

It can be pulled back to the reference configuration in view of definitions of reference molarity
of species caR(~X , t) in eq. (6.14), of the reference flux vector~haR(~X , t) and of the reference mass
supply saR(~X , t) in eq. (6.15), which readily extends to heat fluxes and supplies

d
dt

Z

PR
uR dA =

Z

PR
sqR �DivPR [ ~qR ] �DivPR

h
µu

RR
~hRR

i
+ µu

LR
sLR + µu

RR
sRR dA . (6.68)

Since it must hold for any region PR, the local form of the first principle can be derived exploiting
the mass balance equations (6.34a), (6.34c), (6.36) in the reference configuration

duR

dt
= sqR �DivPR [ ~qR ]�~hRR ·GradPR

⇥
µu

RR

⇤

+ µu
RR

∂cRR

∂ t
+ µu

LR

∂cLR

∂ t
+ µu

CR

∂cCR

∂ t
+
�
µu

RR
+ µu

LR
� µu

CR

�
w(6.22)

R . (6.69)
3Since it must hold for any region P(t), the current configuration local form of the first principle can be derived

exploiting Reynold’s theorem (6.6) on P(t)

∂u
∂ t

+ divP [u~vadv ] = sq �divP [~q ]+ µu
R

∂cR

∂ t
+ µu

L
∂cL

∂ t
+ µu

C
∂cC

∂ t
�~hR ·—P [µu

R ]+ (µu
R + µu

L � µu
C)w(6.22) . (6.67)
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6.5.1.2 Entropy balance equations

The second law of thermodynamics represents the balance of the interplay among the internal
entropy of P and the entropy transferred in P due to mass exchange and heat transferred on P. The
entropy balance for the problem at hand reads:

dS
dt

(P) � dSirr

dt
(P) = Qh(P)+Th(P) , (6.70)

where S is the net internal entropy of P, Sirr is the entropy produced inside P, Qh the entropy per
unit time due to heat transfer, Th the entropy per unit time due to mass transfer. The individual
contributions read:

Qh =
Z

P

sq

T
dA �

I

∂P

~q
T

·~t? d` , (6.71a)

Th =
Z

P

µh
L sL + µh

R sR dA�
I

∂P
µh

R
~hR ·~t? d` . (6.71b)

The scalar µh
b denotes the change in specific entropy provided by a unit supply of moles of species

b . Equation (6.70) stems from the non-trivial assumption that mechanics does not contribute
directly to the total entropy flow in the entropy balance equation [141]. The second law of thermo-
dynamics states that:

dSirr

dt
� 0. (6.72)

Analogously to the energy counterpart, we define the specific internal entropy h per unit volume
and write the entropy imbalance in the reference configuration as

d
dt

Z

PR
hR dA+

Z

PR
�

sqR

T
+DivPR


~qR

T

�
� µh

LR
sLR � µh

RR
sRR +DivPR

h
µh

RR
~hRR

i
dA � 0 .

After multiplication by T � 0, replacing �sqR + DivPR [ ~qR ] by means of the energy balance (6.69),
and some simple algebra, the local form of the entropy imbalance becomes

T
dhR

dt
� duR

dt
+

∂cRR

∂ t

h
µu

RR
�T µh

RR

i
+

∂cLR

∂ t

h
µu

LR
�T µh

LR

i
+

∂cCR

∂ t

h
µu

CR
�T µh

CR

i
+

� 1
T

~qR ·GradPR [T ]+T~hRR ·GradPR

h
µh

RR

i
�~hRR ·GradPR

⇥
µu

RR

⇤

+
⇣

µu
RR

�T µh
RR

+ µu
LR

� T µh
LR

� µu
CR

+ T µh
CR

⌘
w(6.22)

R � 0 .

(6.73)

Denote with b = R,L,C and with the symbols µbR , A(6.22)
R the quantities

µbR = µu
bR

�T µh
bR

(6.74)

A(6.22)
R = �µRR � µLR + µCR . (6.75)

By noting that:

T~hRR ·GradPR

h
µh

RR

i
=~hRR ·GradPR

h
T µh

RR

i
�~hRR ·GradPR [T ] µh

RR
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one finally writes the entropy imbalance as:

T
dhR

dt
� duR

dt
+

∂cRR

∂ t
µRR +

∂cLR

∂ t
µLR +

∂cCR

∂ t
µCR+

�
✓

1
T

~qR + µh
RR

~hRR

◆
·GradPR [T ]�~hRR ·GradPR [µRR ]

�A(6.22)
R w(6.22)

R � 0 .

(6.76)

6.5.1.3 Helmholtz Free Energy and thermodynamic restrictions

The referential specific Helmholtz free energy per unit volume is defined as:

yR = uR �T hR (6.77)

and is taken as a function of temperature and concentrations, yR (T,cRR ,cLR ,cCR). It thus hold:

T
dhR

dt
� duR

dt
= � dyR

dt
�hR

∂T
∂ t

= � ∂yR

∂cLR

∂cLR

∂ t
� ∂yR

∂cRR

∂cRR

∂ t
� ∂yR

∂cCR

∂cCR

∂ t
�
✓

hR +
∂yR

∂T

◆
∂T
∂ t

which can be plugged in (6.76) to derive the entropy imbalance in the Clausius-Duhem form:
✓

� ∂yR

∂cRR

+ µRR

◆
∂cRR

∂ t
+

✓
� ∂yR

∂cLR

+ µLR

◆
∂cLR

∂ t
+

✓
� ∂yR

∂cCR

+ µCR

◆
∂cCR

∂ t
�
✓

hR +
∂yR

∂T

◆
∂T
∂ t

+

� 1
T

~qR ·GradPR [T ]�A(6.22)
R w(6.22)

R �~hRR ·GradPR [µRR ] � 0
(6.78)

with ~qR = ~qR + T µh
RR

~hRR . This inequality must hold for any value of the time derivative of the
temperature and of the referential concentrations cRR , cLR , and cCR . Since they appear linearly in
the inequality, the factors multiplying them must be zero, as otherwise it would be possible to find
a value for the time derivatives that violate the inequality. Therefore, the following restrictions
apply

µRR =
∂yR

∂cRR

, µLR =
∂yR

∂cLR

, µCR =
∂yR

∂cCR

, hR = �∂yR

∂T
. (6.79)

In view of formula (6.79), the amount µb declared in eq. (6.74) acquires the meaning of chemical
potential and hence the term A(6.22) in eq. (6.75) turns out to be the affinity of the reaction (6.22).
Further remarks on this thermodynamic approach can be found in [141] and in chapter 3.2.

Equation (6.79) yields to the so called Clausius-Plank inequality:

� 1
T

~qR ·GradPR [T ]�A(6.22)
R w(6.22)

R �~hRR ·GradPR [µRR ] � 0 (6.80)

that splits under the assumptions of Curie’s principle and thermal equilibrium in the following set
of inequalities:

1
T

~qR ·GradPR [T ]+~hRR ·GradPR [µRR ]  0 , (6.81a)

A(6.22)
R w(6.22)

R  0 . (6.81b)
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6.5.1.4 Constitutive theory

We will assume henceforth that the lipid membrane is in thermal equilibrium, i.e. GradPR [T ] =~0,
and that the Helmholtz free energy density is additively decomposed into three separate parts:

yR (cRR ,cLR ,cCR) = yR
R (cRR)+yL

R(cLR)+yC
R (cCR) (6.82)

meaning that the contribution of species are uncoupled, neglecting molecular friction that would
lead to a Maxwell-Stefan description of transport. The free energy density of mobile guest atoms
interacting with a host medium is described by an ideal solution model, which stems from a statis-
tical mechanics description of the entropy for isolated systems in terms of the density of states, i.e.
the number of possible molecular configurations [150] in the case of two-state systems. Making
recourse to Stirling’s approximation, one finds that the formula for combinations provides the fol-
lowing free energy density for the continuum approximation of mixing [150] of the generic species
b = R,L,C

yb
R (cbR) = µ0

bR
cbR +RT cmax

bR

⇥
JbR lnJbR +(1�JbR) ln(1�JbR)

⇤
, (6.83)

with JbR defined in (6.25) as the ratio between the concentration and the saturation limit for each
species in the reference configuration. The chemical potential descends from eq. (6.79)

µbR =
∂yb

R
∂cbR

= µ0
bR

+RT
�
lnJbR � ln

�
1�JbR

��
. (6.84)

A strategy to meet the thermodynamic restriction (6.81a) is to model the flux of receptors by
Fickian-diffusion, that linearly correlates~hRR to the gradient of its chemical potential µRR:

~hRR = �MR(cR) GradPR [µRR ] (6.85)

by means of a positive definite mobility tensor MR. The following isotropic non linear specializa-
tion for the mobility tensor MR is chosen [149]

MR(cRR) = u|R cmax
RR

JRR (1�JRR) 1 , (6.86)

where cmax
RR

is the saturation limit for receptors, and u|R > 0 is the mobility of receptors. Defi-
nition (6.86) represents the physical requirement that both the pure (cRR = 0) and the saturated
(cRR = cmax

RR
) phases have vanishing mobilities. Neither the mobility u|R nor the saturation con-

centration cmax
RR

are assumed to change in time. Whereby experimental data indicate an influence
of temperature, stresses, or concentrations, such a limitation can be removed without altering the
conceptual picture. Noting that

GradPR [µRR ] =
RT
cmax

RR

1
JRR(1�JRR)

GradPR [cRR ] ,

Fick’s Law (6.85) specializes as

~hRR = �D|R GradPR [cRR ] , (6.87)

where D|R = u|R RT is the receptor diffusivity.
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6.5.1.5 Chemical kinetics

The chemical kinetics of reaction (6.22) is modeled via the law of mass action (6.33). Experi-
mental evidences [138] show that: (i) the equilibrium constant (6.27) is high, thus favoring the
formation of ligand-receptor complex and the depletions of receptors and ligands; (ii) the diffusion
of receptors on the cell membrane is much slower than interaction kinetics. Accordingly, it can
be assumed that the reaction kinetics is infinitely fast, in the sense that the time required to reach
chemical equilibrium is orders of magnitude smaller than the time-scale of other processes. For
these reasons we assume that the concentrations of species are ruled by thermodynamic equilib-
rium at all times, and the concentration of complex cCR is related to the others by the equation
(6.37a). This very same equation could be derived imposing

A(6.22) = 0 .

Simple algebra allows deriving eq. (6.37a), provided that to the equilibrium constant K(6.22)
eq the

alternative definition

K(6.22)
eq = exp

✓
�DG0

RT

◆
(6.88)

is given, where DG0 = µ0
C � µ0

L � µ0
R is the standard Gibbs free energy.

6.5.2 Thermo-chemo-mechanics of cells
Endothelial cells show two main paradigmatic mechanical attitudes: active and passive. Active
response is related to the ability of the cell to change, as a result of external cues, its own cy-
toskeletal conformation, i.e. to reorganize the morphology of the biopolymer net that provides the
structural resistance during adhesion (to the ECM or to other cells), migration (e.g. chemotaxis,
mechanotaxis, and durotaxis) and division (e.g.. mitosis). Passive, instead, refers to the mechan-
ical response that each component of the cell has inasmuch material bodies, in accordance with
their own internal structure and as a result of external actions.

6.5.2.1 Energy balance

Define in the bulk an arbitrary region Q(t) ⇢ W(t). The energy balance for the problem at hand,
using the notation introduced in [141], reads:

dU
dt

(Q) = Wu(Q)+Qu(Q)+Tu(Q) , (6.89)

with U the net internal energy of Q, Wu the mechanical external power, Qu the power due to heat
transfer, Tu the power due to mass exchanged by actin dynamics on Q(t). It is assumed that each
of these processes is energetically separable in the balance. The individual contributions read:

Wu(Q) =
Z

Q
~b ·~v dW+

Z

∂Q
~t ·~v dG , (6.90a)

Qu(Q) =
Z

Q
sq dW�

Z

∂Q
~q ·~n dG , (6.90b)

Tu(Q) =
Z

Q
uµG sG + uµF sF dW�

Z

∂Q
uµG

~hG ·~ndG . (6.90c)
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Assumption (6.58) has been accounted for in the mass transfer contribution Tu(Q).
The time variation of net internal energy U corresponds to the power expenditure of external agen-
cies: a mechanical contribution Wu due to body forces~b and surface tractions~t that do work on
velocities~v; a heat contribution Qu where sq is the heat supplied by external agencies and ~q is the
heat flux vector; a mass contribution Tu in which the scalar uµb denotes the change in specific en-
ergy provided by a unit supply of moles of b = G,F actin. Mass supply sb is the push-forward of
the supply sbR(

~X , t) defined in eq. (6.55) and~hG is the flux of G-actin in the current configuration.

Standard application of the divergence theorem and of balance equations leads from (6.90a) to

Wu(Q) =
Z

Q
� : ldW . (6.91)

where l is the gradient of velocity tensor, i.e. l = — [~v ] and � is the Cauchy stress tensor. Since it
is well known that

� : ldW = P : Ḟ dWR = S : Ė dWR ,

the mechanical power expenditure can be written in terms of the first Piola-Kirchoff stress P =
J�F�T or of the second Piola-Kirchoff stress S = F�1P in the referential configuration. Anal-
ogously, by defining the referential heat flux~qR = JF�1~q and making use of Nanson’s formula, it
holds

~q ·~n dG =~qR ·~nR dGR . (6.92)

As usual in the thermodynamics of continua, see e.g. [142], one can make use of the specific
internal energy uR per unit volume in the reference configuration to write the referential local form
of the first principle as

duR

dt
= S : Ė + sqR �Div [~qR ]�~hGR ·Grad

⇥
µu

GR

⇤

+ µu
GR

∂cGR

∂ t
+ µu

FR

∂cFR

∂ t
+
�
µu

GR
� µu

FR

�
w(6.50)

R .
(6.93)

6.5.2.2 Entropy imbalance

The second law of thermodynamics represents the balance of the interplay among the internal
entropy of Q and the entropy transferred in it due to mass exchange and heat transferred. We make
the non-trivial assumption that mechanics does not contribute directly to the total entropy flow in
the entropy balance equation, as profoundly elaborated in [144, 187]. The entropy balance for the
problem at hand reads:

dS
dt

(Q)� dSi

dt
(Q) = Qh(Q)+Th(Q) , (6.94)

where S is the net internal entropy of Q, Si is the entropy produced inside Q, Qh the entropy per
unit time due to heat transfer, Th the entropy per unit time due to mass transfer. The individual
contributions read:

Qh(Q) =
Z

Q

sq

T
dW�

Z

∂Q

~q
T

·~n dG , (6.95)

Th(Q) =
Z

Q
hµG sG + hµF sF dW�

Z

∂Q
hµG

~hG ·~ndG . (6.96)
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The second law of thermodynamics states that

dSi

dt
(Q) � 0 .

As for the energy, one can make use of the specific internal entropy hR per unit referential volume
to localize and rephrase the entropy imbalance in terms of internal energy taking advantage of
identity (6.93) and of the sign definiteness of temperature :

T
d
dt

hR � duR

dt
+S : Ė +

∂cGR

∂ t
µGR +

∂cFR

∂ t
µFR + (6.97)

�
✓

1
T

~qR + µh
GR

~hGR

◆
·Grad [T ]�~hGR ·Grad [µGR ]�A(6.50)

R w(6.50)
R � 0 ,

having denoted with b = G,F and with the symbols µbR , A(6.50)
R the quantities

µbR = µu
bR

�T µh
bR

(6.98)

A(6.50)
R = �µGR + µFR . (6.99)

6.5.2.3 Helmholtz free energy and thermodynamic restrictions

The referential specific Helmholtz free energy per unit volume yR (T,cGR ,cFR ,C,⇠), defined as in
(6.77), is taken as a function of temperature, strains (either C or E), concentrations cGR ,cFR , and of
some kinematic internal variables ⇠ that compare with the usual meaning in inelastic constitutive
laws [142, 168, 187, 5, 188, 189]. It follows that

T
dhR

dt
� duR

dt
= � dyR

dt
�hR

∂T
∂ t

, (6.100)

which can be inserted in (6.97) to derive the entropy imbalance in final form:

� dyR

dt
�hR

∂T
∂ t

+S : Ė +
∂cGR

∂ t
µGR +

∂cFR

∂ t
µFR + (6.101)

�
✓

1
T

~qR + µh
GR

~hGR

◆
·Grad [T ]�~hGR ·Grad [µGR ]�A(6.50)

R w(6.50)
R � 0 .

In view of the stated functional dependency of the free energy, its total derivative with respect to
time reads:

d
dt

yR(T,cGR ,cFR ,C,⇠) =
∂yR
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(6.102)

The Clausius-Duhem inequality yields:
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~qR + µh
GR

~hGR

◆
·Grad [T ]�~hGR ·Grad [µGR ]�A(6.50)

R w(6.50)
R � 0 .(6.103)

This inequality must hold for any value of the time derivative of the temperature, the referential
concentrations, the strain tensor. Since they appear linearly in the inequality, the factors multiply-
ing them must be zero, as otherwise it would be possible to find a value for the time derivatives
that violate the inequality. Therefore, the following prescriptions apply

S = 2
∂yR

∂C
, hR = �∂yR

∂T
, µGR =

∂yR

∂cGR

, µFR =
∂yR

∂cFR

. (6.104a)

The internal force, conjugate to ⇠, will be denoted with the symbol �, i.e.

�R = �∂yR

∂⇠
. (6.104b)

Equation (6.104a) yields to the Clausius-Plank inequality, which under the assumptions of Curie
symmetry principle [144], can be written as

�R : ⇠̇ � 0 , (6.105a)✓
1
T

~qR + µh
GR

~hGR

◆
·Grad [T ]+~hGR ·Grad [µGR ]  0 , (6.105b)

A(6.50)
R w(6.50)

R  0 . (6.105c)

6.5.2.4 Decompositions.

The stress filed S will be additively decomposed in the sum of the active and passive contributions,
analogously to generalized Maxwell models

S = Sactive +Spassive . (6.106)

Active response is related to cytoskeletal reorganization in stress fibers and pseudopodia, whereas
the passive response reflects the mechanical behavior that each component of the cell has inasmuch
material bodies. Although the "additive decomposition" of the total stress is the most common way
to model the activation process inside "active materials", its validity remains a subject strongly
debated by the scientific community. For instance, a further way to describe the phenomenon
of activation is present in literature; specifically, this is called the "active strain" approach, and
involves a multiplicative decomposition of the strain gradient tensor in an elastic and active part,
is also proposed F = F eF a, similarly to the classical plasticity and growth and morphogenesis
theories [190].

We base the theory for pseudopodia on a multiplicative decomposition of the deformation gradient

F = F eF c . (6.107)

Tensor F c, named swelling distortion is the local distortion of the material neighborhood of a point
due to a volumetric swelling (de-swelling) owing to the phase change of actin, from monomeric to a
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network of filaments. Its representation will be taken as F c = l c1, assuming therefore that a dense
network of actin filaments form in pseudopodia. This approach conforms well for lamellipodia, but
it might result in inappropriate for slender and highly oriented microstructures seen in filopodia,
which might be better captured by the protrusion-contraction uniaxial tensors presented in [181]
or [191]. The following identities can be easily assessed:

det [F c ] = Jc = l c3 , J̇c/Jc = 3 l̇ c/l c , lc = Ḟ cF c�1 = J̇c/(3Jc)1 . (6.108)

We assume that changes in Jc occur because of changes in filaments Jc = Jc(cFR) and define the
partial molar volume of the pseudopodia as

WC(cFR) =
dJc

dcFR

(6.109)

and it holds
J̇c = WC(cFR)

∂cFR

∂ t
. (6.110)

The decomposition (6.107) leads to a multiplicative decomposition for the left Cauchy-Green ten-
sor, too:

C = CeCc (6.111)

with the swelling factor Cc = Jc2/3 1 and the elastic factor Ce = Jc�2/3 C . A classical [149]
specification of Jc(cFR) is the affine map

Jc(cFR) = 1+(cFR � c0
FR

)WC (6.112)

with a constant partial molar volume WC > 0.

In the realm of viscoelasticity, if is also common to perform a multiplicative decomposition of the
deformation gradient F e into volumetric F ev

and isochoric F ei
factors

F e = F ev
F ei

. (6.113)

The volumetric factor F ev
= Je1/3 1 turns out to be completely identified by the determinant of

F e, whereas the isochoric factor F ei
= Je�1/3 F e obeys to the constraint det

h
F ei
i

= 1. The
decomposition (6.113) leads to a multiplicative decomposition for the left Cauchy-Green tensor,
too:

Ce = Cev
Cei

, (6.114)

with volumetric factor Cev
= Je2/3 1 and the isochoric factor Cei

= Je�2/3 Ce .

6.5.2.5 Constitutive theory

Two among the several ways to satisfy the thermodynamic restriction (6.105b) have been discussed
in [141] (and in the previous part of the current thesis) in the framework of trapping. Here, we
proceed as for the membrane imposing that the cytosol stands in thermal equilibrium, whereby
Grad [T ] =~0. The flow of actin monomers is linearly related to the gradient of their chemical
potential by Fick’s assumption, consistently with the thermodynamic restriction (6.105b):

~hGR = �MGR(cGR) Grad [µGR ] . (6.115a)
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The following isotropic non linear specialization for the mobility tensor MGR is chosen [149]

MGR(cGR) = u|GR
cmax

GR
JGR (1�JGR) 1 , (6.116)

where cmax
GR

is the saturation limit for receptors, and u|GR
> 0 is the mobility of actin monomers.

Assuming that the trapped species F has vanishing mobility is an alternative view of modeling the
absence of their flux.

The Helmholtz free energy density yR is modeled by decomposing it into separate parts: a thermal
contribution y th

R , a diffusive contribution ydiff
R , an elastic contribution yel

R , and an inelastic (also
called configurational ) counterpart y in

R

yR(T,cGR ,cFR ,C,⇠) = y th
R (T )+ydiff

R (cGR ,cFR)+yel
R (cFR ,C)+y in

R (cFR ,E,⇠) . (6.117)

This splitting is here taken for granted without motivation. We will not indulge in the description
of y th

R (see [141] in case of interest) and we’ll rather focus on the remaining parts.

Statistical mechanics depicts the entropy for isolated systems in terms of the density of states, the
number of possible molecular configurations [150]. Making recourse to Stirling’s approximation
and since the entropy transforms with the volume by means of J, one finds that the following well-
known expression of the entropy of mixing in the reference configuration arises, the universal gas
constant R being the product of Boltzmann constant kB and Avogadro’s number:

hdiff
bR

= �RJ cmax
b
�
Jb ln[Jb ]+ (1�Jb ) ln[1�Jb ]

�
, (6.118)

having denoted with b = G,F and with JbR the ratio

JbR(
~X , t) = cbR/cmax

bR
. (6.119)

We argued in eq. (6.23) that, in view of the structure of the lipid membranes, the maximum
number of moles or molecules per unit area for any species remains unchanged in time in the
current configuration. The same argument does not seem to apply for the bulk, hence we take
henceforth that

cmax
bR

(~X , t) = cmax
b (~x(~X , t), t)J(~X , t) (6.120)

is constant and write the free energy density for the continuum approximation of mixing [150] as

ydiff
R (cGR ,cFR) = µ0

GR
cGR +RT cmax

GR
[JGR lnJGR +(1�JGR) ln(1�JGR)] (6.121)

+ µ0
FR

cFR +RT cmax
FR

[JFR lnJFR +(1�JFR) ln(1�JFR)] .

Note that if the saturation is constant in the current configuration, an explicit coupling of the free
energy of mixing with the deformation arises by means of J. A new stress would come out, in view
of the thermodynamic prescription (6.104a).

Following [187], we will define visco-elastic materials based on the multiplicative decomposition
(6.114). Specifically, the free energy for visco-elastic materials will be defined as follows

yel
R (cFR ,C)+y in

R (cFR ,E,⇠) = yel,vol
R (cFR ,C

ev
)+yel,iso

R (cFR ,C
ei
)+y in

R (cFR ,E
e �⇠) . (6.122)
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with y in
R depending upon Ee by means of Cei

. The volumetric part of the elastic free energy
is defined through Je, highlighting the role of the swelling tensor and of the concentration of
pseudopodia, since

Cev
= Je2/3 1= J2/3 Jc�2/3 1=

 
J

1+(cFR � c0
FR

)WC

!2/3

1 (6.123)

in view of eq. (6.112). On the other end, it holds

Cei
= Ce Je�2/3 = C Jc�2/3 Je�2/3 = C J�2/3 (6.124)

hence Cei
depends merely upon the state of deformation and not upon the concentration of species.

This outcome reverberates upon the energetic contributions yel,iso
R and y in

R . The latter is such that

∂y in
R

∂E
= �∂y in

R
∂⇠

, (6.125)

a property physically grounded in the rheological model of Maxwell, for which we refer to [187]
or [192].

Provided that the above holds, the selection for yel
R and y in

R is arbitrary. Their selection shall be
different in modeling the passive behavior or the active response of pseudopodia and stress fibers.
The elastic, reversible behavior that occurs once the viscous effects vanish (ideally at t ! • )
is captured by yel

R . The inelastic free energy accounts for the non-equilibrium response due to
viscosity - the so called dissipation potential. By thermodynamic restrictions (6.104) and identity
(6.125)

�R = �∂y in
R

∂⇠
=

∂y in
R

∂E
(6.126a)

S = 2
∂yel

R
∂C

+�R . (6.126b)

According to eq. (6.126b), tensorial internal forces �R can be interpreted as a non-equilibrium
stress tensor of second Piola-Kirchoff kind, that accounts for the viscous response.

Inelastic internal entropy production (6.105a) was described by the internal flux variables ⇠ and
by their energy-conjugate forces �R. A simple way to satisfy constraint (6.105a) is choosing a
positive definite operator L such that

�R = L ⇠̇ . (6.127)

In case of isotropy, the fourth order operator L restricts to the scalar viscosity n times the identity
operator. Equations (6.126a), (6.127) provide evolution equations for �R that allow the algorithmic
integration of the constitutive law once a selection for the free energy densities yel

R and y in
R is made.

The chemical potential of G-actin monomers and of F-actin networks descends from thermody-
namic prescriptions (6.104a), in the form

µGR =
∂ydiff

R (cGR ,cFR)

∂cGR

(6.128a)
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µFR =
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R (cGR ,cFR)

∂cFR

+
∂yel,vol

R (cFR ,C
ev

)

∂cFR

+
∂yel,iso

R (cFR ,C
ei
)

∂cFR

+
∂y in

R (cFR ,E
e �⇠)

∂cFR

.

(6.128b)

While the chemical potential of actin monomers has merely an entropic nature, mechanical con-
tributions enter the definition of the chemical potential of actin networks. Specifically, mechanics
affects µFR in the volumetric contribution yel,vol

R through the swelling tensor Cev
(6.123), whereas

the isochoric tensor Cei
was proven to be independent upon the concentration of species in eq.

(6.124). Nonetheless, the parameters of the viscoelastic loading-unloading law are expected to
depend upon the extent of the polymerization reaction by means of the network concentration cFR

in all terms of the mechanical free energy.

The mechanical effect on the chemical potential does not propagate into the mass flux because the
mobility of actin network is assumed to be negligible. Mechanics however enters the affinity of
polymerization reaction (6.50) in view of definition (6.99). The stress state is expected to favor
polymerization nearby the lipid membrane and depolymerization towards the nucleus.

6.5.2.6 The multiscale scenario of cell viscoelasticity

Although the mechanical framework of the free energy depicted above is rather clear, a specializa-
tion of the constitutive equations has not been attempted here and in many cases (as for stress fibers
and microtubules) it has not been attempted in the literature, to the best of our knowledge. The
hindrance stands in the multiscale scenario of cell viscoelasticity: while the mechanical behav-
ior and properties of intermediate filaments, actin filaments, and microtubules has been nowadays
quite clarified, at least in terms of relative stiffness and strengths, bundles of the filaments, their
response, polymerization, shape and time evolution are not yet captured by comprehensive models
at the “macroscopic” scale through appropriate free energies. As a consequence, the ability of
models to capture the mechanics of fundamental cellular processes (as chemotaxis, cell sprouting,
junction and differentiation, endocitosys and exocitosys to cite a few) still requires abundant re-
search before gaining predicting capabilities in simulations.

