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To Cina.
To Cinina and Cininina, getting better every day.
And to Cinino, of course.
But, first of all and definitively, to Cina.
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Yesterday is history.
Tomorrow is a mystery.
But today is a gift, that is why it is called present.

Kung Fu Panda

And what is good, Phædrus,
And what is not good,
Need we ask anyone to tell us these things?

Zen and the Art of Motorcycle Maintenance
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Abstract

This PhD dissertation summarizes research questions and related answers
achieved in the context of the PhD program of łAnalytics for Economics
and Managementž of University of Brescia, Department of Economics and
Management, attended by the author in the years 2018-2021. Main research
activity is related to applying data science methodologies, and machine learn-
ing in particular, to sport, focusing on basketball. Intended goals are both
proposing tools to help coaching staff in matches’ preparation, and facing
the classiőcation problem of outcome prediction of a match. The second
research activity is focused on natural language processing applied to the
bibliometric őeld, to offer valuable tools in őnding and evaluating papers in
a speciőc research domain (e.g. data science and sport, or COVID-19). The
set of techniques includes, among others, Decision Trees, Random Forests,
Recursive Partitioning, Deep Learning, Topic Models. All implementations
are written in R language, and source code is available on demand.
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Abstract (in Italian)

Questa tesi di dottorato riassume gli obiettivi di ricerca e le relative rispo-
ste ottenute nell’ambito del programma di dottorato łModelli e Metodi per
l’Economia e il Managementž dell’Università di Brescia, Dipartimento di
Economia e Management, cui l’autore ha partecipato negli anni 2018-2021.
La principale attività di ricerca è relativa all’applicazione delle metodologie
di data science, e in particolare il machine learning, allo sport, focalizzan-
dosi sul basket, col duplice scopo di fornire allo staff tecnico strumenti per
preparare e analizzare un match, e di affrontare il problema di classiőcazione
della previsione del risultato di una partita. La seconda attività di ricerca
affrontata è focalizzata sull’utilizzo del linguaggio naturale nel settore biblio-
metrico, al őne di offrire strumenti utili alla individuazione e valutazione di
articoli rilevanti per uno speciőco contesto scientiőco (ad esempio data scien-
ce e sport, oppure COVID-19). L’insieme di tecniche utilizzate include, tra
le altre, gli Alberi di Decisione, le Random Forests, il Recursive Partitioning,
il Deep Learning, i Topic Models. Tutte le implementazioni sono scritte nel
linguaggio R, e il codice sorgente è disponibile su richiesta.
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Chapter 1

Summary

This PhD dissertation summarizes the research questions and related an-
swers obtained attending the PhD program of łAnalytics for Economics and
Managementž of the University of Brescia, Department of Economics and
Management.
The work is focused on the application of machine learning algorithms to the
domain of sport, and in particular to basketball, with the goal of answering
two main research questions:

1. Oliver’s Four Factors (Oliver, 2004; Kubatko et al., 2007) are a small
set of statistics concentrating a lot of information, and are considered
the keys to success for a basketball match. How these statistics can
be used in helping technical staff of National Basketball Association
(NBA) championship teams in analysing and preparing matches?

2. NBA is the most important basketball championship in the world,
with a total revenue in the last years of about 8 billions U.S. dollars
(Gough, 2021). As a consequence, it is not surprising there are several
attempts in facing the problem of outcome predictions with machine
learning. These models use, in general, a huge number of inputs to
have an accuracy index about 67%. Is it possible to őnd alternative
approaches to outcome prediction, offering the same accuracy but using
a really low number (also just one) of regressors?

The structure of this dissertation is as follows:
Chapter 2 contains a review of the scientiőc literature related to our research
questions. Literature about data science applied to sport in general, and to
basketball in particular, is analyzed, and more relevant references are sum-
marized. Scientiőc literature analysis has been also approached via Natural
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Language Processing (NLP), opening new research questions whose őrst re-
sults are reported in Appendix A.
Chapter 2 also includes some sections of general interest (NBA organization,
approach to dataset deőnition, Oliver’s Four Factors formal deőnition), use-
ful in approaching other chapters.
At last, a summary of machine learning techniques used in this dissertation
is reported.

Chapter 3 aims to identify the drivers leading to a victory in NBA
matches. To do this, the prediction results from machine learning models
using two different sets of information as independent variable are compared:

1. the so called box score analytics, i.e. the classical information (at-
tempted shots, made shots, rebounds ...) summarizing a match;

2. the already mentioned Oliver’s Four Factors.

Box scores and Four Factors are used as regressors in machine learning al-
gorithms, to predict the winner of the matches involving the Golden State
Warriors team, on a dataset containing data of regular seasons from 2004-
2005 to 2017-2018. Outcome prediction is not our goal, but it is the tool
used to identify the most important success keys via variable importance
measurement: as data are ex-post (i.e. they also includes information about
the match under analysis), accuracy is very high, and so variable importance
measures from őtted models are affordable for success drivers identiőcation.
The Random Forests algorithm in general offers good accuracy, but unfortu-
nately few interpretability tools (only variable importance measures); so, to
these purposes, Random Forests models are coupled to models őtted using
CART (after an assessment of their high accuracy), offering both variable
importance and great interpretability. That is an example of application
of the approach called łGlobal Surrogatež in Interpretable Artiőcial Intelli-
gence (Molnar, 2021), when a different machine learning algorithm is used
to improve interpretability for a black box (or in any case less interpretable)
machine learning method.
That analysis shows how, for Golden State Warriors, defense is the key fac-
tor to win a game.
At last, the őtted models are shown to be both suitable in game prepara-
tion, and affordable on basketball court too, for supporting the coaching staff
decisions.

Chapter 4 includes an analysis about the weight of the Oliver’s Four
Factors as success keys in NBA matches. The MOdel-Based recursive par-
titioning (MOB) algorithm is applied to a dataset including 19138 matches
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of 16 NBA regular seasons (from 2004-2005 to 2019-2020). MOB, instead of
őtting one global Generalized Linear Model (GLM) to all observations, par-
titions the observations according to selected variables, and estimates several
ad hoc local GLMs for subgroups of observations.
Using the difference in victories ratio between two teams (named diff) as
partitioning variable, 2 models have been produced to rank the importance
of Four Factors, for home and away played matches, respectively.
The partitioning variable has been calculated both ex post and ex ante (i.e.
considering or not, respectively information about the match under analysis),
and both separating home and away data or not; the best model is produced
with ex ante calculation, without considering home/away data separation.
This work proposes two innovative topics:

1. in some circumstances, using particular partitioning variables, (quasi)
separation situations are generated. To solve it, a methodological ex-
tension of GLM-based recursive partitioning, from standard Maximum
Likelihood (ML) estimation to bias-reduced (BR) estimation, has been
identiőed and implemented. In this way it is possible to solve (quasi)
separation convergence problems in the numerical solution of ML esti-
mation in MOB.

2. BR-based GLM trees are applied to basketball analytics; őtted models
produced using BR-based MOB, different for home and away matches,
are shown to be easily interpretable, constituting a useful tool in sup-
porting the coaching staff’s job.

In chapter 5, machine learning models őtted on the basis of single fea-
tures are shown to produce accurate outcome predictions for NBA matches,
exhibiting the same top accuracy (about 67%) found in literature for quite
more complex set of features.
Features based on:

• Elo, the algorithm born for rating chess players (Elo, 1978);

• the difference in relative victories frequencies between two teams used
for the analysis described in Chapter 4);

• The Oliver’s Four Factors;

are ex ante calculated (i.e. only considering data before of the match under
exam) for the dataset containing the data of 16 NBA regular seasons. The
őrst two approaches are based on teams strength deőnition, the third one
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summarizes in four indexes the box score statistics.
Particular attention has been payed to:

• temporal aspects, considering both historical (i.e. all prior games are
considered, with regression to mean) and dynamic (considering rolling
mean features on some prior matches) approaches.

• To home court factor, calculating features both with and without con-
sidering in a separated way home and away matches.

Prediction models are produced on that dataset via Deep Learning, a speciőc
subőeld of machine learning based on neural networks composed by several
layers (that’s why it is called deep, without any reference to a bigger level of
problem comprehension), using k-fold validation.
Results are compared to accuracies obtained from applying boosting algo-
rithms, both for validating output and for having variable importance, fol-
lowing the same łglobal surrogatež approach mentioned above for chapter 3.
Best accuracy for predictions using just one feature is shown to be 0.6734
on the complete dataset, and 0.7063 on a single season, aligned to accuracy
found in literature for outcome prediction models using many more regres-
sors.

Appendix A contains some results obtained in applying NLP tools to the
analysis of scientiőc literature. Following the classic approach of research,
the őrst PhD activity is the analysis of the scientiőc literature related to
research questions, trying to identify papers relevant to our domain.
To this purpose, a corpus of domain relevant publications selected using
Web Of Science (WoS) service is analysed using Bibliometrix (Aria and
Cuccurullo, 2017), an R open-source tool for quantitative research in scien-
tometrics and bibliometrics, to retrieve pertinent papers information about:

• authors and groups;

• nations;

• years;

• milestones and references;

• approaches and data science models used in this domain.

This activity has evolved in a new research őeld, focused on bibliographic
research via NLP tools, and the őrst results of this ongoing job are presented
in Appendix A. In particular:
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1. the őrst Appendix Section recaps bibliographic research activities strictly
related to machine learning applied to basketball;

2. the second Appendix Section shows how, on a corpus of COVID-19 pa-
pers built using both bibliographics and ad hoc NLP tools implemented
in R, it is possible to conduct an analysis about authors, institutions
and journals using unsupervised papers’ clustering where clusters are
identiőed on the basis of paper contents;

3. the third Appendix Section describes a possible approach to address the
problem of attributing a value to papers posted in not peer-reviewed
archives (e.g. arXive), trying to help in joining dichotomy between con-
tents reliability and publishing lag time. A new index, derived from the
h-index, is deőned, to be used for attributing a score, calculated auto-
matically accessing Google Scholar for retrieving basic information, to
papers. The proposed approach has been applied to COVID-19 liter-
ature published in several free access, not peer-reviewed archives, and
őrst results are reported.

All implementations are done using the R programming language (R
Core Team, 2021) via RStudio (RStudio Team, 2021), adopting the Tidy-
verse paradigm (Wickham, 2014; Wickham et al., 2020). Speciőc R packages
adopted in facing the different research questions are directly referred in the
related chapters.

5
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Chapter 2

Literature Review and general

topics

This chapter includes:

• A review of the literature about data mining applied to sport in gen-
eral, and to basketball in particular, with a deep analysis concerning
the outcome prediction literature. The problem of analysing scientiőc
literature for a speciőc domain has been approached also using Natu-
ral Language Processing (NLP) techniques together with ad hoc tools,
and őrst results of this ongoing activity are included in Appendix A.

• Some information and concepts common to other chapters, and in par-
ticular:

– National Basketball Association (NBA) organization

– approach chosen for dataset deőnition

– Four Factors deőnition

• A short description of the machine learning algorithms used in the
rest of this dissertation, with references to the chapters where these
algorithms are used.
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2.1 Literature review: machine learning and bas-
ketball predictions via machine learning

2.1.1 Data mining and sport

It is several years that data analytics play a fundamental role in sport anal-
ysis and management: in the last decades, publications on statistics in sport
have multiplied, and a data-based approach was adopted in each professional
sport (Alamar, 2013; Albert et al., 2017), facing different kinds of problems.
Analysis and applications of statistics to sport include performance measure-
ment (Mackenzie and Cushion, 2013; Page et al., 2007; Passos et al., 2016;
Sandri et al., 2020; Zuccolotto et al., 2017b, 2019), injuries prevention (see
Eetvelde et al., 2021 for a review), optimal game strategies (Zuccolotto and
Manisera, 2020), match preparation (Migliorati, 2020; Miller, 2015; Thabtah
et al., 2019), players’ selection (Lewis, 2003) and, of course, outcomes fore-
casting (Bunker and Thabtha, 2019; Wunderlich and Memmert, 2020).
In effect, it was with the application of the data-driven approach described in
Lewis, 2003, centered on selection of players for Oakland Athletics baseball
team, that analytics in sport actually entered the maturity phase.
Then, quickly, data mining in sport was widely adopted and adapted in
all professional sports, such as baseball (maybe the sport with the greatest
history in analytics, starting in 1977 with dedicated reports) (Koseler and
Stephan, 2017), hockey (see Swartz, 2017 for a review), American football
(Baker and Kwartler, 2015; Silver, 2014), football (Carpita et al., 2015, 2020;
Sarmento et al., 2014) and, of course, basketball.
Basketball milestones of this analytics-based approach are pioneering works
(Kubatko et al., 2007; Oliver, 2004), where the famous Oliver’s łFour Fac-
tors to successž were introduced as four indexes containing a big amount of
information. Then, a huge number of analyses have been done applying data
mining to basketball data (see, for example,Bianchi et al., 2017; Groll et al.,
2018; Metulini et al., 2018; Sandri et al., 2020; Zuccolotto et al., 2017b,a,
2019; Zuccolotto and Manisera, 2020).

2.1.2 Data mining and outcome prediction

Considering the large interest and the increasing volume in sport betting,
it is easy to understand the reason why the number of attempts in predict-
ing games’ results is continuously increasing, see for instance Bunker and
Thabtha, 2019; Hubáček et al., 2019.
Machine learning techniques for outcome prediction have been widely ap-
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plied (Haghighat et al., 2013), covering all professional sports, from horse
races (Davoodi and Khanteymoori, 2010) to hockey (Gu et al., 2016) and
from American football (Beal et al., 2020; David et al., 2011; Kahn, 2003;
Purucker, 1996) to football (Carpita et al., 2019; Min et al., 2008; Tax and
Joustra, 2015), just to give some examples among others.

2.1.3 Data mining and basketball outcome prediction

Also basketball, of course, has been investigated under this perspective.
In Loeffelholz et al. (2009) authors worked on a dataset of 650 NBA games,
and used several kinds of ANN (Artiőcial Neural Networks, Zhang, 2000) for
outcomes prediction, correctly predicting the winning team 74.33 percent of
the time (on average), higher than experts percentage claimed to be 68.67.
In Miljkovic et al. (2010) it is reported how, among several machine learning
algorithms, best results in both predicting the outcomes and calculating the
őnal match spread were produced by the Naïve Bayes approach. Authors
used 778 NBA games of season 2009-2010, considering 141 features as input,
and an accuracy of 67% is reported.
In Cao (2012) data of 5 NBA seasons were analyzed using ANN, Support
Vector Machine (Cortes and Vapnik, 1995), Naïve Bayes and logistic regres-
sion, with the latter approach producing the best prediction accuracy (about
70%) for the classiőcation problem of predicting the winner of a game.
In a similar way, in Beckler et al. (2013) authors used Linear Regression,
Support Vector Machines, Logistic Regression and ANN for NBA outcomes’
prediction, using a dataset including seasons from 1991-1992 to 1996-1997
and reporting an accuracy of 73%.
In Cheng et al. (2016) authors applied the principle of Maximum Entropy
(Jaynes, 1957) to predict NBA playoff outcomes for seasons from 2007ś08 to
2014ś15, using box score information as features, reporting an accuracy of
74.4%.
At last, there are several betting sites suggesting NBA outcome predictions.
As an example, teamranking (2021) proposes predictions about NBA match
winners using 4 approaches, built on the basis of several sources (historical
data, breaking news and trends). For regular season 2017-2018 the maximum
accuracy is 74.3%, obtained using decision trees on data of games of March.
Outcome prediction is a classiőcation problem (i.e. the prediction chooses
one of two possible qualitative values) and it is central in this dissertation,
under two perspectives:

1. it has been used as a tool in identifying success factors and their rel-
evance: the models őtted for outcome predictions using ex-post data
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ensure a really high accuracy, and as a consequence a good quality in
ranking success factors.

2. it has been approached using ex-ante data, in a true forecast scenario:

(a) to show how models using single features ensure an accuracy com-
parable to top literature accuracies, where a huge number of in-
dependent variables is often used

(b) to claim how, in order to improve accuracy in outcome forecasting,
it would be necessary to integrate new information, different from
box score statistics, as covariates.

