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Abstract: In this paper we present a new model predictive control system for the depth
of hypnosis in general anesthesia. The depth of hypnosis is measured by the Bispectral
Index Scale signal and controlled through propofol administration. The proposed control
scheme is based on an external predictor that, by exploiting the Wiener structure of
the pharmacokinetic/pharmacodynamic model of propofol, compensates for the process
nonlinearity and increases the system robustness by means of an additional filter. The
performance of the developed control scheme is evaluated through an extensive simulation
study, which considers inter-patient and intra-patient variability by applying a Monte Carlo
technique. The obtained results show that the proposed methodology is effective in both
the induction and maintenance phases.

1. Introduction

Automated systems for drug delivery have attracted the attention of the control system community due to the
presence of challenging issues such as nonlinearities and variable time delays, variable dynamics for specific
drug/agent administration, robustness related to the patient safety [1–3]. In this context, a significant effort has been
made for systems that use feedback control concepts to develop automatic regulation schemes of physiological
variables like blood pressure, blood glucose concentrations, etc. [4]. In particular, general anaesthesia process
plays an important role in intensive care and in many surgical interventions with a significant potential to be
supported by an automatic control system. The main goal of the anaesthesia process regulation is to assure the
required level of analgesia, muscle relaxation and depth of hypnosis (DoH) through the administration of specific
drugs [2, 4, 5].

In this work we focus on the control system for depth of hypnosis. In the typical clinical practice, anesthesi-
ologists manually adjust the propofol administration basing on their professional experience and on the available
patient’s vital signs, including Bispectral Index Scale (BIS), which indicates the DoH level. Due to the great vari-
ability in the patient’s response to the drug, even experienced professionals may commit errors, with the result of
either an under- or an over-estimation of the required propofol dosage. In case of underdosing, the patient might
regain consciousness during the surgery and potentially experience trauma. Conversely, propofol overdosing can
lead to undesired effects on the patient in the form of arterial hypotension and post-operative delirium [6]. In
light of these possible pitfalls, it is desirable to develop automated drug dosing techniques to prevent under or
overdosing issues and to provide a more adapted solution.

The development of a reliable control system for DoH has been attracting the attentions of the automatic con-
trol research community for a few decades [4]. This challenging control problem has been analyzed from different
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control techniques points of view. The common goal consists of providing a control strategy that supports anaes-
thesiologists in their clinical practice and that is suitable for a vast population of patients by satisfying the highest
medical safety requirements. In the design of the control system, the main problems to consider are related to the
existence of a strong process nonlinearity and of inter- and intra-patient variability [4, 7, 8].

For this reason, many control approaches have been devised. Most of them can be divided into two main groups
depending on the controller type [4, 9].
In the first group a PID (Proportional-Integral-Derivative) controller is used and its tuning to satisfy clinical re-
quirements is primarily addressed [4,10–19]. Additionally, adaptive control architectures are build on this classical
feedback controller [20]. Moreover, this classical approach can be also extended with a feedforward controller to
improve the control system response [6, 21]. Nevertheless, the main drawback of PID-based control systems for
DoH is their lack of the constraints handling mechanism and their inability to anticipate the response of the patient
drug metabolism. For this reason, they frequently yield a sub-optimal performance.
The second group is based on model predictive control (MPC) techniques, which exploit the nominal pharmacoki-
netic/pharmacodynamic (PK/PD) patient model for control purposes. Indeed, they allow DoH process constraints
to be directly defined into the cost function that is used for determining the control signal. The application of MPC
techniques to the anaesthesia process has been analyzed in several works. Most of them use a state estimator (such
a Kalman filter [1, 22]), which might yield a large settling time. In [7, 23] a piece-wise linearization of the Hill
function is proposed to eliminate the nonlinear component from the control loop. The control scheme, then, uses
a hybrid multi-parametric-MPC (mp-MPC) approach. The computation of the control signal requires the usage
of computationally costly solvers, like multi-parametric Mixed Integer Quadratic Programming (mp-MIQP) or
multi-parametric Quadratic Programming (mp-QP) for a simplified control approach. Another approach based on
a mp-MPC has been proposed in [8, 24], where the controller is coupled with an external estimator exploiting
two methods, a Kalman filter and an online/offline moving horizon, used to address the inter- and intra-patient
variability. Additionally, the inverse of the static nonlinearity is used to linearize the system. This compensation
of the PK/PD model nonlinear element and the application of a linear MPC is also proposed in [25]. In particular,
the Extended Prediction Self-Adaptive Control (EPSAC) algorithm is used. The proposed controller exploits the
clipping technique by limiting the control horizon up to one sampling instant, with the result of a limited tuning
and, as a consequence, of a sub-optimal performance. Moreover, due to the clipping technique, the predictive con-
troller does not take into account constraints when computing the optimal control signal for the process. They are
applied a posteriori when the computed signal violates the saturation limits.
The control system proposed in [26] also uses the inverse of the nonlinear part of the pharmacodynamic model
to linearize the process. Different approaches for propofol chemo-dynamics, taking into account a time delay,
are considered. The main issue analyzed concerns the mismatch in time delays between the used model and the
patient. Obtained results from the clinical trial show that an MPC-based system can be effective in DoH control in
general anaesthesia.
In any case, it appears that there is still the need to provide simple and efficient MPC strategies that can be suit-
able to be applied in practice and whose the robustness is clearly demonstrated. Extending a PID-based approach
presented in [17],in this paper we propose to use a novel control architecture based on the Generalized Predictive
Control (GPC) algorithm to handle all the constraints. The GPC controller is widely used in many industrial pro-
cess control applications due to its efficacy and adaptability [27,28], but, with respect to the previously mentioned
MPC techniques, here the Wiener PK/PD model is applied straightforwardly and it is integrated within the control
scheme. In this way, we avoid a complex design of the state estimators and we provide an easily implementable
and efficient solution that achieves a suitable trade-off between the model complexity and the accuracy of the
real patient response approximation. Moreover, the control system design is performed basing on the physical
patient parameters, which are used for defining the employed model. In fact, the linear component of the Wiener
model used for the controller design is obtained separately for each individual while the patient model nonlinear-
ity is compensated by inverting the one of the average patient, since it cannot be estimated for each individual.
The linear model is used as a predictor, while a low-pass filter is employed for the attenuation of the differences
between the model and the real patient responses. This filter provides an extra degree of freedom in the control
system and is designed for performance adjustment. Additionally, a reference filter leads to the achievement of the
desired performance in the induction phase. Thus, a two-degree-of-freedom controller is obtained [18,29]. Due to
this configuration, the controller and the filter need a simultaneous co-design, which is performed using a genetic
algorithm. Then, the robustness of the system is verified through an extensive inter- and intra-patient variability
analysis with a Monte Carlo method.