The cytoskeleton, an interconnected network of regulatory proteins and filamentous biological
polymers, undergoes massive reorganization during cell deformation, especially after cell rolling
and adhesion [3, 193] and in mediating, sensing and transduction of mechanical cues from the
micro-environment [194]. Homogenized models for the mechanical response of a cell shall in-
clude in effective, macroscopic properties the polymerization/depolymerization of filaments, the
process of cross-linking that determine the architecture of cytoskeletal filaments, and the passive
mechanical properties of the cytosol. In view of the above, the thermodynamics of statistically-
based continuum theories for polymers with transient networks [195, 196, 197, 125, 198] appear
to be good candidates for the selection of free energies yel

R (cFR ,C) and y in
R (cFR ,E,⇠). The need

for statistical approaches to model the time-dependent response of polymers with reversible cross-
links emerges since the overall response is influenced by the rate of assembly and disassembly of
cross-linking factors that are controlled at the molecular level by actin nucleation, capping, sever-
ing factors, and by the activity of molecular motors such myosin-II, which, in combination with
cross-linkers, appears to be responsible for the viscoelastic properties of the cytoskeleton [199].
At present, however, such a comprehensive model has not yet been proposed for the pseudopodia
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driven cell motion. Classical models as hyperelastic Saint-Venant [181] or Newtonian viscous flu-
ids [200] eventually surrounded by a hyperelastic, zero-thickness membrane [201] have been used
for the pseudopodia, whereas a very large amount of literature concerns pseudopod dynamics ( see
for instance [202] and the large literature therein ) or ameboid motion [203] with no account for
their mechanical response. Different approaches to cell motility, as for active gel theory coupled
to the classical theory of thin elastic shells, are also widely used [204] but are not discussed in
this thesis. The framework described herein, including myosin dynamics, phase transformations
between G-actin and F-actin, has been depicted in a set of publications by the group of H. Gomez
[176, 205]. The flow of the F-actin network was treated as a Newtonian fluid and directed by its
velocity. A one dimensional yet comprehensive model has been proposed in [206]. Not surpris-
ingly, the nucleus and its meshwork of intermediate filaments formed mostly of proteins (nuclear
lamina), contribute to the viscoelasticity of cells [207]. Depending upon the content of Lamins, the
nucleus becomes more or less stiff, impacting cell migration: nuclear deformation facilitates cell
migration through complex environments, whereas its stiffness may act as a mechanical barrier
for a migratory cell [208]. Cells are capable to modify their viscoelasticity while migrating across
confined spaces [209], a very intriguing mechanism yet complex to be captured macroscopically
in view of its multiscale nature.

The multiscale scenario is invoked also for cell contractility. There are pieces of evidence [210]
that the interaction among filaments, motors, and cross-linkers is mechanically stimulated. As
reported in [194], myosin binding to actin fibers occurs in a force-dependent manner, as well as
the contractile response of actomyosin to extracellular stiffness. According to [211], force feed-
back controls motor activity and increases density and mechanical efficiency of self-assembling
branched actin networks, thus suggesting that those feedbacks could allow migratory cells adjust-
ing their viscoelastic properties to favor migration. Mass transport and cell contractility have been
accounted for in several publications with different degree of complexity [125, 180, 191]: to the
best of our knowledge, however, the force transmission has always been modeled stemming from
the similarity between the sarcomeric structure of stress fibers and the actin-myosin interactions
in muscle cells. In [129] a multi-dimensional network of stress fibers was built on the notion
of a representative volume element, in which stress fibers can form in any direction with equal
probability. Average macroscopic stress is then recovered from the fiber tension, which in turn is
generated by the cross-bridging cycles and described by a Hill-like relation [212] of viscoelastic
nature. Anisotropic stress fibers distributions have been considered in [125], making use of Von
Mises distribution functions at the “microscale” coupled to a directional averaging operator. The
active contraction is described in terms of the change of fiber length and its rate of change, with a
product formula of viscoelastic origin. Experimental evidences, however, seem to show that such
a resemblance might be questionable in the dynamics and mechanics of endothelial cell spreading
[97] and hence that the predictive capability of this family of models might be poor for this family
of cells.

Finally, the passive response of the cytosol, provided mainly by the intermediate filaments attached
to the nuclear and plasma membranes, has been modeled by several authors by means of classical
models as linear elasticity [125], the finite strain generalization of Hooke’s law [129] or a Neo-
Hookean potential energy

yel
R (Ce) =

G0

2
(I1(C

e)�3) , y in
R (Ee,⇠) =

G0 �G•
G0

yel
R (Ee �⇠) , (6.129)
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where G0 is the initial shear modulus and G• is the shear modulus at the end of the viscous
processes. This classical choice of Helmholtz free energy is associated to efficient integration
schemes, depicted in [192].

Within this chapter, we admit not being capable to include this rich and tangled scenario of multi-
physics processes across multiple scales. We limit ourselves, being aware of several attempts
to capture at least cell contractility [101, 178, 128, 121, 180, 14], to a simplistic formulation of
viscoelasticity, which will be enriched in future investigations.

6.5.3 Regularized Neo-Hookean formulation
In the current section and in the subsequent chapter, in-silico models will be performed char-
acterized by a mechanical behavior of the cell described by a regularized Neo-Hookean model
(S = Spassive - see (6.106) -). Therefore, we neglected the viscous behavior hereto discussed, and
we focus only on the elastic one (6.129). According to the additive decomposition in an isochoric
and volumetric part of the Helmholtz free energy (see (6.122) neglecting the inelastic contribute
and expressing yel,vol

R as a function of J), we can write:

yel
R (C) = yel,vol

R (J)+yel,iso
R (C i) , (6.130)

where:

yel,vol
R (J) =

k
2

[ln(J)]2 , (6.131a)

yel,iso
R (C i) =

G
2

(tr
⇥
C i ⇤�3) , (6.131b)

with k and G the bulk and shear modulus respectively, for a regularized NeoHookean formulation
[192]. Therefore, narrowing the relation (6.126b) at the current case:
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we attains:
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Finally, exploiting the expressions between the first and second Piola-Kirchoff stress tensor (P =
FS), the balance of momentum (6.60a) becomes:

Div [FS ]+~bR =~0 , ~X 2 WR , (6.134)

with S equal to:
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(6.135)

6.6 Concluding remarks
In this chapter, a multi-physics framework of protein relocation on the advecting lipid membrane
during cell spreading and motion has been put forward. It sets the (continuum) thermodynamic
background for simulations of receptor recruitment during migration. Throughout the next chap-
ters of the current part of the thesis, we deal on simulations with the relocation of vascular en-
dothelial growth factor receptors on advecting lipid membrane during endothelial cell adhesion
and spreading. Those simulations may have a significant impact in biology and in the pharmaco-
logical treatment of cancer, either in view of their predictive nature in virtual experiments or by
clearly identifying the sequence of processes that limit the relocation of targeted proteins during in
vitro experiments.

The present framework still has significant limitations, yet by illustrating a complex and rigorous
scenario it might be a cornerstone to account for several further processes. To cite a major phe-
nomenon that has been insufficiently discussed here, the transport of the protein on the membrane
is crucially coupled to the cytoskeleton reorganization, which is related to the motion of integrins
on the membrane: the formation of focal adhesion sites is preliminary to stress fibers generation
and contractility. Internalization of complexes is another phenomenon not included in this work.
Further efforts, therefore, will be devoted to extending this framework to these and other challeng-
ing tasks.

We also aimed in this chapter (together with section 2.5) at recollecting recent publications from
several schools on cell mechanics, encasing them in a unified framework, being aware that a com-
prehensive account of publications is significantly hard in view of the broadness of the literature
in the field. We clarified that for some processes, as for contractility and protrusion, either a ther-
modynamically consistent formulation has not been devised yet or it stems from simplistic models
that do not account for the microstructural evolution of the biopolymers. Even in this fascinating
field, the last word is far from being spoken.
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Chapter 7

Relocation of proteins on a lipid membrane
that advects during endothelial cell
adhesion and spreading

Cell adhesion to another cell or to ECM or on a substrate in static in-vitro experiments, is essential
in the development and maintenance of tissues. This process is dominated by three stages [213]:

• an initial phase regarding the attachment to the substrate of the cell body;

• a second step govern by spreading and flattening of the cell;

• a third period characterized by the rearrangements of the actin cytoskeleton with consequent
generation of FA.

To mimic the passive cell adhesion we adsorbed culture surface with a positively charged synthetic
polymer of the amino acid L-lysine or D-lysine ( Poly-Lysine). Poly-Lysine favors cell attachment,
by uplifting the electrostatic interplay among cations of the culture surface and negatively-charged
ions on the cell membrane. Since Poly-Lysine inhibits the re-organization of the stress fibers, by
preventing the focal adhesion driven by integrins, it appears reasonable to uncouple the mechan-
ical spreading of the cell and the modeling of chemical-transport processes along its membrane,
as formulated in the previous chapter 6. Accordingly, mechanics in the bulk can be solved for as
first and membranes processes at a later stage. This is not the general case, though. In accounting
for the diffusion of integrins concurrently with cell spreading on a substrate that is filled with spe-
cific ligands rather than Poly-Lysine, uncoupling becomes less realistic. Models for cytoskeleton
reorganization [118, 129, 123] must be taken into account in this alternative case, which entails
focal adhesions and hence matching with the motion of integrins. Although, mass transport and
cell contractility have been accounted for in several publications with different degree of com-
plexity [125, 180, 191]: to the best of our knowledge, the force transmission has always been
modeled stemming from the similarity between the sarcomeric structure of stress fibers and the
actin-myosin interactions in muscle cells. Experimental pieces of evidence seem to show that such
a resemblance might be questionable in the dynamics and mechanics of endothelial cell spreading
[97] and hence that the predictive capability of this family of models might be poor for the target
of the present thesis.
Therefore, in the first instance, a re-proposal of the decoupled model also for integrins (as it will
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show in the next chapter 8) can represent an important intermediate-step capable of providing es-
sential indications in order to build a fully two-way coupled model able to describe how integrins
activities pair problem on the membrane with that in the bulk. Therefore, we attempt to including
neither a rich and tangled scenario of multi-physics processes across multiple scales to ECs and
their specific chemo-mechanical response [97], nor any description of the active behavior of this
kind of cell.

Accordingly, we have consciously decided to solely take into account the passive response of the
cell, recurring to a simplistic formulation of hyperelasticity (Regularized Neo-Hookean formula-
tion - see section 6.5.3 -) both for nucleus and the cytoplasm (cytosol more organelles - see Fig.
7.1), where the contractile ability of the EC, usually ruled by the cytoskeleton machinery, is ap-
propriately surrogated through suitably calibrated bulk forces inside the pseudopodia. Precisely,
symmetric mechanical spreading of the EC is proposed, as a result of the ligands homogenous
experimental conditions on the substrate (totally analogous to what has been observed in Part II of
the thesis).

Precisely, in the current chapter, and in the next one, we aim to build a new in-silico formulation
owing to the writing in a weak form of the governing equations explicated throughout the current
Part of the thesis, leading the way towards new numerical approximations and solutions of the
experimental outcomes proposed in chapter 4.
Such a mathematical framework is capable to describe and quantify the main phases of the me-
chanical spreading shown in chapter 5, and papers [138, 139] and so understand how, a "large
deformations scheme", can impact the relocation and depletion of VEGFR2 and integrin on the
cell membrane of an EC.

Figure 7.1: Illustration of an idealized EC composed of two distinct materials: nucleus and cyto-
plasm.
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7.1 Experimental investigations and their numerical simula-
tion

7.1.1 Biological evidence
The cell-cell interaction and adhesion are receptor-mediated processes: it is the affinity and avidity
of receptors that modulate the adhesive forces during cell spreading and migration. As a paradig-
matic study, consider the extravasation of EPCs, an important step in the neovascularization of
a tumor mass. The luminal surface of blood vessels is coated with a carbohydrate-rich surface
layer, consisting of adsorbed proteins and membrane-bound proteoglycans, collectively referred
to as the endothelial glycocalyx. The thickness of the latter is on the order 400-500 nm in vivo,
while in vitro cultured ECs express a glycocalyx thickness ranging from 29 to 118 nm [214]. The
EPCs /ECs interaction is mediated by the endothelial glycocalyx receptors, without inducing the
cytoskeletal reorganization.

Several reports assume that plasma membrane viscoelasticity, cytoplasmic viscosity, and cellular
geometry are responsible for the mechanical deformation of cells, using erythrocytes as a cellular
model of analysis. In this regard, it is important to pinpoint that erythrocytes can form neither
stress fibers nor other actin networks, hence their remarkable mechanical properties must indeed
originate solely from the architecture of their cell membrane. The influence of curvature on the
elastic stiffness of the membrane appears to be related to the size of the cell [116].

In the first set of experiments, in order to focus on the adhesion phase of an EC, we plated ECs
on the positively charged synthetic polymer of the amino acid L-lysine or D-lysine (Poly-Lysine).
Poly-Lysine favors cell attachment, by uplifting the electrostatic interplay among cations of the
culture surface and negatively-charged ions on the cell membrane. At the same time, poly-Lysine
prevents the organization of focal adhesions and of stress fibers. Under these experimental con-
ditions, cell spreading could be promoted only by electrostatic interactions, while the mechanical
response of the cell relies on the membrane and on the passive response of the cytosol.
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(a) Analysis over time of ECs seeded on Poly-Lysine ECM.

(b) Quantification of the projected cell area of EC on the substrate. Four different substrate conditions are
explored, namely gelatine, vitronectin, Poly-Lysine, and in suspension.

(c) Analysis over time of ECs on Poly-Lysine prove that the contact area, highlighted by a marked red
coffee-rings is considerably lower than the projected cell area of the cells themself.

Figure 7.2
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ECs were seeded on Poly-Lysine ECM and analyzed over time. As shown in experiments summa-
rized by means of Fig. 7.2a, adherent ECs no longer fluctuate during the time-span of tests. Yet,
they were unable to spread: two hours after seeding, the cell/ECM projected cell area (henceforth
PA) was still about 520 µm2 (see Fig. 7.2b). It has to be clear that, the values in Fig. 7.2b, represent
the PA on the substrate; these data have not to be confused with that arise from the measurements
of cell-substrate contact area (from here on CA), namely that corresponding to the effective portion
of the cell membrane that is in touch with the substrate. Hence, PA represents the cell (3D-body)
orthographic projection on a 2D-surface (substrate) that can be deduced even when the cell is not
actually in contact with the substrate (e.g. suspension cell). Particularly, the CA correspondent to
the experiments on Poly-Lysine, and so so the adhesion stage, is determined by Fig. 7.2c, wherein
a pronounced red coffee-rings of actin is formed on the edge of the cell-substrate interface. Such
a datum is approximately between 19 µm2 and 38.5 µm2 (data deduced through the values of
diameters shown in Fig. 7.2c). This evidence unveils that electrostatic interactions do allow the
attachment of cells, but not the spreading. On the contrary, when ECs adhere to fibronectin, mi-
croscope time-lapse shows that in 3-5 minutes membrane remodeling takes place after cells/ECM
contact and several membrane protrusions sprout from the membrane increasing the contact area
between the cell and the ECM, thus promoting the reorganization of the cellular cytoskeleton: two
hours after seeding, the cell/ECM CA increased to 1200 µm2 (see Fig. 7.2b).

Our experimental investigations confirm former studies on the influence of non-specific traction
forces in cell adhesion were performed for different cell types at different time scales, from min-
utes - as for the spreading of mouse embryonic fibroblasts on a matrix-coated surface, [184] - to
several hours - as for bovine aortic endothelial cells on polyacrylamide gels. Isotropic spreading
is made possible by higher ligands densities; at lower densities of ligands, cells tend to spread
anisotropically, by extending pseudopodia randomly along the cell membrane [97].

7.1.2 Experimental setup
ECs GM7373, from fetal bovine aortic, were transfected to co-express VEGFR2 and b3-integrin.
The first labeled with EYFP (Enhanced Yellow Fluorescent Protein, shown in green) the second
one with an ECFP (Enhanced Cyan Fluorescent Protein, shown in red), as shown in Fig. 7.3 [52].
Transfected cells were cultured on glass coverslips that were flipped upside-down on gremlin- or
fibrinogen-coated µslides. The geometrical evolution of the cell was recorded for 2 hours in time-
lapse microscopy and Z stack sectioning to visualize the recruitment of VEGFR2 and b3 integrin
at the basal side of cells. During this timespan, cells slowly moved from the glass coverslip to
adhere to the protein-coated substratum, as depicted in Fig. 7.4. Three mechanically relevant
events can be identified after slide inversion: the detachment from the upper µslide, the floating
and adhesion on the ligand rich µslide, and eventually the cell spreading onto the latter. Already
past 6-8 minutes after the interaction with the substratum, VEGFR2 is found to the basal side of
the membrane (i.e. that in close contact with immobilized gremlin). Subsequently, b3 integrin
undergoes a slow relocation that occurred 60- 120 minutes thereafter. Vice-versa, when cells were
in contact with fibrinogen, higher levels of b3 integrin were rapidly recruited, and a total absence
of VEGFR2 polarization is observed [52].
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Figure 7.3: On coverslips were cultured GM7373 cells co-expressing ECD-VEGFR2-EYFP and
b3-ECFP. Experiments start when the coverslips were flipped on µslides coated by fibrinogen
or gremlin, and then undergo 120 minutes of observation as discuss in chapter 4. Fluorescence
intensity time evolution of VEGFR2 and integrin perceived at the basal side of ECs lying on a
substrate enriched of gremlin and fibrinogen, as depicted in Fig. 4.1 and 4.2. Adapted from [52]
and [31] (chapter 2).

ECD-VEGFR2-EYFP 
and b3 integrin-ECFP 

expressing endothelial cells

coated µslide

1 - Slide inversion

coated µslide

2 - detachment

3 - adhesion

4 - spreading

coated µslide

Figure 7.4: The four phases of the experimental process. Adapted from [52] and [31] (chapter 2).
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7.1.3 Mechanical description of the 3d contact problem
Neglecting in this work the phase of mechanical detachment from the upper µslide, all other events
depicted in Fig. 7.4 - the motion of an endothelial cell approaching the µslide during a finite
deformation process, eventually coming into contact on a part of its boundary denoted by ∂CW -
have been accounted for. Because the glass-made µslides are flat, as depicted in Fig. 7.5 the normal

Figure 7.5: The notation for cell adhesion and spreading.

vector at a generic point~xslide 2 µslide is~nslide =~e2 and it remains unaltered in time. Accordingly,
a single point ~x⇤slide 2 µslide is associated to a corresponding point ~xmembrane 2 ∂W(t) via the
minimum distance method, by projecting ~xmembrane onto µslide (see [215] and Fig. 7.5). The
inequality constraint

gN = (~xmembrane �~x⇤slide) ·~e2 > 0 (7.1)

ensures that the cell and the substrate do not interpenetrate. The boundary value problem for the
adhesion and spreading phases thus is formed by the balance of momentum equations (6.60), the
interpenetration condition (7.1), and appropriate Neumann boundary conditions. Those arise in
view of the mediation of transmembrane proteins and immobile ligands on the µslide.

The initial contact is mediated via integrin receptors on the cell surface. In this chapter, we do
not account explicitly for integrins, as done in [123] among others, yet we will use the approaches
in [123, 116] to discuss the magnitude of involved quantities, as shown in the previous chapter.
Precisely, all the considerations that we have done regarding the works [123, 116] in 6.4.1, hold
for the current chapter as well.

From these remarks (7.1.3 and 6.4.1) emerge that uncertainties remain in the establishment of real-
istic values for attraction forces, owing to the complexity of the related experimental tasks. On the
other side, whereas their correct estimation is crucial in cell migration since cells shall detach focal
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adhesions to allow motion, it is less relevant in the process of spreading. Accordingly, a simplistic
approach that accounts for contact mechanics and disregards binding forces might still be effective
to model the initial contact between a cell and a substrate, in view of the very short range of these
interactions and the role that gravitational interactions must play at any rate. This approach shall be
complemented by simulating the process of pseudopodia extension and cytoskeleton contractility
that induce spreading [97].

Contact takes place when gN = 0 and it is such a condition that defines the subpart ∂CW(t) =
∂W(t) \ µslide. It is indeed a simple case of contact mechanics, in the sense that the obstacle
is given and it is fixed in time (i.e. we consider a rigid substrate, which approximates well the
real glass-made µslide). In this regard, the global search for contact and the set-up of kinematical
relations required by the contact constraint is straightforward, as depicted in Fig. 7.5. Tractions
~tslide at all points ~xslide 2 µslide have normal component pN =~tslide ·~e2 and the Hertz-Signorini-
Moreau linear complementarity conditions for frictionless contact read

gN > 0 , pN 6 0 , pN gN = 0 . (7.2)

During the adhesion phase, the most appropriate description of tangential contact forces is rather
unclear. We assume that the contact is frictionless in such a phase, allowing a sliding motion
between the cell and the substrate justified by the chance that a new complex can be formed by
a bound receptor jumping to a nearby free ligand [123]. Once the adhesion phase is completed,
pseudopodia-driven protrusion machinery (F-actin polymerization, ARP 2/3 actin branching, fil-
amin cross-linking, integrin-binding) takes place, driving the polymerization and reorganization
of the cytoskeleton. Since at the stage reached by our research we are not able to account for a
rigorous description of all these phenomena, we simulate these processes through the setup and
growth in the time of bulk forces oriented axis-symmetrically, which surrogate the internal forces
generated by the contractile machinery [97].

The boundary value problem for the adhesion and spreading phases thus is formed by the balance
of momentum equations (6.60), the contact conditions (7.2), and the solvability conditions accom-
panied by appropriate Neumann boundary conditions.

Computationally, one writes the boundary value problem in a weak form in the reference configura-
tion, selecting a strategy to numerically deal with the contact constraints. Among several possible
algorithms, in the numerical simulations, we implemented two classical active set strategies, the
Lagrange multiplier method [215] and the primal-dual active set strategy [216].

In the proposed approach, the mechanical spreading is independent upon the relocation of VEGFR2
on the lipid membrane. As such, the mechanical evolution is solved separately, using different time
discretization too, from the problem of proteins relocation on the membrane. Note also that fric-
tionless contact does not allow unique solvability unless the rigid body motion in the plane of the
µslide is removed: to this aim, the average displacement in the µslide plane~e1 ⇥~e3 and rotations
around the axis~e2 are a priori imposed to vanish.
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7.1.4 Transport description
The two balance equations (6.37), associated initial and boundary conditions, eventually the consti-
tutive assumption (6.87) entirely govern the transport of receptors along the membrane. Together
with the infinitely fast kinetics assumption (6.37a), the two-fields system of equations for cRR , cLR

read at point ~X 2 ∂WR:

∂cRR

∂ t
� ∂cLR

∂ t
� DivPR [D|R GradPR [cRR ] ] = sRR � sLR , (7.3a)

∂cLR

∂ t
+

∂cCR

∂ t
= sLR . (7.3b)

An effective way of solving this system can be set up by noting that for the sum cSR = cCR + cLR

equation (7.3b) turns out to be an ordinary differential equation in time at point ~X rather than a
PDE. Accordingly, one proceeds by direct integration in time

cSR =
Z t

0
sLR(~X ,t)dt = SLR(~X , t) , (7.4)

since initial concentration of ligands and complex is zero. Function SLR(~X , t) is, in view of the
interpretation given to sLR(~X ,t), the amount of ligands that the cell got in contact with onto the
substrate at time t and location ~X , pulled back to the reference configuration ∂WR. Such an in-
terpretation clarifies that the evolution in time of SLR(~X , t) can be only be due to the gap function
gN(~X , t) and we may reasonably postulate a definition for SLR based on the physics that has been
described right after equation (6.36):

SLR(~X , t) = cmax
LR

exp

 
�gN(~X , t)

`chem

!
. (7.5)

When gN(~X , t), tuned by the chemical length-scale `chem > 0, is sufficiently large then SLR(~X , t)
is negligible and in fact no ligands are available on the membrane surface. On the other end, when
gN(~X , t) is zero and the membrane is in contact with the substrate, the available concentration is
cmax

LR
, the maximum available concentration in the reference configuration.

Defining the difference cDR = cRR � cLR and neglecting the role of internalization or generation of
proteins, i.e. sRR ⇠ 0 (as infer in the chapter 5), the remaining governing equation becomes

∂cDR

∂ t
� DivPR [D|R GradPR [cRR ] ] = �sLR , (7.6a)

to be solved under the constraint (6.37a), that writes

c2
RR

(~X , t)+
h
aR(~X , t)� cDR(~X , t)

i
cRR(~X , t)�aR(~X , t)

h
cSR(~X , t)+ cDR(~X , t)

i
= 0 . (7.6b)

The initial values PDE (7.6) will be solved for the unknown fields cDR , cRR , stemming from its
weak form.
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7.1.5 Weak formulation and finite elements discretization
Formally speaking, the weak formulation is obtained after multiplication of the strong form of the
governing equation (7.6a) by a suitable set of time independent test functions (expressed here with
a superposed caret), and performing an integration upon the domain, exploiting Green’s formula
with the aim of reducing the order of differentiation. Such a weak form, in terms of the unknown
fields cDR , cRR , reads:

Find unknown fields cDR(~X , t), cRR(~X , t) - in the functional space V
[0,t f ] that accounts for initial

conditions and the constraint (7.6b) such that

Z

PR
ĉ(~X)

∂cDR(~X , t)
∂ t

�GradPR

h
ĉ(~X)

i
· D|R GradPR

h
cRR(~X , t)

i
+ ĉ(~X) sLR(~X , t) dPR = 0 (7.7)

for all functions ĉ(~X) that belong to a suitable functional space V. The identification of the func-
tional spaces V[0,t f ],V falls beyond the scope of the present paper.

Note that there is no contribution defined on the boundary, because the cell membrane PR The
weak form (7.7) naturally leads to a semi-discrete problem, by approximating the space V by a
finite dimensional space Vh. To this aim, unknown fields cDR(~X , t), cRR(~X , t) will be approximated
as a product of separated variables, by means of a basis {ji(~X)} of spatial shape functions and
nodal unknowns that depend solely on time

cDh(~X , t) = j j(~X) cDR j(t) , cRh(~X , t) = j j(~X) cRR j(t) . (7.8)

The Einstein summation convention is taken for repeated indexes. The semi-discrete approximate
problem reads as follows: given c0hR(~X) a suitable approximation of the initial datum c0R(~X), for
each t 2 [0, t f ] find cDR j(t) and cRR j(t) such that

Z

PR
ji(~X) j j(~X)

∂cDR j(t)
∂ t

�GradPR

h
ji(~X)

i
· D|R GradPR

h
j j(~X)

i
cRR j(t) + (7.9)

ji(~X) sLR(~X , t) dPR = 0 .

Constraint (7.6b) shall be satisfied, either in L2 sense or point-wise for cDR j(t), cRR j(t) at the
discretization nodes. The weak form (7.7) is thus rephrased into the system of ordinary differential
equations, whose solution is an approximation of the exact solution for each time t.