2.2 National Basketball Association (NBA)

National Basketball Association (NBA) is the professional basketball cham-
pionship of North America, the most important in the world. In the last
years, NBA teams generated combined revenues of around 7.92 billion U.S.
dollars each year (Gough, 2021), and NBA teams average value for 2021 has
been calculated in about 2.2 US dollars billions, ranging from 1.3 billions
of Memphis Grizzlies (the 30th of this ranking) to 5.0 billions of New York
Knicks (the richest one) (Badenhausen and Ozanian, 2021).
To compare these values to football, the richest European clubs (Forbes,
2021) (Barcellona, Real Madrid, Bayern Munich, Manchester United) are
comparable in value (a bit less than 5 billions) to New York Knicks, but
team values quickly decrease (the value of 20th, Ajax, is around 400 mil-
lions) compared to NBA teams value.
NBA championship is divided in 2 conferences (Est and West); each confer-
ence is composed of 3 divisions, and each division includes 5 teams (see Fig.
2.1), so there are 30 teams in NBA. Each season starts with a regular season
involving all teams, and normally each team plays 82 games.
Regular season is followed by playoff, where only the best 16 teams őght.
Playoff is a best of seven elimination tournament (őrst to 4 wins); from 2016,
top eight teams in each conference are qualiőed, regardless of divisional align-
ment (see Fig. 2.2).
In this direct elimination competition, the winners of the conference őnals
gain the NBA őnal and őght to win the title (see Fig. 2.3). In the last
20-21 season, access rules have been modiőed again and the so-called play-
in rule has been introduced, regulating the distribution of the last 2 playoff
places for each conference via a mini-tournament involving teams with a őnal
regular season ranking among 7th and 10th.
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Figure 2.1: NBA geographic organization

2.3 Approach to dataset definition

The dataset used1 in this dissertation includes only matches from NBA reg-
ular seasons. Usually, each season is seen as a uniform period, and teams
are perceived as homogeneous entities during that season. The assumption
is that in a single season there is continuity for a team, at least in its funda-
mental aspects, whereas changes occur between a season and the following
one.
Actually, the situation seems to be different: it is true that teams can heavily
change from one season to another, but several changes also occur during a
single season. These changes can impact not only rosters (think to new free
agents’ contracts, new multi-year contracts, ten-day contracts for facing in-
juries, player exchanges, ...), but can involve coaches, managers and referees,
too.

1Basketball dataset used in this dissertation has been obtained on the basis of play
by play data kindly provided by BigDataBall (www.bigdataball.com), a data provider
that leverages computer vision technologies to enrich and extend sports data sets with
a number of unique metrics: since its establishment, BigDataBall has supported many
academic studies as a reliable source of validated and verified statistics for NBA and
several other sports.
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Figure 2.2: Best eight conference franchises for regular season 2017/18, show-
ing the ranking, the record and some other season’s results

Sources as Marusek, 2021; Sports reference, 2021 conőrm that fact: it is
easy to verify how there is a huge number of transactions not only between
seasons, but also during a season, invalidating the perspective of teams as
homogeneous entities in that period. During season 2018-19, for instance,
there were about 400 off-season signings, but about 300 in-season signings
(particularly when playoffs are approaching and the admitted teams need
to prepare them). So, our proposal is that a dataset could include matches
selected on the basis of a homogeneous regulation framework. In sport, rules
drive strategies (think to differences addressed by a championship without
relegations, as NBA, with respect to a championship with relegation as nor-
mally football championships are) and tactics (think to football offside rule,
or to NBA zone defense, prohibited until the 2001ś2002 season), and it seems
sound to consider these rules in a dataset deőnition.
NBA playoff rules are very different from regular season rules. In the per-
spective we are sketching (and depending of course on the analysis goals), it
would be better to avoid including both playoff and regular season games in
the same dataset.
Instead, also considering differences in rules as playoff access rules mentioned
above, regular seasons’ rules starting from season 2004-2005 are reasonably
uniform, and analyses using a dataset built including their matches could be
more suitable.
Of course, the same kind of analysis made in this dissertation about regular
seasons could be replicated for playoff games which, in turn, have a not so
variable frame of rules. In effect, it could be very interesting to verify the
Four Factors weights in playoff games, and compare results to what we found
in this dissertation for regular seasons. This job is left to future analyses.
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Table 2.1: Empirical weight of Oliver’s Four Factors

Factor Weight

shooting 40%
turnovers 25%
rebounds 20%
free throws 15%

cated formulas have also been proposed in the specialised literature (Kubatko
et al., 2007).

Table 2.2: Variables’ acronym meaning

Acronym Meaning

P2A 2-point őeld goals attempted
P3A 3-point őeld goals attempted
FTA free throws attempted
P2M 2-point őeld goals made
P3M 3-point őeld goals made
FTM free throws made
OREB offensive rebounds
DREB defensive rebounds
TOV turnovers
POSS possessions

It is possible to deőne the Four Factors in the following analytic way:

1. Shooting, measured by effective Field Goals percentage:

eFG% = (P2M + 1.5 ∗ P3M)/(P2A+ P3A) (2.2)

2. Turnover ratio, the number of turnovers (i.e. loss of ball) per posses-
sion:

TO_ratio = TOV/POSS (2.3)

3. Rebounds, deőned by offensive rebounding percentage:

OREB% = OREB/(OREB +DREB) (2.4)

where, in the denominator, the team offensive rebounds and the oppo-
nent team defensive rebounds are considered, respectively.
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4. Free throws rate:

FT_rate = FTM/(P2A+ P3A) (2.5)

For each match, the Four Factors for both the home team (marked with ht
in the following) and the away team (at) can be computed, leading in effect
to eight factors.
In this dissertation the Four Factors have been calculated using the R package
BasketballAnalyzeR (Sandri et al., 2018; Sandri, 2020).

2.5 Recap of machine learning methods used in this
dissertation

In this Section, a list of machine learning methods used in this dissertation is
proposed, including a short description of the methods, some basic references
and some pointers to dissertation sections where they have been used.

• Classiőcation And Regression Trees (CART) (Breiman et al., 1984).
CART are a kind of binary decision tree, built binary splitting (in a
recursive way) the predictor space in several regions. Splits are decided
on the basis of predictors values minimizing a cost function (typically
following a greedy approach, to save computational costs), and are
recursively applied until a stop condition is őred; at the end of the
process, observations result divided in subgroups, each one associated
to a constant response. CART are used in chapter 3 for providing
interpretable models.

• Random Forests (Breiman, 2001a; Ho, 1995).
Random Forests is an ensemble learning technique, used for both clas-
siőcation and regression. It is based on the idea of building a huge
number of different decision trees, where tree splits are evaluated con-
sidering a subset of randomly chosen predictors, to mitigate the clas-
sical trees’ instability. Random Forests have been used in chapter 3.

• Logistic (logit) regression.
Logistic Regression is a statistical model to be used in classiőcation
problems where the dependent variable is dichotomous, assuming only
one of two values (for example in basketball: victory or defeat). It has
been used in chapter 4.
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• MOdel Based partitioning (MOB).
MOB is an algorithm for recursive partitioning, as described in Zeileis
et al., 2008, used in chapter 4. In this approach, őtting is not made
via a unique global model for the complete dataset, but instead in
a local way, estimating model parameters on subsets of data deőned
by recursive partitioning, possibly with a better őtting quality with
respect to the global one, and generally with a better interpretability.

• Deep Learning (Goodfellow et al., 2016).
The Deep Learning approach is based on Artiőcial Neural Networks
(ANN) (Zhang, 2000); typically a Deep Learning architecture is com-
posed by an input layer, an output layer and a number of hidden layers
between the input and the output. A traversal process from one ex-
tremity to the other is repeated several times in both directions, driven
by a loss function to be minimized. Deep Learning, in its Keras imple-
mentation (Chollet and Allaire, 2018), has been used in chapter 5.

• Topic model.
Topic model (Deerwester et al., 1990) is a statistical model adopted in
NLP and machine learning, aimed to classify documents in an unsuper-
vised way identifying their hidden topics. It is often implemented via
Latent Dirichlet Allocation (Blei et al., 2003), and in this dissertation
has been used in applying NLP to results of bibliographic research as
described in Appendix A.
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Chapter 3

Analysing drivers of success in

basketball matches using

CART and Random Forests
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3.1 Introduction

This chapter aims to show how machine learning techniques can be prof-
itably employed to identify drivers leading to success for basketball matches
in NBA.
Data always played a fundamental role in sport management, constituting
the starting point for suitable analysis in a őeld where a huge amount of
money is invested, but where fortuity plays a great role. Moreover, consid-
ering the large interest in sport betting, it can not be surprising that several
attempts were made to accurately predict games results, see references in
Section 2.1.
The perspective of the work described in this chapter is different: we are not
interested in predicting in advance the game winner, but in offering valuable
tools to staff coaching, supporting them to decide which moves can be done
both before a game and on the basketball court to increase success possibil-
ities.
We are interested in applying data mining to basketball (Bianchi et al., 2017;
Zuccolotto and Manisera, 2020), for identifying which are the drivers to vic-
tory. To do this, we will focus on the relationship between match outcomes
(only win or loss, for basketball) and sets of features offering a snapshot of
the match, as already studied in other sports (Carpita et al., 2015, 2020).
Our goal is not so far from Thabtah et al. (2019) where authors tried to
identify the most important features in predicting outcomes for a dataset
of 430 observations focused on NBA őnal games from 1980 to 2017. Three
machine learning algorithms (Naïve Bayes, ANN and Logistic Model Trees,
Landwehr et al., 2005) have been applied using box-score variables as pre-
dictors, being the number of defensive rebounds the most inŕuential feature.
In this work we will use a large dataset (thousands of matches) to build
prediction models that will be analyzed in terms of variable importance for
identifying success drivers. A high őtting quality will be the guarantee that
our analysis about variable importance is fair, so predictions will be made
on the basis of ex-post information, with the goal of increasing the goodness
of őt and consequently the goodness of the success drivers that will be iden-
tiőed.
To do that, we will use two different sets of predictors:

1. the so-calledbox-score analytics, i.e. the classical variables (number
of attempted shots, made shots, ...) summarizing a match, see for
instance (NBA, 2020a; ESPN, 2021)

2. the Four Factors as described in Section 2.4
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A large dataset, including 14 NBA regular seasons (from 2004-2005 to 2017-
2018), was built, and variables from both box scores and Four Factors have
been used as regressors for machine learning classiőcation, with the goal of
building models predicting the winner of matches of Golden State Warriors
(GSW), champion of the season 2017-2018.
Then, these models are analyzed in terms of quality of őt, and their variable
importance studied to identify success drivers.
Classiőcation models are built using:

• CART (Classiőcation and Regression Trees, Breiman et al. (1984))

• Random Forests (Ho, 1995; Breiman, 2001a)

to couple trees easiness of interpretation, so important for data mining results
acceptance and usage, to Random Forests stability and prediction quality.
This chapter is structured as follows: the dataset is described in Section
3.2, followed by a description of CART and Random Forests algorithms
in Section 3.3. Section 3.4 includes the results from applying CART and
Random Forests to the dataset, with the goal of both identifying the most
relevant predictors and proposing tools to facilitate coach staff in match
interpretation. At last, conclusions are reported in Section 3.5.

3.2 The dataset

The current rules for regular season were adopted in season 2004-2005, and
this uniformity of rules is the reason why our dataset starts from this season.
The dataset includes 14 seasons from 2004-2005 to 2017-2018, for a total of
about 17.000 matches of regular seasons.
Among several other statistics (see (NBA, 2020b)), basketball match analysis
will be approached using:

1. box-score variables, a set of indicators summarizing the trends of a
match. For our analysis purposes, we select 13 variables from the box-
score information, to be used as predictors:

1.1 PTS: number of points made

1.2 P2A: number of 2-point őeld goals attempted

1.3 P2M: number of 2-point őeld goals made

1.4 P3A: number of 3-point őeld goals attempted

1.5 P3M: number of 3-point őeld goals made
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1.6 FTA: number of free throws attempted

1.7 FTM: number of free throws made

1.8 OREB: number of offensive rebounds

1.9 DREB: number of defensive rebounds

1.10 AST: number of assists (pass of the ball leading to a őeld goal
score)

1.11 TOV: number of turnovers (loss of ball possession)

1.12 STL: number of steals (stealing ball to the opponent)

1.13 BLK: number of blocks (deŕecting a őeld goal attempt)

These information are made available for both teams involved in a
match.

2. Four Factors, the set of derived statistics described as łkey to successž
in Section 2.4.

We focus on a single team, Golden State Warriors (the winner of season
2017-2018):

• for the 14 regular seasons from 2004-2005 to 2017-2018 we have 1130
games involving GSW

• 90% of our observations, randomly chosen, will be used for training
our classiőcation models

• the remaining 10% will be used for testing.

3.3 Methods and Models: CART and Random Forests

In this section, Classiőcation And Regression Tree (CART), (Breiman et al.,
1984) and Random Forests (Ho, 1995; Breiman, 2001a), as applied to the
above dataset, are described.

3.3.1 CART

CART (Breiman et al., 1984) are a kind of binary decision tree, a good ex-
ample of the ńalgorithmic cultureż (Breiman, 2001b). Trees are connected
acyclic graphs, starting from one single node (named root) branching to chil-
dren nodes. Each node has not more than 1 father, and can branch to several
children. Nodes without children are called leaves. CART are built (typically
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binary) splitting the predictors space in several regions. Splits are decided
on the basis of the predictors values, minimizing a cost function (following a
greedy approach to save computational efforts), and are recursively applied
until a stop condition is őred. At the end of the process, observations will
result divided in subgroups, one for each leaf of the tree, and associated to
a constant value of the dependent variable.
CART can be used both for classiőcation (when the output variable is cat-
egorical, as in our case in predicting the game winner; in this case the con-
stant response associated to a leaf is the mode of the output variable of the
observations belonging to it) and regression (when the output variable is
quantitative; in this case, the constant response associated to a leaf is the
mean of the output variable of the observations belonging to it).
The cost functions to be minimized typically are:

1. the Gini index for classiőcation trees; for a generic node t:

G = 1−
K
∑︂

k=1

(pk)
2 (3.1)

where K is the number of classes and pk is the relative frequency of
the class k in the node t.
Gini index is a measure of node purity (where G=0 means a node
totally pure, no incorrect classiőed observation)
With the same meaning as Gini index, also information entropy:

E = −
K
∑︂

k=1

(pk ∗ log2(pk)) (3.2)

is used as cost function in other kinds of classiőcation trees (ID3 Quin-
lan (1986), C4.5 Quinlan (1993)).

2. the Sum of Squared Errors (SSE) for regression trees. In this case the
goal is to őnd J distinct and not overlapping regions R1, .., RJ that
minimize the SSE deőned as:

SSE =

J
∑︂

j=1

∑︂

i∈Rj

(yi − ŷRj
)2 (3.3)

where yi is the observed value and ŷRj
is the predicted value (the mean

response) for the training observations within the jth region.
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In a binary tree, predictions are made as follow:

• nodes represent partitions of the features’ space, where a single predic-
tor value is chosen to split the node in 2 branches

• for a new observation, a branch is chosen on the basis of its speciőc
split predictor value

• the above action is repeated until the new observation reaches a tree
leaf

• the constant value associated to that leaf will be the prediction for the
new observation.

With CART, the attention must be payed to avoid overfitting, arising when
a model is too much tailored on training data, so that it is not suitable in
managing new observations. To this purpose trees are often pruned: the
number of leaves is decreased, adding a penalization function depending on
the number of leaves to the cost function to be minimized. CART play an
important role in machine learning, not only because of their not so bad
predictive power, but mainly because of the easiness in understanding it.

3.3.2 Random Forests

Random Forests (Breiman, 2001a; Ho, 1995) is an ensemble machine learn-
ing technique, i.e. a meta approach to machine learning, trying to improve
predictive performance by combining predictions generated by several mod-
els (the so-called weak learners).
In particular, Random Forests is derived from bagging (bootstrap aggregat-
ing) algorithms, where a huge number (ensemble) of different decision trees
are trained from bootstrap samples (random samples with replacement) of
the training set. The ensemble of trained decision trees is then used to make
predictions about new data. In effect, CART suffer from high variance, both
in terms of lower prediction accuracy and instability (little changes can pro-
duce big impacts). It is known how, in general, average reduces variance,
and bagging algorithms use this fact producing a more accurate őnal answer
without increasing the bias.
With respect to bagging, Random Forests also draw random subsets of fea-
tures for training the individual trees: in bagging, each tree is built consid-
ering the full set of features, instead in Random Forests the trees are more
independent of each other and often produce better prediction accuracy.
In other words: in Random Forests, tree splits are evaluated on the basis of a
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subset of randomly chosen predictors (building a model based on p features,
in each split

√
p features are considered for classiőcation problems, p/3 for

regression). In this way, it is possible to generate trees where also bagging
neglected predictors can play a role, and consequently also rare models can
be considered when the majority rule is applied, helping both to mitigate the
classical tree overőtting problem, and to increase prediction performance.
The Random Forests’ model can be used both for classiőcation and regres-
sion, with a good predictive power. Unfortunately, the structure of the
models produced by this machine learning algorithm is not so simple to be
interpreted as, for instance, trees are.

In the following we will use both CART and Random Forests, looking for
an interpretable answer to the classiőcation question: žwill Golden State
Warriors win this game?ž.