The paper is organized as follows: Section 2 briefly reviews the PK/PD model of propofol used in the control
scheme. Section 3 describes the proposed control architecture for the DoH, the GPC algorithm and the tuning
procedure. Section 4 presents the results of the control approach tested in the simulation for induction and mainte-
nance phases. In addition, inter- and intra-patient variability analysis is shown as well as a comparison with other
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Fig. 1: Schematic representation on the patient PK-PD model for propofol dosage response.

control systems. Finally, conclusions are given in Section 5.

2. Pharmacokinetic-pharmacodynamic model of propofol

The BIS response to propofol adminstration is determined by using a realistic patient model based on PK/PD
response to the drug infusion [30–34]. The PK refers to the infusion, distribution and elimination of the drug in
the body, while the PD characterizes the relationship between the blood concentration of the drug and its clinical
effect. The propofol effect on the human body can be represented using the linear PK dynamics connected in
series with the PD dynamics, which is modelled by a linear part and a static nonlinear element as shown in Figure
1 (where the blocks representing linear dynamics are indicated with dashed lines).

The PK term describes a mamillary three compartmental model, where each compartment is homogeneous with
uniform drug distribution. The input of the model u(t) [mg/s] represents the infusion rate of the drug, while the
output of the PK term is the plasmatic concentration of the drug Cp(t) and also the input of the PD term of the
model. The resulting PK transfer function is:

PK(s) =
Cp(s)
U(s)

=
1

V1

(s+ z1)(s+ z2)

(s+ p1)(s+ p2)(s+ p3)
(1)

where p1, p2, p3, z1 and z2 depend on the characteristics of the patient (age, weight, height, gender) [6, 30, 34].
The linear part of the PD term considers a fictitious compartment called effect-site compartment and it is added

to represent the lag between the plasma concentration and the corresponding drug effect. The drug concentration
in the effect-site compartment is expressed as Ce, where Ċe(t) = k1eCp(t)− ke0Ce(t). In accordance with [30],
the propofol transfer frequency k1e is considered constant and equal to the frequency of drug removal from the
effect-site compartment with k1e = ke0 = 0.456 [min−1]. The resulting PD transfer functions is:

PD(s) =
Ce(s)
Cp(s)

=
ke0

s+ ke0
(2)

Finally, a static nonlinear sigmoidal function, known as Hill function, correlates the effect-site drug concentra-
tion and the clinical effect, given by the BIS index [32, 35]. It can be written as:

BIS(t) = E0−Emax

(
Ce(t)γ

Ce(t)γ +Cγ
e50

)
, (3)

where E0 is the baseline value representing the BIS level of the patient in the initial state before the infusion,
E0−Emax is the maximum reachable effect achieved by the infusion, γ denotes the steepness of the curve that
represents the receptiveness of the patient to the drug and Ce50 is the necessary concentration of the drug to reach
the half maximal effect.

The PK/PD model is therefore a Wiener model, where a linear model is connected in series with a static non-
linear function [30, 32, 36]. The linear component is obtained by multiplying the linear blocks of the PK and PD
resulting in P(s) = PK(s) ·PD(s).