In order to obtain a full discretization of the weak form (7.7), we consider a uniform mesh for the
time variable t and define tn = nDt with n = 0,1, ..., and Dt > 0 being the time step. We integrate
equation (7.9) in time in the generic interval tn�1, tn, to get

Z

PR
ji(~X) j j(~X) dPR

⇣
cDR j(tn)� cDR j(tn�1)

⌘
+ (7.10)

�
Z

PR
GradPR

h
ji(~X)

i
· D|R GradPR

h
j j(~X)

i
dPR

Z tn

tn�1
cRR j(t)dt +

+
Z

PR
ji(~X)

⇣
SLR(~X , tn)�SLR(~X , tn�1)

⌘
dPR = 0

219



with SLR(~X , t) as in identity (7.5). Integral in time can be approximated with Newton-Cotes for-
mulae, either second-order accurate as

Z tn

tn�1
cRR j(t)dt ⇠ Dt

2

h
cRR j(tn)+ cRR j(tn�1)

i

or even with first-order accurate approximation formula
Z tn

tn�1
cRR j(t)dt ⇠ Dt cRR j(tn�1)

which might be appealing because it provides to eq. (7.9) the nature of an explicit approximation
scheme, that can be trivially solved for cDR j(tn). The constraint (7.6b) shall be solved afterwards
for cRR j(tn).

Weak form (7.10) can be reshaped in dimensionless form, by means of a time-scale t̂, a length-
scale `transport and a reference value for concentration, which is taken to be cmax

LR
. Denoting with a

star every dimensionless quantity, easy algebra leads from (7.10) to
Z

PR
ji(~X) j j(~X) dPR

⇣
c⇤

DR j(tn)� c⇤
DR j(tn�1)

⌘
+ (7.11)

�
Z

PR

D|R t̂
`2

transport
Grad⇤

PR

h
ji(~X)

i
· Grad⇤

PR

h
j j(~X)

i
dPR

Z t⇤n

t⇤n�1

c⇤
RR j(t

⇤)dt⇤ +

+
Z

PR
ji(~X)

 
exp(�gN(~X , tn)

`chem
)� exp(�gN(~X , tn�1)

`chem
)

!
dPR = 0 ,

which shows clearly the roles of the chemical length scale, of the dimensionless diffusivity and
hence the transport length scale, and of mechanics that rules the geometrical spreading. The time-
scale interacts also with the mechanical time-scale associtaed with the viscous behavior, typically
the relaxation time of the cell.
The finite element approximation of the chemo-transport model was implemented exploiting the
high performance computing open source library deal.ii (https://www.dealii.org/).

7.1.6 Simulations
Since the machinery of cytoskeleton reorganization has not been included in the numerical sim-
ulations, the relocation of proteins on the cell does not affect the mechanical deformation. As a
consequence, an algorithm has been successfully implemented, for which mechanical deformation
within a given time step occurs, and transport coupled with receptors-ligands binding takes place
on the updated membrane configuration. It can be easily transformed into a staggered approach in
the case of two-way coupling.

220



7.1.6.1 Mechanical deformation

Figure 7.6: A 3D hexahedral tessellations with a total number of elements equal to 12578, is
depicted. The color blue denotes the nucleus while the red one indicates the cytoplasm. Coherently,
the external face of the boundary elements of the cytoplasm mesh, correspond to 1817 elements
quadrilateral elements that discretizing the geometry of the cell surface.

Figure 7.4 identifies four main phases after slide inversion. We aim at capturing the response of
the EC, the relocation of receptors and their binding with ligands during the processes of floating
and adhesion on the ligand rich µslide, and eventually during the cell spreading onto the slide.
EC has been idealized as two Neo-Hookean solid materials, represented the cytoplasm and the
nucleus (see tesselation of the EC Fig. 7.6). Particularly, we set shear modulus G = 72.99 Pa
and bulk modulus k = 25.641 Pa ( correlate to E = 20 Pa and n = 0.37) for the nucleus, whereas
G = 36.50 Pa and k = 128.20 Pa for the corresponding parameters of the cytoplasm ( accord to E
= 10 Pa and n = 0.37). Finally we ussume nucleus and cytoplasm densities equal to rnuc = 2 g/m3

and rcyt = 1 g/m3 respectively [217, 218].

A pictorial view of the geometrical evolution in the four phases is shown in Fig. 7.8 and 7.9.
The time required to complete the mechanical evolution of the cell, 600 s, was experimentally mea-
sured as reported in [138]. Mechanical deformation entails the adhesion, in which the cell attaches
to the substrate and accommodates its cytoskeleton in response to binding forces of electro-static
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nature, and the spreading, driven by pseudopodia, a temporary actin filament network that devel-
ops in the direction of motion. The floating and the adhesion are governed by gravitational forces
and by electrostatic interactions at a very short range, estimated according to formula (6.61) by
means of the gap function gN(~X , t) used to define SLR(~X , t) in eq. (7.5). The time span of ad-
hesion has been estimated at 300 seconds, according to the experimental pieces of evidence for
complex formation in Fig. 7.10. The radius of the adhesion circular surface in our numerical
simulations amounts to nearly 10.5 µm, while the spreading phase, which lasts a similar amount
of time, reaches a final radius of about 20 µm. Protrusion forces description in the literature is
still an ongoing research field. Some authors describe those forces to be located at the membrane:
according to [177] protrusion forces act in the internal boundary of the membrane and are related
to the integrin forces at the focal adhesion sites. The cell cortex was considered as an excitable
system in [202]: that paper reproduced experimentally observed zig-zag behavior. Other authors
and we follow this path of reasoning, model protrusion forces in the bulk of the cell. In [181], a
decomposition of the deformation gradient was used to reproduce the cyclic phases of protrusion
and contraction of the cell, which are tightly synchronized with the adhesion forces at the back and
at the front of the cell. We follow here a similar approach: the cell senses the external sources at
different spots of the membrane by tasting randomly several locations. Only one pseudopod in the
direction of the most attractive one protrudes. This process is simulated by imposing bulk forces
in the cytosol inversely proportional to the distance of the most attractive tasted location, tuned by
means of a paraboloid filter function. This approach lacks the physical connection between the
bulk forces and the actin polymerization, which will be accounted for in future research. Experi-
ments show that the cell shape at the completion of the spreading maintains axis-symmetry, with
an average radius of 20 µm (average measured on 50 EC) [138, 139]. These two data have been
used to calibrate protrusion forces in the bulk, that amount at 6.2 times |~g|.

Finally, concerning the contact area at the end of the adhesion phase and at the end of the mechan-
ical spreading they are approximately equal to 35.3 µm2 e 1256.6 µm2. Intriguingly, both the data
are completely overlapping to the experimental results show in Fig. 7.2b, and 7.2c. Following, the
diameters of the CAs at the end of the adhesion and spreading stage, have depicted (see Fig. 7.7b
and 7.7c).
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(a)

(b) t = 300s (c) t = 600s

Figure 7.7: (a) Reference system in the current configuration and point of view of the observer
from which to see the contact area between the cell membrane and the ligands coated substrate.
(b) - (c) The diameter of the cell contact area is here depicted either at the end of the adhesion stage
(6.7 µm) that at the last instant of the mechanical spreading phase (40 µm).
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(a) t = 0s (b) t = 120s

(c) t = 240s (d) t = 300s

Figure 7.8: Cell-shape at the time instants t = 0, 120, 240, 300 s.
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(a) t = 360s

(b) t = 480s

(c) t = 600s (d) t = 7200s

Figure 7.9: Cell-shape at the time instants t = 360, 480, 600, 7200, s.

7.1.6.2 Cell membrane parameters and relocations of VEGFR2

As deeply discussed in chapters 4 and 5, the product C, in reaction:

VEGFR2| {z }
R

+ gremlin| {z }
L

k f
⌧
kb

C , (7.12)

is half of the whole complex that triggers the intracellular signal of the angiogenic stimulus. In
equation (7.12), identification of symbols with reaction (6.22) has been carried out.

A short summary of the material parameters is here carried out.
In agreement with the governing equations shown in the former sections and chapter, parameters
a from eq. (6.30) and the receptor diffusivity D|R (see eq. (6.87)) need to be experimentally
measured, together with initial conditions c0

RR
(~X). The chemical length scale `chem > 0 for the

amount of ligands SLR(~X , t) in eq. (7.5) shall be enforced, too.
As dealt with deeply in the previous part (Part II) of the thesis and described in [138], we estimated
by means of Surface Plasmon Resonance, both the values of cmax

LR
= 16000 moleculesµ m�2 (where

again has been set cmax
R = cmax

C ) and the standard Gibbs free energy DG0 = �32949.0 J/mol,
to be inserted in eq. (6.88) to derive the equilibrium constant of reaction (6.22), i.e. K(7.12)

eq =
354058.31692. Receptor diffusivity, experimentally computed through Fluorescence Recovery
After Photobleaching (FRAP), holds D|R = 0.198 µm2s�1, [138]. According to available literature
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[158], [48], the total number of molecules of VEGFR2 on the lipid bilayer of an EC is taken as
24000, providing an initial amount of receptors equal to 19.1 molecules · µm�2, supposed homo-
geneous on the surface of a spheric cell in suspension with radius r = 10 µm. It is relevant to
underline the difference with the models in surrogate mechanics; here, the cellular radius assumed
for in-silico investigations has been set equal to 20 microns, that is, equal to the radius of the
spreaded cell. Consequently, different radiuses mean different initial concentrations for VEGFR2
on the cell surface, because, in our formulations, the number of total receptor molecules (free plus
bound) is maintained constant for all the time of the simulations (no internalization/externalization
of receptors from/on the cell membrane). The gremlin that coats the substrate and is available for
binding is not a priori experimentally deducible, since not every molecule is in the ideal condition
to interplay with VEGFR2: contrariwise, it is very likely that many dimers have a not suitable
orientation to chemically interact with the receptor monomers. These considerations prelude to the
calibration of this datum by means of the current in-silico analysis.

7.1.6.3 Comparison between numerical and experimental outcomes

The numerical model here presented is the evolution of those shown in the preceding chapters
(3.4 and 5) and of the papers [138] and [139]. In these works, a chemo-transport model was imple-
mented, wherein the mathematical descriptions of the mechanical spreading of an EC on substrates
enriched of ligands were suitably surrogated. For the purposes of the current chapter, the under-
standing of the three limiting processes that characterize the depletion of VEGFR2, inherited by
the chapters and manuscripts above-mentioned, result pivotal.

The first phase corresponds to a moderated generation of complexes, as shown in Fig. 7.10. In
this step, the VEGFR2 depletion is dominated by the chemical interaction between receptor and
ligands during the adhesion between the cell membrane and substrate. The second phase, up to
600 s, is characterized by a very steep branch of the experimental curve. Comparison between ex-
perimental and numerical outcomes (see Fig. 7.10) shows how this step is strictly connected with
the mechanical spreading of the cell: the cell-substrate contact dynamics drives the formations of
complexes since the mechanical spreading makes new free receptors available for the binding with
the ligands. Ultimately, the last branch of the experimental curve is dominated by a lower complex
formation rate (from 600 s to 7200 s) and takes place after cell spreading thus being transport-
dominated. Free VEGFR2, guided by concentration gradients, move from the apical part of the
cell towards the basal one, where the reaction occurs and depletes receptors - see Fig. 7.11.

Numerical simulations allow quantification of parameters that can hardly be measured, as the num-
ber of ligands available to chemical interaction or the time span of adhesion/vs spreading or the
forces exerted by pseudopodia driven motion. Evolution in time of the normalized total amount
of complexes is depicted in Fig. 7.10, where values are made dimensionless by division with the
corresponding data at the instant 1800 s after calibration of the concentration of ligands available
in the substrate to 90 molecules/µm2. In finding the correct fit of the experimental curve, the time
spent for the adhesion and spreading phases are defined. By surrogated mechanics hypothesis we
have inferred that these two-steps together require about 600 s (phase two). Now, improving the
multi-fields formulation, it has been estimated that this step of the complex generation curve, is
actually subdivided into two further periods: adhesion and spreading phase, and both last 300 s
each.
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In Table 7.1 are shown the numerical and experimental outcomes. Precisely, here it is tabled the
evolution in time of the total amount of complexes (in-silico experiment) and the VEGR2 (in-vitro
experiment) free and bound, in contact with the substrate.

Table 7.1: Co-designing between VEGFR2-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation) is provided. Specifi-
cally, both the total that dimensionless quantities are tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 1,8125 1,7470 0,0000 0,0000 - -
120 2,6775 1,7774 2105,2746 0,1008 0,0995 0,0661
240 3,6175 2,0371 2941,2043 0,1408 0,1344 0,0757
360 8,8875 4,5427 8072,1388 0,3864 0,3303 0,1688
480 12,0225 5,1638 11954,5760 0,5722 0,4468 0,1919
600 17,4375 4,0251 14293,4851 0,6842 0,6481 0,1496
720 20,1325 4,3776 15205,1208 0,7278 0,7482 0,1627
840 19,6650 4,4217 16410,0491 0,7855 0,7308 0,1643
960 20,4075 4,5417 17406,2871 0,8332 0,7584 0,1688
1080 22,8600 4,7168 18100,4100 0,8664 0,8496 0,1753
1200 23,0375 5,5135 18747,8007 0,8974 0,8562 0,2049
1320 23,2725 4,8333 19328,7216 0,9252 0,8649 0,1796
1440 24,9150 5,5791 19843,2785 0,9499 0,9260 0,2073
1560 25,8650 4,7980 20262,9277 0,9700 0,9613 0,1783
1680 27,8800 6,0900 20598,0116 0,9860 1,0361 0,2263
1800 26,9075 5,9243 20890,5624 1,0000 1,0000 0,2202
3600 39,2718 18,8742 22723,3906 1,0877 1,4595 0,7014
7200 36,8140 17,3697 23079,7764 1,1048 1,3682 0,6455
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Figure 7.10: Numerical (dots with continuous line) and experimental (triangles with error bars)
outcomes. Evolution in time of the normalized total amount of complexes.

(a) t = 600s (b) t = 7200s

(c) Legend

Figure 7.11: Diffusion of receptors after the spreading phase has been completed.

228



The evolution in time of the generated complexes is represented in Fig. 7.12, in which the basal
portion of the cell (in contact with the µslide) is depicted (see 7.7a for better understand the point of
view of the observer). Numerical simulations predict a homogeneous distribution of complexes in
the contact region at the end of the adhesion phase Fig. 7.12(d). This behavior is due to the selected
thermodynamic prescription for the transport of receptors, dictated by the gradient of concentration
only. The pattern would have been different if the flux of receptors would have been influenced,
for instance, by the membrane tension. Figure 7.13 depicts the evolution of complexes during the
mechanical spreading phase. Due to the mechanics timescale is faster than that guided by receptors
diffusion, the tendency of complexes to accumulate at the boundary of the cell-substrate contact
area emerges quite clearly. Hence, the so-called “coffee rings" appear, as described in [138] and
chapters 3.4 and 5 ( see fig. 7.13(c) ). At the end of the experimental time span (fig. 7.13(d) ),
a zone of a small concentration of complexes in the adhesion zone is clearly visible. Importantly,
a slight asymmetry of the spatial distribution of the concentration of complexes on the cell mem-
brane in contact with the substrate (see Fig. 7.12 and 7.13) is observable. This phenomenon arises
as a consequence of the discretization of the cell geometry (see Fig. 7.6) coupled with the fact that
the forces that guide the adhesion phase are totally related to gravity. Indeed, in a not discretized
geometry framework, the vertical projection of the cell’s center of mass (from here on CM) on the
membrane, identify the initial contact-point (henceforth IC-P) between cell-surface and substrate
during experiments like those previously introduced. Therefore, in this scenario, the resultant bulk
forces that ruling the cell adhesion mechanism are perfectly aligned with the vertical line joining
the CM and IC-P, favoring a fully symmetric spatial distribution either for the adhesion mechanism
that for complexes concentration in the basal side of the cell. However, introducing the geometry
discretization, the IC-P is not the first contact-point between cell membrane and substrate, rather
will be another point on the cell membrane that will be closer to the IC-P the denser the tesselation.
Hence, a small eccentricity among the resultant of the bulk forces and the IC-P has characterized
the in-silico analysis, providing a tiny cell rolling mechanism during the adhesion phase. This is,
in the end, what induces the asymmetries into the complexes’ concentration spatial distribution.
Moreover, the mechanical spreading and diffusion stages have inherited these asymmetries up to
the result acquired by Fig. 7.12 and 7.13. Finally, from instant t = 600 s to t = 7200 s (see fig. 7.13
(c) - (d)), we observe how, on an unmodified cell geometry, free receptors are recruiteds in the basal
side of the cell owing to gremlin, up to an almost homogeneous distribution of the bound VEGFR2.
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(a) t = 0s (b) t = 120s

(c) Legend

(d) t = 240s (e) t = 300s

Figure 7.12: Basal distribution of complexes during the adhesion stage.
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(a) t = 360s (b) t = 480s

(c) Legend

(d) t = 600s (e) t = 7200s

Figure 7.13: Basal distribution of complexes during spreading stage (a)-(c) and at the end of the
experimental time-span (d).
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The time progression of all molecules targeted in this computational analysis is summarized in
Fig. 7.14. Importantly, in the first 300 s of simulation, the total amount of ligands (free plus
bound) in contact with the substrate (red-line) is perfectly overlapped on that of complexes (orange-
line). This means that the chemo-diffusive phenomenon has timing compatible with those of cell-
substrate contact mechanics. It clearly emerges, instead, that during spreading, from 300 s to 600 s,
the amount of available ligands increases by a large extent and so the amount of ligands that go in
contact with the substrate is so quickly and so high that the chemo-diffusive process leads to ligand
depletion at a later time.

Figure 7.14: Time evolution of the total amount of molecules of receptors, complexes, free-ligands,
and the complete amount of ligands (free plus bound) when SL = 90 molecules/µm2.

It is important to highlights that distinct time-stepping has been implemented for each of the three
stages characterizing the in-silico experiment, inasmuch as each of these phases is ruled in a dif-
ferent way by the physical phenomena so far described. Particularly, concerning the problem into
the bulk, therefore confined to the first two stages, a constant time step has been fixed equal to:

• 0.5 s for adhesion phase;

• 0.1 s for the mechanical spreading stage.

Moreover, due to the fact that the time scale of the bulk and membrane processes are different as
well, a sub-incrementation strategy for the numerical solution of the chemo-diffusive problem on
the cell surface has been adopted for the above mentioned two phases. Hence, both for the adhesion
and mechanical spreading stage, at every discrete instant wherein the problem into the bulk has
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been solved, a further sub-incrementation of 90 substeps to solve the chemo-diffusive problem has
been implemented. Finally, as regards the chemo-diffusion phase, no sub-incrementation has been
necessary inasmuch as the cell geometry remained unchanged throughout this stage. Here, the
constant time-stepping has been arranged to 0.05 s.

7.1.6.4 Low amount of gremlin

Analogously to what has been done in chapter 5, it is interesting to verify what happens if we try
to guarantee, within the current formulation, that nearly 30% of free receptors remaining unbound
in the apical side of the cell (anchored-receptors). In fact, by playing with the number of available
gremlin in the substrate, specifically reducing them from 90 to about 60 molecules/µm2, we can
respect, by this artifact, the ratio between the total amount of free and bound receptors on the cell
membrane.

Table 7.2: Co-designing between VEGFR2-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation) is provided for SL =
60 molecules/µm2. Specifically, both the total that dimensionless quantities are tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 1.8125 1.7470 0.0000 0.0000 0.0674 0.0649
120 2.6775 1.7774 1422.8270 0.0864 0.0995 0.0661
240 3.6175 2.0371 1973.5409 0.1198 0.1344 0.0757
360 8.8875 4.5427 7432.5178 0.4514 0.3303 0.1688
480 12.0225 5.1638 11555.1774 0.7017 0.4468 0.1919
600 17.4375 4.0251 13275.4867 0.8062 0.6481 0.1496
720 20.1325 4.3776 14041.9600 0.8527 0.7482 0.1627 4
840 19.6650 4.4217 14953.0312 0.9081 0.7308 0.1643
960 20.4075 4.5417 15624.1197 0.9488 0.7584 0.1688
1080 22.8600 4.7168 16073.1926 0.9761 0.8496 0.1753
1200 23.0375 5.5135 16325.7133 0.9914 0.8562 0.2049
1320 23.2725 4.8333 16404.9998 0.9962 0.8649 0.1796
1440 24.9150 5.5791 16436.5035 0.9982 0.9260 0.2073
1560 25.8650 4.7980 16452.5141 0.9991 0.9613 0.1783
1680 27.8800 6.0900 16461.5263 0.9997 1.0361 0.2263
1800 26.9075 5.9243 16466.8527 1.0000 1.0000 0.2202
3600 39.2718 18.8742 16475.3274 1.0005 1.4595 0.7014
7200 36.8140 17.3697 16475.3348 1.0005 1.3682 0.6455

This approximation, which we know to be biologically wrong, could be accepted, preliminary, if
we wanted to study only the dynamics of the receptor. However, by co-design the correspondent
in-vitro and in-silico outcomes, we acknowledge the inaccuracy provided by this assumption (see
Fig. 7.15), thus necessited to extend the current paradigm with a further one (see section 7.2).
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Figure 7.15: Numerical (continuous line) and experimental (dots with error bars). Evolution in
time of the normalized total amount of complexes, when the available concentration of ligands in
contact with the substrate is equal to 60 molecules/µm2.

The following picture, Fig. 7.16, displays the evolution in time of the total amount of molecules
on the cell membrane. Here, we can see how a considerable quantity of VEGFR2 keeps on free on
the cell membrane. Such evidence, instead, does not happen in Fig. 7.14, where a total depletion
of free receptors is manifested.
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Figure 7.16: Time evolution of the total amount of molecules of receptors, complexes, free-ligands,
and the complete amount of ligands (free plus bound) when SL = 60 molecules/µm2.

7.1.6.5 Remarks and further development

Receptors-ligand interaction in the adhesion of a cell onto a substrate has been investigated in
[113]. In this study, the adhesion requires transport of receptors from the apical to the basal part
of the cell in order to generate attractive forces, since the mean receptor density on the mem-
brane does not allow to overcome the elastic resistance against spreading. In recent publications
[138, 139] three distinct phases of the relocation of receptors have been identified, each of which
relates to a different physical mechanism. A fast interaction due to chemical bonding at adhesion
precedes a mechanically dominated regime, in which free receptors are depleted to be engaged in
complexes with ligands due to the spreading of the cell, driven by filopodia/lamellipodia migration
processes. Finally, once a macroscopic steady-state mechanical configuration has been achieved,
transport of receptors on the membrane continues and favor complex formation in localized spots.
This three-phases evolution time-scale differs from the scenario depicted in [113].

A detailed study of cell adhesion to a substrate was proposed in [116]. Differently from the present
formulation, the structural response of the cell was attributed in full to the membrane, modeled
by means of an isotropic continuum model. The role of the spontaneous area dilation was clearly
highlighted. Numerical simulations and conclusions, achieved on particularly small cells of radius
12.5nm, may not hold for endothelial cells. In particular, the range of action and the importance of
binding force in the mechanical response largely differ from the conclusions stated here.

235



Figure 7.11(b) shows that at the end of the experimental time span, free receptor molecules almost
vanish. This outcome contradicts the experimental evidence since the full depletion of VEGFR2
is prevented and the residual amount of free receptors in the apical side of the cell is in the or-
der of 30% of the initial concentration. Precisely, the 77% of ECD-VEGFR2-EYFP on the lipid
bilayer is found in a mobile form [138]. This datum could have been achieved numerically, by
altering the initial value of available gremlin on the substrate to 60 molecules/µm2 rather than
90 molecules/µm2. In such a case, the correct final amount of free receptors is captured by the
simulation, but the shape of the numerical curve largely differs from experimental data - see Fig.
7.15. We believe that this simulation is not reliable, since it does not grasp the physics of the ex-
periment correctly (see section 7.1.6.4).

In fact, by imposing a low amount of initial gremlin, all available ligands are consumed and for this
sake, a free receptors leftover arises. However, this is not the physical reason for which receptors
do not deplete, rather it is due to a specific interplay of VEGFR2 with the cellular cortex. Such an
interaction favors the internalization/externalization of receptors, which takes place during the nor-
mal angiogenic processes. Such an interplay slows down enormously the transport of the engaged
receptors, nearly the 23% of them [138], to the point of making them basically immobile, at least
compared to free receptors. All these considerations suggest that the right model for capturing the
residue of receptors on the apical side would require a duplication of the species of receptors in
a free set and an immobile part, capable to internalize/externalize. The depletion of free receptors
will be complete, as in 7.11(b) and the residual will be due to the immobile VEGFR2 attached to
the cellular cortex (see next chapter 7.2).

Note also that the internalization/externalization of receptors is known to take place at a longer
timescale compared to the mechanical spreading. These events therefore shall interact with the
diffusion of receptors after the geometrical evolution completes. We notice in Fig. 7.10 that the
highest discrepancies between simulations and experiments arise exactly in such a phase. We infer
that they might indeed be due to the above-mentioned physical processes that have not been ac-
counted for.

Hence, we extend the current model to further numerical patterns involve the definition of the
above-mentioned immobilized and mobile species of VEGFR2.

7.2 Immobilized receptor
Concerning the in-silico simulation of VEGFR2, either in "surrogatad mechanics" framework
(chapters 3.4 and 5) that in the large deformations one (chapters 6 and 7), we dispose of models
wherein all the VEGFR2 molecules are potentially free to move along the cell membrane. Indeed,
with enough high-amount of ligands, the above-mentioned formulations always conduct towards a
total depletion of free VEGFR2 on the cell membrane. However, this kind of phenomenon has no
correspondence in the experimental reality (see FRAP analysis E.2), where we usually observe a
considerable (according to the type of cell and kind of experiment) fraction of VEGFR2 molecules
anchored ("immobilized-fraction" of VEGFR2) at the cytoskeleton [31] (chapter 2), [138, 139].
Consequently, in the experiment discussed in chapter 4, we can not observe a total depletion of
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free VEGFR2 on the cell membrane, rather a total depletion of the mobile fraction of VEGFR2
participating in the experiment. Therefore, at the end of the experimental observation, we can attest
that a not negligible amount of VEGFR2 remains fixed and free in the apical side of an EC spread
on a ligands-coated substrate. Particularly, the in-vitro experiments presented in [31] (chapter 2),
[138, 139], and chapters 4, 5, 7, and 8 of the current thesis, show a marked amount of fixed free
receptors in the apical area of the cell membrane with consequent an uneven distribution of the
VEGFR2 unbonded. These fixed receptors, henceforth called "immobilized free receptors", are
characterized by having a very slowed motility, despite they are not linked to any types of ligands.
Probably, this kind of specific behavior is the result of a complex dynamical interaction between
this kind of VEGFR2 and the actin cellular cortex and other cell membrane components. Such
interactions are under scrutiny by biologists.

Although we could play with the number of available ligands in order to respect the relation be-
tween free and bound VEGFR2 at the end of the simulation (as we have done in chapters 5, 7),
this is an incomplete idealization of reality. Also, following such a path of reasoning, we could not
surely start to set a mathematical model able to involve the possible cytoskeletal interaction that
VEGFR2 is subjected in the current experiments.

Hence, the free receptors on the cell membrane are divisible in at least two subcategories: the first
one called immobilized due to the interaction with the cell actin cortex, and the second one said
mobile along the membrane. Therefore, a suitable duplication of the species of VEGFR2 is desir-
able in order to describe the coexistence of free mobile and immobile receptors. This inevitably
leads to update the previous set of governing equations shown in section 6.2.3, accounting for the
new experimental considerations.

Accordingly, we extend the previous relations, (6.22) and (6.34), through the following ones:
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where the apex “Im” and “M” denote the immobilized and mobile species, respectively. Moreover,
because the chemical interaction exerts by VEGFR2, fix, and mobile, with respect to the non-
canonical ligand gremlin, is totally equivalent, all the specifications made in the previous chapters
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on the receptor-ligand chemical interaction can be inherited. These comprised the infinitely fast
kinetics hypothesis, which previously had conducted to the governing equation (6.37a), and now
leads to the following relations:
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Therefore, together with eq .(7.15), the subsequent collection of equations complete the group of
the current governing equations:
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where, now, the terms sV Im
R

and sRM
R

, can potentially describe the internalization/externalization
phenomena. However, also for these kind of problems we set sV Im

R
= sRM

R
= 0.