3.4 Results

3.4.1 CART model: box-score variables as predictors

Our őrst model is a CART built using box-score variables as predictors. A
őrst application using all the 13 box-score variables for both teams produces
only an obvious conclusion: the number of points made is by far the most
important variable, and Golden State Warriors will win a game when its
score is greater than the opponent score.
Moreover, a correlation analysis shows how the number of assist (the variable
AST) is strongly positively correlated (0.67) to points (PTS) (and it could
not be different: an assist is a pass to a player realizing a successful throw;
of course, the opposite is not true, for instance considering successful free
throws).
Often it can happen that models address obvious or expected interpretations,
and this is always a good point, conőrming the soundness of the analysis.
In any case, we are interested in őnding interesting and unexpected insights,
too. To this purpose, we exclude both PTS and AST from predictors, as
shown in listing 3.1:

1 train.cart.bs=rpart(Result~

2 P2M.team+P2A.team+P3M.team+P3A.team+

3 FTM.team+FTA.team+OREB.team+DREB.team+

4 TOV.team+STL.team+BLK.team+

5 P2M.opp+P2A.opp+P3M.opp+P3A.opp+

6 FTM.opp+FTA.opp+OREB.opp+DREB.opp+

7 TOV.opp+STL.opp+BLK.opp ,
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8 data=train.bs ,

9 method=’class’,

10 control = treeControl

11 )

Listing 3.1: CART using a subset of box-score predictors

The resulting tree (pruned to limit overőtting) seems more interesting, and
is depicted in Figure 3.1:

Figure 3.1: Training dataset CART based on box-score predictors without
PTS and AST

In this tree:

• nodes represent predictors: so, the root of the tree, the P3M.team
node, represents thenumber of 3-point shots made input

• for classifying a new observation, the tree is crossed on the basis of
the value of its predictors: starting from the root of the tree, we will
descend to the left if the number of 3-point shots made for the new
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observation (match) is lower than 10, otherwise we will descend to the
right

• in the leaves the classiőcation result is highlighted: Win (green) or Lose
(blue), together with frequency of the 2 possible classiőcation results.
Color is darker depending on how a frequency is greater than the other
one.

So, a new observation is classiőed őnding the most convenient leaf on the
basis of its predictor values, crossing the tree starting from the root. The
prediction for this new observation is given by the constant associated to
that leaf.
As an example, the meaning of the pink path in Figure 3.2

Figure 3.2: A path in the CART built using box-score predictors

is that Golden State Warriors will be predicted to win its match when
they make at least ten 3-point shots (P3M.team ≥ 10) and thirty-one defen-
sive rebounds (DREB.team ≥ 31): a good example of the easiness of tree
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understanding mentioned before.
Moreover, that tree offers a clear example of the reason why this kind of
tools can be really valuable to coaching staff.
Looking to the left subtree, we can see how the situation seems against GSW
when the number of 3-point shots is lower than 10 (P3M.team < 10), be-
cause many leaves predict a GSW defeat with high probability. But, in effect,
the tree shows how there are still 2 possibilities for winning, that can be tried
if the opponent is not too strong in defensive rebounds (DREB.opp < 36).
In this situation, GSW should pay great attention to defense, trying to get a
high number of defensive rebounds (DREB.team ≥ 30), together with an ag-
gressive attitude inducing opponent or to lose many balls (TOV.opp ≥ 17)),
either to take few defensive rebounds (DREB.opp < 30).
So, this model suggests a possible strategy to GSW coaching staff for trying
to bring the team to green (i.e. victory) leaves.
Only 5 predictors (3-point shots, team defensive rebounds, opponent defen-
sive rebounds, team stolen balls, opponent lost balls), among the 22 available,
were used to build up the tree: this is a good őrst step in the direction of
identifying the success drivers we are looking for, but őrst we have to verify
how much the model is suitable.
To assess quality of őt, the CART model is tested by predicting the őnal
results for the remaining 10% of our observations, and comparing these pre-
dictions to actual results.
In other words, we built a confusion table for predictions and actual results
on the test set (Table 3.1).

Table 3.1: Confusion matrix for CART box-score without PTS and AST,
test dataset

Prediction

GSW winner? no yes Total

Actual
no 34 10 44
yes 22 47 69
Total 56 57 113

Accuracy1(deőned as the ratio between correctly classiőed observations

1Several other indexes about prediction quality are reported in Table 3.5, where a
comparison of quality of fit for the different models is reported
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and overall number of observations) for this model is 0.7168, high enough
(taking into account we are using a subset of available predictors) for safely
analyzing variable importance to detect success drivers. Variable importance
measures for CART models are calculated2 not only considering the reduc-
tion in the loss function attributed to each variable for its effective splits, but
also surrogate splits (i.e. possible predictors to be used in case of missing
values) and competing splits (i.e. predictors evaluated but not chosen for
splits), to have a view as complete as possible.
In this way, we can trace not only the variables appearing in tree plot (effec-
tively selected for split), but also the other variables playing a meaningful
role (also if not selected for splitting) in the tree building.
For the CART model above, variable importance is depicted in Figure 3.3.

Figure 3.3: Variable importance measures for CART box-score without PTS
and AST

2See R caret package documentation for details (Khun, 2020)

27



Figure 3.3 shows that defense is a key factor for GSW successes, and (but
this is more obvious) to win it is necessary to made 2- and 3-point shots.
Moreover, it is possible to note how offensive rebounds, usually considered
as really important (as also shown in Zuccolotto et al., 2017b), are neglected
in our model, also in our analysis where the largest deőnition of variable
importance (including the evaluation of surrogate and competing splits, too)
has been applied.

3.4.2 CART model: Four Factors as predictors

The second model is still built using CART, but with Four Factors as pre-
dictors as reported in Listing 3.2.

1 train.cart.ff=rpart(Result~

2 eFG.team + eFG.opp +

3 TO.team + Reb.off.team + FT.rate.team +

4 TO.opp + Reb.def.team + FT.rate.opp ,

5 data=train.ff ,

6 method=’class’,

7 control = rpart.control(minbucket = 25)

8 )

Listing 3.2: CART using all Four Factors predictors

The (pruned) tree for our training dataset is depicted in Figure 3.4:

28



Figure 3.4: Training dataset CART built using all Four Factors

In this case the model is built using just three predictors among the 8
variables available: only (eFG.team, i.e. GSW shooting factor, eFG.opp,
i.e. opponent shooting factor, and Reb.def.team, i.e. GSW defensive re-
bound factor) are effectively used for splitting.
This tree does not contain unexpected information: mainly, it shows how
shooting factor plays a primary role as success driver (a őrst conőrmation of
Oliver’s weights deőnition). An interesting point: defensive rebounds seem
to have a high importance (node Reb.Def.team on the left), conőrming what
we observed analyzing CART model built using box-score variables.
In any case, the presence of shooting factors maybe hides other useful infor-
mation, so we build a model without them (see Listing 3.3).

1 train.cart.ff2=rpart(Result~
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2 TO.team + Reb.off.team + FT.rate.team +

3 TO.opp + Reb.def.team + FT.rate.opp ,

4 data=train.ff ,

5 method=’class’,

6 control = rpart.control(minbucket =90)

7 )

Listing 3.3: CART using a subset of Four Factors predictors

obtaining the tree in Figure 3.5.

Figure 3.5: CART built using Four Factors without shooting

It conőrms the conclusions about the importance of GSW defense made
using the model built using box scores variables (Figure 3.2): they must
őght for rebounds in their own area, and play in an aggressive way to induce
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opponents to lose the ball.
This tree offers another interesting path to be interpreted: the FT.rate.team
(i.e. the number of free throws respect to sum of 2- and 3- point shots)
becomes important in situations where GSW is strong on defensive rebounds,
but not strong enough in frequently inducing the opponent to lose the ball.
In these situations, it can be appropriated to play for gaining free throws with
respect to other play őnalizations; how to get it depends on the contingent
situation: for instance, the coaching staff could decide to play in attack and
keep the ball, inducing the opponent players to foul.
Again, the tree can be a valuable tool to coaching staff, both to prepare the
match and to react in the right way to situations happening on the court.
The confusion table addressing quality of őt for CART on the test dataset
is reported in Table 3.2.

Table 3.2: Confusion matrix for CART Four Factors without shooting, test
dataset

Prediction

GSW winner? no yes Total

Actual
no 18 26 44
yes 11 58 69
Total 29 84 113

Accuracy is 0.6726: not so bad, taking into account we are not considering
shooting, the most important factor, and high enough to let this analysis be
used as a decision support tool for coaching staff.

3.4.3 Random Forests model: box-score variables as predic-
tors

In this section we will analyze models built using Random Forests, to com-
pare CART results to another high quality őt model. By construction, Ran-
dom Forests enable emerging of lower weight variables, but the presence of
variables PTS and AST is too cumbersome; so, as for CART, we prefer to
make box-score based predictions without them (see Listing 3.4).

1 train.rf.bs.s=randomForest(Result~

2 P2M.team+P2A.team+

3 P3M.team+P3A.team+
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4 FTM.team+FTA.team+

5 OREB.team+DREB.team+

6 TOV.team+STL.team+

7 BLK.team+

8 P2M.opp+P2A.opp+

9 P3M.opp+P3A.opp+

10 FTM.opp+FTA.opp+

11 OREB.opp+DREB.opp+

12 TOV.opp+STL.opp+

13 BLK.opp ,

14 data=train.bs ,

15 importance=TRUE)

Listing 3.4: Random Forests using a subset of box-score predictors

Results can be found in Table 3.3.

Table 3.3: Confusion matrix for Random Forests box-score without PTS and
AST

Prediction

GSW winner? no yes Total

Actual
no 40 4 44
yes 6 63 69
Total 46 67 113

Accuracy is about 0.9: the model is really suitable, also if we don’t use
PTS and AST predictors. Variable importance, in terms of mean decrease
and accuracy node impurity, is depicted in Figure 3.6.
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Figure 3.6: Random Forests using box-score variables as predictors, variable
importance measures

Again, we őnd a conőrmation that defense is really important for GSW
to win: among the most important variables we have defensive rebounds and
opponents turnover. As it is easy to guess, made shots are important, too.
At last, it is conőrmed the low importance of offensive rebounds.
So, this analysis is aligned with conclusions we made on the basis of CART
model results.

3.4.4 Random Forests model: Four Factors as predictors

Our last model is built on Random Forests, again, but using Four Factors
as features (see Listing 3.5).
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1 train.rf.ff=randomForest(Result~

2 eFG.team + eFG.opp +

3 TO.team + Reb.off.team + FT.rate.team +

4 TO.opp + Reb.def.team + FT.rate.opp ,

5 data=train.ff ,

6 importance=TRUE)

Listing 3.5: Random Forests using all Four Factors predictors

Prediction results are summarized in Table 3.4.

Table 3.4: Confusion matrix for Random Forests (Four Factors)

Prediction

GSW winner? no yes Total

Actual
no 40 4 44
yes 3 66 69
Total 43 70 113

This model has the highest accuracy (0.94). In this case we used all the 8
predictors, because the model without shooting, the most important among
the Four Factors, has an accuracy equal to 0.6018, not so high, without
offering new infos about success drivers. Variable importance measures are
reported in Figure 3.7.
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Figure 3.7: Random Forests using Four Factors as predictors, variable im-
portance measures

As we can imagine shooting factors, both offensive and defensive, play
a primary role; moreover, we have another conőrmation about the impor-
tance of defense and low importance of offensive rebounds, as we argued
interpreting other models.

3.5 Conclusions

In this chapter we have applied CART and Random Forests to a large dataset
of NBA games, with the purpose of detecting success factors. In particular,
we focused on Golden State Warriors regular seasons from 2004-2005 to 2017-
2018, sharing the same rules framework, looking for GSW victories’ drivers.
Our classiőcation models were built using both box-score variables and Four
Factors as predictors, on the basis of ex-post data, showing high quality-of-őt
measures, as reported in Table 3.5.
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Table 3.5: Comparing prediction quality

CART CART Random Forests Random Forests
Box-Score Four Factors Box-Score Four Factors

no PTS and AST no shooting no PTS and AST

sensitivity 0.6812 0.8406 0.9130 0.9565
speciőcity 0.7727 0.4091 0.9091 0.9091
accuracy 0.7168 0.6726 0.9115 0.9381
recall 0.6812 0.8406 0.9130 0.9565
precision 0.8246 0.6905 0.9403 0.9429
F_measure 0.7461 0.7582 0.9264 0.9497

The goodness of őt of all models support us in using their variable im-
portance measures as success drivers.
In the case of Golden State Warriors we detect how, after shooting factors,
the most important success factors are related to defense (defensive rebounds
and opponent turnovers). Instead, it seems that offensive rebounds are not
so important, conőrming the famous saying ‘offense sell tickets, defense wins
championshipsž.
With respect to the Oliver’s Four Factors weighting, it is conőrmed how
the shooting factor is the most important success driver but, in our dataset,
defensive rebounds seem to be more important than turnover. Instead, the
results also conőrmed the lower importance of free throws (but we veriőed
how they become important in particular situations on the court).
The obtained models can be useful to the coaching staff in preparing games;
moreover CART trees, thanks to their understandability, can be useful also
on the court, to interpret the game and try to drive the team to advanta-
geous situations.
Next steps will concern the application of the described approach to other
teams and basketball championships (e.g. the Italian Lega Basket), to ver-
ify if and how success factors are team and championship speciőc, and to
investigate models and drivers for score differences.
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Chapter 4

Four Factors and the

probability of winning a

basketball game: MOdel-Based

recursive partitioning

Remarks Some of the contents included in this chapter have been pre-
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King’s College, London, England, Virtual Conference, 19-21 December 2020
in a presentation entitled:
The impact of Four Factors on a basketball team’s success: an approach with
model-based recursive partitioning
M. Migliorati, M. Manisera, P. Zuccolotto

and have been submitted to:
AStA Advances in Statistical Analysis
Special Issue on “Statistics in Sports”
in a manuscript entitled:
The impact of Oliver’s Four Factors on the probability of winning a basketball
game: An approach with MOdel-Based recursive partitioning
M. Migliorati, M. Manisera, P. Zuccolotto
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4.1 Introduction

This chapter focuses on the well-known Oliver’s Four Factors (Oliver, 2004;
Kubatko et al., 2007) described in Section 2.4, with the aim of investigating
how these Factors, used as predictors, can have a different importance in
driving a match result on the basis of the strength balance between the two
basketball teams involved.
To investigate the impact of each factor in calculating the probability of
winning a game (and, consequently, predicting the winner) and simultane-
ously accounting for differences in class between the two teams, we applied
the MOdel-Based recursive partitioning (MOB) algorithm (Zeileis et al.,
2008). This algorithm, instead of őtting one global Generalized Linear Model
(GLM), estimates several local GLMs considering subgroups of observations
built on the base of recursive partitioning.
The philosophy is the same as in Migliorati (2020), where both decision trees
and random forests were applied to a large NBA dataset to assess the im-
portance of two sets of predictors, constituted by box scores’ statistics and
the Four Factors, respectively.
To this purpose, we used real data from 19.138 matches of 16 National Bas-
ketball Association (NBA) regular seasons, from 2004ś2005 to 2019ś2020,
and deőned an index, used to partition observations with MOB, calculated
as the difference between victory relative frequencies in previously played
games for the two teams competing in a match.
The analysis highlighted (quasi) separation problems, introducing conver-
gence problems in the numerical solution of the Maximum Likelihood (ML)
estimation. To address this issue, we coupled MOB with Bias Reduction
(BR) estimation (Firth, 1993), which ensures őnite estimates also in the
case of (quasi) separation situations (Kosmidis et al., 2020).
This chapter’s original contribution is:

1. from a methodological point of view, an extension of GLM-based re-
cursive partitioning from standard ML estimation to BR estimation by
integrating MOB with BR GLM estimation, solving ML convergence
problems and ensuring őnite estimates when (quasi) separation occurs.

2. from an applied point of view, the diversiőcation of the Four Fac-
tors’ weights on the basis of the differences in class between the teams
competing in a match, providing a valuable tool to coaching staff in
analysing a match.

This chapter is structured as follows: Section 4.2 describes the dataset
used in the application; Section 4.3 summarises the MOB algorithm and the

38



computational issues we encountered, driving the deőnition of the original
integrated solution mentioned above; Section 4.4 reports the results derived
from the application of the BR-based GLM trees to basketball data, and
proposes an analysis for both home and away matches, showing how the
obtained results can be a valuable tool for coaching staffs. At last, Section
4.5 presents some conclusions.