3. Control scheme

3.1. Control specifications

The control structure of the DoH process exploits the patient BIS signal as feedback information and aims to reach
and keep the desired DoH level by manipulating the propofol infusion rate. In the induction phase, the controller
should bring the patient’s level of hypnosis to the desired value within an established time interval. According to
the clinical specifications, a reference BIS value of 50 has to be reached in about 120 [s]. Although this is not a
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Fig. 2: The GPC-based control scheme with the external predictor.

strict requirement, it is mandatory that the reference be reached within 300 [s] to avoid an excessive discomfort
for the patient. In the maintenance phase, acceptable BIS values are between 40 and 60. The BIS value should be
kept into this range despite the presence of disturbances due to nociceptive stimulations.

An additional specification to be considered concerns the minimum and maximum permissible infusion rates.
The minimum value is obviously 0 [mg/s] and corresponds to the non-infusion situation of the drug. The upper
limit of the infusion rate has been set at 6.67 [mg/s] for the induction phase and at 4.00 [mg/s] for the maintenance
phase. The first value has been obtained by considering the mechanical limit of the infusion device. In particular,
we have considered the maximum infusion rate of 1200 [ml/h] achievable by a commercially available medical
pump (Graseby 3400, Smiths Medical, London, UK) and a standard concentration of the hypnotic drug propofol
(Diprivan 20 [mg/ml]). On the other hand, the second value represents the maximum infusion rate typically used
during a bolus in the maintenance phase when anesthesia is administered manually. The choice of using two
different upper limits for the two phases of anesthesia is therefore in accordance to the clinical practice. Indeed, a
higher infusion rate is appropriate during the induction phase since it is desirable to rapidly induce anesthesia in
order to reduce patient’s discomfort and to quickly secure the airway.

3.2. Control system architecture

The proposed control structure is shown in Figure 2. It integrates the PK/PD patient model and compensates its
nonlinear part by inverting it. In fact, the GPC design and development (computation of internal matrices) are per-
formed by taking into account the nominal linear part of the model based on the individual patient characteristics.
In this way the available physical parameters of the patient are embedded into the used model.

Figure 2 shows that the patient is represented by the previously introduced nonlinear model, where the linear
part P and the nonlinear part H can be distinguished. However, in practice, exact values for these two components
are unknown and need to be calculated with an inaccurate PK/PD model. For this reason, in the compensator
structure we refer to these elements as P̃ and H̃ for the linear and the nonlinear part, respectively, in order to
distinguish them clearly from real ones. As already mentioned, P̃ can be obtained for each individual patient
basing on their physiological data. Instead, since H̃ cannot be obtained for each individual patient, its value is
computed by taking into account the average values of the parameters reported in literature [30–32], which are
Emax=87.5, Ce50=4.92, γ=2.69 and E0 is the BIS signal value for the fully awake patient. The E0 value can be
measured before the induction phase and the correct value can be used for each patient. The P̃ block input signal
u(t) represents the propofol dosage rate and its output is the estimated effect site concentration Ce(t) of the patient.
To compensate the nonlinear behaviour present in the PK/PD model, the inverse of average Hill function H̃−1 is
introduced and defined as:

H̃−1 =Ce50
γ

√
Ē−E0

E0− Ē−Emax

where Ē is the current BIS signal value. In the nominal case, when there are no modelling errors and uncertainties
between the model and the patient, (namely, P̃ = P and H̃ = H), the architecture can be converted to a linear
control system of the linear component of PK/PD model. In the resulting control scheme, w(t) is the filtered value
of r̂(t), which is the reference value of the effect site concentration that reflects the desired BIS reference r(t).
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The r̂(t) value is computed using H̃−1 that relates the BIS and the estimated effect site concentration Ce(t) of the
patient. Therefore, in the nominal case, Ĉe(t) = C̃e(t) and the resulting feedback signal is equal to C̃e(t). This only
changes when the controlled process output is affected by the disturbances d(t).

In practice, model uncertainties are unavoidable, in particular those related to the static nonlinearity in the
Wiener model. This is because it is virtually impossible to know the exact values of the parameters a priori. Ad-
ditionally, the linear component of the PK/PD model has uncertainties owing to model inaccuracy and parameters
variability. For this reason, the θ(t) signal will be used to compensate differences related to modelling uncertain-
ties and for the disturbances induced by surgical stimuli. The contribution of θ(t) depends on the error between
the estimated effect site concentration Ce(t) and the effect site concentration Ĉe(t) calculated with the BIS signal
via the average Hill function inversion. In this way, the w(t) signal is used as the reference for the GPC controller,
while the controlled variable is ỹ(t), containing information about patient model mismatch and disturbances (the
feedback signal). The resulting contribution of the θ(t) signal is attenuated by the Fd filter, placed in the feed-
back loop, which reduces the effect of uncertainties and disturbances on the GPC controller and simultaneously
guarantees a zero steady-state tracking error. The Fd filter will affect directly the response of the control signal
to the disturbances and to the model uncertainties. Moreover, it will provide additional robustness since filtered
disturbances are introduced into the control loop. We select Fd as a first-order low-pass filter:

Fd(s) =
1

Tds+1
(4)

Additionally, in order to build a two-degree-of-freedom scheme, the Fr filter is used to achieve the desired set-point
response, where the controller focuses on the disturbance rejection task. The Fr transfer function is:

Fr(s) =
1

Trs+1
(5)

The resulting control system needs to be tuned with the typical two-degree-of-freedom methodology, where
the controller and the Fd filter are first tuned by focusing on the disturbance rejection performance (maintenance
phase). Then, Fr is adjusted to obtain the desired performance for the reference tracking task (induction phase).