Table 7.3: Material papameters

Material

parameters

values Units

D|V 0.198 µm2/s

a(7.13a) ⌘ aR 0.04519 molecules/µm2

a(7.13b) ⌘ aR 0.04519 molecules/µm2

Table 7.4: Material papameters

Material

parameters

values Units

cIm0
VR

4.393 molecules/µm2

cM0
IR

14,17 molecules/µm2

c0
LV R

0 molecules/µm2

c0
C1R

0 molecules/µm2

In Tables 7.3 and 7.4 we can take a view of the material parameters ruling the current formula-
tion. Interestingly, the initial concentration of immobilized receptors is computed accounting to
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the FRAP analysis (see [138] and Appendix E.2), which show that 23% of VEGFR2 is anchored
at the cytoskeleton. Therefore, at each point of the cell membrane, we denote that the 77% of
VEGFR2 results to be mobile. Such values appear to be in contrast with those mentioned in chap-
ters 5, 7 where we have assumed a percentage of the 30% of VEGFR2 present in the apical side of
the cell at time t = 7200 s. It is important to point out that these two percentage (23% and 30%)
are correctly different from each other; in fact, the datum 30% does not describe a piece of local
information, rather than the ratio among the total number of VEGFR2 free in the apical side of the
EC compared to the global amount of this receptor on the cell membrane. These two percentages
could match only in a perfect case of symmetry, that here we do not have. Knowing that it is trivial
deduced cIm0

VR
= 0.23⇤19.1 = 4.393, where 19.1 is the initial concentration corresponding to a total

number of VEGFR2 equal to 24000 and a cell radius equal to 10 µm.

Table 7.5: Co-designing between VEGFR2-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation) is provided for a
duplicate-species model. Specifically, both the total that dimensionless quantities are tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 1.8125 1.7470 0.0000 0.0000 - -
120 2.6775 1.7774 1982.1244 0.1124 0.0995 0.0661
240 3.6175 2.0371 2929.2491 0.1661 0.1344 0.0757
360 8.8875 4.5427 7419.5159 0.4207 0.3303 0.1688
480 12.0225 5.1638 10526.2684 0.5968 0.4468 0.1919
600 17.4375 4.0251 12580.9120 0.7133 0.6481 0.1496
720 20.1325 4.3776 13290.4139 0.7536 0.7482 0.1627
840 19.6650 4.4217 14085.3412 0.7986 0.7308 0.1643
960 20.4075 4.5417 14860.5194 0.8426 0.7584 0.1688
1080 22.8600 4.7168 15515.1072 0.8797 0.8496 0.1753
1200 23.0375 5.5135 16078.1305 0.9116 0.8562 0.2049
1320 23.2725 4.8333 16511.9306 0.9362 0.8649 0.1796
1440 24.9150 5.5791 16852.1123 0.9555 0.9260 0.2073
1560 25.8650 4.7980 17143.5108 0.9720 0.9613 0.1783
1680 27.8800 6.0900 17404.8341 0.9869 1.0361 0.2263
1800 26.9075 5.9243 17636.7404 1.0000 1.0000 0.2202
3600 39.2718 18.8742 18955.5063 1.0748 1.4595 0.7014
7200 36.8140 17.3697 19221.7209 1.0899 1.3682 0.6455

Interestingly, the possible receptors that can interact with ligands are decreased with respect to the
previous models. Hence, it is predictable a total depletion of the mobile species of VEGFR2 (as
confirmed by Fig. 7.20b). Consequently, the trend of the numerical curve (see Fig. 7.17) main-
tains a similar shape to those shown in the preceding chapters, provide a suitable fitting well the
experimental outcomes.
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Figure 7.17: Numerical (continuous line) and experimental (dots with error bars) outcomes. Evo-
lution in time of the normalized total amount of complexes (mobile plus immobilized).

Moreover, by means of Fig. 7.18, it can be observed that a non-negligible part of VEGFR2 remains
on the apical part of the cell. Following, through Fig 7.20 we depicted the frames at the end of
the mechanical spreading process and diffusion processes, for both immobilized mobile VEGFR2
respectively.

Finally, the evolution in the basal side of the cell of the complex is shown through Fig. 7.21 and
7.22 (see 7.7a for better understand the point of view of the observer), where a non-homogeneous
concentration of complexes at the end of the analysis, suggests a possible high residual of avail-
ability of ligands present in the substrate (assumptions confirm by the graphic 7.23).
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(a) t = 600s (b) t = 7200s

(c) Legend

Figure 7.18: Diffusion of receptors (immobilized plus mobile) after the spreading phase has not
been completed.

(a) t = 600s (b) t = 7200s

(c) Legend

Figure 7.19: No-diffusion of receptors after the spreading phase has been observed for immobilized
species.

(a) t = 600s (b) t = 7200s

(c) Legend

Figure 7.20: Diffusion of mobile receptors after the spreading phase has been completed.
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(a) t = 0s
(b) t = 120s

(c) Legend

(d) t = 240s (e) t = 300s

Figure 7.21: Basal distribution of the whole species of complexes (mobile and immobilized) during
the adhesion stage.
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(a) t = 360s (b) t = 480s

(c) Legend

(d) t = 600s (e) t = 7200s

Figure 7.22: Basal distribution of the whole species of complexes (mobile and immobilized) during
spreading stage (a)-(c) and at the end of the experimental time-span (d).
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Figure 7.23: Time evolution of the total amount of molecules of receptors, complexes (mobile
plus immobilized), free-ligands, and the complete amount of ligands (free plus bound) when SL =
90 molecules/µm2.
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7.3 Comparison between VEGFR2 and VEGFR2-R1032Q
Agree with what has been discussed in 2.3.1.3, in the current section we provide a study on the
behavior of the specific mutation R1032Q of VEGFR2.

The biological aim of this part of the work is to discuss, verify and quantify what are the effects of
the mutation R1032Q on the performance of the VEGFR2, either concerning the interaction with
ligands, specifically, in these experiments, VEGF-A, that regarding its dynamic on the cellular
membrane. In order to do this, we study the dynamics of this receptor, and of its corresponding
unmutated (henceforth called VEGFR2 Wild Type or VEGFR2-WT), on CHO cells by means of
two main experimental techniques: FRAP and the time-lapse microscopy that shows the VEGFR2
(R1032Q or WT) recruitment by immobilized VEGF-A.

Preliminarily, we have not tested if VEGFR2-R1032Q manifests the very same affinity and chem-
ical kinetics with VEGF-A displayed by VEGFR2-WT, but we assume it. Such a supposition is
congruent with the fact that the mutation R1032Q concerns the intracellular domains of the recep-
tor not leading to any changes in the molecular conformation of its extracellular domains (domains
D2 and D3). Particularly, we observe the substitution of arginine with glutamine in the VEGFR2-
R1032Q catalytic site, leading to an improvement in kinase activity of the mutated receptor itself.

With the aids of FRAP analysis has been possible to evaluate how the R/Q substitution of residue
1032 can alter the mobility of the receptor. Hence, FRAP experiments on CHO cells that express
hVEGFR2-WT-EYFP or hVEGFR2-R1032Q-EYFP have been set, with or without VEGF-A. Con-
sequently, either the time necessary to recover the 50% of fluorescence in ROI that the correspond-
ing mobile and immobile fractions have been measured for VEGFR2-WT and VEGFR2-R1032Q.

Table 7.6: FRAP-parameters corresponding to VEGFR2-WT and VEGFR2-R1032Q receptor.

Receptor 0.224/t1/2 % of immobile
fraction

VEGFR2-WT 0.021 35 %

VEGFR2-R1032Q 0.01045 64.5%

It is evident (see 7.6), how VEGFR2-WT has greater lateral motility than the R1032Q. Not only
that, but significant results also arise from the time-lapse adhesion assay of CHO cells on a sub-
strate coated by VEGF-A. Here, we observe that WT-receptor has greater motility also in terms of
recruitment in the basal side of the cell.
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7.3.1 In-silico analysis
It is very interesting to try to understand how the mutated receptor changes the behavior of the ECs
in experiments such as those discussed in chapters 5 and 7, and section 7.2. In order to do that, we
set a series of in-silico analysis that mimic the mechanical behavior of ECs tested and calibrated
in section 7.1, but using, both for WT that R1032Q, the parameters (diffusivity and immobile frac-
tion) deduced by the experiments on the CHO cells (see Tab.7.6).

Accordingly, a suitable measure of w2 (i.e. the square of the radius of ROI - see Appendix E.2)
is necessary for this purpose, that it has been inferred owing to the assumption that the diffusivity
of the VEGFR2-WT in EC is equal to the diffusivity of the VEGFR2-WT in CHO cells (D|EC

VWT
=

D|CHO
VWT

= 0.198 µm/s). Therefore, thanks to the relation D| = 0.224 ⇤ w2/t1/2 (see eq. (E.2)), it is
trivial obtain:

0.198⇤ t1/2

0.224
= w2

CHO = 9,43µm2 . (7.17)

Hence, thanks to (7.17), we can deduce that the diffusivity of the VEGFR2-R1032Q is equal to
D|VR1032Q

= 0.224⇤w2/t1/2 = 0,0985 µm/s.

7.3.1.1 Simulations on receptors with full depletion

In the current section, we compare the numerical curves that depict the complexes’ recruitment
both for VEGFR2-WT-VEGF-A that VEGFR2-E1032Q-VEGF-A.
Analyzing the data in Tab. 7.7, we can observe how, despite the WT receptor has a diffusivity
greater than R1032Q, the total quantities of Complex-WT and R1032Q are almost similar. The
current, in fact, is a model that leads to a full depletion of the receptors; indeed, no splitting of
VEGFR2 in mobile and immobilized species has been here done. Therefore, the greater slowness
of R1032Q is compensated by the fact that all the receptors can potentially move from the apical
to the basal side of the cell, and so, at a long-term (t = 7200 s), also the mutated receptor reaches
the complete dwindling.
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Table 7.7: Co-designing between the number of complexes generating on the cell membrane
(in-silico simulation) correlated to receptors VEGFR2-WT and VEGFR2-R10312Q, respectively.
Specifically, both the total that dimensionless quantities are tabulated.

Time Complex-WT Complex-
R1032Q

Adimensional
Complex-WT

Adimensional
Complex-
R1032Q

0 0,0000 0,0000 0,0000 0,0000
120 2105,2746 1740,4353 0,1008 0,0833
240 2941,2043 2753,3911 0,1408 0,1318
360 8072,1388 6620,3376 0,3864 0,3169
480 11954,5760 9518,4365 0,5722 0,4556
600 14293,4851 11479,0537 0,6842 0,5495
720 15205,1208 12292,0891 0,7278 0,5884
840 16410,0491 13010,4657 0,7855 0,6228
960 17406,2871 13750,2831 0,8332 0,6582
1080 18100,4100 14477,6438 0,8664 0,6930
1200 18747,8007 15160,8978 0,8974 0,7257
1320 19328,7216 15824,7614 0,9252 0,7575
1440 19843,2785 16361,3288 0,9499 0,7832
1560 20262,9277 16778,1826 0,9700 0,8031
1680 20598,0116 17149,2433 0,9860 0,8209
1800 20890,5624 17530,2588 1,0000 0,8391
3600 22723,3906 20996,5336 1,0877 1,0051
7200 23079,7764 22713,5303 1,1048 1,0873

Nevertheless, despite the two curves reach analogous final values, their trends explore very differ-
ent quantities (see Fig. 7.24). Particularly, it is evident either from Fig. 7.24 that for Fig. 7.27,
how the two curves are completed overlapped until the end of the adhesion phase (t = 300 s). This
means that the mechanical spreading of the cell, throughout this step, is not so quick and signif-
icant to highlights the different sizes of diffusivity of these receptors. For juxtaposed arguments,
after the instant t = 300 s until the t = 600 s the curves move away from each other. Such a trend
persists as long as there is a considerable amount of WT receptor that can migrate (see Tab. 7.7 in-
stant t = 1800 s), thereafter for each numerical outcome, the two curves tend to get closer. Finally,
the basal distribution of the WT- and R1032Q-species of complexes upon completion of adhesion
stage, spreading stage, and at the end of the experimental time-span are depicted in Fig. 7.25 and
7.26 (see 7.7a for better understand the point of view of the observer).
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Figure 7.24: Evolution in time of the normalized total amount of complexes of VEGFR2-WT
(continuous blue-line) and VEGFR2-R1032Q (continuous red-line).

(a) t = 300s (b) t = 600s (c) t = 7200s

(d) Legend

Figure 7.25: Basal distribution of the WT-species of complexes upon completion of adhesion stage
(a), spreading stage (b), and at the end of the experimental time-span (d).
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(a) t = 300s (b) t = 600s (c) t = 7200s

(d) Legend

Figure 7.26: Basal distribution of the WT-species of complexes upon completion of adhesion stage
(a), spreading stage (b), and at the end of the experimental time-span (d).

Figure 7.27: Time evolution of the total amount of molecules of receptors (WT and R1032Q),
complexes (WT and R1032Q), free-ligands, and the complete amount of ligands (free plus bound)
when SL = 90 molecules/µm2.
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7.3.1.2 Simulations with immobilized receptors

Different inferences arise from the analyses of Tab. 7.8, and Fig. 7.28, 7.31. Here, the model al-
lows for accounting for two different species (mobile and immobilized) both for VEGFR2-WT and
VEGFR2-R1032Q. Firstly, the total amount of complex generated in the basal side of the cell is
considerably lower with respect to the antecedent section. Significantly, are the differences among
the values presented in Tab. 7.7 and Tab. 7.8.

Table 7.8: Co-designing between the number of complexes (mobile plus immobilized) generating
on the cell membrane (in-silico simulation) correlated to receptors VEGFR2-WT and VEGFR2-
R10312Q, respectively. Specifically, both the total that dimensionless quantities are tabulated.

Time Complex-WT Complex-
R1032Q

Adimensional
Complex-WT

Adimensional
Complex-
R1032Q

0 0.0000 0.0000 0.0000 0.0000
120 1832.5553 1054.3656 0.1155 0.0665
240 2868.4190 1608.1412 0.1808 0.1014
360 7037.2058 5117.0622 0.4437 0.3226
480 9784.4864 6981.4241 0.6169 0.4402
600 11472.1348 7462.8892 0.7233 0.4705
720 12209.3933 7798.2001 0.7698 0.4917
840 12909.5766 8183.0337 0.8139 0.5159
960 13478.8934 8494.8370 0.8498 0.5356
1080 14022.9486 8790.6328 0.8841 0.5542
1200 14479.6310 9072.0667 0.9129 0.5720
1320 14870.3365 9329.0500 0.9375 0.5882
1440 15201.1000 9555.1283 0.9584 0.6024
1560 15469.2401 9749.7749 0.9753 0.6147
1680 15684.3609 9916.6583 0.9889 0.6252
1800 15861.1301 10060.9336 1.0000 0.6343
3600 16881.3626 11197.9580 1.0643 0.7060
7200 17083.9615 11648.5650 1.0771 0.7344

Moreover, such dissimilarities, all together, determine, ultimately, a total lack of superposition
between the curves shown in Fig. 7.28, as well. Specifically, starting from the adhesion phase,
we can note how the WT receptor manages to generate more complexes than R1032Q one. This
happens, despite the very low rate of deformation that persists along with the first 300 s, inferring
that the massive differences between the immobilized fractions of WT and mutated receptors play
a pivotal role from the very beginning of the in-silico experiments. This is confirmed by Fig. 7.31,
wherein the total amount of mutated complexes is not able to overlap the total number of available
ligands.
Subsequently, the complexes formation curves manifest the same slopes until the instant t = 400 s,
namely, as far as the half of the mechanical spreading phase. The second part of this stage (t =
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600 s), is closed by pronounced differences in the growths drawn up on the graph Fig 7.28. Here
again, we can observe how the WT receptor must have access to a higher amount of mobile species
and more diffusive, inasmuch as the blue curve, present a continuous growth as far as the instant
t = 3600 s. Afterward, we denote a slight reduction of the distance between the red curve and the
blue one, which suggests that the mutated receptor, in proportion, has eroded less portion of the
mobile species than the WT, owing to its low diffusivity. Finally, the basal distribution of the WT-
and R1032Q-species of complexes upon completion of adhesion stage, spreading stage, and at the
end of the experimental time-span are depicted in Fig. 7.29 and 7.30 (see 7.7a for better understand
the point of view of the observer).

Figure 7.28: Evolution in time of the normalized total amount of complexes (mobile plus immobi-
lized) of VEGFR2-WT (continuous blue-line) and VEGFR2-R1032Q (continuous red-line).
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(a) t = 300s (b) t = 600s (c) t = 7200s

(d) Legend

Figure 7.29: Basal distribution of the whole WT-species of complexes (mobile and immobilized)
upon completion of adhesion stage (a), spreading stage (b), and at the end of the experimental
time-span (d).

(a) t = 300s (b) t = 600s (c) t = 7200s

(d) Legend

Figure 7.30: Basal distribution of the whole R1032Q-species of complexes (mobile and immobi-
lized) upon completion of adhesion stage (a), spreading stage (b), and at the end of the experimental
time-span (d).
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Figure 7.31: Time evolution of the total amount of molecules of receptors VEGFR2-WT and
VEGFR2-R1032Q (mobile plus immobilized), complexes WT and R1032Q (mobile plus im-
mobilized), free-ligands, and the complete amount of ligands (free plus bound) when SL =
90 molecules/µm2.
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Chapter 8

Large deformations framework to study
integrin

Undoubtedly, integrin has a key role in the portrayal of angiogenic stimuli as well. Not just due
to the fact that the mechanical deformation of EC is actively ruled by integrin itself (e.g. cellular
adhesion and migration), but also because this receptor is pivotal in several processes characteriz-
ing VEGFR2 activities. In fact, with the aid of experimental evidence has been possible to observe
how integrin acts as a co-receptor for VEGFR2, interplaying with the complex VEGFR2-gremlin,
by prolonging and strengthening its intracellular signaling activity. Therefore, similarly to what
we have shown the chapters 3.4 and 5, we provide some paradigmatic result describing the recruit-
ment of integrin by fibrinogen during the mechanical spreading of an EC, and its interaction with
VEGFR2.

Thereby, it seems clear how integrin corroborates angiogenesis by means of at least two distinc-
tive chemical interactions, corresponding to as many configurational states of this protein, i.e.
the bent-clasped (low affinity) and unbent-unclasped (high-affinity) conformation. Specifically, a
low-affinity state is expressed when integrin work as a co-receptor inside the VEGFR2-gremlin-
complex chemical interaction; whereas, the high-activity state is manifest by the integrin-linked to
its own specific ligand. In light of all this, could be an important forward step in the mechanobio-
logical characterization of the angiogenesis at the molecular level, extend and enrich the framework
presented in sec. 6.2.3 with a model accounting for integrin and its chemical interplays with lig-
ands and VEGFR2.

Basically, the aim of this section is to extend the work done under the "surrogated mechanics" hy-
pothesis (see previous part of the thesis II), in the thermodynamics frame presented in the previous
chapter (see chapter 6). Actually, these models could be interpreted as an intermedial step between
the models presented in chapter 5 and a model in large deformation accounting of the active be-
havior of the cell. In fact, despite again we neglect the description of the active behavior of an EC,
it is considered important to take an intermediate step throughout a simplified formulation, where
the mechanical spreading of the cell is not coupled with the behavior of the adhesion molecules.
Such an intermedial pattern could be essential to deal with a two-way coupling model among me-
chanical deformation of the nucleus and of the cytosol and receptor recruitment.
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8.1 Integrin-fibrinogen interaction
Based on what we have presented in chapters 4 and 5 we approach to present formulation. It has
to be clear that all the material parameters necessary to run the following in-silico analysis have
been inherited by the above-mentioned works in the previous part of the thesis. Except for the
evaluation of the concentration of the ligands available on the substrate, which will be inherited
here from the estimates made in the previous chapter, and the assessment of c0

IR
. In fact, similarly

to what has happened in the former chapter 7 for the initial concentration of VEGFR2, the initial
distribution of integrin on the cell membrane is assumed to equal to c0

IR
= 5.0134 molecules/µm2

owing to an initial EC radius equivalent to 10 µm.

Following, we present the governing equations for a model of relocation and reaction of integrin
on a lipid membrane that advects.

Integrin| {z }
I

+Fibrinogen| {z }
LI

k f
⌧
kb

C3 , (8.1)

∂cIR

∂ t
+ DivPR

h
~hIR
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+
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∂ t
= 0 , (8.2a)

∂cLIR

∂ t
+
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∂ t
= sLI , (8.2b)

[cC3R ] =
[cIR] [cLIR ]

a3R
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Table 8.1: Co-designing between integrin-fluorescence intensity (in-vitro experiments) and the
number of complexes generating on the cell membrane (in-silico simulation). Specifically, both
the total that dimensionless quantities are tabulated.

Time FRAP Error bars Complex Adimensional
Complex

Adimensional
FRAP

Adimensional
error bars

0 2.0200 10.3196 0.0000 0.0000 - -
120 7.0275 11.8379 964.1132 0.1638 0.1172 0.1973
240 17.7100 14.9573 1614.5588 0.2743 0.2952 0.2494
360 20.8125 15.7440 2839.3696 0.4823 0.3470 0.2625
480 26.7050 18.4065 3894.0804 0.6615 0.4452 0.3069
600 37.5350 20.3823 4273.8683 0.7260 0.6257 0.3398
720 45.0000 22.2337 4541.5755 0.7714 0.7502 0.3707
840 48.5450 22.8354 4912.7127 0.8345 0.8093 0.3807
960 52.2100 24.0112 5251.4787 0.8920 0.8704 0.4003
1080 55.4000 24.6039 5478.0027 0.9305 0.9236 0.4102
1200 59.3875 26.0124 5626.4698 0.9557 0.9900 0.4336
1320 58.8700 25.5831 5720.0712 0.9716 0.9814 0.4265
1440 57.7225 24.5200 5781.8527 0.9821 0.9623 0.4088
1560 62.0475 25.5762 5826.8514 0.9898 1.0344 0.4264
1680 58.6325 24.3768 5860.9471 0.9956 0.9775 0.4064
1800 59.9850 24.7566 5887.1109 1.0000 1.0000 0.4127
3600 189.6127 53.7018 5997.5924 1.0188 3.1610 0.8953
7200 109.8590 36.9739 6065.9361 1.0304 1.8314 0.6164

Again, as shown in chapter 5, we can observe how the numerical outcomes result to be different
with respect to the experimental ones after time t = 1800 s. We infer that a so peculiar behavior is
correlated to the mechanism of externalization of integrin on the cell membrane through vesicles
invaginated under the lipid bilayer. Particularly, in these vesicles, integrins are preformed and so
available to be active once exposed on the membrane.
Although in the current formulation we have neglected any kind of receptors internalization/externalization
phenomena, it is in our ability to quantify how many integrin molecules are missing in order to
align the numerical data with the experimental ones. In particular, it is trivial to compute (see
Table 8.1) that at t = 3600 s the number of integrins foresaw by the in-vitro experiment is approx-
imately 3.1 times of the in-silico one, and at t = 7200 s about 1.8 times.
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Figure 8.1: Numerical (continuous line) and experimental (dots with error bars) outcomes. Evolu-
tion in time of the normalized total amount of complexes.

(a) t = 600s (b) t = 7200s

(c) Legend

Figure 8.2: Diffusion of integrin after the spreading phase has been completed.
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(a) t = 0s (b) t = 120s

(c) Legend

(d) t = 240s (e) t = 300s

Figure 8.3: Basal distribution of complexes during the adhesion stage.
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(a) t = 360s (b) t = 480s

(c) Legend

(d) t = 600s (e) t = 7200s

Figure 8.4: Basal distribution of complexes during spreading stage (a)-(c) and at the end of the
experimental time-span (d).
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It is interesting to highlight how the low availability of integrin on the cell membrane with respect
to the accessible fibrinogen (equal to gremlin - 90 molecules/µm2- owing to the experimental
consideration made in chapters 4 and 5 ) in touch with the basal side of the EC, provides the
formation of two "coffee rings". The first one around the cell-substrate contact limit zone defined
during the adhesion phase (see Fig. 8.3). The second one, likewise the previous one but at the end
of the receptor diffusion stage (see Fig. 8.4), around the extreme contact zone between fibrinogen
and lipid bilayer. Such a scenario was not capturable in the "surrogated mechanics" framework
due to the fact that the mechanical spreading of the cell was defined by means of a uniform source
of ligands in the fibrinogen mass balance equation. Hence, the first implication of this choice is
a uniform mechanical spreading of the cell between t = 0 s and t = 600 s. Instead, with the aid
of the current formulation, we understand that this phase is at least characterized by two distinct
behavior: adhesion (until t = 300 s) and mechanical spreading (until t = 600 s).

Figure 8.5: Time evolution of the total amount of molecules of integrin, complexes, free-ligands,
and the complete amount of fibrinogen (free plus bound) when SLI = 90 molecules/µm2.
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8.2 Integrin as a co-receptor for VEGFR2
As shown in section 5.2.5 is reasonable, from a biological point of view, to particularise our pat-
terns at the cases in which integrin works like a co-receptor for VEGFR2. Therefore, the following,
are the governing equations:
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. (8.4e)

The current simulation presents an amount of available gremlin equal to 80 molecules/µm2, i.e. a
small quantity compared to the 90 molecules/µm2 so far used. Such a choice is due to our actual
computational capacity. In fact, the intricate chemical interaction between integrin and VEGFR2
leads to a quick increment of the rate of depletion of the TKR-receptor with respect to what has
been observed in the model with a single chemical reaction (see chapter 7). Consequently, a thick-
ened of the tesselation shown by Fig. 7.6 is necessary to catch the correct results in presence of a
ligands availability greater than 80 molecules/µm2. Unfortunately, such a process, that has been
already embedded in our codes through suitable re-mesh algorithms, implies a computational pro-
cessing power improvement that nowadays we are not able to perform.

Likewise, integrin manifests an analogous rate erosion increase in a three couple chemical reac-
tions pattern, as shown in section 5.2.6. For this reason, it is considered appropriate to provide,
throughout section 8.3, the governing equations and some qualitative images depicted the out-
comes, that define such a kind of formulation.
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Table 8.2: Co-designing between integrin and VEGFR2 fluorescence intensity (in-vitro exper-
iments) and the number of complexes generating on the cell membrane (in-silico simulation).
Specifically, the total quantities are tabulated.

Time FRAP
VEGFR2

Error bars
VEGFR2

FRAP in-
tegrin

Error bars
integrin

C2 C1

0 1.8125 1.7470 2.0700 1.3727 0.0000 0.0000
120 2.6775 1.7774 2.1825 1.4993 942.0184 1897.2510
240 3.6175 2.0371 2.5650 1.3584 1555.5455 2632.4123
360 8.8875 4.5427 2.9550 1.4014 2785.3904 7938.8907
480 12.0225 5.1638 3.0775 1.5473 3733.3365 11835.3442
600 17.4375 4.0251 3.8900 1.7371 4614.0879 14477.7023
720 20.1325 4.3776 4.4750 1.6674 4777.5579 15026.1888
840 19.6650 4.4217 5.3775 1.5673 5111.3756 16163.8470
960 20.4075 4.5417 5.9175 1.9579 5352.7382 16992.9887
1080 22.8600 4.7168 6.6400 2.3900 5541.7365 17788.7539
1200 23.0375 5.5135 6.9850 1.9568 5679.8520 18464.4720
1320 23.2725 4.8333 7.8000 2.0404 5776.0682 18977.5215
1440 24.9150 5.5791 7.6800 2.4520 5850.7933 19438.8217
1560 25.8650 4.7980 8.4550 1.9578 5909.1244 19849.0170
1680 27.8800 6.0900 8.8375 2.0512 5955.1153 20201.5272
1800 26.9075 5.9243 9.0225 2.5968 5991.0090 20501.0436
3600 39.2718 18.8742 57.3603 12.2651 6142.8328 21829.7037
7200 36.8140 17.3697 55.5292 10.0477 6177.6460 21842.4365

Similarly to what is shown in section 5.2.5, the total amount of fluorescence of VEGFR2 is con-
nected with the global number of C1 (bound or not bound with C2), inasmuch as experimentally it
has been possible to visualize time-lapse the fluorescence connected to every single molecule both
of VEGFR2 and integrin. Contextually, the fluorescence of integrin is correlated only with C2.
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Table 8.3: Co-designing between integrin and VEGFR2 fluorescence intensity (in-vitro exper-
iments) and the number of complexes generating on the cell membrane (in-silico simulation).
Specifically, the dimensionless quantities are tabulated.