4.2 The dataset

The dataset analysed in this chapter includes all the matches of the NBA
regular seasons from 2004ś2005 to 2019ś2020 (until 11/03/2020, when the
NBA was stopped for some months due to Covidś19).
Several analyses have been performed in order to őnd the best model for ad-
dressing the impact of Four Factors on victory probability. Different indexes
(e.g. season, conference, victory percentage) have been considered, but at
last we have chosen to base the analysis on a statistic, named diff, computed
for each match in each season, and deőned as the difference between the
relative frequency of victories for home team ht and the relative frequency of
victories for away team at. Considering the g-th match of a season composed
of G matches we have:

diffg =
won_matchesht,(g−k):(g−1)

played_matchesht,(g−k):(g−1)
−

won_matchesat,(g−k):(g−1)

played_matchesat,(g−k):(g−1)

(4.1)
where won_matchesht,(g−k):(g−1) and played_matchesht,(g−k):(g−1) indicate,
respectively, the global number of matches won and played by the home team
considering the last k matches ś until the (g− 1)-th match ś played against
all the teams met in the championship (considering both home and away
matches). Analogously, won_matchesat,(g−k):(g−1) and played_matchesat,(g−k):(g−1)

indicate the global number of matches won and played, respectively, by the
away team in the last k matches. For some g’s, the two denominators in
equation (4.1) may differ due to calendar differences in the championship
schedule for the two considered teams ht and at.

The diff index ranges from −1 to 1:

1. It is equal to 1 when the home team is absolutely the strongest between
the two competing teams in that match, because the home team won
all the games played so far in the season (against all the teams it
encountered so far), while the away team never won.
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2. On the contrary, it is equal to −1 when the away team won all the
games played so far and the home team never won.

In order to have a sufficient number of matches to compute the diff index,
we modeled only the data from the second half of each season (so g starts
from (G/2) + 1 for every complete season) and computed via (4.1), for each
g, considering the number of matches won and played starting from the
őrst match of the season (g − k őxed and equal to 1 with k increasing as g
increases, according to the increase of the amount of information available
at the g-th match).
The data from the second half of each season in the analysis include 9.569
observations. As equation (4.1) suggests, a possible alternative procedure to
compute the diff index could be considering k adequately tuned in order to
include only the past k matches (see, for example, chapter 5).

The diff index provides an easily interpretable way of summarising in-
formation about the results gained by the two competing teams in the last
k matches of the season up to the match preceding the considered one, and
can be interpreted as the difference in class between the two teams.

The dataset was then split into a training set, including matches from
seasons from 2004ś2005 to 2017ś2018 (8,469 observations, 88.5%), and a
test set, including matches from seasons 2018ś2019 and (part of) 2019ś2020
(1,100 observations, 11.5%).

Among more than 70 features available in the dataset, for studying the
Four Factors weights we decided to use:

• the result of the match (referred to the home team victory and identi-
őed with the two categories 1 and 0 for won and lost, respectively) as
dependent variable.

• The Four Factors (for both home and the away teams) as regressors.

• The diff index as MOB partitioning variable, in a way that will be
clariőed in the next section.

4.3 Methods and Models: MOdel Based recursive
partitioning (MOB) and Bias Reduced GLM
(BRGLM)

In this section, MOdel Based recursive partitioning (MOB) is described,
together with the enhancement related to its integration with BRGLM, pro-
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posed to extend GLM-based recursive partitioning from standard ML to BR
estimation, to have őnite estimations in (quasi) separation conditions.

4.3.1 MOdel Based recursive partitioning (MOB)

MOB is an algorithm for recursive partitioning, as described in Zeileis et al.
(2008).
In this approach, őtting is not made via a unique global model for the com-
plete dataset, but instead in a local way, estimating model parameters on
subsets of data deőned by recursive partitioning and building in this way a
segmented model.
The MOB algorithm is composed of four steps:

1. a parametric model M(Y, θ) (where Y is the set of observations and θ
the vector of parameters) is őtted to all observations in the current node
by estimating the parameter θ̂ via optimization of an objective function
Ψ(Y, θ) (e.g. Ordinary Least Squares (OLS) or, with the appropriate
changes, Maximum Likelihood Estimation (MLE))

θ̂ = argmin

n
∑︂

n=1

Ψ(Yi, θ) (4.2)

2. estimates of models’ parameters are tested for instability with respect
to a set of partitioning variables Z1, .., Zl: if overall instabilities are
detected, the variable Zj associated to the highest instability is selected
for split. Depending on the kind (numerical or categorical) of the
partitioning variable Zj , different instability tests can be used.

3. the split value of the selected partitioning variable that locally (greedy
approach, for computational issues) optimizes the objective function
Ψ is chosen; typically, for numerical partitioning variables the number
of splits is őxed1 equal to 2, instead it is őxed equal to C (the number
of categories) for categorical partitioning variables.

4. the current node is split into child nodes, and the procedure is repeated
for each child, until a stopping criterion (typically no more instabilities
detected), is satisőed.

1In theory, the number of splits for numerical partitioning variables could be adaptively
chosen, but typically, for computational issues, a binary splitting is carried out.
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In this way a tree is built, where each leaf has associated a partition of the
original observations. The subset of observations in each leaf is used for
building a local model, possibly with a better őtting quality with respect to
the global one. Differently from Decision Trees, exhibiting a single, constant
őt in each leaf, MOB provides a complete model (e.g. linear or logit regres-
sion) in each leaf. Moreover, in regression MOB offers the possibility to have
estimated coefficients tailored on subsets of observations, providing a higher
interpretation value with respect to classical regression models.
MOB constitutes an interesting implementation of the Breiman’s łtwo cul-
turesž paradigm (Breiman, 2001a), where a dependent variable is addressed
by two sets of variables:

1. variables X1, X2, . . . , Xp, constituting the set of predictors to be used
for the stochastic data model

2. variables Z1, Z2, . . . , Zl, constituting the set of variables to be consid-
ered for recursive partitioning in building the tree, i.e. the algorithmic
leg.

In our analysis, as already mentioned in the end of Section 4.2, the depen-
dent variable is the result of a match, assuming value 1 if the home team
won the match and 0 otherwise, and we will use the logistic regression model.
The MOB algorithm is provided by the partykit R package (Hothorn and
Zeileis, 2015), and can be used both with predeőned őtting function (e.g.
linear regression or logistic regression) or integrating your own őtting func-
tion.
Quality of őt of the models will be measured using the Receiver Operating
Characteristic (ROC) curve with the Area Under the Curve (AUC) (Bradley,
1997), together with the accuracy index.
Starting from the concepts of sensitivity (the proportion of true positives
correctly identiőed) and speciőcity (the proportion of true negatives cor-
rectly identiőed), a ROC plot displays the performance of a binary classiőer,
showing how both sensitivity and speciőcity change when the classiőcation
threshold ranges over all possible values. In other words, it shows the trade
off in sensitivity and speciőcity for all possible thresholds.
In ROC context, AUC ranges between 0 and 1 and measures the performance
of a classiőer, where an higher AUC means a better classiőcation.
The optimal threshold, identiőed according to (Youden, 1950)2 as the cut-off
that maximizes the distance from the ROC curve to the identity (diagonal)

2Alternatively, the closest.topleft can be used; in this case the optimal threshold is the
point closest to the top-left part of the plot.
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line, will be used to classify observations in the result categories 1 or 0 ac-
cording to the estimated probabilities.

4.3.2 A methodological extension of GLM-based recursive
partitioning from standard MLE to bias reduction es-
timation

The logistic regression model states that

Pr(Yi = 1|xi) =
1

1 + exp(−βxi)
(4.3)

where Yi is the dichotomous (with values of 0 and 1) dependent variable,
xi is the i-th element (i=1,..,n) of the independent variables vector and β

is a (row) vector of coefficients (named θ in the generic description of MOB
algorithm).
Expressed in łlogitž form, it can be written as

ln

[︃

Pr(Yi = 1|xi)

Pr(Yi = 0|xi)

]︃

= βxi

To estimate β coefficients, generally logistic regression uses MLE, trying
to maximize the log-likelihood function.
For some simple cases, this optimization problem can be deterministically
solved: in the case of a dichotomous dependent variable and only one dichoto-
mous independent variable, a 2x2 crosstable can be build, with observed cell
frequencies f11, f12, f21, f22, the intercept is 0 and the estimate of the β slope
coefficient is

β̂ = ln

[︃

f11f22
f21f12

]︃

As said above, this is true only in simple cases: in general it is not possible
to analytically őnd a solution to that maximization problem, and iterative
numeric algorithms (e.g. Gradient descent, Newton-Raphson, quasi-Newton,
...) must be used.
These iterative approaches can have problems in the presence of local max-
ima, but that is not the case for logistic regression because the log-likelihood
function is concave, having at most 1 maximum. In any case, the situation
can become problematic when log-likelihood function does not have a max-
imum, being monotonic increasing. In this case the maximum likelihood
estimate would not exist, and so iterative methods used for őnding MLE
estimators do not converge: the model will always answer 1 (or 0) from a
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certain predictor value on. More precisely, if we consider the realisations yi,
with i = 1, . . . , n, of the n independent Bernoulli random variables and the
p-dimensional covariate vector xi associated with each yi, we have (Allison,
2004, 2008):

• complete separation in the sample points (y1, x
T
1 )

T , . . . , (yn, x
T
n )

T if
there exists a vector γ ∈ Rp such that γTxi > 0 ∀i with yi = 1 and
γTxi < 0 ∀i with yi = 0;

• quasi-complete separation or (quasi) separation in the sample points if
there exists a vector γ ∈ Rp such that γTxi ≥ 0 ∀i with yi = 1 and
γTxi ≤ 0 ∀i with yi = 0;

• overlap if neither complete nor quasi-complete separation occurs.

Data separation is a necessary and sufficient condition for the maximum
likelihood estimate to have at least one inőnite-valued component (Albert
and Anderson, 1984). In (quasi) separation situations, standard maximum-
likelihood estimation methods, such as the Iteratively Reweighted Least
Squares (IRLS) (Green, 1984) commonly used in logistic regression, can be
numerically unstable and inferential results can be wrong when procedures
are based on the estimates and the estimated standard errors (Mansournia
et al., 2018).
An example is the dataset reported in Figure 4.1, taken from (Allison, 2008),
where y is the dependent variable and x is the single predictor, presenting
a complete separation: a linear combination of the regressor is perfectly
predictive of the outcome; taking into account the linear function

c = 0 + 1(x)

where the vector of coefficients β is equal to [0, 1] and applying 4.3, we obtain

ŷ =
1

1 + exp(−x)

i.e. that for all negative x, y holds 0 and for all positive x, y holds 1, as
plotted in őgure 4.1.

An analogous situation for quasi complete separation, happening when
complete separation condition holds, and moreover equality condition holds
for at least one case in each category of the dependent variable.
In the dataset in Figure 4.2 we have the same rows as for complete separation,
and 2 more rows related to value 0 for x, where y assumes values 0 and 1
(observations 6 and 7).
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2020), by solving the median BR adjusted score equations (Kenne Pagui
et al., 2017) or by subtracting an estimate of the bias from the MLE
(Cordeiro and McCullagh, 1991). Computationally, a quasi Fisher scor-
ing algorithm is used.
Moreover, this second approach is computationally feasible even for
large samples (differently from exact logistic regression). In R, there
are a few libraries implementing PMLE:

(a) logistf: this package implement Firth’s BR logistic regression
via the function logistf.

(b) brglm2, a package directly implemented by Kosmidis, one of
main authors in PMLE őeld.

After careful analyses and prototypes, we preferred to use brglm2 for the
integration between MOB and PMLE, to adopt the mean bias-reducing ad-
justed score approach (Firth, 1993), ensuring őnite estimates for some GLM
(and among them Binomial response) (Kosmidis et al., 2020; Kosmidis and
Firth, 2020), even in cases where MLE are divergent (as for separation prob-
lem). This adds another context to the list of the different application con-
texts where the reduced-bias estimator can favourably be used (see, for ex-
ample, Kosmidis et al., 2020 for a list of diverse application areas).
Integration between brglm2 and partykit was easy in what concerns
training phase: we simply deőned a new őt function mob.brglm2 (Listing
4.1):

1 mob.brglm2 = function(y, x, start = NULL , weights = NULL ,

offset = NULL , ...) {

2 glm(y ~ 0 + x,

3 family=binomial ,

4 start = start , method = "brglm_fit",type="AS_mean", ...)

5 }

Listing 4.1: Deőning brglm őtting function to be used in MOB

and executed MOB with it (Listing 4.2):
1 home.diff.fit=mob(result~

2 eFG.t +TOR.t + OReb.t + FTR.t | diff ,

3 data=dataset.training ,

4 fit=mob.brglm2

5 )

Listing 4.2: Invoking MOB with brglm őtting function

For the testing phase, an ad hoc prediction function has been implemented
(Listing 4.3) to get around some issues that should have been solved in the
further releases of the package.

47



1 # MOB+brglm prediction: standard predicates with response type

‘‘node ’’ works

2 home.diff.fit.node=partykit ::: predict.glmtree(home.diff.fit ,

newdata = dataset.testing , type = "node")

3

4 # so we will use "composite" approach , starting from leaves

5 brglm2_probs=f.mob.calc.probs(home.diff.fit ,home.diff.fit.node ,

dataset.testing) # finding testing observations probs

6

7 # returns the dataframe of probabilities for test observations

8 f.mob.calc.probs=function(mob_tree ,mob_df,test){

9 leaves=nodeids(mob_tree , terminal = TRUE) # leaves ID

10 n=length(leaves) # number of leaves

11 ret <- data.frame(A= numeric (0), B= numeric (0))

12 for (i in 1:n){

13 # calculating node probs

14 node.probs=f.mob.node.prob(mob_tree ,mob_df,test ,leaves[i])

15 ret=rbind(ret ,node.probs)

16 }

17 ret= arrange(ret ,ID) # sorting using observation ID

18 ret=unlist(ret$value) # we need just values

19 return(ret)

20 }

21

22 # returns probs for observations classified in node n

23 f.mob.node.prob=function(tree ,nodes_df,test ,n){

24 idx=filter(nodes_df ,node==n)

25 obs=test[rownames(idx),]

26 coef=coef(tree ,node = n) # leaf predictors estimated coeffs

27 # calculating node obs probs

28 prob=f.logit.find_mob_diff_prob(obs ,coef)

29 aux =unlist(prob)

30 ret=enframe(aux)

31 return(ret)

32 }

33

34 # calculating node obs probabilities

35 # here there ’s reference to our custom dataset

36 f.logit.find_mob_diff_prob=function(leaf_obs ,leaf_coef){

37 ff=leaf_obs[,c(10 ,12 ,14 ,16)] # node obs Four Factors values

38 intercept=as.double(leaf_coef [1]) # node estimated intercept

39 coef.ff=leaf_coef [2:5] # node estimated Four Factors

coefficients

40 num_obs=dim(leaf_obs)[1] # number of obs in the node

41 log_fun=rep(0,num_obs) # initializing probabilities vector

42 for (i in 1:num_obs){ # for all observations in the node

43 # calculate logit exponent

44 es=f.logit.calculate_diff_esp(intercept ,coef.ff,ff[i,])

45 # calculate logit probability
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46 log_fun[i]=exp(es)/(1+ exp(es))

47 }

48 return(log_fun)

49 }

50

51 # applying logit exponential formula

52 f.logit.calculate_diff_esp=function(intercept ,ff_coef ,ff_values

){

53 esp=intercept

54 for (i in 1:4){

55 esp=esp+as.double(ff_coef[i])*as.double(ff_values[i])

56 }

57 return(esp)

58 }

Listing 4.3: Implementing custom MOB-brglm prediction

It can be meaningful to underline how, after some communications, Prof.
Zeileis (one of MOB authors) realized it was easy to integrate brglm2 in
MOB, and natively made it.

4.4 Results

In this section, we summarise the results obtained by applying the MOB
algorithm with brglmFit (from package brglm2) as őtting function to our
NBA dataset.
We considered two models:

1. the őrst model aimed at helping the coaching staff when preparing the
home match; the winning probability of the home team is modelled as
function of the home team’s Four Factors.

2. the second model, aimed at supporting the preparation of the away
matches, based on the opponent’s Four Factors as predictors. In this
second model, the winning probability of the away team is modelled
as function of the away team’s Four Factors.

In both cases, the partitioning variable used in MOB is the diff index, which
is the difference of victory relative frequencies between the home and the
away team, as deőned in equation (4.1).

The choice to model home and away matches separately is due to two
main reasons: (1) we aimed to deliver two separate tools to the coach or team
management as support when deciding the best game strategy, as explained
above; and (2) including all the information for the home and away teams
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in one single dataset (and incorporating team information into the model)
resulted in a model able to őt the data nearly perfectly (in particular, in-
cluding the őrst factor of both teams makes it very easy to identify which
team scored the most).

4.4.1 A model for the home matches

In this subsection we analyse a model suitable for preparing home matches.
The dependent variable Y is the match result, with possible categories 1 =
won and 0 = lost, referred to the home team; the predictors are the home
team’s Four Factors; partitioning is based on the diff index.