3.3. Generalized Predictive Controller algorithm

As it is well known [27], GPC consists of applying a control sequence that minimizes a multistage cost function
of the form:

J =
N

∑
j=N1

[ŷ(t + j|t)−w(t + j)]2 +
Nu

∑
j=1

λ [∆u(t + j−1)]2 (6)

where ŷ(k+ j|t) is an optimal system output prediction sequence performed with known data up to discrete time
t, ∆u(t + j− 1) is a future control increment sequence obtained from cost function minimization with ∆ = (1−
z−1), N1 and N are, respectively, the minimum and maximum prediction horizons, Nu is the control horizon and
λ weights the future control efforts (with respect to the tracking errors) along the horizon. The horizons and
weighting factor are design parameters used as tuning variables. The reference trajectory along the prediction
horizon is represented by w(k+ j) [27]. In (6), the j-step ahead prediction of system output with data up to time
t, ŷ(k+ j|t), is computed using the following model representation [27]:

A(z−1)ỹ(t) = B(z−1)u(t−1)+
e(t)
∆

(7)

where A and B are adequate polynomials in the backward shift operator z−1 and e(t) is a zero mean white noise
that is set equal to zero. The prediction equation in vectorial form can be expressed as:

ŷ = Gu+ f; (8)

where ŷ are the future process outputs, G is the dynamics matrix, u are the control signal values (decision variable)
and f are the values of the free response of the process (see [27] for more details).

3.3.1. Control signal constraints

The predictive controller is able to handle the constraints in the optimization procedure. This is an important
feature from a practical point of view since all limitations are considered in computed control signal, which results
in a better performance.

The limitations of the control signal described in Section 3.1 (given as umin = 0 [mg/s] and umax = 6.67 [mg/s]
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for the induction phase and umax = 4 [mg/s] for the maintenance phase) have to be included into the optimization
procedure. For this purpose, the saturation limits, umin ≤ u(t)≤ umax can be expressed as a function of inequalities
on control signal increments:

lumin ≤ T∆u+u(t−1)≤ lumax.

where T is N ×N lower triangular matrix of ones, l is a 1×N vector of ones. The slew-rate constraints are
imposed directly on the control signal increments vector ∆u. In this case, the constraints can be expressed through
the inequality ∆umin 6 u(t)−u(t−1)6 ∆umax. As in the previous case, this can be rewritten in vectorial form as:

l∆umin 6 ∆u 6 l∆umax

The slew-rate constraints are also adjusted depending on the anaesthesia phase. In particular, we have−16∆u6 1
in the induction phase [mg/s], and −0.4 6 ∆u 6 0.4 [mg/s] in the maintenance phase.

In order to obtain a desired behaviour of the manipulated variable, it is also necessary to introduce additional
constraints for the maintenance phase. In particular, if the sum of ∆u in the last 5 samples is greater than 0.5, then
the maximum allowed decrement of the manipulated variable (for the next calculation) is set to ∆umin = −0.1.
This compensates for positive disturbances preventing the controller output to decrease too fast. Additionally, if
the BIS value is lower than the reference, then the maximum allowed increment of the manipulated variable is set
to ∆umax = +0.1. In this way, when there is a negative disturbance, the manipulated variable is forced to stay at
low levels until the BIS reaches the reference.

These constraints can be expressed, in general, as R∆u 6 c where:

R =


IN×N
−IN×N

T
−T

 ;c =


l∆umin
−l∆umax

lumax− lu(t−1)
−lumin + lu(t−1)

 .
where IN×N is the identity N×N matrix. Finally, the QP optimization problem can be stated as:

J(u) =
1
2

uT Hu+bT u+ f0

subject to:
R∆u 6 c

where H = 2(GT G+λ I), bT = 2(f−w)T G, f0 = (f−w)T (f−w) and w is the vector of reference signals [27].

3.4. Tuning Procedure

In order to obtain the performance that satisfies the clinical requirements, all the tuning parameters need to be
adjusted to handle the set-point following and disturbances rejection tasks. Usually, the effective disturbance
rejection in GPC algorithm requires an aggressive tuning of the controller [37], which results in an undesired
undershoot in the reference tracking performance. This requires to handle the set-point following and disturbance
rejection tasks separately. Therefore, tuning is divided into two phases. Firstly, the GPC controller is tuned by
considering also the Fd filter and introducing the disturbance modelled as a two steps (one positive and the other
negative) signal [18]. At this stage, the following parameters are obtained: N, Nu, λ , and Td , which are, respectively,
the prediction horizon, the control horizon, the control signal weighing factor and the Fd filter time constant.