Time Adimensional
C2

Adimensional
C1

Adimensional
VEGFR2

Adimensional
error bars
VEGFR2

Adimensional
integrin

Adimensional
error bars
integrin

0 0.0000 0.0000 - - - -
120 0.0459 0.0925 0.0995 0.0661 0.0811 0.0557
240 0.0759 0.1284 0.1344 0.0757 0.0953 0.0505
360 0.1359 0.3872 0.3303 0.1688 0.1098 0.0521
480 0.1821 0.5773 0.4468 0.1919 0.1144 0.0575
600 0.2251 0.7062 0.6481 0.1496 0.1446 0.0646
720 0.2330 0.7329 0.7482 0.1627 0.1663 0.0620
840 0.2493 0.7884 0.7308 0.1643 0.1999 0.0582
960 0.2611 0.8289 0.7584 0.1688 0.2199 0.0728
1080 0.2703 0.8677 0.8496 0.1753 0.2468 0.0888
1200 0.2771 0.9007 0.8562 0.2049 0.2596 0.0727
1320 0.2817 0.9257 0.8649 0.1796 0.2899 0.0758
1440 0.2854 0.9482 0.9260 0.2073 0.2854 0.0911
1560 0.2882 0.9682 0.9613 0.1783 0.3142 0.0728
1680 0.2905 0.9854 1.0361 0.2263 0.3284 0.0762
1800 0.2922 1.0000 1.0000 0.2202 0.3353 0.0965
3600 0.2996 1.0648 1.4595 0.7014 2.1318 0.4558
7200 0.3013 1.0654 1.3682 0.6455 2.0637 0.3734

Analyzing Fig. 8.6, we denote the very same trend observed in section 5.2.5, namely, integrin
does not appropriately match the numerical results, manifesting a discrepancy among in-vitro and
in-silico outcomes. Particularly, at time t = 3600 s and t = 7200 s, the numerical complexes C2
in contact with the basal side of the cell are about 7.11 and 6.85 times less than the correspondent
experimental data (see Tab. 8.2 and 8.3). Once again we find a similar qualitative trend to the
results of the analyzes analogous to the surrogated mechanics framework. In fact, these results
are considerably higher than the corresponding observed for the model integrin-fibrinogen in the
previous section. Currently, we think that the reason for this peculiar tendency is correlated to the
integrins clustering phenomenon inside FAs. Specifically, in the adhesion sites (FAs), integrins are
recruited in their active configuration forming, together with other proteins, cluster molecules that
are necessary to the mechanical signaling transduction among the cell and its own extracellular
microenvironment. Such localization of integrin could affect the fluorescence perceived, and so
underestimate the experimental results. This is a crucial point in the mechanical description of
an EC, and a mathematical formulation able to take into account these behaviors (e.g. [121]) can
point to specific biological experiments capable to interpret these phenomena.
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Figure 8.6: Numerical (continuous line) and experimental (dots with error bars) outcomes. Evolu-
tion in time of the normalized total amount of complexes.

Figure 8.7: Time evolution of the total amount of molecules of receptors (VEGFR2 and integrin),
complexes (C1 and C2), free-ligands, and the complete amount of gremlin (free plus bound) when
SL = 80 molecules/µm2.
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(a) t = 600s (b) t = 7200s

(c) Legend

Figure 8.8: Diffusion of VEGFR2 after the spreading phase has been completed.

(a) t = 600s (b) t = 7200s

(c) Legend

Figure 8.9: Diffusion of integrin after the spreading phase has been completed.

Moreover, it is interesting to point out, by means the Fig. 8.10, 8.11, 8.12, and 8.13, how the
evolution in time of C1 and C2 complexes are totally complemental.

If we take the images 8.11e and 8.13e as a comparative example, it is possible to see how, here,
the areas with a higher concentration of complexes (darker red) and those with less (darker blue),
are totally supplementary to each other, namely, the major concentration of C1 happens where we
have fewer molecules of C2, and vice-versa.
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(a) t = 0s (b) t = 120s

(c) Legend

(d) t = 240s
(e) t = 300s

Figure 8.10: Basal distribution of complexes C1 during the adhesion stage.
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(a) t = 360s (b) t = 480s

(c) Legend

(d) t = 600s (e) t = 7200s

Figure 8.11: Basal distribution of complexes C1 during spreading stage (a)-(c) and at the end of
the experimental time-span (d).
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(a) t = 0s (b) t = 120s

(c) Legend

(d) t = 240s (e) t = 300s

Figure 8.12: Basal distribution of complexes C2 during the adhesion stage.
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(a) t = 360s (b) t = 480s

(c) Legend

(d) t = 600s (e) t = 7200s

Figure 8.13: Basal distribution of complexes C2 during spreading stage (a)-(c) and at the end of
the experimental time-span (d).
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8.3 Formulation with three chemical reactions
The ability of VEGFR-2 to participate in a complex with integrin is well known, the close corre-
lation between their activation and the multiphysical phenomena regulating EC dynamics remains
still very restricted.
Here, we model either the VEGFR-2 membrane dynamics and that for integrin as well, by a multi-
physics model, to identify how gremlin and fibrinogen stimulations induce the polarization of
receptors in cell protrusions and in the basal aspect of ECs plated on a ligands-enriched ECM.
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Experimental evidence shows that the time span required to reach chemical equilibrium is orders
of magnitude less than the time scales necessary to reach mechanical and diffusive equilibrium.
Accordingly, the infinitely fast kinetics hypothesis is assumed valid for each of the chemical inter-
actions depicted by the expressions (8.5), leading to the subsequent relations:

cC1R =
cVRcLV R

a1R
(8.7a) cC2R =

cC1RcIR

a2R
(8.7b) cC3R =

cIRcLIR

a3R
(8.7c)

Finally, substituting the expressions (8.6e), (8.6f), and (8.6g) in the remaining equations of (8.6),
we build the set of Eqs. (8.8) that jointly with Eqs. (8.7) denote the governing equations for the
current model.

∂cVR

∂ t
+DivPR

h
~hVR

i
+

∂cC1R

∂ t
+

∂cC2R

∂ t
= 0 , (8.8a)

∂cLV R

∂ t
+

∂cC1R

∂ t
+

∂cC2R

∂ t
= sLV R , (8.8b)

∂cIR

∂ t
+DivPR

h
~hIR

i
+

∂cC2R

∂ t
+

∂cC3R

∂ t
= 0 , (8.8c)

∂cLIR

∂ t
+

∂cC3R

∂ t
= sLIR . (8.8d)
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where the model parameters necessary to solve the eq. (8.8) and (8.7), are deducible from chapters
4 and 5. Nevertheless, the initial concentration of VEGFR2 (about 24000 molecules) and integrin
(about 6300 molecules) are computed with respect to the surface of a spherical and in suspension
cell with a radius equal to 10 µm.
Due to excessive computational burden, we can follow show qualitative results (see Fig. 8.14) on
the current formulations. Therefore, we postpone any discussion on quantitative outcomes when
we will dispose of greater computing power.
Although the spatial distribution of the complexes depicted in Fig. 8.14 does contemplate an
amount of gremlin and fibrinogen available in the substrate considerably lower than the above
deduce, 35 molecules/µm2 and 35 molecules/µm2, respectively, several interesting information
is deducible. Interesting, are the complementary arrangements of C1 and C2 complexes (see Fig.
8.14a and 8.14b), where the zones with higher (red-colors) concentrations of the former correspond
to lower (blue-colors) concentrations of the latter, and vice-versa. Moreover, due to the multiple
participations of integrins in two chemical reactions and their low availability on the membrane, we
observe that at the end of the adhesion phase (see Fig. 8.14c), the distribution of C3 concentration is
not homogeneous on the contact area between cell-substrate. Finally, all three spatial distributions
manifest the generations of "coffee-rings" (see Fig. 8.14d, 8.14e, and 8.14f, and Fig. 8.14g, 8.14h,
and 8.14i) on the edge of the cell-substrate contact surface.
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(a) C1 at t = 300s (b) C2 at t = 300s (c) C3 at t = 300s

(d) C1 at t = 600s (e) C2 at t = 600s (f) C3 at t = 600s

(g) C1 at t = 7200s (h) C2 at t = 7200s (i) C3 at t = 7200s

Figure 8.14: Basal distribution of complexes C1, C2, and C3 upon completion of adhesion stage
(a),(b), and (c), spreading stage (d), (e), and (f), and diffusion stage (g),(h), and (i), respectively.
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Appendix F

Demonstrations

F.1 Divergence theorem on P(t)
The following outcome extends the divergence theorem to advecting membranes.

Z

P(t)
divP [~g ] da =

Z

∂P(t)
~g ·~t? d` . (F.1)

Proof: - Taking advantage of the Frenet formulae one has:

Z

∂P(t)
~g ·~t? d` =

Z

∂P(t)
~g ·

~tk ⇥~n
|~n| d` =

Z

∂P(t)

~n⇥~g
|~n| ·~tk d` .

In view of Stokes’ theorem, the latter holds
Z

∂P(t)

~n⇥~g
|~n| ·~tk d` =

Z

P(t)
curl


~n
|~n| ⇥~g

�
· ~n
|~n| da

and the thesis is proved in view of definition (6.3a).

F.2 The time derivative of the areal jacobian
We aim at proving the following identities.
It holds:

d J
p

~nR ·C�1~nR

dt
= J |~n|

✓
div [~vadv ]� ~n ·d~n

|~n|2

◆
. (F.2)

Proof: - It is well known that
d J
dt

= J div [~vadv ]

and straightforward to prove that

d C�1

dt
= � F�1 (2d)F�T .
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By noting that
|~n| =

p
~nR ·C�1~nR ,

assertion (F.2) immediately descends.
Defining a base u,v,w for the domain of S (where S is a second-order tensor), we can prove:

det(S) =
[(Su)⇥ (Sv)] · (Sw)

[u⇥v] ·w
. (F.3)

We know that the mixed product between the component of bases is correlated to the volume of
the parallelepiped denoted by the own vectors. Let LE1,LE2,LE3 be the local base of a material
point of the reference configuration and LFE1,LFE2,LFE3 the correspondent in the current one.
We know that:

dV = (LE1 ⇥LE2) ·LE3 = L3 [(E1 ⇥E2) ·E3] ,

dv = (LFE1 ⇥LFE2) ·LFE3 = L3 [(FE1 ⇥FE2) ·FE3] ,
(F.4)

therefore:

dv
dV

=
L3 [(E1 ⇥E2) ·E3]

L3 [(FE1 ⇥FE2) ·FE3]
=

[(E1 ⇥E2) ·E3]

[(FE1 ⇥FE2) ·FE3]
= J = det(F) ,

JdV = dv .
(F.5)

By analogy:
(Su)⇥ (Sv) = det(S)S�T u⇥v , (F.6)

dA = L2|E1 ⇥E2| = L2|E3| = L2 , (F.7)

FE1 ⇥FE2 = det(F)F�T (E1 ⇥E2) = JF�T E3 ,

da = |LFE1 ⇥LFE2| = L2|FE1 ⇥FE2| = L2J|n| = L2J|F�T nR| .
(F.8)

hence:
da
dA

= J|F�T nR| ,

dAJ|F�T nR| = da .
(F.9)

We want to prove the following identities:

—[ f vb] = vb ⌦—[ f ]+ f l ,

d
h
J
p

nR ·C�1nR

i

dt
= J|n|

✓
div [vb]�

n ·dn
|n|2

◆
,

(F.10)

where f is a scalar function and C is the right-Cauchy-Green tensor. It has to be clear:

|F�T nR| =
q�

F�T nR
�
·
�
F�T nR

�
=
q�

F�T nR
�
·
�
nT

RF�1�=
q

nR ·
⇥
F�1 �F�T nR

�⇤
=
q

nR ·
⇥
F�1F�T nR

⇤
=
q

nR ·
⇥
C�1nR

⇤
=

q
nR ·C�1nR .

(F.11)

We know that:

d
h
J
p

nR ·C�1nR

i

dt
=

dJ
dt

q
nR ·C�1nR

�
+ J

d
hp

nR ·C�1nR

i

dt
(F.12)
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focusing on the first terms:

d
dt

[det(S)] =

⇢
det(S)Tr

✓
dS
dt

◆
S�1
��

,

d
dt

[det(F)] =

⇢
det(F)Tr

✓
dF
dt

◆
F�1

��
,

(F.13)

we can found the following relation:

d
dt

[det(F)] = JTr
�
ḞF�1�= JTr(l) = J div (vb) . (F.14)

Concerning the term
d
hp

nR ·C�1nR

i

dt
, we can deduce that:

d
dt

q
nR ·C�1nR =

d
dt

|F�T nR| = d
dt

|n| =

1
2


dn
dt

·n+n · dn
dt

�

|n| =

dn
dt

·n

|n| .

(F.15)

Now, we are interested to understand the expression of
dn
dt

, hence:

dn
dt

=
dF�T

dt
nR +F�T dnR

dt

where:
dnR

dt
= 0

dn
dt

=
dF�T

dt
nR

(F.16)

knowing that
dA�1

dt
= �A�1ȦA�1 and substituting A with F, we derived:

dn
dt

=
dF�T

dt
nR = �F�T ḞT F�T nR ,

where: F�T ḞT = lT ,
dn
dt

= �lT F�T nR = �lT n ,

(F.17)

therefore:

J
d
dt

q
nR ·C�1nR = �J

dn
dt

·n

|n| = �J
�
lT n
�
·n

|n| = �J
n · (dn)

|n| . (F.18)

In the end, it holds:

d
h
J
p

nR ·C�1nR

i

dt
=

dJ
dt

q
nR ·C�1nR

�
+ J

d
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nR ·C�1nR
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dt
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J div (vb)|n|� J
n · (dn)

|n| = J|n|


div (vb)� n · (dn)

|n|2

�
.

(F.19)
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F.3 Flux across the boundary
It holds:

~ha ·~t? d` =~haR ·~t?R d`R . (F.20)

Proof: -
Recognizing that tangent vectors usually convect with the body, we can state that tk = FtkR, so:

ha · t? = ha ·
✓

tk ⇥ n
|n|

◆
= tk ·

✓
n
|n| ⇥ha

◆
=

=

✓
n
|n| ⇥ha

◆
· (FtkR) = FT

✓
n
|n| ⇥ha

◆
· tkR

(F.21)

where |t?| = 1 and through the follow relations (a⇥b) · c = (b⇥ c) ·a = (c⇥a) ·b and (Fv) ·u =
(FT u) ·v. The subsequent rules are pivotal for the aim:

Ma⇥Mb = det(M)M�T (a⇥b)

where: F = M�1 and M = F�1

det(M) = det(F�1) =
1
J

(F.22)

therefore:
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�
F�1ha

�
.

(F.23)

We have to note that the application of a second-order tensor like C�1 to a first-order tensor nR it
is a first-order tensor with a component along the local Frenet axes nR, tk, t?. Hence:

C�1nR = znnR + zktk + z?t? (F.24)
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We know that nR is a unit vector unlike tkR, therefore we take:

t?R =
tkR ⇥nR

|tkR| unit vector ,

nR =
tkR ⇥ t?R

|tkR| unit vector .
(F.26)
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(F.27)

We denote:
haR = |n|JF�1ha =) ha =

1
|n|J FhaR (F.28)

and then:
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(F.29)

We arrive at the following relation ha · t? = zn
|tkR|
|n|2 t?R ·haR � z?

|tkR|
|n|2 nR ·haR.

We know:
0 = ha ·n =

1
J|n| (FhaR) ·

�
F�T nR

�
=

=
1

J|n|
�
F�1FhaR ·nR

�
=

1
J|n|haR ·nR

(F.30)

zn = C�1nR ·nR =
�
FT F

��1 nR ·nR =

= F�1F�T nR ·nR = F�T nR ·F�T nR = |n|2
(F.31)

and finally:

ha · t? = zn
|tkR|
|n|2 t?R ·haR � z?

|tkR|
|n|2 nR ·haR| {z }

0

= |tkR|t?R ·haR

knowing that:

dl =
p

dx ·dx = |tk|dl = dl dlR =
p

dX ·dX = |tkR|dl
we can deduce:

ha · t?(x) = |tkR|t?R(X) ·haR

ha · t?(x)dl = |tkR|t?R(X) ·haRdl
ha · t?(x)dl = haR · t?R(X)dlR .

(F.32)
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Appendix G

Possible improvements of the
chemo-transpo-mechanical model

G.1 Formal extension in the large deformations framework of
the expressions (3.82) provide in chapter 3.4

Following we provide a formal extension in the large deformation framework of the expressions
(3.82) provide in chapter 3.4.

1) V +LV

k1
f

⌧
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b

C1 , (G.1a)

2) C1 + I
k2
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b

C1Il|{z}
C2

, (G.1b)

3) I +LI
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. (G.1c)
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Extending the eq. (6.37a) to the current model:
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where:
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(G.4)
Thanks to the realtions (G.2) and (G.4) we can deduce the following four governing equations:
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First equation
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Second equation
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Third equation
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Fourth equation
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G.2 Interaction between mobile and immobilized VEGFR2 and
integrin

It could be interesting to update and extend the model presented in section 8 with the current frame
involving an appropriate duplication of the species for VEGFR2 (mobile and immobilized).
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One more time, we recognize valid the infinitely fast kinetics hypothesis which, based on the
chemical interactions (G.9), conduct to the following relations:
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Finally, these complete the set of the current governing equations:
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where the Eqs. (G.12f) and (G.12g) confirm the above-formulated assumption that the doubling of
species of VEGFR2 does not affect the chemical interaction either between VEGFR2 and gremlin
or among VEGFR2-gremlin-complex with integrin.

282



G.3 Interaction between mobile and immobilized VEGFR2 with
mobile and immobilized integrin

Intriguingly, integrin as well could be subdivided into a mobile and immobilized species. Indeed,
actin filaments present in the inner part of an EC, are involved by integrin activation in several bi-
ological processes including angiogenesis. Hence, in order to extend what has been just presented
in section G.2, we present a multiphysics model involving an appropriate duplication of the species
both VEGFR2 and integrin.
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Eqs. (G.15) are the relations that link the concentrations of reactants with those of products, arising
from the infinitely fast kinetics hypothesis.
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The remaining governing equations read as follows:
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Part IV

Fluctuations in living cells
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Chapter 9

Fluctuations in living cells

In the current section, we present a summary of the work, that has been done during my expe-
rience abroad at the University of Cambridge under the supervision of Professor Vikram Desh-
pande financed by means of a scholarship provided by the Guido Berlucchi Foundation (Young
Researchers Mobility Programme). Such collaboration has been prematurely interrupted due to
coronavirus pandemic (after 2 months on the six planned) and below we will show the results.

The goals of the work were to try to understand the competition mechanism between haptotaxis
and durotaxis, where the in-silico replication of the experimental results on fibroblast dictated by
the paper [219], is the target. In order to do that, base on the statistical mechanics framework,
suitable explained in the paper [14], we provide a simplified idealization of these cells by means
of a 2D study on fibroblast constrained to maintain an elliptical shape.
The chapter is structured as follows: a first introduction (9.1) wherein the theoretical insights are
presented (mainly deduce by the papers of [180, 128], and [14]), and finally, a second part (9.2)
where the numerical results on the behavior of the cell, constrained to maintain an elliptic shape,
are shown.

9.1 Theoretical insights
In order to satisfy either the several observations that attest to cells fluctuating response during
in-vitro experiments and in order to bypass the uncertainty and ignorance on the determination of
all intracellular processes that happen in every biological phenomenon (lack of information), it has
been introduced in the paper [14], a statistical mechanics framework for living cells. Such a theory
allow the accounting of a very relevant concept that hereto has remained unexplored throughout
the thesis, namely the concept of cellular homeostasis.

Homeostasis expresses the will of living organisms to maintain a steady-state condition, adapting
themself to the environment (time-depending) condition. This phenomenon is manifest at every
scale of observation of living matter and actually, biologists associate the term homeostasis to
describe the healthy-steady condition connected with the human body, organs, tissue, or cells.
Exemplary, are those autoregulation mechanisms that maintain constant vital parameters like, tem-
perature, osmotic pressure, ph, etc., all connected with the homeostatic machinery. It is evident
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as homeostasis acts as an internal constraint in a living system, avoiding reaching state-condition
incompatible with life.

In the current chapter, we focus on the homeostasis of the intracellular environment, which af-
fects the behavior of a cell allowing it to avoid death. In fact, the living cell maintains a sort of
steady-state equilibrium, henceforth called homeostatic equilibrium, that allows them to maintain
their own vital activities. Specifically, in [14] it is assumed that cells are entropic and so that they
manifest fluctuations in order to support the homeostasis; such an attitude is here modeled account-
ing for a specific internal constraint during entropy maximisation procedure for the definition of
homeostatic equilibrium (see further section). Actually, the framework shown by the work [14]
is an impressive change of perspective in the study and modeling of living cells. This conjecture
would explain the reason why the replication of an identical in-vitro experiment does not provide
the very same results but variability in the experimental observations. In fact, if it is true that cells
are entropic, what biologists see in their experiments are nothing but the manifestations of the
microstates accessible at the thermodynamic system called cell.

9.1.1 Analogies among the classic and homeostatic ensemble
Observing the interphase period of a cell cycle (usually valid for times observation from a few
hours to few days), during an in-vitro experiment, is possible to attest that the values of physics-
observables show fluctuations and variabilities. This uncertainty in the results is characteristic of
living systems and mark their complexity. The assumption upon which is based on the current
model is that such an uncertainty in the results is due to the entropic nature of homeostatic equi-
librium [14].

In order to describe the macro-world through the behavior of particles constituent the micro one,
we should study each individual molecule1 that composes the macroscopic system. However, con-
sidering that inside a mole of a substance is present a huge amount of constituents (in the order of
the number of Avogadro2), the attempt to describe every single particle evolution is practically an
impossible path. Nevertheless, we can study the average properties of this huge set of particles, by
means of statistical analysis [12].

Actually, we will provide a further method to utilize the statistical mechanic’s architecture, which
will be a real paradigmatic change in the study of cellular activities.
In fact, in the current chapter, we are interested in the statistical mechanics’ description of the
thermodynamic equilibrium state. Actually, a qualitative comparison among canonical and grand
canonical ensembles describing the equilibrium state for closed and open systems will be provided
with the homeostatic ensemble describing the (dynamic-) homeostatic equilibrium.

In classical or phenomenological thermodynamics, systems at the equilibrium state are fully de-
scribed by a suitable characteristic function3 [143] (pages 248). Such characteristic functions, also

1For instance, in a gaseous substance, the motion of the molecules and atoms is unceasing and continuously in evo-
lution, obviously even at the so-call thermodynamic stable equilibrium state, i.e. the state where usually macroscopic
observables do not change in time [12].

2
NA ' 6⇥1023.

3All the properties of a system at equilibrium state, are deducible by means of derivations or algebraic manipula-
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called thermodynamic potentials are generally the entropy or the internal energy rather than their
Legendre transformation, which usually tend to assume a maximum or minimum value at a stable
equilibrium state [145] (page 76). According to the typology of the equilibrium system itself (e.g.
corresponding to an isolated or closed, rather than open system), and depending on the indepen-
dent variables [143, 145, 12, 13] (pages 248-250, 75-83, 80 and 88-97 respectively), one of the
possible above mentioned thermodynamic potential become the more suitable in order to describe
the equilibrium state of the system.

In statistical thermodynamics, we observe an analogous situation; namely, to every statistical en-
semble [12] (page 30) corresponds to a specific choice of the independent variables, and con-
sequently, an opportune expression of a probability distribution of the microstates and partition
function [12] (page 80). For each individual cases, we will arrange the suitable thermodynamic
potential M, that is connected to the partition function (Z), by the following relation [12] (page
80):

M = �kBT ln(Z) (9.1)

where M could be the Helmholtz free-energy (systems that exchange energy with the environment
in the form of heat) or Gibbs free-energy (systems that exchange energy by changing volume as
well) [12].

For sake of clarifying we discuss briefly a very notorious example, i.e. the statistical mechanic
description of a system (closed) that exchanges energy (heat) with a thermal bath (reservoir4 with
thermal or heat capacity ideally tending to infinity) with a temperature equal to TR. The probabil-
ity distribution of the microstates of the system is well captured by the canonical ensemble. By
means of entropy maximisation (trough the Lagrange multipliers method) under the constraint that
the total energy (reservoir plus system) remain constant, we can deduce the notorious Boltzmann
distribution [14, 12].

According to the features of this problem, the suitable independent variables to describe the phe-
nomenology are (T,V,n), and not the usual variables (E,V,n) exhibited by an isolated system,
inasmuch as the internal energy can fluctuate whereas the temperature is fixed by the reservoir. In
phenomenological thermodynamics, these are the natural independent variables of the thermody-
namic potential called Helmholtz free-energy (Y - largely used in the models presented throughout
the thesis). Accordingly, following the (9.1), we found:

Y(T,V,n) = �kBTR ln(Z(T,V,n)) (9.2)

where kBTR is indicative of the distribution parameter [14]. Such a relationship acts as a bridge
between the macro and the micro world allowing the full description of the system described above
[12] (page 71).
It is very interesting how we can obtain the expression (9.2) without any modeling neither the ther-
mal interaction nor all the dynamic time evolution of each molecule that composes the system [14].

tions of the opportune characteristic function [143] (pages 248)
4Specificity of reservoir description are well describe in [143] (page 87) and [12] (page 61)
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Similarly to the practical impossibility to describe every single evolution of each particle forming a
gaseous system in a stable equilibrium state, we clash with the impractical attempt to describe the
multiple intracellular processes that support the dynamic homeostatic equilibrium of a cell. Ev-
ery biological process is characterized by several intracellular signaling, whose interconnections
determine a definite behavior of the cell. The triggering of the angiogenic stimulus too is character-
ized by multiple intracellular signaling cascades, mainly starting from VEGFR2 interaction with
its ligands, and not all of these are well-known. Moreover, arise several experimental evidence of
statistical effects and non-thermal fluctuations in living cells [14].

Summing up, the authors of [14] build a statistical thermodynamics framework for living cells,
assuming that living cells are entropic and describing their homeostatic state (valid for the inter-
phase period of the cell cycle), accounting for the concept of homeostatic ensemble involving the
cellular homeostasis as a suitable additional internal constraint for entropy maximisation. It has to
be clear that this internal constraint avoids the cell to reach its thermodynamic equilibrium state
corresponding to the state of death of it [14].

9.1.2 Homeostatic ensemble
We start defining the thermodynamic system and the conditions that characterize it. Focusing on
standard in vitro experiments, such as what we explained in the previous chapters, we can observe
a cell adhere to a substrate enriched with ligands, where both, cell and substrate are immersed
in a nutrient broth. The latter provides to the cell the opportune nutrients to survive. Moreover,
owing to this nutrient bath, the cell, and the substrate, are maintained at constant temperature and
pressure. Likewise of a system in contact with a heat reservoir, we do not focus on all the set-up,
rather we give priority to the description of an open system composed of the adherent cell and the
substrate, where the nutrients bath work like a reservoir.

In such a framework, the experimental evidence supports some of the fundamental hypotheses
envisaged.
Firstly, in order to change its morphology, a cell spends much more time with respect to that
necessary for internal proteins reorganization. Therefore, it follows that during the proteins rear-
rangement within the cell, the morphology could be assumed fixed and so the environment pres-
sure and the thermodynamic temperature are the unique constraints for the cell. Therefore, such a
thermodynamic system, at the thermodynamic equilibrium, is governed by the Gibbs free energy
thermodynamic potential [14].