Fitting the ‘home model’ to the training set

The model estimated on the training data is őtted with a pruning asking for
at least 1000 observations in a node to be splitted (Listing 4.4).

1 home.diff.fit=mob(result~ eFG.t +TOR.t + OReb.t + FTR.t|diff ,

2 data=dataset.training ,

3 control=mob_control(minsize =1000) ,

4 fit=mob.brglm2

5 )

Listing 4.4: Fitting MOB-BRGLM home model

Figure 4.3 displays the tree built using diff as partitioning variable, as re-
ported in each intermediate node together with the p-value of the instability
test. The tree terminates with 5 leaves, each of them showing the number
of observations classiőed as belonging to the leaf, together with the coeffi-
cients estimated for its own logistic regression model, which is őtted to the
observations in that node.

Figure 4.4 shows the speciőc model associated to each leaf summarised via
four spinograms, one for each factor (shooting, turnovers, rebounds and free
throws, respectively), offering a simple tool to better interpret the results.

The spinogram is a plotting style provided by the partykit package for
logistic regression, which shows how the success probability of the dependent
variable Pr(Y = 1) (on the y-axis) varies on the basis of an independent
variable on the x axis. The stacked bars’ widths correspond to the relative
frequencies of the values of the independent variable (in classes), while the
bars’ heights correspond to the conditional relative frequencies of Y = 1,
which are the success probability estimates, in every class of the independent
variable (deőned according to a quantile subdivision, here quartiles).

Looking at the őrst leaf on the left (Node 3) in Figure 4.4, which includes
the observations with negative diff (the away team won more than the home

50



Figure 4.3: MOB tree for the home team model (training set): in the leaves,
coefficient’s estimates are shown together with each subset size n

team up to the current match, so we can suppose that the away team is
stronger than the home team), we can observe that the model highlights
the difficulty for the home team to őnd a winning strategy. Only a really
high shooting percentage can give the home team a hope of victory. This
suggests a really high weight of the shooting factor in the game strategy in
this situation.

In the opposite extreme (őrst leaf on the right), Node 9 contains the
observations with positive diff (> 0.18). For the games included in this
node, we can suppose that the home team is stronger than the away team.
Here, the model conőrms that, as expected, winning probabilities are really
high, regardless of the Four Factors. It is a good situation in which the coach
can try new strategies and tactics, or let play second lines allowing őrst lines
to stand.

Middle nodes include more balanced matches, with őghting teams having
similar victory percentages in the matches played up to the current match.
For example, looking at Nodes 5 and 6, the spinograms suggest that a good
shooting factor is mandatory to win, otherwise, with high probability, the
home team will be defeated; for the other three factors, winning probability
tends to be substantially ŕat.
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Figure 4.4: MOB tree for the home team model (training set): for each leaf,
a set of four spinograms, one for each factor (from top to bottom: shooting,
turnovers, rebounds and free throws, respectively), is depicted

Testing the ‘home model’

Testing is based on the test set, containing 1,100 matches (11.5%) from the
second half of the regular seasons 2018ś2019 and 2019ś2020, and probabili-
ties have been calculated using custom implementation previously described.

Having an unbalanced dataset (in our training set the home teams win
more often than the away teams, with 59.81% of wins, that is Y = 1), we
considered that prevalence in prediction.

The results from the ROC/AUC analysis in the test set, performed us-
ing the pROC package (Robin et al., 2011), show a good őt, as displayed in
Figure 4.5: AUC equals 0.85, and for the selected model (with a classiőca-
tion threshold equal to 0.688), the accuracy is 0.7445. This high value of
the accuracy index, as well as those described in the followings, is justiőed
because this model and the subsequent ones are not models for predicting
the match result but for explaining the inŕuence of the Four Factors on the
match result; indeed, the covariates refer to to the current game.

Size and accuracy for single leaves, i.e. for each locally őtted model, are
reported in Table 4.1.

As expected, accuracy is higher in extreme situations (when one of the
two teams had much better performance than the other one up to the current
match), and is lower (but still high) in balanced games, when the strength
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Figure 4.5: ROC/AUC analysis for the ‘home model’ (test set)

of the two teams is similar (diff is around 0).

4.4.2 A model for the away matches

In this subsection we őt a model suitable in approaching the away matches.
The focus is here on the away team so the dependent variable is the away
team result and the predictors are the away team’s Four Factors; partitioning
is still based on the diff index.

Fitting the ‘away model’ to the training set

The model estimated on the training set for away matches is produced by
following code:

1 opp.diff.fit=mob(result~eFG.o +TOR.o + OReb.o + FTR.o|diff ,

53



Table 4.1: Size and accuracy of local models for the łhome modelž (test set)

node num accuracy

3 176 0.7841
5 169 0.7219
6 191 0.6387
8 334 0.7096
9 230 0.8043

2 data=dataset.training ,

3 control=mob_control(minsize =1000) ,

4 fit=mob.brglm2)

Listing 4.5: Fitting MOB-BRGLM away model

and is displayed in Figures 4.6 and 4.7.

Figure 4.6: MOB tree for the away team model (training set): in the leaves,
coefficient’s estimates are shown, together with each subset size n

Results from the home and away models are very similar, as expected,
in terms of both partitioning and estimated models.

Testing the ‘away model’

Results from the ROC/AUC analysis in the test set is displayed in Figure 4.8,
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Figure 4.7: MOB tree for the away team model (training set): for each leaf,
a set of four spinograms, one for each factor (from top to bottom: shooting,
turnovers, rebounds, free throws, respectively), is depicted

with an AUC of 0.833; for the selected model (with classiőcation threshold
equal to 0.398), accuracy is 0.7509.

Size and accuracy for single leaves, i.e. for each local őtting model, are
reported in Table 4.2.

Table 4.2: Size and accuracy of local models (testing dataset), the away team

node num accuracy

3 169 0.7515
5 172 0.7267
6 200 0.755
8 329 0.7173
9 230 0.813

4.4.3 The GLM tree with an offset term

The results in Subsections 4.4.1 and 4.4.2 suggest that the splits in both
trees are mainly driven by differences in the intercept and that the remaining
differences are mostly random variations. This is conőrmed by Figure 4.9,
representing the estimated Four Factors’ coefficients as functions of the node
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Figure 4.8: ROC/AUC analysis for the ‘away model’ (test set)

mid-points of the partitioning variable (the diff index).
Figure 4.9 suggests that the the splits in both the home and away mod-

els are driven by differences in the intercept and not by differences in the
Four Factors’ coefficients, which appear to be nearly constant across different
nodes. This implies that the winning probability increases or decreases with
the diff index, but the Four Factors do not seem to contribute much.

In order to reveal any structural difference among the impacts of the
Four Factors on the winning probability in the tree leaves, we included the
diff index as an offset term in the estimation of the GLM tree, that is
keeping the parameter of the diff index őxed globally for all observations
while investigating, by estimating the tree, if and how the Four Factors’
parameters vary locally, that is across subgroups.

Indeed, an offset term can be used in GLMs in order to include an ad-
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Figure 4.9: Estimated Four Factors’ coefficients (y-axis) as a function of the
node mid-points of the partitioning variable (diff index, x-axis)

ditional regressor in the linear predictor when the effect of this regressor is
őxed or known a priori. Therefore, the coefficient of this additional term is
not estimated but őxed. In our situation, in order to quantify the global
effect of the diff index we őrst estimated, on all observations, a logistic re-
gression model with the winning probability as the dependent variable and
the diff index as the sole regressor. The resulting estimated coefficient of the
diff index measures the (known a priori) contribution of diff and, multiplied
by the diff index itself, has then been used as the offset term in the GLM
tree, where the aim was to investigate the local effects of the Four Factors in
subgroups of observations identiőed by the partitioning variable (see Listing
4.6
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1 # a) estimate the additive model in a first step

2 log.fit_ea.diff.noha=glm(result~ ea.diff.noha ,

3 family=binomial ,

4 data=dataset.training)

5

6 # b) preparing offset term: product of diff index with its

coefficient

7 log.coef_ea.diff.noha=coef(log.fit_ea.diff.noha)

8 offset_ea.diff.noha=log.coef_ea.diff.noha [2]*dataset.training$

ea.diff.noha # multiply ep.diff.noha by its coeff

9

10 # c) invoking glmtree with offset

11 m_ea.diff.noha_h=glmtree(result~ eFG.t+TOR.t+OReb.t+FTR.t|diff ,

12 data =dataset.training ,

13 offset=offset_ea.diff.noha ,

14 minsize =1000 ,

15 family=binomial ,

16 method="brglmFit")

Listing 4.6: Using offset in home model

This was repeated for both home and away GLM tree models; results are
reported in Figures 4.10 and 4.11, which suggest that in both situations,
only one split is enough to distinguish structural differences in the impact of
Four Factors on the winning probability.

Figure 4.10: MOB tree for the home team model (training set) with the diff
index as an offset term

Figure 4.12 shows the results from the ROC/AUC analysis in the test
set for the home model (left) and the away model (right). AUC equals 0.817
and 0.814 in the home and in the away model, respectively. For the se-
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Figure 4.11: MOB tree for the away team model (training set) with the diff
index as an offset term

lected models (classiőcation thresholds equal 0.633 and 0.447, respectively),
accuracy is 0.7418 in the home model and 0.7445 in the away model.

Figure 4.12: ROC/AUC analysis for the ‘home model’ (left) and the ‘away
model’ (right), with the diff index as an offset term (test set)

The two trees are very easy to read and their straightforward inter-
pretability is an added value when these tools are delivered to coaches or
team management as support for their strategic decisions. The home model
in Figure 4.10 will drive decisions when our team is playing a home match,
while the away model in Figure 4.11 will support decisions if our team is
playing away.
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First of all, interestingly in both trees the threshold is not zero but is
negative. This suggests that the threshold is favorable to the home team;
indeed, in both trees, the leaf on the right contains matches where the home
team is expected to have an advantage over the away team. On the contrary,
in all the matches belonging to the left leaf, the home team is expected to
have a disadvantage. The bonus for the home team, related to the negative
threshold, is due to the presence, in the right leaf, of matches with a slightly
negative diff deriving from a relative frequency of victories for the home team
-up to that match- (slightly) lower than the relative frequency of victories
for the away team.

As regards the estimated coefficients, results show that, in general, the
őrst factor offers a high contribution in winning the match, as expected,
while the contributions of other three factors are lower and roughly equal to
each other. This contradicts, in some way, the weights proposed by Oliver
(Table 2.1).

Looking for differences in the estimated coefficients of the right and left
models, we see that in matches where our team is expected to have an
advantage (right leaf in the home model in Figure 4.10 if we are playing at
home and left leaf of the away model in Figure 4.11 if we are playing away),
the impact of the őrst and third factors on our winning probability is higher
than in matches where our team is expected to suffer more. On the contrary,
the impact of the fourth factor is lower. In other words, the best strategy for
winning a game when we are the favorite team (according to the past history
of games as measured by the diff index) is to focus on offensive abilities. On
the other side, in matches where we are not the favorite team (left leaf in
Figure 4.10 and right leaf in Figure 4.11), offensive skills are less crucial and
a defensive strategy, blocking the opponent’s attack, and counting on free
throws, can lead to win.

In future research, these simple models can be easily and proőtably inte-
grated with other partitioning variables, if available, for example, accounting
for differences in teams’ positions in the conference (or division) rankings or
in some offensive or defensive characteristics.

4.5 Conclusions

In this chapter, we applied MOB to a large NBA dataset in order to under-
stand how the Oliver’s Four Factors importance changes on the basis of the
balance of power between two teams competing in each match.

To do this, we analysed two different models with the result of the match
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as the dependent variable. The őrst model can be used by the coaching staff
to prepare home matches (using the home team’s Four Factors as predictors),
the second one to make decisions about the best strategy in away matches
(using the opponent team’s Four Factors).

In both cases, we used the diff index as the partitioning variable; it is
deőned for each match as the difference between victory relative frequencies
for the home and the away team considering previous games of the same
season.

The whole dataset was used to calculate the diff index, but only matches
of the second half of each season were used as observations in the model; the
second half seasons from 2004ś2005 to 2017ś2018 were used for training,
while the second half seasons 2018ś2019 and (part of) 2019ś2020 were used
for testing.

In order to solve convergence problems of Maximum Likelihood estima-
tion due to (quasi) separation issues, we proposed a solution that integrates
MOB with Bias Reduction GLM estimation provided by the brglm2 pack-
age. The proposed approach ensures őnite estimates in (quasi) separation
situations.

The results illustrate how the local models provided by MOB offer a great
interpretation power: they show how the Four Factors’ weights can change
on the basis of the difference in class between the two teams involved in a
match. Therefore, they can constitute a valuable tool for basketball coaching
staff when preparing for a match.

Further research will be devoted to include other partitioning variables in
the models in order to add information on the offensive or defensive abilities
of the two teams, or external information, such as, for example, changes in
the teams’ rosters, changes in the coaching staff, position in the conference or
division rankings. Other deőnitions of the diff index could also be explored,
varying the k parameter in equation 4.1 in order to account for a rolling
estimate of the diff index (like we did in Chapter 5).
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Chapter 5

Feature analysis for basketball

outcome prediction by means

of Deep Learning

Remarks Some of the contents of this chapter will be presented in:

IES 2022 - Innovation & Society 5.0
University of Campania "L. Vanvitelli", Italy, 27 January ś 28 January 2022
in a presentation entitled:
Feature definition for NBA result prediction through Deep Learning
M. Migliorati, E. Brentari

and have been made public in arXiv:
http://arxiv.org/abs/2111.09695
in a manuscript entitled:
Features selection in NBA outcome prediction through Deep Learning
M. Migliorati
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5.1 Introduction

This chapter is devoted to the problem of predicting the winner of matches in
NBA, focusing on features selection. It is shown how, for outcome prediction
classiőcation problem, a careful deőnition of single features to be used in
machine learning techniques, and Deep Learning (Goodfellow et al., 2016;
Chollet and Allaire, 2018) in particular, can produce predictions with high
quality, comparable to top quality predictions reported in literature, where
a huge number of regressors is often used.
Three approaches have been selected for features’ deőnition:

1. The Elo (from the name of its creator) rating system (Elo, 1978). Orig-
inally deőned for rating chess players, today it is widely used in several
board and card games, online games and sports. The Elo rating sys-
tem, with some adjustments, has been applied to many sports, mainly
for tournament rating predictions: football (Eetvelde and Ley, 2019;
Hvattum and Arntzen, 2010; Leitner et al., 2010; World Football Elo
Ratings, 2021), tennis (Angelini et al., 2021), Australian football (Ryall
and Bedford, 2010), ice hockey (World Football Elo Ratings, 2021),
American football (Silver, 2014) and, of course, to NBA basketball
(Silver, 2015, 2020a).

2. the difference of the relative frequency of victories for the two teams
involved in a match, named diff (Migliorati et al., 2020).

3. Oliver’s Four Factors (Oliver, 2004; Kubatko et al., 2007): few indexes
aimed to identify success keys, as described in Section 2.4

The őrst two approaches are directly based on the teams’ strength deőnition,
the third one is based on a synthesis of several box score statistics, instead.
All these approaches have been adapted to calculate the features’ values
before a match (ex-ante values), taking into account:

• Both historical (considering all past games) and dynamic (averaging a
feature on some prior matches) deőnitions.

• Regression to mean (Galton, 1889), i.e. the trend for extreme values
of getting closer to average in repeating experiments; this concept is
particularly important in NBA championship, where after each season’s
end there is an explicit attempt of strength re-balancing among teams
(draft mechanism).
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• The home court factor, appearing so important in NBA (Harville and
Smith, 1994; Jones, 2007).

The original NBA dataset described in previous chapters, including all the
NBA regular seasons matches from 2004-2005 to 2019-2020 (until 11/03/2020,
when NBA was stopped for some weeks due to Covid19), and counting 19.138
observations (one for each match), has been enriched with these features, and
then used for both training and testing Deep Learning models.
Deep Learning is a speciőc subőeld of machine learning, and is based on us-
ing neural networks composed by (possibly) several layers (this is the reason
why the approach is called deep, no relevance to a deeper data understand-
ing level).
The models have been developed in a particular Deep Learning echosystem
(Chollet and Allaire, 2018) in R, using Keras package (Allaire and Chollet,
2021) via RStudio (RStudio Team, 2021). The nets, calibrated to produce
models with a good prediction quality, are built considering the two hyper-
parameters (i.e. the number of layers and the numbers of units for each
layer) small in size, a natural consequence of the small number of features.
This chapter’s original contributions are:

1. the comparison of single-feature and box-score based models, showing
how the latter have a lower prediction quality (a possible symptom
of the fact that they are close to their limit in outcome prediction).
Moreover, the single-feature approach enables the usage of really simple
neural networks (typically with just one hidden layer), asking for a
reduced computational power and producing results comparable, for
the speciőc problem, to more complex network architectures:

2. the idea of maintaining separated home and away data, obtaining new
statistics (e.g. Elo home and Elo away ratings) to base our models on.