Following the same approach of [11,17], the tuning is performed with a genetic algorithm (with 40 elements of
initial population generated with a uniform distribution and with a Gaussian mutation function) that minimizes the
worst-case integrated absolute error (IAE) for a dataset of 13 patients. This dataset has been proposed in [7,17,25]
and it is representative of a wide population. The corresponding model parameters are shown in Table 1. The IAE
is defined as:

IAE =
∫
|r(t)−BIS(t)|dt. (9)

Formally, the cost function to be minimized is defined as

min
N,Nu,λ ,Td

max
k∈{1,...,13}

IAEk(N,Nu,λ ,Td), (10)

where IAEk(N,Nu,λ ,Td) denotes the IAE index obtained from the kth patient of the dataset. Then, the Fr filter
time constant Tr is determined considering the already tuned GPC but focusing only on the set-point response.
In this case too, the value of Tr is determined in order to minimize the worst-case IAE value in the set-point step
response. With this approach the obtained tuning is optimized for a whole dataset (the 13 patients) rather than for
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Id Age Height [cm] Weight [kg] Gender Ce50 γ E0 Emax
1 40 163 54 F 6.33 2.24 98.8 94.10
2 36 163 50 F 6.76 4.29 98.6 86.00
3 28 164 52 F 8.44 4.10 91.2 80.70
4 50 163 83 F 6.44 2.18 95.9 102.00
5 28 164 60 M 4.93 2.46 94.7 85.30
6 43 163 59 F 12.00 2.42 90.2 147.00
7 37 187 75 M 8.02 2.10 92.0 104.00
8 38 174 80 F 6.56 4.12 95.5 76.40
9 41 170 70 F 6.15 6.89 89.2 63.80

10 37 167 58 F 13.70 1.65 83.1 151.00
11 42 179 78 M 4.82 1.85 91.8 77.90
12 34 172 58 F 4.95 1.84 96.2 90.80
13 38 169 65 F 7.42 3.00 93.1 96.58

Table 1: Patient database for propofol infusion models.

specific one. In this way the resulting tuning provides a better response of the control system to patient variability.
The controller parameters obtained from the optimization procedure are shown in Table 2.

N 27
Nu 7
λ 1.6
Td 22.7
Tr 22.4

Table 2: Tuning parameters for the propofol infusion in DoH control system.

4. Simulation results

The control system evaluation is performed for the induction and the maintenance phases focusing on the medical
specifications fulfilment and by comparing the results, using specific performance indexes, with those obtained
by controllers already proposed in the literature. Moreover, the robustness analysis with respect to the inter- and
the intra-patient variability is shown. Finally, the developed predictive control structure is evaluated with different
disturbance scenarios, representing typical surgical stimuli.

The controller performance is first analyzed by considering the response of the proposed scheme to the set-point
change from the initial BIS value to the desired hypnosis level of BIS=50. Additionally, a two steps disturbance
is also applied to mimic the surgical stimuli that affects the DoH level. This analysis is initially performed for the
representative population of patients in Table 1. As a first illustrative example, patient 13 is selected. The patient
is characterized by the following linear model:

PK(s) =
0.2342s2 +0.001631s+1.521 ·10−6

s3 +0.02404s2 +9.904 ·10−5s+4.726 ·10−8 (11)

PD(s) =
0.00765

s+0.00765
(12)

which is connected in series with the nonlinear Hill function

BIS(t) = 93.1−96.58
(

Ce(t)
Ce(t)+7.42

)3
(13)

Note that, since the Hill function parameters are not known and its average values are employed (see subsection
3.2), there is a mismatch in the nonlinear element of the model that is used in the external predictor and the one
that represents the virtual patient. Results are shown in Figure 3. It is noticeable that the performance achieved
meets all the clinical requirements. In fact, the BIS level attains the set-point reference without undershoot and
within the desired settling time. In order to provide a more exhaustive evaluation, we use the performance indexes
proposed in [25]. For the set-point following (the induction phase) task we have:
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Fig. 3: Results for the average patient 13 using the proposed control system.

• TT: observed time-to-target (in minuts) required for reaching the first time the target interval of [45÷ 55]
BIS values;

• BIS-NADIR: the lowest observed BIS value;

• ST10: settling time, defined as the time interval for the BIS to reach and steady within the BIS range between
45 and 55 (that is, the target value of 50 ± 5);

• ST20: the same of ST10 but it considers a BIS range of 40 and 60;

• US: undershoot, defined as the difference between the lower threshold of 45 and the minimum value of BIS
below this threshold.

From the disturbance rejection point of view, only the TT and the BIS-NADIR indexes are meaningful and they
are calculated separately for the positive and for the negative step, represented as ‘p’ and ‘n’ sub-indexes.