Subsequently, it is known that during the homeostatic state the cell morphology fluctuates. It main-
tains an equilibrium distribution of morphological states that stems from entropy function maximi-
sation undergone to a specific internal constraint. Specifically, this constraint is the mechanism
that forces/allows the cell to remains at the homeostatic equilibrium. This restraint is made explicit
stating that, during morphology fluctuations, the average amount, inside the cell, of the sum of
chemical species is retained; explicitly, the cell keeps an average value of the Gibbs free-energy
(G0) upon all the morphological states. Intriguingly, such a constraint can be estimated when the
cell can manifest one and only one morphological state, namely when it is in suspension. In this
situation, G0 = G, ensuring a known value at the constraint necessary for the above-mentioned
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entropy maximisation. Also, it has to be clear the average Gibbs free-energy is characteristic of
the type of cell but independent of the surrounding environment [14].

It is, therefore evident, how thermodynamic and homeostatic equilibrium are different. Practically,
attains the homeostatic equilibrium, a net transfer of species is permitted among the system (sub-
strate and adherent cell) and nutrient bath, if and only if the average amount of species inside the
system remain constant, whereas a net energy transfer is avoided. Concerning the thermodynami-
cal equilibrium, instead, neither a net transfer of energy nor species is allowed among system and
bath, inasmuch as these quantities have to be fixed within isolated arrangement (system and nutri-
ent bath together).
Homeostatic equilibrium is actually a dynamic equilibrium, that persists to avoid cell thermody-
namic decadence. However, pinpointing the homeostatic equilibrium by means of a conventional
way to entropy maximisation (similarly to classical equilibrium analysis) establishes a method to
redefining the equilibrium state for living cells involving the notion of the homeostatic ensemble
joint to that of homeostatic temperature z [14].

9.1.3 Model formulation
This statistical mechanics description of cells, similarly to the classical one, embeds the loss of
information on the velocity and position of every particle (molecules) of the system (cell+ECM).
In fact, macro variables are experimentally uncontrollable and only the pressure, temperature, and
species concentration of the nutrient bath are manageable. Nevertheless, a further missing of de-
tails is manifested, namely the incertitude on the cell shape, that is an outcome obtained throughout
homeostatic processes, concluding that, the cell form is not accurately ruled [14].

9.1.3.1 Molecular and morphological microstates

A twofold level of microstates is here introduced: molecular and morphological. These are justi-
fied by the deterministic correlation between the intracellular molecular arrangement and the cell
shape.
In the first kind of microstate, the position and velocity of the total amount of species inside the sys-
tem have a definite arrangement. Similar to the ensembles defined in classical statistical mechanics,
the ensemble of molecular microstates is the collection of the sum of the molecular microstates in a
specific molecular macrostate. This latter represents the probability distribution capable to provide
the possibility to find a particular molecular microstate into this specific ensemble [14].
The second one, instead, is usually made by a huge number of molecular microstates, gener-
ally speaking, denoted the cell shape. Specifically, these molecular microstates are characteristic
and so specific members of a given morphological microstate. Once more, we can define the
ensemble of morphological microstates as the group of morphological microstates to a distinct
morphological macrostate. Importantly, these morphological microstates are determined by the
mapping/connection of material points on the ECM to those on the cell membrane. Whereas,
all the points not in contact with the ECM are subjected to a given fixed pressure, namely that
established by the nutrient bath [14].
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9.1.3.2 Timescales consideration

From experimental evidence prove that subsists a considerable difference in the time evolution of
molecular and morphological macrostate. Specifically the former evolves on the order of seconds
whereas the latter of minutes, where the homeostatic equilibrium is maintained for hours. Typi-
cally, the diffusion rate of species inside the cell is what sets a limit at the time evolution of the
molecular macrostate. Whereas, passing from a morphological microstate to another, entails cell
shape mutation, a phenomenon that needs the rearrangement of the cytoskeletal machinery. Such
a separation of the timescales allows for to elaborated the correct restraints on the system [14].

9.1.3.3 Entropy definition

In order to define the molecular and morphological ensembles via entropy maximisation, it is
necessary to introduce:

• P(i), i.e. molecular microstate probability;

• P(i, j), i.e. the (joint) probability to find the molecular microstate (i) in the morphological
microstate ( j).

The joint probability P(i, j) is correlated to the probability of morphological microstate P( j), by the
following relation:

P(i, j) = P(i| j) P( j) (9.3)

where P(i| j) is the probability to be in (i) knowing to be in ( j). Hence, the total Gibbs entropy
reads as:

IT = �Â
i

P(i) lnP(i) (9.4)

It is a known fact that a specific molecular microstate can form part only of a single morphological
microstate, therefore:
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wherein I( j)
M and IG are the entropy of the molecular microstates find in ( j) and the entropy of the

morphological microstates, respectively.
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9.1.3.4 The setting of equilibrium in the range of seconds

On the basis of these considerations, over a period of time of few seconds, we can require that
dP( j) = 0, and so optimize IT by imposing only dP(i| j) 6= 0. Moreover, two conditions act on the
system, namely the temperature and pressure that are fixed by the nutrient bath. It is evident how
the total enthalpy of the system plus the bath (isolated set-up) has to be constant, similarly to the
isobaric-isothermal ensemble. Significantly, in order to respect all the metabolic processes occur-
ring inside the cell, the number of molecular species cannot be fixed [14].
Hence, knowing that Âi2 j P(i| j) = 1 and Âi2 j P(i| j)h(i) = H( j) (constraints of the optimization prob-
lem), it is possible to impose the entropy maximisation [14]:

d

"
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j
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where h(i) is the enthalpy of the molecular microstates, and the above-mentioned restraints are
enforced by means of the Lagrange multipliers l and l0. Also, we have exploited the fact that
dI( j)

M does not depend on ( j) [14].
Finally, for every (i) 2 ( j) with P(i| j) arbitrary and independent, we have [14]:
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P(i| j)
eq =

exp
⇣
�lh(i)

⌘

exp(l0)
(9.11a)

Z( j)
M = Â

i2 j
exp
⇣
�lh(i)

⌘
= exp(l0) (9.11b)

P(i| j)
eq =

exp
⇣
�lh(i)

⌘

Z( j)
M

(9.11c)
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eq

⌘i
= h(i) (9.11d)

where the molecular partition function is denoted with Z( j)
M . Knowing that Z( j)

M = Âi2 j exp
⇣
�lh(i)

⌘
,

we can prove:
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(9.12)

Therefore:
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. (9.13)

By introducing the maximised molecular entropy S( j)
M ⌘ maxP(i| j)

h
I( j)
M

i
, it is possible to found:
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(9.14)

Owing to the eq. (9.14) we deduce that
∂S( j)

M
∂H( j) = l , but, at the same time, by means of the definition

∂H( j)

∂S( j)
M

= kBT , we can determine l =
1

kBT
. Similarly to expression (9.1), we found:

H( j) �kBT S( j)
M = �kBT ln

⇣
Z( j)

M

⌘
(9.15)

We are going to introduce now the Gibbs free energy for the current problem:

G
( j) ⌘ Â

i2 j
P(i| j)h(i) �kBT I( j)

M

G
( j) ⌘ Â

i2 j
P(i| j)h(i) +kBT Â

i2 j
P(i| j) ln

⇣
P(i| j)

⌘ (9.16)

where G( j) ⌘ minP(i| j)

h
G

( j)
i

when P(i| j) = P(i| j)
eq . Hence, the (9.15), become:

G( j) = �kBT ln
⇣

Z( j)
M

⌘
,

G( j) = H( j) �kBT S( j)
M .

(9.17)
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Let U ( j) = kBT S( j)
M � pV + Âa c( j)

a N( j)
a be the expression (Euler relation - see also (C.2) -) of the

internal energy of the morphological microstates ( j), where [14]:

• p is the pressure and V the volume;

• c( j)
a is the chemical potential refering to the species a;

• N( j)
a is the mean quantity of a species in ( j), with Âi2 j P(i| j)n(i)

a = N( j)
a ;

• n(i)
a is the average amount of species a in the molecular microstate.

It is known (see the corresponding Appendix C) that H( j) = U ( j) + pV = kBT S( j)
M + Âa c( j)

a N( j)
a ,

therefore the Gibbs free energy assumes the following expression [14]:

G( j) = Â
a

c( j)
a N( j)

a . (9.18)

9.1.3.5 The setting of the equilibrium in the range of hours

In the case where P( j) evolves up to find the "equilibrium state", and so for a timespan of many
minutes (hours), the entropy function reads as follow [14]:
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(9.19)

wherein the expression of the molecular entropy is equal to that attain at its equilibrium expression.
Maximising I

0
T will make it possible to deduce the equilibrium distribution P( j)

eq . Intriguingly, in
the case that the unique constraint place in the optimization processes is Â j P( j) = 1, we achieve
the expression [14]:

P( j)
eq (dead) =

exp
h⇣

G( j) �H( j)
⌘

/kBT
i

Â j exp
⇥�

G( j) �H( j)
�
/kBT

⇤ (9.20)

that correspond to the gran isothermal and isobaric canonical distribution, that lead to the thermo-
dynamic potential (gran potential):

X ⌘ kBT lnZX ,

ZX = Â
j

exp
h⇣

G( j) �H( j)
⌘

/kBT
i

. (9.21)

Such a kind of equilibrium leads to having the same concentration of mobile species both in the
system that in the bath, an event that we know being avoided by a living cell, except at its death.
Living cells, therefore, have different behavior [14].
Cells attain the homeostatic (steady-)state equilibrium. In the current framework, this tendency of
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the system is mathematically codified imposing a further restraint, namely that the average Gibbs
free-energy remains steady all along with homeostatic equilibrium [14]:

Â
j

P( j)G( j) = G . (9.22)

Moreover, in order to ensure that the temperature stays fix, not only for the order of seconds but
also for hours, we need to impose another constraint, i.e Â j P( j)H( j) = H. Again, it is possible to
administer these limitations, through the Lagrange multipliers during (9.19) maximisation. Hence
[14]:
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(9.23)

Similarly to the previous case, we have to notice that P( j)
eq is arbitrary, therefore:
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(9.25)

Consequently:
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(9.27)
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where Z is the partition function for the morphological microstates, and owing to the fact that
Â j P( j) = 1, we derive [14]:

Z ⌘ Â
j

exp

�z G( j) �

✓
l2 � 1

kBT

◆
H( j)

�
= exp [l1] . (9.28)

In statistical mechanics, in a given thermodynamic (homeostatic) equilibrium state, knowing the
partition function means determines all the thermodynamic variables. As a result, the average
enthalpy and Gibbs free-energy stems for [14]:
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where ST ⌘ maxP( j)

h
I
0
T

i
is the maximised entropy.

Significantly, it has to be clear that the temperature constraint is valid either in short that in long
timescale, therefore observing that Gibbs free-energy does not depend on enthalpy [14].:

∂ST

∂G
= z1 = z � 1

kBT
,

∂SG

∂G
= z ,

∂ST

∂H
= l2 =

1
kBT

,

(9.31)

where SG is the morphological entropy and l = 0.
Finally, the eq. (9.27) become:
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1
Z
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�z G( j)

i
,
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j

exp
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i
.

(9.32)
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A pivotal characteristic of the present formulation is given by the loss of information resulting from
the impossibility of knowing the large number of variables associated with homeostatic processes
(some of which are not precisely known) and the volatility of ions motion (Brownian). Similar
to what happens in a standard statistical mechanics set-up, the lack of knowledge corresponds to
a production of entropy, in this specific case of morphological entropy. If this does not happen,
namely if we could precisely know all the variables of homeostatic processes, the production of
morphological entropy would be equal to zero and the increase in molecular entropy would guide
the trajectory pursued by the thermodynamic set-up (under the constraints of T and p constant).
Hence, given the uncertainty on the biological mechanisms of homeostasis, it is preferred to rep-
resent the uncertainty, in a coarse-grained model, by introducing morphological entropy. Analo-
gously to what we can observe in in-vitro models (statistics of biological observables), through a
statistical mechanics model for living cells, it is possible to determine the possible states permissi-
ble to the system [14].

For instance, a fundamental role in the transformation of cell morphology is played by the polymer-
ization of actin (as explained in chapter 6 and section 2.1.2). The impossibility of fully describing
and predicting every single process of similar phenomena makes the model summarized here in-
teresting. Importantly, it is precisely the application of Â j P( j)G( j) = G (restraints) the core of the
homeostatic statistical mechanics scheme, a framework able to capture either the natural trend of
living cells to avoid achieving the dead-matter thermodynamic equilibrium that the high volatility
of the biological statics observable. It is critical to understand that in the current formulation, an
extended version of the a priori assumption is added to the standard one. Consequently, it is stated
that, in the morphological macrostate, the system is balanced with the greatest part of morphologi-
cal microstates, presuming that the massive quantity of homeostatic operations offers the capability
to the system to have access to morphological microstates. This is similar to the customary a pri-
ori assumption. In fact, in classical statistical mechanics, the system can access every molecular
microstate owing to Hamiltonian mechanics [14].

In statistical mechanics, it is shared the method to take a view of the statistical ensemble as the
collection of (virtual) copies of the system, each of which corresponding to every microstate. Par-
ticularly, we can see the homeostatic ensemble as the group of copies of the system as many as the
number of morphological microstates. The distribution P( j)

eq determines how the above-mentioned
copies, each one with the corresponding G(i), are spread in the homeostatic ensemble. Through
the (9.31) we can see how the parameter z is connected with the morphological entropy IG. Hence,
a relevant result of this formulation consists of the following formal equivalence: "the distribu-
tion parameter z , similar to 1/T (inverse of thermodynamic temperature) that connect average
enthalpy and molecular entropy, defines the rate of variation of SG with G, and besides, z defines
the increment of incertitude in the morphological microstates in a similar fashion to 1/T for the
molecular ones". This is the reason why 1/z is called homeostatic temperature. In fact, this pa-
rameter estimates the fluctuation in a long observation time (differently for T ). Finally, it has to be
clear that z is a property of the system and not of the whole set-up. This is the main reason that
avoids defining a micro-homeostatic ensemble [14].

Again, as previously anticipated, we can establish a strict connection between the partition func-
tion and the thermodynamic potential (homeostatic potential) for the problem, comparatively with
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what happens in the canonical (Helmholtz free-energy) or isobaric-isothermal (Gibbs free-energy)
ensemble. Starting to (9.32), it is possible to deduce:

M = � 1
z

lnZ . (9.33)

Moreover, 1/z is an indicator for the cell state (biochemical state) providing high values (Peq tends
to be uniform) for the high variability of the observations, and low for lower variations of the dis-
tribution (peaked Peq). Furthermore, these parameters depend on ECM or, for in-vitro experiments,
cell-substrate (or scaffolds). Clearly, 1/z = 0 when there are no uncertainties in the morphologi-
cal microstate and the cell adopts a singular (unique) morphological microstate with traction-free
surfaces (cell in suspension) [14].

9.1.3.6 Homeostatic constraint calculation

In a living cell, through a homeostatic statistical mechanics scheme, homeostasis is framed as an
internal constraint able to maintain the average amount of the molecular species in the cell itself.
Intriguingly, such restraint does not depend primarily on the microenvironment surrounding the
cell, but on the kind of cell, we are studying [14].

In the current section, we want to explain that is the G( j), namely the Gibbs free-energy in the
morphological microstates, the mathematical function through which the homeostatic constraint is
conveyed [14].

In this scenario, it plays a relevant rule a cell in suspension (free-standing). Experimental pieces
of evidence show negligible cell form fluctuations for cells in suspension. Consistently, through
the statistical model introduced here, a single equilibrium morphological microstate is predicted
for the free-standing cell. This is coherent with the resolution of a boundary problem which needs
research of the minimum of the Gibbs free energy for a system with a single equilibrium state.
In fact, differently from a cell laid on an ECM, a suspension cell has spatially uniform boundary
conditions (e.g. atmospheric pressure). Therefore, it can not manifest several morphological mi-
crostates, as those corresponding to various equilibrated tractions among cells and ECM due to
their contact dynamic. Nevertheless, although it may seem natural to assign a spherical shape to
cells in this specific free-standing condition, this is wrong. Indeed, it must be clear that the shape
of a suspended cell varies according to the type of cell that we are analyzing [14].

It is known that the expression of the Gibbs free-energy of morphological microstates follows the
eq. (9.15), hence, for a cell in suspension, it reads:

GS = Â
cell(a)

cS
aNS

a . (9.34)

Moreover, we need to account for the free-energy provide by the ECM, that in this set-up remain
isolated by the cell, therefore:

GS
ECM = Â

ECM(b )

cS
b NS

b . (9.35)
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When the cell goes in contact with the ECM, the morphological microstate manifests the following
Gibbs free-energy:

G( j) = Â
system(d )

c( j)
d N( j)

d = GS +GS
ECM +DG( j) (9.36)

where an additional term has been to be taken into account, namely the interaction energy between
ECM and cell (DG( j)). In fact, the chemical and physical interplay between cell and ECM cause
either energetic changes in the surface energy of ECM that the appearance of the tractions exerts by
the cell on the matrix. Moreover, for a simple system (see [143] (page 263)), with temperature and
pressure fixed by the surroundings, it is possible to take advantage of the Gibbs-Duhem relation
(see also (C.3)) and deduced [14]:

DG( j) = Â
system(d )

Dc( j)
d N( j)

d + c( j)
d DN( j)

d

Â
system(d )

Dc( j)
d N( j)

d = 0 owing to Gibbs-Duhem relation

DG( j) = Â
cell(a)

cS
aDN( j)

a + Â
ECM(b )

cS
b DN( j)

b

(9.37)

where DN implies a variation of molecule species after cell-ECM interactions. Hence, the average
Gibbs free-energy reads as follow:
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(9.38)

where N expresses the average value of the molecular species in the morphological microstates.
Several considerations are opportune at this point:

• we introduce the hypothesis that ECM is elastic, which implies DN( j)
b = 0

• the microenvironment surrounding the cell has no implications on the value of Na , hence
Na = NS

a .

Therefore, the (9.38) assumes the form:

G ⌘ Â
j

P( j)G( j) = GS +GS
ECM . (9.39)
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Finally, accepting a model for cell describe in [180, 14] for G( j) (G ⌘ Â j P( j)G( j) = GS with
GS

ECM = 0), it is possible to derive through the ensemble average the form of GS:

Â
j

P( j)G( j) ⌘ 1
Z Â

j
G( j) exp

⇣
z G( j)

⌘
= GS (9.40)

when the constant pressure, exercised by the bath, is the unique external load. Interesting, for a
long period of observation we know G but do not the parameter distribution z . Viceversa, for a
short time span, the thermodynamic temperature is known ex-ante while is the H that needs to be
calculated [14].
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9.1.4 Elliptic-cell’s behavior
We consider now 2D-Elliptic cells placed on a substrate that mimics the behavior of the ECM. In
this specific configuration (elliptic geometry), the cell is fully described by l1 and l2 or the two
dimensionless semi-axes of the ellipse 9.1.

Figure 9.1: An elliptic cell spread on ECM with homogeneous chemo-mechanical features. R0 is
the radius of the cell in the reference configuration.

This work allows us to understand if an elliptic configuration can guarantee qualitatively correct
information on cell behavior. In particular, we are going to explore the cell’s responses to a non-
ligand-coated substrate (elastic substrate, by testing various stiffnesses), although in the following
theoretical treatment a ligands-coated substrate will be also accounted for (see Appendix H). It
easily to deduce that for a uniform substrate the orientation of the ellipse does not matter. We can
hypothesize that the cell is without a nucleus and that its Gibbs free energy can be described by
means of the energetic model defined in [14] and [128].

9.1.4.1 Equations in supporting the calculations

In this section, we try to explain the fundamental equations of our formulation. This implies the
deduction of the equations that allow us to calculate Ĝtot = Ĝcyto + Ĝelast + Ĝsub for non-ligand-
coated substrate and Ĝtot = Ĝcyto + Ĝelast + Ĝsub + Ĝadh for a ligand-coated substrate. Where:

• Ĝcyto is the energy per unit volume of the cytoplasm;

• Ĝelast is the energy per unit volume of the passive elasticity;

• Ĝsub is the energy per unit volume of the substrate;

• Ĝadh is the energy per unit volume due to adhesion.

It has to be clear that Ĝtot =
Gtot

V0
where V0 is the volume of the cell in the reference configura-

tion and henceforth we call G0 = �24.0801KPa the value of the Gibbs-free energy of a cell in
suspension without nucleus.
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Ĝcyto’s computation for an elliptic cell

Let Ĝcyto = r0kBT ln(N̂u) be the expression of the energy per unit volume of the cytoplasm, where
N̂u, the unique unknown, is derived by iteration on the following expressions:

N̂u +
1

V0

Z

V

p
2Z

� p
2

ĥ n̂ssdfdV = 1

ĥ (xi,f) =

N̂uĥmax exp


n̂ss (µu � µb)

kBT

�

p n̂ssĥmax + N̂u exp


n̂ss (µu � µb)

kBT

�

(9.41)

where:

• r0 is the density of the stress-fibers packages per unit volume;

• N̂u is the normalized number of unbound stress fibers determined by iteration on the previous
equation;

• kBT is the thermodynamic temperature.

Note that for an elliptic cell n̂ss
i =

li

lss
where lss =

1
1+1.2

.

Ĝelast’s computation for an elliptic cell

The passive elasticity in the 2D setting is given by a 2D specialization of the Ogden-type hypere-
lastic strain energy density function:

Ĝelast =
1

V0

Z

Vcell

2µ
m2

"✓
lI

lII

◆m
2
+

✓
lII

lI

◆m
2
�2

#
+

k
2

(lIlII �1)2

+kH (Jc �lIlII) ln(lIlII +1� Jc)

(9.42)

where:

• l1 and l2 are the principal stretches;

• µ and k are the shear modulus and in-plane bulk modulus respectively;

• m is a material constant governing the nonlinearity of the deviatoric elastic response;

• kH (Jc �lIlII) ln(lIlII +1� Jc) is added to the passive energetic contribute modulated by
k = 1 GPa when the areal stretch lIlII drops below Jc = 0.6, with H(·) denoting the Heavi-
side step function;

• lIII is the further principal stretch and due to the assumption of incompressible behavior of

the cell has the following expression lIII =
1

lIlII
.
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The passive Cauchy stress, given in terms of the principal (passive) Cauchy stresses, reads as
follows:

s p
i j p

(k)
j = s p

k p(k)
i ⌘ lk

∂Felast

∂lk
(9.43)

where p(k)
i (k = I,II) are the unit vectors in the principal direction.

Ĝsub’s computation for an elliptic cell

The energetic contribute exercised by the cell tractions on the substrate is here shown. Specifically,
in the current formulation, these are connected with stresses provided by the active mechanical
behavior of the cell (stress-fibers) and the passive one (Ogden model). The free-energy of the
substrate writes as follows:

Ĝsub =
1

V0

Z

A

1
2

(T 2
1 +T 2

2 )

ksub
dA (9.44)

where:

• T1 and T2 are the value of the tractions along the directions x1 and x2;

• A is the area of the substrate in contact with the part of the cell membrane that produces
tractions;

• ksub is the stiffness of the elastic substrate.

In Appendix H, the theoretical formulations that explicated the energetic contribute related to the
adhesion phenomena have been provided..

Figure 9.2: Elliptic cell spread on ECM with homogeneous chemo-mechanical features.
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Tractions’ computation for an elliptic cell The expression of the deformation gradient at prin-
cipal directions reads as follow:

F =

✓
l1 0
0 l2

◆
(9.45)

Let n1 =
l2 cos(f)p

l2 cos(f)2 +l1 sin(f)2
and n2 =

l1 sin(f)p
l2 cos(f)2 +l1 sin(f)2

be the components of the

normal versor to the ellipse.
Let s1 and s2 the Cauchy principal stress. The force per unit length along the cell periphery is:

f1 = (s1n1)t f2 = (s2n2)t (9.46)

in which t is the current thickness of the 2D cell.
We now "smear" these forces over the whole cell by assuming tractions vary linearly from the
center of the ellipse. We consider direction along a define R = R0

p
l1 cos(f)2 +l2 sin(f)2 where

R0 is the radius of the cell in the reference configuration. Let Ti with i = 1,2 be the tractions
(variables along r as Ti = kr) exert by the cell, such that:

RZ

0

Tirdfdr =

RZ

0

fidrdf

kR3

3
= (sini)tR =) k =

3(sini)t
R2

Ti =
3(sini)t

R2 r .

(9.47)

According to this, we dispose of a traction distribution over the whole cell, that satisfies the global
equilibrium of forces, and can be used to calculate the work exerted on the Winkler foundation.

9.2 Numerical results
In order to deduce with enough accuracy the correct step of the discretization of l1 and l2, an
analysis able to determine the probability distribution of the spread area and aspect ratio will be
implemented in this specific geometric configuration. Accordingly, we have varied l1 and l2 in
the following range:

l1 = (dl : dl : 15)⇤R0
l2 = (dl : dl : 15)⇤R0

(9.48)

where dl = 0.01 is the aforementioned discretization step, and R0 = 30µm is the radius of the cell
in suspension.

For each pair (l1, l2 ) we can evaluate the Gibbs free-energy of the configuration, G(l1,l2) and
probability distribution P(l1,l2) (as well as z and Z). Importantly, it has to be highlighted that we
use the definition of conditional probability to find P(l1) and P(l2):

P(l1) =
Z

l2

P(l1,l2)dl2 , P(l2) =
Z

l1

P(l1,l2)dl1 . (9.49)
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Now, to determine P(A) (where A stands for the area) and P(ASR) (where ASR stands for the
aspect ratio), we know that different pairs of (l1,l2) give the same area. However, the probability
of obtaining a pair (l i

1,l i
2) is independent of any other pair (l j

1 ,l j
2 ). Hence:

P(A) = Â
l1,l2

P(l1,l2) with l1 ·l2 = A ,

P(ASR) = Â
l1,l2

P(l1,l2) with max
⇢

l1

l2
,
l2

l1

�
= ASR .

(9.50)

Since l1 and l2 are independent variables, P(l1,l2) = P(l1)P(l2), it is attained:

P(A) = Â
l1,l2

P(l1)P(l2) with l1 ·l2 = A ,

P(ASR) = Â
l1,l2

P(l1)P(l2) with max
⇢

l1

l2
,
l2

l1

�
= ASR ,

P(T ) = Â
l1,l2

P(l1)P(l2) with Ti =
3(sini)t

R2 r .

(9.51)

306



The above-mentioned distributions are shown below:

(a)

(b)

Figure 9.3: Figures show the distribution P(l̂1) and P(l̂2), expressed in terms of the dimensionless
values. Average values are l 1 = 2.2199 and l 1 = 2.2199.
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(a)

(b)

Figure 9.4: Figures show the distribution P(Â) and P( ˆASR), expressed in terms of the dimension-
less values. Average values are A = 2.4154 and ASR = 2.5320.
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Figure 9.5: Figures show the distribution P(T̂ ) average, expressed in terms of the dimensionless
values. Average values are T = 2.1314 .

An appropriate analysis of the sensitivity of z and Z over dl1 and dl2 (with the stiffness of the
substrate is infinite) (Tab. 9.2) allows us to reduce the discretization step considerably, decreasing
the computational burden.

dl 0.001 0.0025 0.005 0.01 0.025
z 0.0114 0.0114 0.0114 0.0114 0.0114
Z 16.891 16.8910 16.8911 16.8912 16.8956
P 3.1001 3.1001 3.1002 3.1002 3.1004

dl 0.05 0.1 0.25 0.5 1
z 0.0114 0.0114 0.0116 0.0091 0.0313
Z 16.9084 16.9412 16.9401 18.2966 12.5524
P 3.1012 3.1031 3.1089 3.1257 3.2824
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Each value in the table corresponds to an "x" in the respective graphs: Effectively, it is evident how

Figure 9.6

the sensitivity of Z,z , and P, correlated to dl  0.01 is imperceptible.
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9.2.1 Elastic Winkler substrate
We are going to analyze the energetical response, of an elliptical cell, as the substrate stiffness

varies (K̂sub =
Ksubt0

Ec

5) with the discretization step for l1 and l2 established with sufficient rea-

sonableness in the previous section. Consistently, we find more accessible configurations for the
homostatic ensemble and therefore a greater uncertainty in the shape of the cell, measured through
the morphological temperature 1/z , for rigid substrates than a soft one.