The chapter is organized as follows: Section 5.2 is devoted to describe the
dataset and its features; Section 5.3 summarizes Deep Learning approach;
Section 5.4 reports the outcome predictions produced in applying Deep
Learning, and Section 5.5 ends the chapter proposing some conclusions and
ideas for further enhancements.

5.2 The dataset

The dataset includes all NBA regular seasons matches from 2004-2005 to
2019-2020 (until 11/03/2020, when NBA was stopped for a period due to

65



Covid19), and it counts 19.138 observations, one for each match. During the
16 seasons taken into account, some franchises have changed name or court,
so the total number of different teams in the dataset should be 34. For
our analyses we adopted the most recent names (i.e. Brooklyn Nets, New
Orleans Pelicans and Oklahoma City Thunder) for each franchise affected
by changes in the considered period, reducing the number of teams in the
dataset to the canonical 30.

5.2.1 Features’ definition

5.2.1.1 The Elo rating

The Elo rating system (Elo, 1978) has been originally deőned for calculating
the strength of players in zero-sum games (i.e. games where a player gains
exactly what its opponent loses) as chess, the sport for which this system
was created by Arpad Elo.
Each player is assigned a rating constituted by a single number: new players
have an initial default rating (that can change on the basis of the considered
organization), and the difference in the ratings of the opponents of a match is
used to establish the probability of the match result. After every match, the
winning player will gain a certain quantity of points (and the defeated player
will lose the same quantity) depending on their pre-match rating difference;
moreover, the system is built in an łasymmetricž way: the gain for victory
of the player with the highest rating is smaller than the eventual gain for
victory of the player with the lowest rating.
More formally: if before a match Player1 has a rating R1 and Player 2 has
a rating R2, the probability for Player 1 of winning the match (event p1w)
is modeled as a logistic curve as follows:

P (p1w) =
1

1 + 10
−(R1−R2)

400

(5.1)

and the probability of victory for Player 2 (event p2w) is modeled as:

P (p2w) =
1

1 + 10
−(R2−R1)

400

(5.2)

where the value 400 is historically used in Elo (Fig. 5.1 shows the impact
of that parameter on the slope of the sigmoid curve). Probabilities are
0.5 if Player1 and Player2 share the same rating, and in general P (p1w) +
P (p2w) = 1.
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Figure 5.1: Elo logistic curves on the basis of different logistic parameter
value (i.e. the denominator of the exponent in equations 5.1 and 5.2); 400 is
the default in chess.

Let S be the result of a match: for games without the possibility of draws
(as basketball is) S is 1 for Player1 victory, 0 instead when Player 2 won).1

After the match, the ratings of the 2 players will be updated as follows:

R1’ = R1 +K ∗ (S − P (p1w)) (5.3)

R2’ = R2 +K ∗ (S − P (p2w)) (5.4)

where K is a parameter addressing how strongly a result will affect ratings’
update: a small K means that ratings remain almost stable, a high K means
strong impacts on rating change.

An example: if the ex-ante ratings are 1500 for Player1 and 1400 for
Player2, and Player1 won the match, the updated ratings will be:

• for K=5, Player1 =1502 and Player 2=1398

• for K=50, Player1 = 1518 and Player2 =1382

Viceversa, if Player2 (i.e. the underdog) won the match, larger variations in
ratings will be produced:

1For sports as football, where a draw is admitted too, S can assume the three possible
values 1, 0.5, 0.
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• for K = 5, Player1 =1497 and Player 2=1403

• for K = 50, Player1 = 1468 and Player2 =1432

In the chess world the logistic parameter is set equal to 400, to have
P(p1w)= 0.75 and P(p2w) =0.25 when the difference in ratings between
the two players is equal to 200, following the original suggestion by Elo.
Moreover, in Elo system the initial rating is not important (the difference
of rating between two players are considered) if there are not situations
introducing inŕation or deŕation in the system; this is the case with our
dataset, because the group of teams is closed. The difference in Elo ratings
between the two teams őghting in a match will be the őrst feature used in
the present study: for the initial ratings we will follow Silver (2015) and
1300 will be used, for the logistic parameter the classical value of 400 will be
maintained.

5.2.1.2 The difference in relative victory frequencies

A second feature directly quantifying the strength of opposing teams is the
difference of their relative victory frequencies, as expressed in chapter 4 in
equation 4.1.
Named diff (Migliorati et al., 2020), it is a clear and concise way for show-
ing the difference in class between the two teams, providing an analytical
deőnition for a classic rule of thumb often used in naive fan predictions (the
favorite is the team that won more in the past).

5.2.1.3 Four Factors

The Four Factors (Oliver, 2004; Kubatko et al., 2007) is the set of statistics
considered keys to success, built on top of classic box score analytics (it is
not a direct expression of the strength of a team) and already described in
Section 2.4.

5.2.2 Features’ characterization

The features introduced in Section 5.2.1 have been calculated ex ante, i.e.
considering only information from prior matches, to make them suitable for
outcome predictions. Moreover, they have been calculated in multiple ways,
taking into account the periodicity (historical VS dynamic approach) and
the separation of data on the basis of the court to calculate features.
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5.2.2.1 Periodicity

The features used as covariates in models for predicting the outcome of a
match have been calculated both from an historical (considering all the prior
matches included in the dataset) and dynamic perspective (averaging on a
subset of prior matches). Under the so-called historical perspective, if we
have to predict the outcome of the game g, a generic feature f(t, g) for a
team t, with t ranging from 1 to the number of teams T , will be calculated
as in Equation 5.5:

f(t,g) =

∑︁g−1
i=1 f(t,i)

g − 1
(5.5)

under the dynamic perspective, f(t, g) will be calculated as in Equation 5.6:

f(t,g) =

∑︁g−1
i=g−d f(t,i)

d
(5.6)

where d is the depth, i.e. the number of prior games to be considered in
calculating the average of f .

Historical approach: regression to mean When computing the histor-
ical f(t, g) (equation5.5), the regression to mean was implemented: at each
season starting, the features’ values are reinitialized, taking into account a
percentage of their past average.
Let us consider the last N regular seasons s1, .., sN , each one composed by
mk matches, where k renages over the number of seasons from 1 to N ; more-
over, let us consider the generic feature f of the team t, denoted as ft, with
t ranging over the number of teams, from 1 to T .
The value of a generic feature ft for the team t for the őrst match of the
new regular season sN+1, denoted as ft,s1

N+1
, is calculated as in 5.7, adding a

proportion 1-P of the value of the feature after the last match of the previous
season S, i.e. f

i,s
mN
N

to a proportion P of the average of the values of the
feature calculated considering all past matches for all teams:

ft,s1
N+1

= f
t,s

mN
N

∗ (1− P ) +

∑︁T
j=1

∑︁N
k=1

∑︁mk

z=1 fj,szk

T ∗
∑︁N

z=1mz

∗ P (5.7)

where P is the proportion of regression to mean to be considered. A regres-
sion proportion equal to 0 reduces equation 5.7 to equation 5.8

ft,s1
N+1

= f
t,s

mN
N

(5.8)
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where the őrst value of the feature for the new season of a team is equal to
the last value of the feature of the previous season for that team; this means
to have continuity among seasons, without any regression to mean: like a
single, long season for the entire period 2004-2020.
At the other opposite, when the regression proportion P is equal to 1, equa-
tion 5.7 is reduced to equation 5.9

ft,s1
N+1

=

∑︁T
j=1

∑︁N
k=1

∑︁mk

z=1 fj,szk

T ∗
∑︁N

z=1mz

(5.9)

meaning that the starting features’ values for each season are the same for
every team, equal to the mean of all past values; it is a complete regression
to mean for all teams.
The mechanism of regression to mean is suitable not only from a statistical
point of view (Galton, 1889), because extreme values tend to become closer
to the mean in new observations, but it seems particularly suitable for NBA
(Silver, 2015), where the draft mechanism is adopted: at the end of each
season, the worst classiőed teams will have the precedence in selecting new
players; at the opposite, the best classiőed teams will be the last in such a
choice. The draft mechanism is not perfect, but ensures a certain balancing
among teams, see Figure 5.2 where the number of playoff accesses for each
team is used as a measure of the efficiency of draft mechanism. For a good
balancing, each team should have the same number of playoff accesses (about
eight in the considered period), with a density curve (depicted in light blue)
different from zero only around that value. Instead, there are teams with
only one or two accesses, and other teams with 15 accesses. In this work we
veriőed (see Section 5.4) how regression to mean is fundamental for having
good predictions quality for models using historical features as regressors.

Dynamic approach In the dynamic approach, new statistics are built
considering the average of a feature’s value, taking into account only a subset
of prior matches. The exact number of matches to be considered in the
average2 is to be identiőed for obtaining models with the best predictions
quality.

2Some experiments using the exponential smoothing of some past matches as depth for
rolling mean has been implemented, but the fitted models show no improvements on the
quality of fit with respect to the approach used in the analysis
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Figure 5.2: Efficiency of NBA draft re-balancing mechanism. On the vertical
axis the number of playoff accesses bars and the density function (line) are
depicted for seasons from 2004-2005 to 2019-2020.

5.2.2.2 Home VS away court data

In NBA, the home court factor plays an important role (Harville and Smith,
1994; Jones, 2007). The analysis about this topic on the dataset here con-
sidered conőrms that: on average, home teams win 59.27% of the matches:
a summary per season is reported in Table 5.1; home victories percentage is
always greater than 57% (apart from the season 2019-2020, for which data
are limited to 20/03/20), exceeding in several seasons the 60%.

This information can be useful in features’ calculation. To this purpose:

• Elo deőnition is usually modiőed to take into account the home court
advantage (chess does not care about the home factor, but many other
sports, and basketball among them as demonstrated above, should): if
home victory is more frequent, the impact on the ratings’ update for
the home team victory should be decreased.

• All features have been calculated:

1. as usual, considering all past matches regardless the court where
they have been played.

2. Building two new variants for each feature, calculated consider-
ing either only data from the home played matches or only data
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Table 5.1: Percentage of home victories per regular season (season 2019-2020
is limited to 20/03/20)

season home victories %

2004-2005 60.43
2005-2006 60.46
2006-2007 59.15
2007-2008 60.18
2008-2009 60.73
2009-2010 59.40
2010-2011 60.33
2011-2012 58.59
2012-2013 61.19
2013-2014 58.05
2014-2015 57.48
2015-2016 58.86
2016-2017 58.37
2017-2018 57.89
2018-2019 59.27
2019-2020 55.10

from the away matches, respectively. This approach seems to be
original for the features we are considering.

Modifying Elo calculation to account for the home advantage Prob-
ability deőnitions (5.1) and (5.2) must be revised to consider the home ad-
vantage. The classic approach to do that consists in adding a penalization
parameter to the exponent, as in Formulas 5.10 and 5.11; in this way, a home
victory will produce a smaller effect on rating updates, balancing the home
court factor:

P (p1w) =
1

1 + 10
−(R1−R2+HA)

400

(5.10)

P (p2w) =
1

1 + 10
−(R2−R1−HA)

400

(5.11)

This penalization parameter must be carefully quantiőed because, as shown
in Table 5.2, it can play an important role in Elo rating update3. The
Table 5.2 contains some examples of rating updates for a match involving
two teams with same Elo rating (1300) before their match. On the basis

3in Silver (2015) home-court advantage quantified as 100 Elo points
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Table 5.2: Examples of the impact of home advantage penalization parameter
on ratings update for two teams with same Elo rating (1300) before their
match. Column Home_adv contains the home advantage, columns P(p1w)
and P(p2w) the probability of victory for home and away team, respectively,
Column result contains 1 in case of victory of home team and 0 otherwise,
Columns newElo contain the update of Elo ratings for player 1 (p1) and
player 2 (p2), respectively

Home_adv P (p1w) P (p2w) result newElo(p1) newElo(p2)

0 0.50 0.50 1 1315.00 1285.00
50 0.57 0.43 1 1312.86 1287.14
100 0.64 0.36 1 1310.80 1289.20
150 0.70 0.30 1 1308.90 1291.10
0 0.50 0.50 0 1285.00 1315.00
50 0.57 0.43 0 1282.86 1317.14
100 0.64 0.36 0 1280.80 1319.20
150 0.70 0.30 0 1278.90 1321.10

of the value of penalization parameter (column Home_adv), the result of
the application of Equations 5.10 and 5.11 to calculate the probability of
victory for the home team (columnP (p1w)) and for the away team (column
P (p2w)) changes and consequently, on the basis of the result of the match
(column result), the Elo rating values after the match (columns newElo(p1)
and newElo(p2), respectively) can greatly change, too.
The Elo formula can be further generalized4 as in equations 5.12 and 5.13:
for each team, two parameters αadv and βdis (prize and penalization, respec-
tively) are added to the numerator of the exponent, and the value assigned
to them represents the sums of all advantages and disadvantages for that
team:

P (p1w) =
1

1 + 10
−(R1−R2+α1adv

−β1dis
)

400

(5.12)

P (p2w) =
1

1 + 10
−(R2−R1+α2adv

−β2dis
)

400

(5.13)

In this way, in the Elo equations it is possible to take into account not only
the home court factor, but also other factors, to be properly quantiőed, po-
tentially offering some additional information: for instance player injuries

4In this contribution the Elo R package (Heinzen, 2020), already offering this possibil-
ity, has been used and preferred to other packages (as Player Ratings by Stephenson
and Sonas (2020), for instance) for its completeness.
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(as disadvantage for new injuries, or possible advantage when a top player
returns to play, see Marusek, 2021; Hopkins, 2021 for good data sources),
logistics (disadvantages due to travels or court altitude Silver (2020b)), num-
ber of days among consecutive matches Manner (2016)), referees (Price et al.,
2009; Deutscher, 2015).
In this work, only home advantage has been considered, leaving the manage-
ment of other information to future works.

Considering the court in features definition Typically, the statistics
we are taking into account are calculated considering all matches, without
reference to the court where matches are played. In effect, the performances
of a team can be very different for matches played at home with respect to
matches played away. As an example, in Table 5.3 few information about
some Detroit Pistons (DET) matches are reported5. For each match the
home team, the away team and the result (1 means victory for the home
team) are speciőed. Moreover, the victory relative frequency (named ratio)
is calculated, both as usual, considering all matches (DET ratio column), and
differentiating these statistics on the basis of the court (column DET h ratio
for the ratio calculated considering only the matches played at home, and
column DET a ratio for the ratio calculated considering only the matches
played away). After ten matches, the value of the ratio statistics calculated
considering all past matches is equal to 0.5 (i.e. Detroit wins one game out
of two); but looking to the ratio statistics calculated considering home/away
data separation, we have some additional information: that team is really
strong at home, with a home ratio equal to 0.8 (they won four out of őve
games played at home), but instead they are weak when playing away, with
an away ratio only equal to 0.2 (they won only one game out of the őve
played away).
This approach, based on considering home/away data separation in features’
calculation (called the court issue in the following of the chapter) seems
promising, and it will be adopted in this work: besides features not con-
sidering the court issue, two new statistics based on the court issue will be
calculated.

5.2.3 Dataset structure

Elo, diff and Four Factors have been calculated and then properly lagged
to ensure that only ex ante information involving the two teams are used to

5Information are taken from starting of season 2004-2005.
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Table 5.3: Example of features calculation considering the court factor for
some Detroit Pistons matches results. For each match the home team, the
away team and the result (where 1 means home team victory) are reported.
Moreover, the victory relative frequency is reported, both considering all
matches (column DET ratio) and building two separate statistics considering
only for home and away matches, respectively (columns DET h ratio and
DET a ratio)

home team away team result DET ratio DET h ratio DET a ratio

DET HOU 1 1.00 1.00
TOR DET 1 0.50 0.00
DET PHI 1 0.67 1.00
LAC DET 0 0.75 0.50
DEN DET 1 0.60 0.33
UTA DET 1 0.50 0.25
DET MIN 1 0.57 1.00
DET IND 0 0.50 0.75
DET CHA 1 0.56 0.80
CHA DET 1 0.50 0.20

produce predictions.
The whole dataset is composed by 19138 observations, but both lagging and
rolling mean calculus can introduce Not Available (NA) values, which can
indicate either the absence of a value or the impossibility to calculate it 6.
Rows containing NA values have been discarded7, arriving to a magnitude
of about 18.000 observations (depending on how features are calculated).
The dataset has been classically split in training and testing subsets; the
training dataset features’ values have been standardized, and also the test-
ing dataset features’ values have been modiőed on the basis of mean and
standard deviation used in standardizing corresponding training dataset fea-
tures.
As a summary, Table 5.4 reports the ways adopted in features calculation,
taking into account both periodicity (historical VS dynamic) and the court
issue as discussed above. Moreover, the common information to be calibrated
in features calculation are reported in column information.