The numerical performance evaluation for the average patient is shown in Table 3. In this case, the TT is equal
to the ST10 index, which means that the BIS signal does not exceed the 45 and 55 thresholds and BIS-NADIR
indicates no undershoot. Considering the disturbance rejection task, during the maintenance phase, it is possible
to see that the control action increases to compensate the first (positive) step in order to decrease the DoH of the
patient and vice versa with the second (negative) step. The controller response for this task is much more aggressive
compared to the set-point tracking one (see Figure 3), because a fast rejection of the disturbances is required. The
indexes for each disturbance step are summarized in Table 4. The settling times TTn and TTp meet the clinical
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Fig. 4: BIS level and control action in the induction phase for each patient.

practice requirements, since the controller action yields a fast disturbance rejection without excessive overshoot
in the BIS level, as proved by BIS-NADIRp and BIS-NADIRn. The TTn value is higher than TTp because of the
lower saturation limit of the pump. In fact, when a negative step disturbance occurs, the controller has to decrease
the infusion in order to increase the DOH of the patient, but the lower infusion limit is zero. Therefore, the BIS
level increases naturally, which implies a higher settling time.

TT [min] BIS-NADIR ST20 [min] ST10 [min] US
1.37 50.00 1.18 1.37 0.00

Table 3: Performance indexes for the induction phase for the average patient 13.

TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
0.33 50.00 0.78 50.00

Table 4: Performance indexes for the maintenance phase for the average patient 13.

4.1. Robustness analysis

Robustness is a very critical issue in anesthesia control and it should especially be analyzed for MPC approaches
because model uncertainties can result in a significant performance deterioration or event instability.

In order to validate the robustness to inter-patient variability, the same tests performed on the average patient 13
have been repeated for all the patients in Table 1. Note that, also in these tests, the hypothesis of perfect knowledge
of the linear part of the process model is applied (P̃ = P) but the average Hill function is used in the controller
instead of the actual patient’s one (H̃ 6= H). The process outputs and the control actions for the induction phase are
shown in Figure 4. It can be observed that the BIS signals are very similar: all the patients enter the BIS [60-40]
range in the required time interval (about 100 [s]) and all settle at the established reference in comparable times.
The transient responses are very similar.
The performance indexes for the analyzed cases are shown in Table 5, and they are referred to as “A”. They are
compared with the results obtained with the model-based PID control scheme presented in [17], which is referred
to in Table 5 as scheme “B”. From the comparison, it appears that the MPC system outperforms the PID-based
control system, obtaining lower values of TT, TS10 and TS20, which implies a faster response. For example, the
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Fig. 5: BIS level and control action in the maintenance phase for each patient.

MPC-based scheme improves the average value of TT of about 21% with respect to the PID-based scheme. In
addition, the average BIS-NADIR value is 48.22 with standard deviation of 3.38, which is comparable with the
PID-based controller.

Then, the proposed approach has been compared with previously developed MPC systems. In particular, we
consider the methods presented in [25] and [7], since both use the same evaluation dataset of Table 1. In [25] the
reported results for the MPC control strategy (in this case the EPSAC algorithm is used) show an average settling
time (TT index) of 1.8 min, which is 28% larger than the average TT obtained by the approach proposed in this
paper. In addition, the ST10 index reported in [25] has a value of 2.05 min, in contrast to 1.66 minutes obtained
by the control scheme proposed here, with an average BIS-NADIR index of 48.06. Finally, the average settling
time (analog to the ST10 index) reported in [7] is around 4 minutes, which is higher than the one obtained with
the proposed method.

The control system robustness to inter-patient variability is also verified for the disturbance rejection test. In
Figure 5 the response to the disturbances is shown for each patient, while the corresponding performance indexes
are shown in Table 6. The obtained results meet all the clinical requirements. Comparing the obtained results with
those reported in [17], it can be seen that both control systems have a similar performance for the positive distur-
bance step. However, the situation changes when the negative disturbance step occurs. In this case the proposed
control scheme is significantly faster (about 25%) than the PID-based scheme, yet it obtains similar overshoot
values.

The same tests have also been executed on 500 patients generated by applying a Monte Carlo method (MCM)
to validate further the controller robustness to the inter-patient variability, as done in [17]. The patient models are
generated selecting randomly the gender, and considering a uniform distribution of the age between 18 and 70, of
the height between 150 [cm] and 190 [cm], and of the weight between 50 [kg] and 100 [kg]. Then, the distribution
of the values for the Hill function parameters has been taken from [31,32]. As in the previous case, P is fixed equal
to P̃ and H̃ is chosen as the average Hill function. The results of the induction phase are shown in Figure 6, while
those of the maintenance phase are shown in Figure 7. The corresponding indexes are shown in Tables 7 and 8.
We note that two patients have an undershoot that exceeds the lower limit of 40. The problem is not relevant, as
the excessive undershoot is minimal, reaching a BIS of 38 and 39 respectively.
The simulated results show that the control system is robust with respect to the inter-patient variability and the
clinical specifications are always met.
In the previous tests a perfect knowledge of the linear part of the patient model has been assumed, because the
objective was to test the robustness of the controller over a wide population. We also want to test the robustness
of the controller against the mismatches of the linear part of the model, that is, against intra-patient variability. To
this end, we consider the statistical distribution of the PK/PD model parameters reported in [31]. In particular,
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Fig. 6: Set-point step responses by using MCM for inter-patient variability.