K̂sub 0.001 0.01 0.1 1 5 10 50
z 1 0.0352 0.0137 0.0116 0.0114 0.0114 0.0114
Z 413175832.7772 5.2189 11.2896 15.6608 16.5385 16.7003 16.8480
P 43.9195 2.4989 2.7531 3.0304 3.0791 3.0888 3.0976

K̂sub 100 250 500 1000 1e4 1e10
z 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114
Z 16.8683 16.8807 16.8850 16.8871 16.8890 16.8912
P 3.0988 3.0995 3.0998 3.0999 3.1000 3.1002

Figure 9.7

In particular, through Fig. 9.7, 9.8a, and 9.8b, we can infer how z are practically unchanged for
the value of K̂ � 5. Similarly, for Z and P as well, although in a less evident way, we observe a
stabilization of the corresponding values for K̂ = 5.

5Let t0 = 1.5 µm and Ec = 5 KPa be the thickness and stiffness of the cell, respectively
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(a)

(b)

Figure 9.8
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An energetic analysis that highlights and quantifies the contribution of Ĝsub to Ĝtot may be inter-
esting. In order to do that, a comparison among the minimum values assumed by Ĝsub min varying
the substrate stiffness has been done.
Hence, the pair (l2,l1), due to the symmetry of the problem, minimize Ĝtot . Calculating Ĝtot =
�84.3721, l1min = 0.49, and l2min = 4.22 it is possible to obtain:

K̂sub 0.001 0.01 0.1 1 5 10 25
Ĝsubmin 654.6681 65.4668 6.5467 0.6547 0.1309 0.0655 0.0262

K̂submin 50 100 200 350 500 1000 1e4 1e10
Ĝsubmin 0.0131 0.0065 0.0033 0.0019 0.0013 6.5467e-4 6.5467e-5 6.5467e-11

K̂sub 0.001 0.01 0.1 1 5 10 25
errsubmin 775.9637 77.5964 7.7596 0.7760 0.1552 0.0776 0.0310

K̂submin 50 100 200 350 500 1000 1e4 1e10
errsubmin 0.0155 0.0078 0.0039 0.0022 0.0016 7.7596e-4 7.7596e-5 0

where: err =
�
Ĝtot min(ki)� Ĝtot min(k1e10)

�
/Ĝtot min(k1e10)

(a)
(b)

Figure 9.9

It is, therefore, evident that Ĝsub min result to be relevant for soft substrate where lower stiffness
allows higher deformations.

9.2.2 Cell free from any geometrical constraints
It may be of interest to set a comparison between the 2D-elliptic cell and cell with no-geometric
restrictions. In order to support these calculations, the substrate stiffness has been fixed equal to
K̂sub = 1.
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The values of the single contributions of the Gibbs free energy, for a cell-free from geometric
constraints, have been resumed in the following tabs corresponding to the values of z equal to
0.267 and 0.272.

z 0.267 0.272

Ĝmean
tot -23.50 -23.72

Ĝmean
cyto -72.56 -71.46

Ĝmean
elas 23.67 22.70

Ĝmean
sub 25.39 25.05

Âmean 1.76 1.74

ˆASRmean 3.24 3.20

T̂mean 3.75 3.75

z 0.267 0.272

Ĝvariance
tot 12.19 11.93

Ĝvariance
cyto 22.41 20.62

Ĝvariance
elas 13.84 12.39

Ĝvariance
sub 9.08 8.94

Âvariance 0.24 0.23

ˆASRvariance 1.48 1.40

T̂variance 0.75 0.75

where, for z = 0.272, we observe better compliance between Ĝmean
tot and G0. Hence, comparing

numerical outcomes corresponding to elliptic geometry and cell without geometrical constraints,
we attain the following results:
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Quanties Ellipse Ensamble Ellips min value Cell Ensamble (z = 0.272)

Ĝtot -23.94 -83.71 -23.72

Ĝcyto -112.74 -132.94 -71.46

Ĝelas 83.15 48.57 22.70

Ĝsub 5.65 0.65 25.05

Â 2.39 2.06 1.74

ˆASR 3.35 8.57 3.20

T̂ 1.24 0.21 3.75

Therefore, it can be inferred how the elliptical configuration is not enough accurate, and so not very
reliable, in describing the behavior of a cell on a rigid substrate. Particularly, Ĝsub correspondence
to the elliptic cell is five-time lower than infer by means of a general approach, highlighting an
underestimate of this energetic contribution. Similarly, the average traction exerted by the elliptic
cell on the substrate is significantly lower (three-times), as well.
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Appendix H

Ĝadh’s computation for an elliptic cell

Ĝadh’s computation for an elliptic cell

In the case of a ligand-coated elastic Winkler substrate, we need to extend what we have just seen.
So far, we implicitly assumed an unlimited supply of adhesion proteins as well as extracellular
proteins to form adhesion complexes and thereby neglected the contribution of adhesion to Ĝtot .
Here, we need to extend the previous approach for the case of a finite quantity of both FA proteins
and extracellular collagen and thus explicitly include an adhesion contribution to Ĝ = Ĝcyto +
Ĝelast + Ĝsub + Ĝadh.

Ĝadh = A0C0cC/V0 (H.1)

where:

• C0 is the homogeneous surface density of integrin for a cell in suspension;

• A0 and V0 are the reference area and volume of the cell respectively;

• cc is the chemical potential of the integrins at equilibrium.

The integrins are mobile over the surface membrane and, at equilibrium, their chemical potentials
are spatially uniform. Here, cc is unknown but easily computable by means of the iteration on the
following equations:

cC = kBT ln
✓

Ceq(xi)

1�Ceq(xi)

◆
� F(xi)2

ks

A0C0 = Cr

Z

A

Ceq(xi)dA
(H.2)

where:

• Cr is the number of integrin sites per unit area on the cell membrane;

• Ceq(xi) =
Ceq

I (xi)

Cr
in which Ceq

I is the concentration of integrin at the equilibrium;

• F(xi) is the force that each integrin molecule transmits and it is related with the traction by
the expression F(xi) =

q
T 2

1 (xi)+T 2
2 (xi)/NH ;
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• NH is the ligand density per unit area on the surface of the elastic Winkler substrate;

• ks is the stiffness of the FA complex undertook to a force F(xi) and a stretch D ;

The number of ligands per unit area, NH , can be expressed as surface collagen density rcol through
the following expression:

rcol = NHMcol/NA (H.3)

where Mcol is the molar mass of collagen, and NA is Avogadro’s constant. We assume a uniform
surface collagen distribution with its own stiffness adding to that of the substrate. In particular, we
know that (NA/Mcol) ⇤ rcol = NH where NA/Mcol = 500/30. There is a further question that we
have to answer: how can we change Ĝsub in light of the presence of ligands? Under the elastic
Winkler substrate hypothesis, we can argue that the substrate stiffness (elastic plus ligands) are
ideally equivalent to two springs in series. For this reason, we can derive the following expression:

1
V0

Z

A

1
2

(T 2
1 +T 2

2 )

ksub
dA (H.4)

where ksub =
kelklig

kel + klig
.
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Chapter 10

Conclusions and future developments

The present Ph.D. thesis, embedded in the newly emerging scientific discipline called mechanobi-
ology, is the result of the multidisciplinary partnership between the group of biologists (experimen-
talists) headed by Professor Stefania Mitola (Department of Molecular and Translational Medicine
of the University of Brescia) and the group of engineers (modelers) led by Professor Alberto Sal-
vadori (Department of Mechanical and Industrial Engineering of the University of Brescia).

The importance of a multidisciplinary approach The in-vitro and/or in-vivo experimental ob-
servations reveal a highly complex and interconnected reality. The physical-mathematical mod-
eling and the subsequent computational analysis discloses some of the hidden key mechanisms
of living matter. Hence, interdisciplinarity has been the keyword of our work, where we have
combined contributes from experimentalists and modelers, aiming at mutual contamination of sci-
entific knowledge and methodologies, in order to set a mechanobiology group, which gave birth to
an Interdepartmental Center for International Research in Mechanobiology, capable to describe
and quantify the mechanical contribution to cellular activities.
The communion of intent between biologists and engineers grants the interpretative and predictive
capabilities to models. The current theoretical knowledge combined with the growing capacity
for calculating and processing experimental data togheter with the greater availability of high-
precision tools available to biologists, demands the construction of an exact science that combines
physics, biology, and engineering.

Motivations We have discussed why it could be relevant to provide a mechanobiological de-
scription of the complex phenomena correlated to new blood vessel formation (i.e. angiogenesis).
Particularly, we have specified how angiogenesis is a target of several therapeutic strategies. It
emerged that triggering or defusing the angiogenic stimulus could be, at the same time, vital to de-
feating many diseases. Typically, pathological conditions connected to ischemias (e.g. coronary,
cardiac, limb, artery ischemias) provide a substantial reduction of vascular perfusion, revealing the
need for a pro-angiogenic technique able, by means of a new network of blood vessels, to afford
oxygen and nutrients in order to replenish tissues health. Viceversa, pathologies such as some
types of cancer, use the angiogenic machinery (tumor angiogenesis) to the purpose to grow and
develop until the metastasization occurs. Nevertheless, there are still limitations from the clinical
point of view that do not allow the perfect interruption or triggering of angiogenesis, and all these
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therapeutical treatments are not in line with the expectations, yet.
In order to circunvent this problem, studies have been put in place to understand how, at the early
stage of angiogenesis, the recruitment of endothelial cells (ECs) is dominated by the growth fac-
tors conveyancec (e.g. VEGF and BMP). For this reason, we proposed to study the dynamic of
activation and polarization of the ECs modulated by the VEGF receptor. Accordingly, we have
analyzed angiogenesis from the perspective of a single endothelial cell setting in-vitro experiment,
where we can observe and study the relocation of free VEGFR-2 and co-receptors like integrin,
induced by ligands such as gremlin and fibrinogen, respectively. Moreover, it has been highlighted
how mutations in specific domains of VEGFR2 can determine variations in the response of this
transmembrane protein to ligands stimulations, which in this thesis has been provided by VEGF-
A.
Therefore, the construction of in-silico simulations could have a significant impact in biology and
in the pharmacological treatment of pathological angiogenic events, either in view of their predic-
tive nature in virtual experiments or by clearly identifying the sequence of processes that limit the
relocation of targeted proteins during in vitro experiments.

In-vitro experiments In chapter 4 the experimental data on time-lapse analysis adhesion assays
[138, 51, 52] have been shown. These experiments examined how VEGFR2 and integrin have been
relocated and recruited by two distinct ligands, i.e. gremlin and fibrinogen. Experiments on a sub-
strate enriched on gremlin proved that VEGFR2 and integrin have been recruited from this ligand,
although the latter receptor only after a long-time of observation. According to this experiment,
it has been possible to denote how, at the end of the experiments (7200 s), about 30% of the total
amount of VEGFR2 remained in the apical side of the cell, hence ECs avoid the total depletion of
VEGFR2 on the cell membrane. Concerning the time-lapse analysis of adhesion assays on a sub-
strate enriched with fibrinogen, integrin recruitment, and its relocation on the cell membrane have
been shown, but at the same time, no significant rearrangement of VEGFR2 has been observed.
Such data have been enriched by further important biological results (e.g. by means of SPR, FRAP,
and FRET experiments, see chapter 4), that allowed the estimations of a large number of constitu-
tive parameters necessary for in-silico replications of the time-lapse experiments. However, not all
have been experimentally determined, leaving the burden of calibration to an appropriate co-design
between numerical and experimental results.

10.1 Multi-physical models and results
Three different kinds of multi-physical models have been proposed throughout the dissertation, to
each of which, has been dedicated a Part of the thesis, i.e. Part II, Part III, and Part IV, respectively.
Each of them expresses the mathematical coding of the mechanical behavior of a single-cell and its
interaction with a substrate, trying to replicate explicit in-vitro experiments. Specifically, what sets
them apart is the thermodynamic modeling that has been adopted and the duration of the in-vitro
experiments to be described. Therefore, Parts II and III have arisen from the same thermodynamic
approach, studying in-vitro experiments lasting two hours. In Part IV instead, a paradigmatic
change of cell behavior (idealization proposed in the paper [14]), assuming that cells are entropic
and a statistical mechanics scheme being necessary to describe the fluctuations observed during
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biological experimental manifestations in notionally equivalent tests, on a timescale from hours to
few days (i.e. the interphase period of the cell cycle).

Chemo-transport-mechanical models
Thermodynamically consistent "multiphysics" models have been here tailored to the above-mentioned
experiments in order to describe the diffusion of free receptors on the cell membrane (transport)
during the mechanical spreading of an EC (mechanics), encoding their ability to chemically in-
teract with immobile ligands (chemistry) that cover the substrate in contact with the cell itself.
The ultimate goal has been to reproduce/replicate the experimental evidence arise by in-vitro tests
shown in chapter 4 through suitable in-silico trials. It has to be clear that in this formulation ligands
have been assumed fix in the substrate while the receptors are free to move along the cell mem-
brane. Therefore the generation of complexes is ruled by a trapping mechanism such as shown in
paper [139] that governed the chemical reaction between free and immobilized molecules.
Moreover, such a model accounts for the diffusion of VEGFR2 and integrin on the cell mem-
brane of EC, and the complex cell-substrate contact-dynamic. However, the latter is framed in two
different ways, that ultimately distinguish the multi-physics formulation from Part II to Part III.

Chemo-transport model - Part II -

Part II, precisely in chapter 3, dealt with a chemo-transport model wherein the cell-substrate con-
tact dynamics has been codified by means of a source of ligands in mass balance equations, al-
lowing to not embed a mechanical contribution within the Helmholtz free-energy definition. This
assumption, which we call Surrogated Mechanics, has led to a simplified description of the mem-
brane events, whereas the cell geometry has been fixed as spheric and rigid. Such a formulation
has been successfully published in [140], which is the extension of the works [138, 139].

Results In order to come to the complete calibration of the constitutive parameters necessary to
describe a fully-coupled model that involved the three chemical reactions (3.1), (3.2), and (3.3),
a gradual approach has been adopted in chapter 5, i.e. the progressive construction of four in-
silico experiments. Through the first model, it has been possible to correlate characteristic physics
phenomena with two/three defining phases the form of the time evolution of the total complexes
curve, namely:

• an initial steep branch of the curve, firstly guided by receptor-ligand chemical interaction
(i.e. the starting contact between the cell and the substrate) and then by a chemo-mechanical
evolution of the cell-contact dynamic processes (after prime contact until 600 s);

• a final mechanism that has been driven primarily by the diffusive properties of free molecules
of VEGFR2 (from 600 s to 7200 s).

The last result has confirmed that the internalization/externalization of VEGFR2 on the cell mem-
brane is self-balanced in this experiments, therefore, the assumption that has precluded the exis-
tence of source terms, in the mass balance equations for VEGFR2, turned out to be correct.
Concerning integrin has been highlighted that neglecting receptors’ internalization/externalization
phenomena is not correct. This prediction is consistent with the experimental observations that
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underline how high quantities of integrins are preformed and ready to be poured into the cellu-
lar membrane, through vesicles present in the cytoplasm. Nevertheless, thanks to the availability
of a mathematical model that describes the experimental reality, we have been able to quantify
that the integrins necessary to fully overlap the in-vitro curve with the numerical one have to be
about double those provided by the current numerical curve. We further quantified stoichiometry
between the molecules of integrin and VEGFR2-gremlin-Complex and estimated parameters that
are hardly measurable. In the end, a well-matching between numerical and experimental results
was obtained up to the instant 1800 s with evident discrepancies for greater times. Specifically,
it has been possible to quantify, for t > 1800 s, that the amount of integrin in in-silico trials has
been 4-5 times lower than in in-vitro ones. The biological motivations of this achievement have
been equivalently correlated, as for the case o integrin-fibrinogen interaction, to the high availabil-
ity of integrin inside vesicles under the cell membrane ready to be poured out on the cell surface.
However, such a discrepancy in the number of integrin externalized between the model presented
in pattern with one reaction and two reactions has been somewhat surprising. Effectively, a re-
quired higher amount of membrane-exposed receptors for the high-affinity integrin model was to
be expected. Nevertheless, such unexpected prediction could be related to possible clustering phe-
nomena of integrin at the sites of adhesion with fibrinogen for reaction (3.3), which can lead to an
underestimation of the fluorescence of the receptor itself during in-vitro observations.

Finally, concerning the model showing all three of the above chemical-reaction, we have set ex-
clusively an in-silico experiment, inasmuch as no biological models have been built for a similar
problem. Therefore, prediction on the trend of the curves of the evolution of the total amount of
complexes C1, C2, C3 has been done when gremlin and fibrinogen coexist on the substrate. In this
frame, we have provided the ratio in which each complex could be found respectively to the others.
Intriguingly, it has been observed that the quantity of complex C3, at instant t = 1800 s (i.e. the
last moment in which there is perfect overlap between numerical and experimental data in previous
patterns), is about five-time C2, expressing how integrin is found more at adhesion sites rather than
as a co-receptor of VEGFR2 in this simulations.

Chemo-transport model for proteins relocation on advecting membranes - Part III -

A multi-physics framework of protein relocation on the advecting lipid membrane during cell
spreading and motion has been put forward in chapter 6 (and accepted for publication on [220]).
Two preliminary assumptions have been done at the head of this formulation, namely:

• the structural contribute by the cell membrane is negligible with respect to that provided by
the cytoskeleton in the bulk of the cell;

• it has been considered a one-way coupled model.

The former one is supported by experimental evidence that has shown that the structural response
of the EC stems from complex biological mechanisms that arise in its volume. The second hy-
pothesis instead, has not any biological roots, but, in the first approximation has allowed to es-
tablish that the mechanical spreading of the cell is independent on the receptor diffusion on the
cell membrane. This is a simplification of the real fully-coupled mechanical behavior of an EC.
Furthermore, the latter has been here characterized by a study on the relocation and reaction of
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actin to form biopolymers that lead to consider the reorganization of the cytoskeleton through a
network of actin filaments, coupled to a passive behavior dictated by the viscosity of the cytosol.

Afterward, through chapters 7, and 8 we have dealt with numerical simulations with the relocation
of VEGFR2 (wild type or mutated R1032Q) on advecting lipid membrane during endothelial cell
adhesion and spreading (chapter 7) and integrin receptor (chapter 8). Here, the mechanical behav-
ior of an EC has been idealized, in first approximation, by Regularized Neo-Hookean formulation,
ignoring the active mechanical cell attitude of the EC.

Results On the basis of the findings from the surrogate mechanics models it has been defined the
construction of in-silico models under a large-deformations scheme.
Three distinct phases of the relocation of VEGFR2 have been identified, each of which relates to a
different physical mechanism (see chapter 7). Nevertheless, this three-phases evolution time-scale
extends the scenario shown under surrogated mechanics assumption. In fact, having included the
mechanical description of an EC, we have been capable, either to describe with greater accuracy
the form of the generation curve of the total number of complexes on the cell membrane of an EC
as well as to quantified the forces ruling those steps dominated by mechanical behavior of the cell
itself.
Precisely, a fast interaction due to chemical bonding at adhesion, mechanically dominated by grav-
itational force, characterized the first 300 s of the curve of total complexes generation. This step
precedes a mechanically dominated regime (300 s-600 s), in which free receptors are depleted to be
engaged in complexes with ligands due to the spreading of the cell, driven by filopodia/lamellipodia
migration processes. Specifically, this process is actually correlated to the contractility of EC, a
phenomenon connected with the active behavior of cells, a description that has been neglected in
the current simulations. Therefore, the mechanical spreading of the cell has here been captured
by the introduction of suitable bulk forces qualified to mimic the filopodia/lamellipodia migra-
tion processes. These bulk forces have been estimated equal to 6.2 times the magnitude of the
gravitation one, a value required to induce a spread radius of cell equivalent to 20 µm (averaged
value observed on measurements of 50 ECs). Moreover, once a macroscopic steady-state mechan-
ical configuration has been achieved, transport of receptors on the membrane continues and favors
complex formation in localized spots (600 s-7200 s). Finally, it is important to underline that the
measurements cell-substrate contact areas provided by the in silico model, both at the end of the
adhesion phase (300 s) and at the end of the diffusion phase (7200 s), are totally superimposable to
the corresponding in-vitro values, namely approximately 35.3 µm2 and 1256.6 µm2, respectively.
Again, such a formulation has allowed quantifying the available gremlin on the substrate in contact
with the cell surface re-evaluating it to 90 molecules/µm2.
Interestingly, although the numerical curve well-match the experimental one, this outcome contra-
dicts the biological evidence arisen from the in-vitro experiments, inasmuch conducing to the full
depletion of VEGFR2 on the cell surface.
These considerations have suggested that the right model for capturing the residue of receptors on
the apical side would require a duplication of the species of VEGFR2 in a free set and an immobile
part. wherein the free species "M" reach a complete depletion at the end of the analysis. Accord-
ingly, in section 7.2 has been provided the results arisen from this evaluates formulation.

Moreover, in section 7.3, it has been applied both the above-mentioned formulations, namely with
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or without duplication of species, on the study of the effect of the mutation R1032Q on the re-
cruitment of VEGFR2 by the canonical ligand VEGFA. Notably, these in-silico simulations have
been supported by further experimental results on VEGFR2 wild type (WT) and VEGFR2-R1032
on CHO cells. The aim of these studied has been that to provide a characterization of VEGFR2-
R1032 behavior when exposed by an EC. Therefore, it has been inherited the timing of the three
above-mentioned phases describing the mechanism of the complex formations for an EC but using
material parameters measured by the novel experiments on CHO cells. Such results, compared
with those on VEGFR2-WT, have highlighted a less amount of complexes generation related to
the mutated receptor throughout the 7200 s of simulation, and so respective slower recruitment by
the VEGFA on this kind of receptor.

Finally, through chapter 8 we have analyzed the in-silico replications of the in-vitro experiments
specified by the chemical reactions that involve integrin.
Actually, describing integrin, i.e. the main receptor devoted to the mechanical interaction between
EC-microenvironment, through a model with no active characterization of EC contractility, may
a strong restriction; however, the current elaborations have been intended as an intermediate step.
Future ones will involve the active mechanical description of EC and a two-way coupled formula-
tion.

Homeostatic model for cells and its results - Part IV -
Arisen from a collaboration with Professor Vikram Deshpande (Department of Mechanics of the
University of Cambridge) and financed by Guido Berlucchi Foundation (Young Researchers Mo-
bility Programme), this Part of the thesis has aimed to study the competition between haptotaxis
and durotaxis based on the experimental results on fibroblast dictated by the paper [219], and de-
scribed by means of a theoretical scheme, embedded in a statistical mechanics framework and
explained in paper [14]. Particularly, a simplified idealization of the experimental reality has been
defined by means of a 2D study on fibroblast restrained to maintain an elliptical shape. This work,
corresponding to the experience abroad of the author of the thesis was suddenly stopped after two
months on the six expected due to the coronavirus pandemic.

Results The current Part of the thesis has been framed on the phenomenon of homeostasis for
the intracellular environment by means of the formulations of a statistical ensemble for cells, elab-
orated in the work [14].
Such a characterization has been necessary to elaborate the numerical description, proposed in
section 9.2 of the behavior of a cell that has been forced to maintain an elliptic shape.
Co-designing among numerical analysis on elliptic cells and cells free to assume any geometrical
configuration, have demonstrated predictive inability, by the model with simplified (elliptical) ge-
ometry, to fully describe the correct interaction between cell and substrate. Particularly, an evident
underestimation of the Gibbs free-energy contribution connected to the substrate activities as well
as to that associated with the tractions values generated by the cell has arisen. Specifically, the
former result to be five-times and the latter three-times lower than inferred on a cell without geo-
metrical restraint.
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10.2 Future developments
The encouraging results obtained through the multiphysics models presented in the thesis are push-
ing us to improve them by implementing newly detailed formulations. Either from the theoretical
point of view that numerical, the above-described results can suggest us the way to take.

Thermodynamics considerations

The quest for the right thermodynamic principles in mechanobiology is far from being understood
and, from a wider perspective, it paves the way to boundless questions of philosophical and ethi-
cal nature, as for the establishment of thermodynamics of life [221], which fall completely out of
the scope of the present thesis. Major accomplishments have been achieved by [14] in formulat-
ing fresh concepts that deviate from classical results of thermodynamics of non-equilibrium. In
this scientific area, which is nowadays flourishing, new fundamentals assertions are expected in
the years to come. Being aware that classical formulations of non-equilibrium thermodynamics
[144, 146] may not be able to capture some principles of mechanobiology that rule the dynamic
of receptors - as for the homeostatic constraint [222], we are prone to deepen our formulation in
future studies.

Particularly, the pattern framed in a pure continuum thermodynamic scheme can represent with
enough accuracy the experimental evidence on the time span defined by the in-invitro trials in
chapter 4, therefore two hours. Viceversa, the one arisen from the work [14], is able to describe
living cells’ behavior over a time scale that, from few hours, can rach a few days, including the
tendency of these systems to maintain the so-called homeostatic equilibrium.
Coding the homeostatic constraint, from a thermodynamic point of view, is a crucial step for all
models describing living matter. [14] did it by means a paradigmatic change of the study of liv-
ing cells, from deterministic to statistic; actually, this is much more than a simple coarse-grained
model, indeed it is assumed that cells are entropic and so that they manifest fluctuations in order
to support the homeostasis.
However, on restricted time observation phenomena, classical results of thermodynamics of non-
equilibrium could be useful yet, as confirmed by the patterns in Parts II and III of the thesis.
Although we are persuaded by the thermodynamical arguments proposed by statistical mechanics
theoretical frameworks in order to coarse-grain out the homeostatic process variables as shown in
[14], we are equally convinced that a deterministic representation of the cell’s attitudes, for a short
time of the biological observations (two-hours time span), could be acceptable. According to this,
in order to extend the formulation proposed in Parts II and III, we will improve this continuum
thermodynamic framework providing the following features.

Two-way coupled models

Combining either the description of the chemo-diffusive problem of integrin receptor on the cell
membrane (including modeling of the clustering procedure manifested by this receptor in adhesion
sites [121] and the internalization/externalization phenomena) that the active description of the me-
chanical behavior of EC extending the model presented in chapter 6 it will be possible up-grade
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the one-way coupled model hereto discussed in a two-way coupled formulations. Therefore, in this
new scheme, the receptors’ (integrin) activities on the lipid bilayer will cooperate to organize the
mechanical response of an EC, promoting adhesions sites formations and guiding the arrangement
of stress-fibers. Accordingly, a thermodynamically motivated model describing the stress-fibers
(SFs) remodeling, and so the actin-myosin II interaction during the SFs reorganization, is recom-
mended. Accordingly, if the contractile machinery of SFs within ECs is similar to that manifests
inside muscle sarcomeres (as shown within fibroblasts) the model formulation proposed by [180]
will be taken into account, otherwise, alternative and innovative models will be necessary.
Moreover, a coarse-grained model based on principles of statistical mechanics is necessary to con-
nect the microscopic properties of the actin network with the macroscopic ones determinable at
the continuum scale. Hence, a further extension of this pattern could arise by means of a sta-
tistical continuum theory for the study of the actin transient network both in globular (G-actin)
and filamentous (F-actin) form able to motivated the innovative characterization of the mechanical
description of cell motility guided by actin polymerization. This will be a direct extending the
formulation derived in chapter 6.