6For instance, when rolling mean depth is set to n and less than n observations are
available.

7In particular, the first season is affected by this issue.
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Table 5.4: Features variants calculated for Elo, diff , Four Factors.

periodicity court issue information

historical not considered regression to mean %
historical considered regression to mean %
dynamic not considered rolling mean depth
dynamic considered rolling mean depth

5.3 Methods and Models: Deep Learning

5.3.1 Selecting the Neural Network Environment

The machine learning approach used to őt models and predict outcomes is
Deep Learning (Goodfellow et al., 2016; Chollet and Allaire, 2018), i.e. Ar-
tiőcial Neural Networks (ANN) involving an (eventually high) number of
hidden layers between the őrst (the input) and the last (the output) layers.
Actually, there is a huge number of packages available in R offering ANN’s
functionalities in general and Deep Learning in particular, as veriőed explor-
ing the Comprehensive R Archive Network (CRAN) repository.
To select the R package most suitable for the analysis, őrstly a set of 30
potentially interesting packages has been identiőed, and then these packages
have been compared via an R tool iad hoc implemented to parse CRAN
download logs.
Figure 5.3 summarizes the results for packages related to ANN and Deep
Learning, considering only the packages with at least 500 downloads in the
period 12/02/21-13/01/21, and with a new release in the last year.

Among 30 R packages considered, there are six packages much more
downloaded (magnitude of thousands VS hundreds) with respect to others;
among these, h2o (H2O.ai, 2021, about 25000 downloads, really interest-
ing) and rminer (Cortez, 2015, about 1500 downloads) are not speciőc for
Deep Learning/ANN, and NNet (Venables and Ripley, 2002, about 100000
downloads) is a didactic tool, oriented to enable learning of low level ANN
mechanisms.
Among the remaining ones, we decided to use the package Keras (Allaire
and Chollet, 2021, about 25000 downloads), because this library is well doc-
umented, widely adopted in the AI őeld, focused on Deep Learning and
offers a good abstraction on low-level ANN details (more than the Torch

environment (Collobert et al., 2011; Falbel and Luraschi, 2021, about 1500
downloads) and TensorFlow (Abadi et al., 2015, about 25000 downloads).
In effect, Keras package allows the users to focus on relevant data aspects,
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Figure 5.3: ANN/Deep Learning packages available on CRAN; on the ver-
tical axis, the number of downloads in the period 12/02/21-13/01/21 is re-
ported. Moreover, for each package it is reported the date and the number
of the last release.
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as the preparation of the dataset and the deőnition of the two hyperparam-
eters deőning a net (the number of layers and the number of units for each
layer), without spending time on low level details.

5.3.2 Building Deep Learning models

All the models described in this work share the same Deep Learning sequen-
tial structure:

• one őrst input layer, with a number of input units /typically one)
corresponding to the number of features to be considered in building
the model

• one őnal output layer, with 1 output unit corresponding to the two
possible results of a NBA match (basketball outcome prediction is a
typical classiőcation problem)

• a stack of several intermediate hidden sequential layers, connecting the
input and output layers. Each hidden layer contains several elabora-
tion units, to work on data received from the prior layer before sending
them to the following layer.
Data transformation on each layer is done by an activationfunction:
a function, typically non linear, used to transform the weighted sum of
layer inputs into outputs; in our models all layers use classic Rectiőed
Linear Activation8 relu (Goodfellow et al., 2016), apart from the out-
put layer having a sigmoid activation function (the most suitable for
a two-values classiőcation problem).

This traversal process is repeated several times in both directions, with an
optimizer updating weight values via a backpropagation algorithm, driven
in its action by a loss function to be minimized. In our ANN:

• Adam (Kingma, 2014) is the optimizer.

• Binary_crossentropy is the loss function to be minimized.

• Accuracy is the metric to be used to verify the behavior of the net.

As all other machine learning mechanisms, ANN models can be affected by
overőtting (i.e. the model is excessively tailored to the training data, and
not able to generalize when applied to a different dataset); to verify and

8Rectified Linear Activation is a non-linear function defined as relu(x) = max(0, x),
i.e. returning 0 if its argument is negative, the argument itself otherwise.
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Figure 5.6: ROC curve for simple (just 1 hidden layers) Deep Learning model
on NBA dataset

5.4 Results

The results reported in this section have been obtained using a v-fold cross-
validation with v=4 (unless otherwise speciőed): for each validation, 75% of
observations are randomly selected for training, and 25% for testing9.

5.4.1 Using Elo based features

5.4.1.1 Historical Elo

Fit quality for Historical Elo based models depends on the three parameters
used in calculating the feature: the percentage of regression to mean (see
Subsection 5.2.2.1) and the two values of home advantage (see equations 5.10
and 5.11) and K (see equations 5.3 and 5.4) used in Elo rating calculation. To
identify which parameters’ values produce the best quality, several models
have been őtted cycling on possible values of the parameters above, both
considering or not the court issue.
Listing 5.3 shows the structure of the code implementing that cycling on the
three parameters.

9A different approach based on time (using the first 14 regular seasons for training and
the last 2 regular seasons for testing as in chapter 4), leads to similar results in terms of
prediction quality.
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Figure 5.7: ROC curve for more complex (ten hidden layers with more units)
Deep Learning model

1 # to find the best accuracy for models based on historical

Elo

2 ans.elo.h.noha=NULL

3 for (prm in seq(0,100,by=10)){ # % regression to mean

4 for (ha in seq(0,200,by=20)){ # home advantage value

5 for (k in seq(10,70,by=10)){ # K

6 nba.elo.h=f.ds.calc_elo(nba ,prm ,ha,k)

# preparing features

7 nba.elo.h.noNA=na.omit( nba.elo.h)

# removing NA rows

8 # building the model invoking keras

9 ret=f.k.k_fold_acc( nba.elo.h.noNA ,elo.h.,result ,

print=TRUE)

10 acc=round(ret[1],4) # accuracy

11 auc=round(ret[2],4) # area under curve

12 # for each cycle , save parameters ’ values , accuracy

and auc

13 ans.elo.h.noha=rbind(ans.elo.h.noha ,c(prm ,ha ,k,acc ,

auc))

14 }

15 }

16 }

Listing 5.2: Finding best accuracy for historical Elo

Execution results are reported in Table 5.5. The quality of predictions
built using historical Elo without considering the court issue is the best one,
with an AUC equal to 0.7117 and an accuracy equal to 0,6721 (using a
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Table 5.5: Best quality of predictions for models based on historical Elo: for
both approaches (considering or not the court issue), the best AUC measure, the
corresponding threshold and the accuracy measure calculated using that threshold
are reported, together with parameters’ values used in Elo calculation

court issue AUC threshold accuracy
regression

to mean P%
home

advantage
K

not considered 0.7117 0.5047 0.6721 20 40 30
considered 0.7001 0.5058 0.6650 60 40 30

threshold equal to 0.5047). These values have been obtained using a regres-
sion to mean percentage P% equal to 20, a home advantage parameter equal
to 40, and K equal to 30, and are better than quality measures obtained for
the best model considering the court issue (AUC equal to 0.7001, accuracy
equal to 0.6650 using a threshold equal to 0.5058), built with a regression to
mean percentage equal to 60, a home advantage equal to 40 and a K equal
to 30.

5.4.1.2 Dynamic Elo

Predictions quality for models based on dynamic Elo depends on the depth
used in averaging, as expressed in equation 5.6: a loop on the possible depths
must be done, as reported in Listing 5.3. Results are reported in Table 5.6:
the quality of predictions of the model built using dynamic Elo without
considering the court issue is the best one, considering a depth equal to
two; its AUC is equal to 0.7117 and its accuracy equal to 0.6736 (threshold
equal to 0.5049), the best among the models we built in this work. Also
predictions’ quality for the best model built using dynamic Elo (depth equal
to three) considering the court issue is good, with an AUC equal to 0.7103
and an accuracy equal to 0.6705 (threshold equal to 0.5148).
In general, models built on dynamic Elo have a quality slightly better than
quality of models built using historical Elo.
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Table 5.6: Quality of predictions for models based on dynamic Elo: for both
approaches (considering or not the court issue), the best AUC measure, the corre-
sponding threshold and the accuracy measure calculated using that threshold are
reported, together with the depth used for averaging values.

court issue AUC threshold best accuracy depth

not considered 0.7117 0.5047 0.6736 2
considered 0.7103 0.5148 0.6705 3

1 ## to find the best accuracy for models based on Elo rolling

mean: cycling on depth

2 ans.elo.rm=NULL

3 for (depth in seq(2,90,by=1)){

4 # calculating Elo rolling mean features

5 nba.elo_last=f.ds.calc_elo_last(nba ,depth)

6 feat=c(paste0("ea.elo.ha.delta.",depth),"result")

7 # selecting only needed feature

8 aux.elo.rm.ha=nba.elo_last_ha.bis[,feat]

9 # removing NA rows

10 aux.elo.rm.ha=na.omit(aux.elo.rm.ha)

11 ret=f.k.k_fold_acc(aux.elo.rm.ha,feat ,print=FALSE)

12 # for each cycle , binding depth value , accuracy and auc

13 ans.elo.rm=rbind(ans.elo.rm,c(dim(aux.elo.rm)[1],depth ,

round(ret [1] ,4)))

14 }

15

Listing 5.3: Finding best accuracy for dynamic Elo

5.4.1.3 Best accuracy model for Elo

The best Elo based model uses the dynamic Elo feature without consider-
ing the court issue, with a depth of 2; its AUC (calculated considering a
single execution) is plotted in Figure 5.8; it is equal to 0.7117, the highest
among our models. Predictions for that model considering single seasons
have the accuracies reported in Table 5.7: season 2014-2015 shows best ac-
curacy (0.7053), instead worst accuracy (0.6333) is for season 2019/20 (only
partially played) and season 2008-2009 (0.6420).
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Table 5.8: Best quality of predictions for models based on historical diff : for
both approaches (considering or not the court issue), the best AUC measure, the
corresponding threshold and the accuracy measure calculated using that threshold
are reported, together with the regression to mean percentage used for calculate
the feature used in the model

court issue AUC threshold accuracy regression to mean P%

not considered 0.6925 0.5236 0.6626 90
considered 0.6775 0.4788 0.6572 78

5.4.2 Using diff based features

5.4.2.1 Historical diff

In historical diff approach, models’ őt quality depends on regression to
mean percentage value, as speciőed in equation 5.7. As a consequence, in or-
der to identify the model with best predictions quality, all possible values for
this parameter have been tried and results are reported in Table 5.8, where
the quality of predictions of the model built using diff without considering
the court issue is the best one, with an AUC equal to 0.6925 and an accuracy
equal to 0.6626 (using a threshold equal to 0.5236).

Figure 5.9 shows accuracy as a function of regression to mean percentage,
for both diff historical approaches. It can be important to underline how
accuracy is relatively low (0.6139) when regression to mean percentage is
equal to 0, being just slightly better than the naive strategy of assuming the
home team always winning.

5.4.2.2 Dynamic diff

In diff dynamic deőnition, models’ quality in predictions depends on the
depth employed for calculating rolling mean value, as expressed in equation
5.6. Results are reported in Table 5.9, where the quality of predictions of
the model built using dynamic diff without considering the court issue is
the best one, with an AUC equal to 0.7020 and an accuracy equal to 0,663
(threshold equal to 0.5255).
Models built on dynamic diff have a quality slightly better than quality of
models built using historical diff .
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Figure 5.9: Historical diff : accuracy curve with respect to % of regression to
mean

Table 5.9: Quality of predictions for models based on dynamic diff : for both
approaches (considering or not the court issue), the best AUC measure, the corre-
sponding threshold and the accuracy measure calculated using that threshold are
reported, together with the depth used for averaging values

court issue AUC threshold accuracy depth

not considered 0.7020 0.5255 0.663 50
considered 0.6944 0.5057 0.6586 27
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Table 5.10: Diff best model prediction accuracy per season

season accuracy

2005-2006 0.6772
2006-2007 0.6689
2007-2008 0.6786
2008-2009 0.6636
2009-2010 0.6935
2010-2011 0.7034
2011-2012 0.6364
2012-2013 0.6553
2013-2014 0.6934
2014-2015 0.6623
2015-2016 0.6734
2016-2017 0.6230
2017-2018 0.6498
2018-2019 0.6568
2019-2020 0.6222

Table 5.11: Best quality of predictions for models based on historical Four Factors:
for both approaches (considering or not the court issue), the best AUC measure, the
corresponding threshold and the accuracy measure calculated using that threshold
are reported, together with the regression to mean percentage used for calculate
the feature used in the model

court issue AUC threshold best accuracy regression to mean P%

not considered 0.6655 0.5334 0.6400 78
considered 0.6527 0.4968 0.6347 74

89



Figure 5.11: Historical Four Factors: accuracy VS regression to mean percentage;
higher accuracy (0.6427) is found for the model without home/away data separation
(considering a regression to mean percentage of 78%), against 0.6371 for model
fitted considering home/away data separation.

Table 5.12: Best quality of predictions for models based on dynamic Four Factors:
for both approaches (considering or not the court issue), the best AUC measure, the
corresponding threshold and the accuracy measure calculated using that threshold
are reported, together with the depth used for calculate the feature used in the
model

court issue AUC threshold best accuracy depth %

not considered 0.6495 0.4934 0.6371 42
considered 0.6492 0.5091 0.6372 36

Also in this case (as for the corresponding situation for diff), predic-
tion quality without applying regression to mean is actually lower (accuracy
measure about 0.61), as reported in Figure 5.11.

5.4.3.2 Dynamic Four Factors

In Four Factors dynamic deőnition, models’ quality in predictions depends
on the depth employed for calculating rolling mean value, as expressed in
equation 5.6. Results are reported in Table 5.12, where the quality measures
of predictions for the two best models built considering or not the court issue
are almost the same, with an AUC equal to 0.6495 considering the court issue
and 0.6492 without considering it.
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Table 5.13: Four Factors best model: accuracy per season (single execution)

season accuracy

2005-2006 0.6175
2006-2007 0.6230
2007-2008 0.6494
2008-2009 0.6235
2009-2010 0.6502
2010-2011 0.6177
2011-2012 0.6455
2012-2013 0.6522
2013-2014 0.6760
2014-2015 0.6788
2015-2016 0.6566
2016-2017 0.6590
2017-2018 0.6532
2018-2019 0.6667
2019-2020 0.6370

period has been produced not considering the court issue and using a single
dynamic Elo feature with an averaging depth equal to two (i.e. only Elo
rating of prior two matches are considered in feature calculation). For this
model, the AUC is equal to 0.7117 and the accuracy (using a threshold equal
to 0.5047) is equal to 0.6736 (same AUC of the model built using historical
Elo, but higher accuracy).
Comparing the accuracy of prediction on single seasons for the three models
producing the best results, the dynamic Elo produces the best prediction
in 9 seasons, the dynamic diff in 5 and the Four Factors in 2. The best
accuracy for a single season is equal to 0.7053 for the season 2014-2015.
Resultssuggest that, on the whole period, the court issue approach to fea-
tures deőnition produces predictions comparable in the quality to models
based on usual single feature, offering more interpretation details. More-
over, regression to mean can play a relevant role in prediction quality.
In general, quality of models built using diff based features is close to qual-
ity of models built using Elo, and this is an expected result if we take into
account how both these features express a direct measure of the strength of
a team. Instead, the quality (remarkably the lowest among the three ap-
proaches) of models based on Four Factors seems a bit surprising. Maybe
this fact suggests how the approaches based on box-score statistics are close
to their limit in outcome prediction quality, and it is not easy to imagine
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how to improve it.
In this perspective probably it can be more productive to deeply investigate
approaches similar to those presented in this contribution, related to other
information, considering:

1. a better management of seasons’ change in dynamic feature deőnition.
At the beginning of this work, regression to mean was thought just
for historical features, supposing only a small number of prior matches
have to be considered in dynamic features deőnition. Instead, results
show that in some cases, as reported in Section 5.4, the best quality
in dynamic models is often obtained considering a not so small depth
(50 and 27, 36 and 42). In these cases, it is not difficult to cross
two seasons, and regression to mean can play a role. It has been
prototypically implemented also for the diff feature in its dynamic
form, and őrst outputs conőrm how quality of őt is slightly improved
by these strategies, and this aspect will be deeply investigated in future
steps.