Fig. 7: Load disturbance responses by using MCM for inter-patient variability.

11



Patient Scheme TT [min] BIS-NADIR ST20 [min] ST10 [min] US

1
A 1.27 49.89 1.08 1.27 0.00
B 1.63 49.55 1.32 1.63 0.00

2
A 1.15 41.60 1.05 2.33 3.40
B 1.38 48.29 1.25 1.38 0.00

3
A 1.75 50.00 1.40 1.75 0.00
B 2.01 49.90 1.70 2.01 0.00

4
A 1.25 50.00 1.29 1.25 0.00
B 1.60 49.72 1.07 1.60 0.00

5
A 1.07 44.86 0.95 1.95 0.14
B 1.33 49.20 1.09 1.33 0.00

6
A 1.90 50.00 1.50 1.90 0.00
B 2.21 49.91 1.80 2.21 0.00

7
A 1.68 50.00 1.27 1.68 0.00
B 1.96 49.76 1.54 1.96 0.00

8
A 1.27 49.51 1.12 1.27 0.00
B 1.60 49.88 1.37 1.60 0.00

9
A 1.12 41.01 1.05 2.28 3.99
B 1.33 44.71 1.23 2.01 0.29

10
A 1.92 50.00 1.38 1.92 0.00
B 2.30 49.89 1.68 2.30 0.00

11
A 1.35 50.00 1.03 1.35 0.00
B 1.65 49.54 1.22 1.65 0.00

12
A 1.20 50.00 0.98 1.20 0.00
B 1.48 49.44 1.14 1.48 0.00

13
A 1.37 50.00 1.18 1.37 0.00
B 1.72 49.75 1.44 1.72 0.00

mean
A 1.41 48.22 1.16 1.66 0.58
B 1.71 49.19 1.39 1.76 0.03

std.dev
A 0.30 3.38 0.17 0.40 1.39
B 0.42 1.99 0.23 0.30 0.08

max
A 1.92 50.00 1.50 2.33 3.99
B 2.30 49.91 1.80 2.30 0.29

min
A 1.07 41.01 0.95 1.20 0.00
B 1.33 44.71 1.09 1.33 0.00

Table 5: Performance indexes for the induction phase for each patient, where A is the proposed MPC-based control
system, and B is the PID-based control system from [17].

for each patient of Table 1, P̃ is calculated basing on the average parameters values and P is generated by
applying another MCM on the parameters using statistical distribution. For each patient, a set of 500 models has
been generated. The responses of the average patient 13 for the induction phase are shown in Figure 8 and the
corresponding performance indexes are summarized in Table 9. Despite the intra-patient variability, the set-point
response is always satisfactory and the clinical specifications are always met. The results of this study, considering
all the other patients, can be seen in Figure 9. The results of the maintenance phase of the average patient 13 are
shown in Figure 10 and the performance indexes are shown in Table 10, while the results of all the patients are
shown in Figure 11. It appears that the specifications are also met in the presence of intra-patient variability.
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Fig. 8: Set-point step responses for intra-patient robustness (average patient 13).

Fig. 9: Load disturbance responses for intra-patient robustness (average patient 13).
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(a) Patient 1 (b) Patient 2 (c) Patient 3

(d) Patient 4 (e) Patient 5 (f) Patient 6

(g) Patient 7 (h) Patient 8 (i) Patient 9

(j) Patient 10 (k) Patient 11 (l) Patient 12

Fig. 10: MCM results for the set-point step response for all patients.
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(a) Patient 1 (b) Patient 2 (c) Patient 3

(d) Patient 4 (e) Patient 5 (f) Patient 6

(g) Patient 7 (h) Patient 8 (i) Patient 9

(j) Patient 10 (k) Patient 11 (l) Patient 12

Fig. 11: MCM results for the load disturbance response for all patients.
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Patient Patient TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn

1
A 0.40 50.00 0.98 49.99
B 0.42 50.02 1.26 50.03

2
A 0.28 50.00 0.75 50.46
B 0.29 49.84 0.97 50.08

3
A 0.37 50.00 0.77 50.00
B 0.39 50.02 1.00 50.05

4
A 0.37 50.00 0.85 50.00
B 0.38 50.01 1.00 50.05

5
A 0.33 50.00 1.02 50.00
B 0.36 50.00 1.37 50.03

6
A 0.38 50.00 0.77 49.99
B 0.41 50.02 0.97 50.05

7
A 0.42 50.01 0.92 49.98
B 0.45 50.02 1.15 50.03

8
A 0.33 50.00 0.78 50.00
B 0.36 50.02 0.93 50.06

9
A 0.27 49.63 0.70 50.42
B 0.28 50.02 0.86 50.08

10
A 0.50 50.02 0.98 49.93
B 0.53 50.02 1.24 50.02

11
A 0.50 50.05 1.22 49.93
B 0.53 50.01 1.53 50.00

12
A 0.40 50.01 1.08 49.99
B 0.43 50.00 1.38 50.02

13
A 0.33 50.00 0.78 50.00
B 0.36 50.02 0.97 50.06

mean
A 0.38 49.98 0.89 50.05
B 0.40 50.00 1.12 50.04

std.dev
A 0.07 0.10 0.16 0.17
B 0.08 0.05 0.21 0.02

max
A 0.50 50.05 1.22 50.46
B 0.53 50.02 1.52 50.08

min
A 0.27 49.63 0.70 49.93
B 0.28 49.84 0.86 50.00

Table 6: Performance indexes for the maintenance phase for each patient, where A is the proposed MPC-based
control system, and B is the PID-based control system from [17].