Statistical continuum theory for the study of the actin transient network Actin polymeriza-
tion is an intracellular activity connected to cell motion. This phenomenon provides the forces
necessary for cell-shape evolution by means of a branched and dendritic array formation of F-
actin. Specifically, actin polymerization guides lamellipodium generation, namely a cell protru-
sion playing a pivotal role in the initial phase of the cell migration [223]. Hence, with the aid of
the theoretical framework elaborated by F.J. Vernerey and co-workers [195], we aim to describe
the F-actin cytoskeleton devoted to generating cell protrusions. Hence, the grounded concept here
is the idealization of actin monomers (G-actin) like monodisperse (or polydisperse if we also ac-
counting for other polymers networks such as microtubules) polymers inside the cytoplasm that
contextually, by means of their polymerization, become generators of F-actin chains that support
the actin network in the cell protrusions.
The chains configuration can be statistically described by the distribution function.

With the purpose of describing the process of polymerization and/or depolymerization of G-actin
into F-actin, and vice-versa, we will take into account the polymerization-depolymerization pro-
cess.
Practically, referring to the deformation gradient decomposition (6.107) (F = F eF c) provided in
chapter 6, we will assume that the viscoelastic behavior of the EC is connected with the tensor
F e and fully described by a dynamical characterization of the evolution of the F-actin-network.
In such a framework, the viscoelastic machinery will be outlined by the mechanism of the attach-
ment and detachment of filaments of actin while the polymerization-depolymerization phenomena
will rule the density of the total chain available to make the actin lattice. This contribution, com-
bined with that provided by the swelling distortion tensor, will describe the dense network of actin
filaments within pseudopodia.
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Barberán, B. Gil, S. Giménez-Moyano, R. Ferreiro-Monteagudo, P. Veguillas, Candia. A.,
R. Peena, J. Pinto, M.L. García-Bermejo, A. Muenoz, A.G. de Herreros, F. Bonilla, and C. Car-
rato, A. & Peena. Endothelial cell activation on 3d-matrices derived from pdgf-bb-stimulated
fibroblasts is mediated by snail1. Oncogenesis, 7(76), 2018.

[95] D. H. Ausprunk and H. J. Berman. Spreading of vascular endothelial cells in culture: Spatial
reorganization of cytoplasmic fibers and organelles. Tissue and Cell, 10(4):707–724, 1978.

[96] L. Lamalice, F. Le Boeuf, and J. Huot. Endothelial cell migration during angiogenesis. Circ
Res., 100(6):782–94, 2007.

334



[97] Cynthia A. Reinhart-King, Micah Dembo, and Daniel A. Hammer. The dynamics and me-
chanics of endothelial cell spreading. BIOPHYS J, 89(1):676–689, jul 2005.

[98] J. F. Joanny, K. Kruse, J. Prost, and S. Ramaswamy. The actin cortex as an active wetting
layer. EUR PHYS J E, 36(5), 2013.

[99] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, and K. Sekimoto. Generic theory of active polar
gels: A paradigm for cytoskeletal dynamics. EUR PHYS J E, 16(1):5–16, 2005.

[100] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan Rao,
and R. Aditi Simha. Hydrodynamics of soft active matter. Reviews of Modern Physics,
85(3):1143–1189, 2013.

[101] J. Prost, F. Jülicher, and J. F. Joanny. Active gel physics. Nature Physics, 11(2):111–117,
2015.

[102] W. Helfrich. Elastic properties of lipid bilayers: theory and possible experiments. Z. Natur-
forsch., 28:693–703, 1973.

[103] A. Agrawal and D. J. Steigmann. Boundary-value problems in the theory of lipid mem-
branes. CONTINUUM MECH THERM, 21(1):57–82, 2009.

[104] D. Steigmann and A. Agrawal. Electromechanics of polarized lipid bilayers. Mathematics
and Mechanics of Complex Systems, 4(1):31–54, 2016.

[105] A. Agrawal and D. J. Steigmann. A model for surface diffusion of trans-membrane proteins
on lipid bilayers. Z ANGEW MATH MECH, 62(3):549, 2011.

[106] L.B. Freund and Y. Lin. The role of binder mobility in spontaneous adhesive contact and
implication for cell adhesion. J MECH PHYS SOLIDS, 52:2455–2472, 2004.

[107] G.I. Bell. Models for the specific adhesion of cells to cells. SCIENCE, 200(4342):618–627,
1978.

[108] G.I. Bell, M Dembo, and P. Bongrand. Cell adhesion. competition between nonspecific
repulsion and specific bonding. BIOPHYS J, 45(6):1051–1064, 1984.

[109] B. Goldstein, C. Wofsy, and G. Bell. Interactions of low density lipoprotein receptors with
coated pits on human fibroblasts: Estimate of the forward rate constant and comparison with
the diffusion limit. Proc Natl Acad Sci USA, 78(9):5695–5698, 1981.

[110] M. Dembo and B. Goldstein. Theory of equilibrium bindign of symmetric bivalent haptens
to cell surface antibody: Application to histamine release from basophils. J IMMUNOL,
121(1):345–353, 1978.

[111] R.C. Lee, T.R. Gowrishankar, R.M. Basch, K.K. Patel, and D.E. Golan. Cell shape-
dependent rectification of surface receptor transport in a sinusoidal electric field. BIOPHYS
J, 64:44–57, 1993.

335



[112] A. Boulbitch, Z. Guttenberg, and E. Sackmann. Kinetics of membrane adhesion mediated
by ligand-receptor interaction studied with a biomimetic system. BIOPHYS J, 81(5):2743–
2751, 2001.

[113] V. Shenoy and L. Freund. Growth and shape stability of a biological membrane adhesion
complex in the diffusion-mediated regime. PNAS, 102(9):3213–3218, 2005.

[114] P. Liu, Y. Zhang, Q. Cheng, and C. Lu. Simulation of the spreading of a vesicle on a substrate
surface mediated by receptor-ligand binding. J MECH PHYS SOLIDS, 55(6):1166–1181,
2007.

[115] Q. Cheng, P. Liu, H. Gao, and Y. Zhang. A computational modeling for micropipette-
manipulated cell detachment from a substrate mediated by receptor-ligand binding. J MECH
PHYS SOLIDS, 57:205–220, 2009.

[116] A.F. Golestaneh and B. Nadler. Modeling of cell adhesion and deformation mediated by
receptor-ligand interactions. BIOMECH MODEL MECHANOBIOL, 15:371–387, 2016.

[117] R. Deshpande, Y.T Cheng, M.W. Verbrugge, and A. Timmons. Diffusion induced stresses
and strain energy in a phase-transforming spherical electrode particle. J ELECTROCHEM
SOC, 158(6):A718–A724, 2011.

[118] V Deshpande, M Mrksich, R M McMeeking, and A G Evans. A bio-mechanical model
for coupling cell contractility with focal adhesion formation. J MECH PHYS SOLIDS,
56:1484–1510, 2008.

[119] Vikram S. Deshpande, Robert M. McMeeking, and Evans. A bio-chemo-mechanical model
for cell contractility. PNAS, 103(45):17064–17065, 2006.

[120] Vikram S. Deshpande, Robert M. McMeeking, and Anthony G. Evans. A model for the
contractility of the cytoskeleton including the effects of stress-fibre formation and dissocia-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
463(2079):787–815, 2007.

[121] R.M. McMeeking and V.S. Deshpande. A bio-chemo-mechanical model for cell contrac-
tility, adhesion, signaling, and stress-fiber remodeling. In G.A. Holzapfel and R.W. Og-
den, editors, Biomechanics: Trends in Modeling and Simulation., volume 20 of Studies in
Mechanobiology, Tissue Engineering and Biomaterials, pages 53–81. Springer, 2017.

[122] W. Ronan, V.S. Deshpande, R.M. McMeeking, and J.P. McGarry. Numerical investigation
of the active role of the actin cytoskeleton in the compression resistance of cells. J MECH
BEHAV BIOMED, 14:143–157, 2012.

[123] W. Ronan, V.S. Deshpande, R.M. McMeeking, and J.P. McGarry. Cellular contractility and
substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion.
BIOMECH MODEL MECHANOBIOL, 13(417-435), 2014.

[124] C. Obbink-Huizer, C.W.J. Oomens, S. Loerakker, J. Foolen, C.V.C. Bouten, and Baaijens
F.P.T. Computational model predicts cell orientation in response to a range of mechanical
stimuli. Biomech Model Mechanobiol, 13(1):227–236, 2014.

336



[125] F.J. Vernerey and M. Farsad. A constrained mixture approach to mechano-sensing and force
generation in contractile cells. J MECH BEHAV BIOMED, 4(8):1683–1699, 2011.

[126] A. Pathak, R.M. McMeeking, A.G. Evans, and V.S. Deshpande. An analysis of the cooper-
ative mechano-sensitive feedback between intracellular signaling, focal adhesion develop-
ment, and stress fiber contractility. J APPL MECH, 78, 2011.

[127] A. Vigliotti, R.M. McMeeking, and V.S. Deshpande. Simulation of the cytoskeletal response
of cells on grooved or patterned substrates. J R SOC INTERFACE, 12(20141320), 2015.

[128] E. McEvoy, V.S. Deshpande, and P. McGarry. Free energy analysis of cell spreading. J
MECH BEHAV BIOMED, 74:283–295, 2017.

[129] V. Deshpande, R.M. McMeeking, and A.G. Evans. A model for the contractility of the
cytoskeleton including the effects of stress-fiber formation and dissociation. P R SOC A,
463:787–815, 2007.

[130] H. Gao, W. Shi, and L. Freund. Mechanics of receptor-mediated endocytosis. PNAS,
102(27):9469–9474, 2005.

[131] P. Decuzzi and M. Ferrari. The receptor-mediated endocytosis of nonspherical particles.
BIOPHYS J, 94(10):3790–3797, 2008.

[132] H. Gao. Probing mechanical principles of cell–nanomaterial interactions. J MECH PHYS
SOLIDS, 62:312–339, 2014.

[133] T. Wiegold, S. Klinge, R.P. Gilbert, and G.A. Holzapfel. Computational modeling of ad-
hesive contact between a virus and a cell during receptor driven endocytosis. PROC APPL
MATH MECH, 19(e201900161), 2019.

[134] H. Shin, J.H. Haga, T. Kosawada, K. Kimura, Y.S. Li, S. Chien, and G.W. Schmid-
Schönbein. Fine control of endothelial vegfr-2 activation: caveolae as fluid shear stress
shelters for membrane receptors. BIOMECH MODEL MECHAN, 18:5–16, 2019.

[135] A. Liberman, M. Mussel, G. Kario, D. Sprinzak, and U. Nevo. Modelling cell surface
dynamics and cell–cell interactions using cell studio: a three-dimensional visualization tool
based on gaming technology. J R SOC INTERFACE, 16(20190264), 2019.

[136] A.R. Carotenuto, L. Lunghi, V. Piccolo, M. Babaei, K. Dayal, N. Pugno, M. Zingales, L. De-
seri, and M. Fraldi. Mechanobiology predicts raft formations triggered by ligand-receptor
activity across the cell membrane. J MECH PHYS SOLIDS, 141, 2020.

[137] F. Bubba, T. Lorenzi, and F.R. Macfarlane. From a discrete model of chemotaxis with
volume-filling to a generalized patlak–keller–segel model. PROC R SOC A, 476(20190871),
2020.

[138] V. Damioli, A. Salvadori, G.P. Beretta, C. Ravelli, and S. Mitola. Multi-physics interactions
drive VEGFR2 relocation on endothelial cells. SCI REP-UK, 7(1):16700, 2017.

[139] A. Salvadori, V. Damioli, C. Ravelli, and S. Mitola. Modeling and simulation of VEGF
receptors recruitment in angiogenesis. MATH PROBL ENG, page 4705472, 2018.

337



[140] M Serpelloni, M Arricca, V Damioli, C Ravelli, E Grillo, S Mitola, and A Salvadori. A
model of integrin and vegf receptors recruitment on endothelial cells. In BE Abali and
I Giorgio, editors, Developments and Novel Approaches in Biomechanics and Metamateri-
als, pages 163–198. Springer International Publishing, Cham, 2020.

[141] A. Salvadori, R.M. McMeeking, D. Grazioli, and M. Magri. A coupled model of transport-
reaction-mechanics with trapping. Part I - small strain analysis. J MECH PHYS SOLIDS,
114:1–30, 2018.

[142] M.E. Gurtin, E. Fried, and L. Anand. The Mechanics and Thermodynamics of Continua.
Cambridge University Press, 2010.

[143] Elias P Gyftopoulos and Gian Paolo Beretta. THERMODYNAMICS: Foundation and Appli-
cations. Mineola, N.Y. : Dover Publications, INC., 2005.

[144] S.R. De Groot and P. Mazur. Non-Equilibrium Thermodynamics. Dover, 1984.

[145] Ilya Prigogine and Dilip Kondepudi. Termodinamica: dalle macchine termiche alle strutture
dissipative. Bollati Boringhieri, 2002.

[146] I. Prigogine. Time, structure and fluctuations. Nobel Lecture, (37820190168):799–816, 8
December1977.

[147] I. Prigogine. Time, structure and fluctuations. Phys. Rev, 37(37820190168):405–426, 15
February 1931.

[148] F. Benfanati and G. P. Beretta. The fourth law of thermodynamics: steepest entropy ascent.
J. Non-Equilib. Thermodyn., 43(2):101–110, 2018.

[149] L. Anand. A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-
plastic deformations. J MECH PHYS SOLIDS, 60(12):1983–2002, 2012.

[150] S. Shell. Thermodynamics and statistical mechanics: an integrated approach. Cambridge
University Press, 2015.

[151] R. DeHoff. Thermodynamic in material science. CRC Press - Taylor and Francis, 2006.

[152] A. Quarteroni and A. Valli. Numerical approximation of partial differential equations.
Springer Verlag, Berlin, 1997.

[153] O. Rossier, V. Octeau, J.-B. Sibarita, C. Leduc, B. Tessier, D. Nair, V. Gatterdam,
O. Destaing, C. Albigès-Rizo, R. Tampé, L. Cognet, D. Choquet, B. Lounis, and G. Gi-
annone. Integrins b1 and b3 exhibit distinct dynamic nanoscale organizations inside focal
adhesions. Nature Cell Biology, 14:1057–1067, 2012.

[154] R.R. Hantgan, M.C. Stahle, and S.T. Lord. Dynamic Regulation of Fibrinogen: Integrin
allbb3 Binding. Biochemistry, 49, 43:9217–9225, 2010.

[155] E. Makogonenko, G. Tsurupa, K. Ingham, and L. Medved. Interaction of Fibrin(ogen)
with Fibronectin: Further Characterization and Localization of the Fibronectin-Binding Site.
Biochemistry, 41:7907–7913, 2002.

338



[156] S. Benedetto, R. Pulito, C. Geninatti, G. Tarone, S. Aime, L. Silengo, and J. Hamn. Quan-
tification of the expression level of integrin receptor avb3 in cell lines and mr imaging with
antibody-coated iron oxide particles. Magnetic Resonance in Medicine, 56(4):711–716,
2006.

[157] R. Soldi, S. Mitola, M. Strasly, P. Defilippi, G. Tarone, and F. Bussolino. Role of avb3 inte-
grin in the activation of vascular endothelial growth factor receptor-2. The EMBO journal,
18(4):882–892, February 1999.

[158] D. Maiolo, S. Mitola, D. Leali, G. Oliviero, C. Ravelli, A. Bugatti, L.E. Depero, M. Presta,
and P. Bergese. Role of Nanomechanics in Canonical and Noncanonical Pro-angiogenic
Ligand/VEGF Receptor-2 Activation. J AM CHEM SOC, page 120823144733008, August
2012.

[159] J. Lippincott-Schwartz, E.L. Snapp, and R.D. Phair. The development and enhancement of
frap as a key tool for investigating protein dynamics. Biophysical Journal, 115(7):1146–
1155, 2018.

[160] M. Kang, C.A. Day, A.K. Kenworthy, and E. DiBenedetto. Simplified equation to extract
diffusion coefficients from confocal frap data. Traffic, 13(12):1589–1600, 2012.

[161] R.V. Stahelin. Surface plasmon resonance: a useful technique for cell biologists to charac-
terize biomolecular interactions. Mol Biol Cell., 24(7):883–886, 2013.

[162] J. Homola. Present and future of surface plasmon resonance biosensors. Analytical and
Bioanalytical Chemistry volume, 137:528–539, 2003.

[163] K Bentley and S. Chakravartula. The temporal basis of angiogenesis. Phil. Trans. R. Soc.
B, 372: 20150522, 2017.

[164] Brunhilde Felding-Habermann. Integrin adhesion receptors in tumor metastasis. CLIN EXP
METASTAS, 20(3):203–213, 2003.

[165] W. Stillwell. An Introduction to Biological Membranes: Composition, Structure and Func-
tion, chapter 17 - Moving Components Through the Cell: Membrane Trafficking, pages
369–379. Elsevier B.V., 2016.

[166] G. Huang, F. Xu, G. Genin, and T. Lu. Mechanical microenvironments of living cells: a
critical frontier in mechanobiology. ACTA MECH SINICA, 35 (2):265–269, 2019.

[167] A. You, L. Zhou, W. Li, C. Huang, and Y. Du. Mechanical microenvironment as a key
cellular regulator in the liver. ACTA MECH SINICA, 35 (2):289–298, 2019.

[168] S. Paolucci. Continuum Mechanics and Thermodynamics of Matter. Cambridge University
Press, 2016.

[169] M. Mikucki and Y.C. Zhou. Curvature-driven molecular flow on membrane surface. SIAM
J APPL MATH, 77(5):1587–1605, 2017.

[170] M. Ubbink. The courtship of proteins: Understanding the encounter complex. FEBS Letters,
583:1060–1066, 2009.

339



[171] T. Selzer and G. Schreiber. New insights into the mechanism of protein-protein association.
PROTEINS, 45:190–198, 2001.

[172] E. Evans. New membrane concept applied to the analysis of fluid shear and micro-pipette
deformed red blood cells. BIOPHYS J, 13(9):941–954, 1973.

[173] P Sens and MS Turner. Budded membrane microdomains as tension regulators. PHYS REV
E, 73:031918, Mar 2006.

[174] P. Bongrand. Ligand-receptor interactions. REP PROG PHYS, 62:921–968, 1999.

[175] Bruce Alberts. Molecular biology of the cell. New York : Garland Science, 4th ed. edition,
2002.

[176] A Moure and H. Gomez. Three-dimensional simulation of obstacle-mediated chemotaxis.
BIOMECH MODEL MECHANOBIOL, 17(5):1243–1268, 2018.

[177] F.J. Vernerey and M. Farsad. A mathematical model of the coupled mechanisms of cell
adhesion, contraction and spreading. J MATH BIOL, 68:989–1022, 2014.

[178] Ernest Latorre, Sohan Kale, Laura Casares, Manuel Gómez-González, Marina Uroz, Léo
Valon, Roshna V. Nair, Elena Garreta, Nuria Montserrat, Aránzazu del Campo, Benoit
Ladoux, Marino Arroyo, and Xavier Trepat. Active superelasticity in three-dimensional
epithelia of controlled shape. NATURE, 563(7730):203–208, 2018.

[179] M. Rahimi and M. Arroyo. Shape dynamics, lipid hydrodynamics, and the complex vis-
coelasticity of bilayer membranes. PHYS REV E, 86:011932, Jul 2012.

[180] A. Vigliotti, W. Ronan, F.P.T. Baaijens, and V.S. Deshpande. A thermodynamically moti-
vated model for stress-fiber reorganization. BIOMECH MODEL MECHAN, 15:761–789,
2016.

[181] R Allena. Cell migration with multiple pseudopodia: Temporal and spatial sensing models.
B MATH BIOL, 75(2):288–316, 2013.

[182] J.N. Israelachvili. Intermolecular and Surface Forces. Academic Press, 2011.

[183] R. Milo and R. Phillips. Cell Biology By The Numbers. Garland Science, Taylor and Francis
Group, 2016.

[184] B.J. Dubin-Thaler, G. Giannone, H-G. Döbereiner, and Sheetz M.P. Nanometer analysis of
cell spreading on matrix-coated surfaces reveals two distinct cell states and steps. BIOPHYS
J, 86:1794–1806, 2004.

[185] T. Sohail, T. Tang, and B. Nadler. Adhesive contact of a fluid-filled membrane driven by
electrostatic forces. INT J SOLIDS STRUCT, 50:2678–2690, 2013.

[186] E. Schrödinger. What is Life – the Physical Aspect of the Living Cell. . Cambridge University
Press, 1944.

340



[187] G. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John
Wiley & Sons, Ltd., 2001.

[188] J.C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dis-
sipation and the multiplicative decomposition: Part I. Continuum formulation. COMPUT
METHOD APPL M, 66(2):199 – 219, 1988.

[189] J.C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dis-
sipation and the multiplicative decomposition. Part II: Computational aspects. COMPUT
METHOD APPL M, 68(1):1 – 31, 1988.

[190] G. Giantesio, A. Musesti, and D. Riccobelli. A comparison between active strain and active
stress in transversely isotropic hyperelastic materials. J Elast, 137:63–82, 2019.

[191] S. Hervas-Raluy, J. M. Garcia-Aznar, and M. J. Gomez-Benito. Modelling actin poly-
merization: the effect on confined cell migration. BIOMECH MODEL MECHANOBIOL,
18(4):1177–1187, 2019.

[192] J.C. Simo and T.J.R. Hughes. Computational inelasticity. Springer-Verlag, New York, 1998.

[193] Qi Wen and Paul A. Janmey. Polymer physics of the cytoskeleton. CURR OPIN SOLID ST
M, 15(5):177 – 182, 2011.

[194] Elias H. Barriga and Roberto Mayor. Adjustable viscoelasticity allows for efficient collec-
tive cell migration. SEMIN CELL DEV BIOL, 93:55 – 68, 2019.

[195] R Brighenti and F.J. Vernerey. A simple statistical approach to model the time-dependent
response of polymers with reversible cross-links. COMPOS PART B-ENG, 115:257 – 265,
2017.

[196] F.J. Vernerey, R. Long, and R. Brighenti. A statistically-based continuum theory for poly-
mers with transient networks. J MECH PHYS SOLIDS, 107:1 – 20, 2017.

[197] F.J. Vernerey. Transient response of nonlinear polymer networks: A kinetic theory. J MECH
PHYS SOLIDS, 115:230 – 247, 2018.

[198] O. Lieleg, K.M. Schmoller, M.M.A.E. Claessens, and A.R. Bausch. Cytoskeletal polymer
networks: Viscoelastic properties are determined by the microscopic interaction potential of
cross-links. BIOPHYS J, 96(11):4725 – 4732, 2009.

[199] Michael Murrell, Patrick W. Oakes, Martin Lenz, and Margaret L. Gardel. Forcing cells into
shape: the mechanics of actomyosin contractility. NAT REV MOL CELL BIO, 16(8):486–
498, 2015.

[200] EJ. Campbell and P. Bagchi. A computational model of amoeboid cell swimming. PHYSICS
OF FLUIDS, 29(10):101902, 2017.

[201] EJ. Campbell and P Bagchi. A computational study of amoeboid motility in 3d: the role
of extracellular matrix geometry, cell deformability, and cell–matrix adhesion. BIOMECH
MODEL MECHANOBIOL, 2020.

341



[202] RM Cooper, NS Wingreen, and EC Cox. An excitable cortex and memory model success-
fully predicts new pseudopod dynamics. PLoS ONE, 7(3):e33528, 2012.

[203] Zahra Eidi. Discrete modeling of amoeboid locomotion and chemotaxis in dictyostelium
discoideum by tracking pseudopodium growth direction. SCI REP-UK, 7(1):12675, Oct
2017.

[204] C Bächer and S Gekle. Computational modeling of active deformable membranes embedded
in three-dimensional flows. PHYS REV E, 99:062418, Jun 2019.

[205] A Moure and H Gomez. Phase-field modeling of individual and collective cell migration.
ARCH COMPUT METHOD E, 2019.

[206] C Giverso and L Preziosi. Mechanical perspective on chemotaxis. PHYS REV E, 98:062402,
2018.

[207] Sangkyun Cho, Jerome Irianto, and Dennis E. Discher. Mechanosensing by the nucleus:
From pathways to scaling relationships. J CELL BIOL, 216(2):305–315, 01 2017.

[208] Katarina Wolf, Mariska te Lindert, Marina Krause, Stephanie Alexander, Joost te Riet,
Amanda L. Willis, Robert M. Hoffman, Carl G. Figdor, Stephen J. Weiss, and Peter Friedl.
Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning
by proteolysis and traction force. J CELL BIOL, 201(7):1069–1084, 06 2013.

[209] Hawa-Racine Thiam, Pablo Vargas, Nicolas Carpi, Carolina Lage Crespo, Matthew Raab,
Emmanuel Terriac, Megan C. King, Jordan Jacobelli, Arthur S. Alberts, Theresia Stradal,
Ana-Maria Lennon-Dumenil, and Matthieu Piel. Perinuclear arp2/3-driven actin polymer-
ization enables nuclear deformation to facilitate cell migration through complex environ-
ments. NAT COMMUN, 7(1):10997, 2016.

[210] Jonathan Fouchard, Démosthène Mitrossilis, and Atef Asnacios. Acto-myosin based re-
sponse to stiffness and rigidity sensing. CELL ADHES MIGR, 5(1):16–19, 2011.

[211] Alba Diz-Muñoz, Daniel A. Fletcher, and Orion D. Weiner. Use the force: membrane
tension as an organizer of cell shape and motility. TRENDS CELL BIOL, 23(2):47 – 53,
2013.

[212] A.V. Hill. The heat of shortening and the dynamic constants of muscle. PROC R SOC B,
126(136-195), 1938.

[213] A. A. Khalili and M. R. Ahmad. A review of cell adhesion studies for biomedical and
biological applications. Int J Mol Sci., 16(8):18149–18184, 2015.

[214] D. Chappell, M. Jacob, O. Paul, M. Rehm, U. Welsch, M. Stoeckelhuber, P. Conzen, and
B. F. Becker. The glycocalyx of the human umbilical vein endothelial cell. Circulation
Research, 104(11):1313–1317, 2009.

[215] P. Wriggers. Computational Contact Mechanics. Springer, 2006.

[216] S. Hüeber and B.I. Wohlmuth. A primal–dual active set strategy for non-linear multibody
contact problems. COMPUT METHOD APPL M, 194(27):3147 – 3166, 2005.

342



[217] J.G. McGarry and P. J. Prendergast. A three-dimensional finite element model of an adherent
eukaryotic cell. Eur Cell Mater, 7(27-33), 2004.

[218] S. Heyden and M. Ortiz. Investigation of the influence of viscoelasticity on oncotripsy.
Computer Methods in Applied Mechanics and Engineering, 314:314–322, 2017.

[219] G. Jain, A. J. Ford, and P. Rajagopalan. Opposing rigidity-protein gradients reverse fibrob-
last durotaxis. ACS Biomater Sci Eng, 1(8):621–631, 2015.

[220] M Serpelloni, M Arricca, C Bonanno, and A Salvadori. A framework for modeling cells
spreading, motility and the relocation of proteins on advecting lipid membranes. Accepted
for publication on ACTA MECH SINICA, 2021.

[221] Erwin Schrödinger. Che cos’è la vita? La cellula vivente dal punto di vista fisico. Adelphi,
1995.

[222] A. B. C. Buskermolen, H. Suresh, S. S. Shishvan, A. Vigliotti, A. DeSimone, N. A. Kurni-
awan, C. V. C. Bouten, and V. S. Deshpande. Entropic forces drive cellular contact guidance.
Biophysical Journal, 116(10):1994–2008, 2019.

[223] Jonathan Stricker, Tobias Falzone and Margaret Gardel. Mechanics of the F-actin Cytoskele-
ton. J Biomech., 43(1):1–12, 2010.

343