2. Analysis and integration of other kinds of information:

(a) injuries, logistics, referees as proposed by several authors (see Sec.
5.2.2 about)

(b) social networks (as proposed in Miller, 2015: today sources like
Facebook (dated 2004) and Twitter (dated 2006) are old enough to
offer information about several past years), breaking news, betting
sites, market exchanges

(c) players’ characteristics and performances, both as single and with
respect to other teammates (see Zuccolotto and Manisera, 2020
for a review).

Regarding Deep Learning: for this speciőc classiőcation problem, we ob-
tained good accuracy and limited overőtting maintaining small both the two
hyperparameters (levels, units) of the net, heading towards the so called
shallow learning: more complicated nets do not seem to offer great advan-
tages in terms of quality of predictions, as reported in Sec. 5.3.2.
Few last words about Keras, the library we used to build Deep Learning
models in R. Our activities have been really simpliőed by this package, offer-
ing a great abstraction on neural nets and enabling to focus just on relevant
model aspects. At the moment, there is not a complete default explanation
mechanisms associated to that library, but many researches are ongoing to
offer explanation facilities (for example see Maksymiuk et al., 2020, Brandon
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and Bradley, 2020 or Molnar et al., 2018), and it is easy to guess how this
ŕaw will be early completely solved.
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Appendix A

Tools for bibliographic search

As a classic in approaching research questions, the őrst activity is related
to analyze scientiőc literature, in order to identify papers relevant to the
research domain and to collect information about publications:

• Authors and groups

• Nations

• Years

• Milestones and references

• Approaches and data science models to be tested.

This activity has evolved in a new research őeld, focused on bibliographic
research coupled to Natural Language Processing (NLP). We adopted this
approach in the őeld of machine learning applied to basketball, and őrst
results are summarized in this Appendix, which is structured as follows:
Section A.1 introduces the problem of identifying papers relevant to a speciőc
domain using ad hoc bibliographic tools. Section A.2 shows some results
obtained in applying bibliographic and NLP tools to COVID-19 scientiőc
publications. Section A.3 summarizes őrst results obtained in applying a
new index (named h∗), for assigning a credibility rate to not peer reviewed
articles (e.g. those published on arXiv repository) on the basis of the authors’
information, automatically retrieved accessing Google Scholar.
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A.1 Retrieving and analysing papers focused on bas-
ketball and machine learning

The őrst step in identifying meaningful papers focused on machine learning
applied to basketball has been the selection of a corpus of publications to
be analyzed using Bibliometrix (Aria and Cuccurullo, 2017), an R open-
source tool particularly suitable for quantitative research in scientometrics
and bibliometrics.

A.1.1 Selecting a source

The two most inŕuential scientiőc abstract and citation indexing services,
Clarivate’s Web Of Science (WoS) and Elsevier’s Scopus, have been com-
pared to identify the source to be used in the following analysis. The same
simple query

machine learning AND basketball

has been executed on both indexing services, producing 29 results in WoS
and 39 results in Scopus (as July 2019), classiőed as reported in Table A.1.
In terms of number of meaningful results, the two sources seems to be similar,

Table A.1: Results of the query machine learning and basketball in both Web
of Science and Scopus

no. description

25 elements in common between Scopus and Wos
4 WoS exclusive items: all articles, relevant and with many references

14 Scopus exclusive items: 5 out of scope, 3 related but
not relevant, 6 (1 review paper and 5 conference papers) relevant

also if some more elements have been retrieved by Scopus. But looking to the
őelds available for the retrieved documents, WoS has been veriőed offering
some more useful information (őelds about research areas and categories
classiőcation), so we decided to adopt this source for our bibliographic search.

A.1.2 A more sophisticated query

As a second step, the following more complex query:
( "data science" OR "machine learning" OR "business intelligence" OR
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A.2 Text Mining of searches about COVID-19

Remarks Some of the contents included in this section have been pub-
lished (in Italian) in:
Statistica & Società n. 1/2020
Text Mining delle Ricerche su COVID-19: Cosa, Chi e Dove.
M. Migliorati, M. Carpita
www.rivista.sis-statistica.org/cms/?p=1159

A.2.1 Introduction

The bibliographic search about basketball and data science summarized in
Appendix A.1 showed how it is not so simple to identify the subset of papers
effectively relevant to address speciőc research questions. In this perspective,
we started to study the application of NLP to bibliographic items, to make
that goal easier. In the meanwhile, the new coronavirus COVID-19 pandemic
was broken out, and the global health emergency caused in the őrst months
of 2020 by the COVID-19 made the need for reliable scientiőc information
even most pressing, both to facilitate contacts between research groups and
to reduce fake news spread.
In a full epidemic scenario, one of main concerns is to quickly spread research
results2, enabling people facing pandemic to take into account new ideas. In
this scenario, we decided to apply NLP and Bibliometrix [2] to COVID-
19 bibliography. In this appendix the results of applying those technologies
to COVID-19 bibliography with the goal of identifying the most relevant
topics, the main scientiőc information sources and the more active countries
are reported.

A.2.2 Analysing textual dataset using both bibliographic and
NLP tools

For this analysis, we have taken into account 343 scientiőc publications
(papers, letters, news and other indexed electronic material) selected from
WoS for the period January, 1th - March, 30th 2020, containing at least
one of following keywords (no upper and lowercase distinction): COVID-19,
COVID2019, COVID-2019, COVID 2019, COV19, 2019-nCoV, SARS-CoV-
2, SARS-Cov2, coronavirus disease 2019, Novel Coronavirus, New Coron-

2for instance, the open research archive specifically created to face this emergency
named CORD-19, made available by the Allen Institute for Artificial Intelligence [1], in
March 2020 was counting more than 45.000 scientific publications and, among them, 33.000
full text papers about corona-virus.
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avirus.
The obtained 343 publications őrstly have been classiőed via the so called
topic modelling [3] approach, a procedure widely adopted in NLP to cluster-
ize a corpus of documents on the basis of latent topics (identiőed considering
documents’ words) they refer to. On the basis of results3 obtained analysing
title, abstracts and keywords, the publications have been subdivided in three
sets. First 5 top papers of each group have then been analyzed to understand
the macro-topic characterizing each set, and we named the tree groups as:

1. COVID-19 spread and social impact (100 publications)

2. relations between COVID-19 and already known viruses (109 publica-
tions)

3. COVID-19 diagnosis, transmission and clinical features (132 publica-
tions).

Then, the three publications’ groups have been analyzed using visualization
techniques provided by the Bibliometrix software.

A.2.3 Some results

As an example, results about the third cluster (related to COVID-19 diag-
nosis, transmission and clinical features) are reported in Figure A.12, where:

1. the Co-occurrence Network shows the graph of relations among key-
word groups; in this chart it is possible to identify four keyword groups:
two related to different COVID-19 names, one related to risk manage-
ment in Wuhan city (where the virus was őrstly identiőed) and the
last one, not linked to other keywords group, related to diagnosis and
clinical treatment.

2. The Collaboration Network represents the graph of relations among
countries of publications’ authors. In the Collaboration Network three
country clusters are identiőed: the őrst one centered on China (but
with an unexpected presence of Spain and Cyprus), the second one re-
lated to USA and Europe (but with the unexpected presence of Saudi
Arabia), the third one isolated and including only two countries (Ger-
many and Sweden).

3The topic model algorithm was not able to classify 2 papers with sufficient certainty.

116







A.3 h∗, an index to measure the credibility of preprints
in the COVID-19 Open Research Dataset (CORD-
19)

Remarks Some of the contents presented in this section have been pre-
sented in:
SIS2021, 50th Meeting of the Italian Statistical Society
University of Pisa,June 21th-25th 2021
in a short paper entitled:
Using Google Scholar to measure the credibility of preprints in the COVID-
19 Open Research Dataset (CORD-19)
M. Migliorati, M. Carpita, E. Brentari

A.3.1 Introduction

The COVID-19 crisis highlighted, among others, the difficulty of őnding reli-
able scientiőc information as soon as they are produced, selecting them in the
huge amount of the available material [7]. The typical peer review process,
adopted by scientiőc editors, normally takes several months before a paper
is published, and this long period is not acceptable in crisis situations, when
relevant information must be made accessible as soon as possible. From the
other side, open-access preprints repository (as arXiv, bioRxiv and medRxiv)
enable posting of scientiőc material in a very short time, but without offering
any guarantee about the reliability of published contents. In this Appendix
we propose a possible solution to this issue, by deőning a credibility mea-
sure, named h∗-index, to be assigned to the preprints posted in repositories,
driving users in a proper selection of materials.
The basic idea is to retrieve and summarize in a single measure some data
(automatically retrieved accessing a free source as Google Scholar) about
each author of a preprint (h-index, number of co-authors and length of sci-
entiőc career), and assigning the higher value among authors to the preprint.
First results, derived from applying the procedure to a sample of 100 preprints
randomly selected from each of the three repositories, are really encouraging,
showing how not only preprints, but also archives themselves can be evalu-
ated in this credibility perspective.
Results show that Google Scholar is a wide-ranging bibliographic resource
relatively simple to be used and providing several useful information. Nev-
ertheless, it is not always precise in returning expected results, due both to
unregistered authors (registration is on a voluntary basis) and some well-
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known issues in authors’ naming (consistency, homonymy, diacritics) [3].
This Appendix is structured as follows: section A.3.2 describes the dataset,
section A.3.3 illustrates the proposed procedure, section A.3.4 summarizes
the main őndings and section A.3.5 presents some conclusions and future
research directions.

A.3.2 The CORD-19 dataset

The CORD-19 dataset [9] is a łfree resource of tens of thousands of scholarly
articles about COVID-19, SARS-CoV-2, and related coronaviruses for use by
the global research communityž. The Kaggle site [6], where it is possible to
őnd this dataset, too, explains that łIn response to the COVID-19 pandemic,
the White House and a coalition of leading research groups have prepared
the COVID-19 Open Research Dataset (CORD-19)ž.
This dataset contains COVID-19 and coronavirus-related research (e.g. SARS,
MERS, etc.) from several sources (e.g. PubMed’s PMC, Microsoft Aca-
demic, World Health Organization, arXiv, bioRxiv, medRxiv), and offers the
possibility of downloading the metadata.csv őle, a single repository where
each contribution is normalized in terms of contents (offering, among the
others, title, abstract, authors and source, i.e. all the features needed for
our further analyses). We worked on a dataset dated July 2020, counting
192,509 references. For our purposes, the őle was őltered on the basis of the
source (we are interested only in preprints repositories, i.e. arXiv, bioRxiv,
medRxiv) and furtherly restricted to preprints containing some COVID-19
related keywords or in the title either in the abstract5. In the end, we ob-
tained a set of 8,186 preprints.
For each of the 3 archives we selected a random sample of 100 preprints,
constituting the starting point of the analysis.

A.3.3 The procedure

A.3.3.1 The credibility h∗-index

The credibility h∗-index is based on the well-known h-index [4], modiőed to
compare researchers that work in different scientiőc őelds and with different
lengths of scientiőc careers. A huge number of h-index variations has been
proposed (see [1] for a review), and our approach integrates some of these
variations.

5For that, we used the same query as CORD-19, an OR condition on terms COVID-19,
Coronavirus, Corona virus, 2019-nCoV, SARS-CoV,MERS-CoV, Severe Acute Respira-

tory Syndrome, Middle East Respiratory Syndrome.
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A simple procedure to calculate the credibility of a scientiőc preprint based
on co-authors’ h-index is deőned in the following way:

1. for each co-author three variables must be considered:
h: the classical h-index
t: the total number of co-authors of the h-papers, i.e. the papers
considered in the h-index deőnition, including the author under inves-
tigation
a: the length of the scientiőc career, deőned as
yearpreprint − yearoldest−h−paper + 1

2. co-author h∗-index is calculated as follows:

h∗ =
h

m× a
=

h2

t× a
(A.1)

where
m = t/h (A.2)

is the average number of co-authors considering all the h-papers (the
idea of dividing h by m can be found in [2], the idea of dividing h by
a can be found in [4]). The h∗-index ranges from 0 (h-index=0 for the
author) to h (the author wrote all its h-papers alone, in the same year
of the preprint under investigation).

3. the credibility index of the preprint is the highest h∗ among the h∗ of
all the n co-authors as in [5]:

h∗preprint = max{h∗co−auth1
, .., h∗co−authn

} (A.3)

A.3.3.2 Using Google Scholar

An R procedure accessing Google Scholar to retrieve data for calculating
the h∗-index for a preprint, starting from the title and the authors’ list, has
been developed. Google Scholar services are studied to be accessed only via
browser (no ad hoc API are available), so the only feasible procedure is based
on simulating an interactive access via a browser. To do that:

• a string representing a query to Google Scholar for the preprint ti-
tle and authors’ names is built, respecting the syntax established for
browser interaction

• that query string is executed invoking the right verb (GET , in this
case) to be used in the HTTP protocol driving the browser interaction
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• An answer to the query string, constituted by HTML results’ pages, is
produced by Google Scholar

• HTML results’ pages must be parsed to retrieve the data we are looking
for.

Google Scholar policy suggests of avoiding BOT accesses: IP users addresses
are banned if they do too many or too fast requests. Consequently, random
delays between two and four minutes were inserted between two consecutive
accesses, to comply with that access policy.
Apart from details, the algorithm is based on the following three main steps,
repeated for all the preprints in the sample:

• starting from the preprint title, grab Google Scholar pages to őnd the
authors’ Google Scholar identiőers (they are strings of 12 characters,
the key for querying the system)

• grab the Google Scholar pages using title and author’s ID to retrieve
all the data needed for calculating the h∗-index for the author. To
do this step, the R package scholar2021 has been integrated in the
implementation.

• calculate the maximum h∗ among authors, and assign it to the preprint.

A.3.4 Results

We applied the described procedure to a random sample of 100 preprints for
each archive, obtaining the results in Table A.2.

Using h∗-index it is also possible to verify the level of credibility of a
whole archive, as summarized in Figure A.14. Results show that arXiv seems
containing "more crediblež preprints with respect to the other two archives,
showing an higher h∗-index average (0.52 VS 0.39 and 0.47 of bioRxiv and
medRxiv, respectively), but a h∗-index distribution with higher variability
and asymmetry too.
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Table A.2: Some statistics for the preprint samples from the three archives
in CORD-19.

Statistics arXiv bioRxiv medRxiv
no. sample preprints 100 100 100
no. too-many-authors preprints 1 14 9
no. no-preprint 1 3 2
no. evaluable preprints 98 83 89
no. authors 388 723 621
no. unknown authors 158 445 422
% unknown authors 40.72 61.55 67.95
mean of authors per preprint 3.96 8.71 6.98
mean of unknown authors per preprint 1.61 5.36 4.74
no. preprints without h∗-index 9 4 22
no. preprints with h∗-index 89 79 67
total h∗-index 46.48 30.69 31.56
mean h∗-index 0.52 0.39 0.47
st dev h∗-index 0.28 0.18 0.24

Note. We didn’t analyze preprints with more than 20 authors (too-many-authors in the table)

for avoiding overstress Google Scholar. Moreover, due to the CORD-19 dataset under analysis, it

can happen that a preprint is not more available (no-preprint in the table). Authors not found in

Google Scholar (because not registered, or because of missed correspondence between CORD-19

and Google Scholar authors’ names) are reported as unknown. Archive total h∗-index is the sum

of h∗-index for archive sample preprints with a h∗-index. At last, the mean of authors per preprint

is calculated as num authors / (num preprints with h∗-index).

Figure A.14: The h∗-index box-plot for the preprint samples of the three
archives in CORD-19. 123



The proposed approach is strongly based on the availability of data about
the authors in Google Scholar. If an (important) author is not registered, the
credibility index will suffer for this lackness, eventually producing a h∗-index
lower than the real one.
Actually, in our analyses Google Scholar unknown authors effect is not so
heavy on index calculation, apart from some relatively rare cases where im-
portant authors, with high number of citations, are not registered in that
system.

A.3.5 Conclusions and futures directions

In this Appendix we described the procedure developed with the goal of at-
tributing a łcredibilityž measure to preprints published in open access repos-
itories as arXiv, bioRxiv, medRxiv,. This measure can be important in crisis
situation as COVID-19, when it is necessary to select and access scientiőc
papers as soon as possible, without delays due to peer review, but with a
certain degree of credibility.
We described the h∗-index, based on the classical h-index and assigned to a
preprint on the basis of the highest h∗-index value among co-authors. Results
concerning the credibility of a sample of 100 preprints for each archive are
reported, and it is shown how also archives can be compared with respect
the credibility classiőcation of their preprints. Results suggest that arXiv
seems to be preferable with respect to other archives.
Future directions will address different deőnitions of the credibility index,
taking into account deőnitions considering just a part of a scientiőc career
(e.g. only the last őve or ten years), studying its properties and comparing
it with other indexes (e.g ten years h∗. Moreover, the dataset will be up-
dated and the sample size increased. At last, the coverage offered by Google
Scholar will be further investigated.
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