TT [min] BIS NADIR ST10 [min] ST20 [min] US
mean 1.46 49.16 1.18 1.51 0.12

std dev 0.21 1.91 0.13 0.29 0.66
min 0.98 37.64 0.88 1.08 0.00
max 2.03 50.00 2.43 2.87 7.36

Table 7: Performance indexes for the set-point tracking task with the MCM for inter-patient variability.

TTp BIS-NADIRp TTn BIS-NADIRn
mean 0.37 49.91 0.89 50.21

std.dev 0.05 0.34 0.08 0.26
max 0.25 47.24 0.70 50.00
min 0.60 50.00 1.13 51.45

Table 8: Performance indexes for the load disturbance rejection task with the MCM for inter-patient variability.
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TT [min] BIS-NADIR ST20 [min] ST10 [min] US
mean 1.40 49.57 1.17 1.39 0.00

std.dev 0.11 0.88 0.05 0.12 0.04
min 1.17 44.10 1.02 1.15 0.00
max 1.90 50.21 1.40 2.17 0.90

Table 9: Performance indexes for the set-point tracking task with the MCM for intra-patient variability (average
patient 13).

TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
mean 0.39 49.98 0.78 50.04

std.dev 0.02 0.07 0.04 0.05
min 0.33 49.74 0.67 49.93
max 0.45 50.20 0.90 50.31

Table 10: Performance indexes for the load disturbance rejection task with the MCM for intra-patient variability
(average patient 13).
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Fig. 12: Disturbance profile I:(A) arousal reflex due to the first surgical incision; (B) offset slowly decreases but
settles at on onset of 10% due to continuous normal surgical stimuli; (C) withdrawal of stimuli during skin-closing.
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Fig. 13: Disturbance profile II: (A) laryngoscopy/intubation; (B) surgical incision followed by no surgical stimu-
lation; (C) abrupt stimulus after a period of low stimulation; (D) onset of a continuous normal surgical stimulation;
(E-G) stimulate short-lasting, larger stimuli; (H) withdrawal of stimuli during closing.

4.2. Surgical stimuli

The proposed method has also been evaluated with two different disturbance profiles, denoted as I and II, which
have been previously used, respectively, in [12, 15] and [4, 7, 8]. They are shown in Figures 12 and 13.

Analyzing the results obtained with the disturbance profile I (see Figure 14), it is possible to observe that the
controller provides a fast disturbance rejection as the BIS remains for a most of time at the desired level. Indeed,
the BIS begins to reach the reference immediately after the step disturbance (A). The same happens for the last
part (C) of the disturbance profile, resulting in a very small undershoot.
The results with the disturbance profile II are shown in Figure 15. In this case too the proposed control scheme
obtains satisfactory results, handling properly all surgical stimuli. Note that the stage C in this disturbance profile
provides a very challenging situation for the controller, since the absolute change in the disturbance is equal to
40. However, the proposed control system reacts very quickly and does not allow the BIS signal to exceed the set-
point plus disturbance value. With these test scenarios it is confirmed that the proposed control system provides a
reliable and robust solution for the DoH control in the anaesthesia process.

4.3. Computational aspects

All simulations have been performed in Matlab 2017a on a 64-bit PC platform (Intel i7 2.4 GHZ, 8 GB RAM)
running Microsoft Windows 10. The formulated optimization problem has been solved online using classical QP
from Matlab Optimization Toolbox. The average computational time required for the control signal calculation is
19 milliseconds.

5. Conclusions

We have presented a new MPC methodology for DoH control that uses the compensation of the nonlinear part of
the process and an external predictor to fully exploit a GPC algorithm, based on an individualized patient model,
where saturation and slew rate constraints of the control signal are taken into account. The tuning procedure of
the overall control scheme has been performed using genetic algorithms and considering a dataset of patients
representative of a wide population. The developed control structure is characterized by low complexity and low
computational effort, so that it can be easily deployed to standard hardware and software platforms. The control
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Fig. 14: Control system responses for disturbances profile I considering all 13 patients.
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Fig. 15: Control system responses for disturbances profile II considering all 13 patients.
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system has been tested through an extensive simulation study, considering inter- and intra-patient variability and
by comparing it with other control schemes previously presented in the literature. The obtained results show that
this new MPC approach provides a satisfactory performance for this challenging process.

Future work will be focused on the practical evaluation of the proposed control scheme during real clinical
experiments. Such an evaluation will allow the assessment of the performance of the analyzed controller during
typical surgical intervention and it will show its practical viability.
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